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Abstract

This paper analyses when, and to what extent, the robustness of
a result yields confirmation. I develop two inferential rules that spec-
ify how modellers and experimenters should update their conditional
probabilities when new derivational or experimental information be-
comes available. While similar rules apply to derivational and ex-
perimental robustness, they are insufficient on their own to generate
empirical confirmation from derivational robustness. That requires
suitable indirect confirmation relations linking model results to em-
pirical evidence. I examine several such relations and show how ro-
bustness can increase confirmation by demonstrating that both an
empirically validated result and a model prediction depend on the
same components, while certain false auxiliaries are irrelevant. When
empirical confirmation arises from derivational robustness, it does so
by strengthening these indirect links rather than by securing a high
absolute probability for a robust theorem. The resulting account clar-
ifies both the scope and limits of robust confirmatory reasoning.
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1 Introduction

Robustness analysis is widely used across the sciences, yet its epistemic signif-
icance remains contested. Scientists routinely regard results as more trust-
worthy when they persist under changes in assumptions, methods, or ex-
perimental setups. Philosophers, however, disagree about what, if anything,
robustness confirms. This paper develops an account of how robustness yields
confirmation by introducing two inferential rules that govern how researchers
should rationally update conditional probabilities when a result is derived
with or without certain components.

A scientific result is considered robust if it is detected by several diverse
means. More specifically, a model result, R, is said to be derivationally
robust if it can be derived from several models that share a core structure,
C, and vary in their auxiliary assumptions A;.! Proponents of robustness
(e.g., Weisberg 2006; Kuorikoski et al. 2010, Lloyd 2015) argue that if the
core structure C plays a role in every demonstration of the robustness of R,
this increases modellers’ confidence in the robust theorem: ’ceteris paribus,
if C then R’

This paper has two main aims: first, to formulate inferential rules that ex-
plain and justify an increase in p(R|C) when R is shown to be robust, thereby
meeting the critics’ challenge to accounts of confirmation by robustness; and
second, to identify the kinds of confirmation produced by such increases in
different contexts.

T use the terms derivational, measurement, and inferential robustness in roughly the
sense outlined by Woodward (2006), with the following exceptions. Given the convergence
in the literature on the requirement that a model must possess a core structure, I take
derivational robustness to imply such a commitment, even though Woodward did not. I
also use experimental and measurement robustness interchangeably, whereas Woodward
did not employ the former term.



Previous accounts have either defended increased confidence in a robust
theorem on intuitive grounds (Lloyd 2010, 2015; Winsberg 2021), assumed
such an increase in order to develop an account of confirmatory robustness
(Lehtinen 2016, 2018; Casini & Landes 2024), or appealed to the idea that
auxiliary assumptions are not “driving” the results (Levins 1966; Kuorikoski
et al. 2010; Schupbach 2018). At the same time, a substantial body of criti-
cism has challenged the epistemic value of robustness and questioned whether
demonstrations of robustness genuinely enhance confirmation.? Given this
state of affairs, my aim is to develop an account of confirmatory robustness
that can address at least the most central of these criticisms. Applying the
inferential rules in practice raises modellers’ confidence in the robust theo-
rem. Thus, the epistemic benefit of robustness hinges on the rationality of
the rules themselves.

The inferential rules respond to a recent challenge by McLoone, Orzack,
and Sober (2025), who argue that existing accounts of confirmation by ro-
bustness rely on conditioning on tautologies and therefore fail to show how
robustness yields epistemic gain. Their objection, however, depends on stan-
dard probabilistic assumptions—most notably the idealisation of agents as
logically omniscient—and they explicitly invite non-standard probabilistic
approaches. The rules introduced below are intended in this spirit: they
form a non-standard probabilistic framework applicable only when agents
are not logically omniscient, but which can justify non-empirical confirma-
tion from robustness.

The Derivational Confirmation Rule (DCR) states that employing a com-
ponent X in a model or experiment justifiably increases the conditional prob-
ability p(R|X), provided that suitable variation is introduced in the other
components. The Derivational Disconfirmation Rule (DDR) holds that de-
riving or observing a result R without component X decreases p(R|X). In
modelling contexts, p(R|C) increases through robustness when certain auxil-
iary assumptions—initially thought to be required for deriving R—are later
shown to be dispensable. Demonstrating that R is not logically dependent on
these auxiliaries strengthens the link between R and the core model element
C, thereby increasing p(R|C).

2Without attempting to be exhaustive, the most prominent challenges have been di-
rected at derivational robustness (Orzack and Sober 1993; Forber 2010; Calcott 2011;
Odenbaugh and Alexandrova 2011; Houkes and Vaesen 2012; Woodward 2006; Parker
2011; Lisciandra 2017; Harris 2021, Mcloone et al. 2025). See Stegenga & Menon (2017),
or Hudson (2013) for experimental robustness.



The kind of confirmation achieved when p(R|C) increases through ro-
bustness differs between modelling and experimentation. In modelling, as
Orzack and Sober (1993) note, robustness does not affect the confirmation of
R by direct empirical evidence E: since p(E|R) remains unchanged, R cannot
be empirically more confirmed by E merely because it is robust. Thus, an
increase in p(R|C) yields only non-empirical confirmation, and it is essential
to distinguish this from empirical confirmation when assessing derivational
robustness.

In contrast, in experimental contexts R itself constitutes empirical ev-
idence, and experimental robustness contributes directly to empirical con-
firmation in a way that derivational robustness cannot without empirical
support. More generally, although it is desirable to formulate accounts ap-
plicable across types of robustness for the sake of generality, the contextual
differences between modelling and experimentation are substantial enough to
require distinct accounts for derivational and measurement (or experimental)
robustness.

Because applying thes inferential rules in modelling yields only non-
empirical confirmation, they must be supplemented by an account of how em-
pirical evidence bears on the model family’s components and results. Given
Orzack and Sober’s claim that derivational robustness cannot yield direct
empirical confirmation, any empirical confirmation it provides must be in-
direct. By applying the rules to the evidential relations identified by Lloyd
(2015) and Lehtinen (2016, 2018), I simplify, reformulate, and extend Lehti-
nen’s account of indirect confirmation. This paper aims to clarify and make
these ideas more accessible.

Although the inferential rules are not framed as independence condi-
tions, they capture the same kind of weak independence as Schupbach’s
(2018) Robustness Analysis independence, thereby avoiding the objections
that threaten stronger independence assumptions (Schupbach 2015, 2018;
Harris 2021). Although the inferential rules and their preconditions incorpo-
rate aspects of Schupbach’s account, they do not reduce to his conception of
robustness as explanatory discrimination. The rules are expressed in terms
of changes in the expectedness of results rather than explanatory discrimina-
tion. One might object that this distinction is merely verbal, since Schupbach
models explanatory power probabilistically (Schupbach & Sprenger 2011),
thereby treating expectedness and explanatoriness as equivalent.

However, recasting Schupbach’s account explicitly in terms of expected-
ness exposes a problem. His formal treatment assumes that a new detection
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of the robust result will occur with a probability near one if the target hy-
pothesis explains it. This is plausible only when the models or experiments
in the known and anticipated detections are so compositionally similar that
the difference is trivial—that is, when the changes in auxiliary assumptions
are already expected to be irrelevant. By contrast, the inferential rules pre-
suppose genuine uncertainty about at least some auxiliaries. Near-certainty
in expectations about future detections is possible but neither assumed nor
required.

In principle, the account developed here applies across disciplines. The
Lotka—Volterra model serves to illustrate the inferential rules in Section 2,
and climate modelling demonstrates their use in empirically informed con-
texts in Section 4, though no detailed case study is included for reasons of
length. The paper proceeds as follows: Section 2.1 introduces the inferen-
tial rules and provides an intuitive overview of their operation; Sections 2.2
and 2.3 defend them—2.2 by relating them to genuine confirmation and 2.3
by explaining their preconditions and differences, despite certain similarities,
from Schupbach’s account; and Section 3 offers a comprehensive account of
the empirical confirmation relations arising from derivational robustness.

2 Inferential rules for changing conditional
probabilities

2.1 Notation, and an intuitive introduction with the
Lotka-Volterra model

This section begins with a well-known example of robustness—the Volterra
principle—which illustrates the kinds of circumstances to which the inferen-
tial rules apply. Only a minimal presentation of the Lotka—Volterra model
is given, since the case has been extensively discussed by philosophers (e.g.,
Weisberg & Reisman 2009; Knuuttila & Loettgers 2017; Schupbach 2018;
Harris 2021). I then introduce the inferential rules and show how they oper-
ate in this example. With this intuitive case in place, I proceed to examine
the conditions for applying the rules, the arguments for their rationality, and
the presuppositions underlying their use.

The Lotka—Volterra model describes the population dynamics of a two-
species predator—prey system. It consists of two differential equations



o (1)
Y= =y + oy,

where x denotes prey, y denotes predator, ox is natural prey growth, —3x
prey lost to predation, —yy natural predator mortality, and 6xy predator
growth from consuming prey. The Volterra principle states that a propor-
tional biocide increases prey abundance and decreases predator abundance
when the system is negatively coupled—that is, when each species’ growth
rate depends on the other’s abundance with opposite signs (02/0y < 0,and
0y/0x > 0). Let C denote ’the predator—prey system is negatively coupled’
and R denote 'a general biocide increases prey abundance and decreases
predator abundance’. Lotka and Volterra first derived R under a set of as-
sumptions represented schematically as:

{izax—ﬁxy

M, = (CA AsAy) F R (2)

Here, A; assumes that prey cannot take cover, A, that predator growth
is density-independent, and Az that a biocide affects predators and prey
proportionally. Modellers later showed that the Lotka—Volterra model is
robust with respect to A; by replacing it with A; ", which specifies that prey
can take cover:

Ml - (OA1A2A3)|_R

Given these derivations, how should the modeller revise her belief about
p(R|C)? If the inferential rules are accepted, their application justifies an
increase in this conditional probability. Probabilities such as p(R|C) and
p(R|A;) depend on background knowledge B, which includes information
about the derivational relations among model components within a model
family. Let p(R|C,By) denote the probability of R given C before the modeller
knows that R is robust (the epistemic situation By in (2)), and p(R|C,B,)
the corresponding probability after robustness has been established (in (3)).

In modelling, establishing that p(R|C,B1)>p(R|C,By) constitutes non-
empirical confirmation, since the conditional probabilities change with beliefs
about derivability. This is a case of logical learning and thus departs from
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the assumption of logical omniscience (Garber 1983). The prior probability
p(R|C,Bg) reflects epistemic uncertainty about derivability relations, which
is reduced as modellers update their beliefs to p(R|C,By).

In standard Bayesianism, the prior p(H|B) and conditional probabilities
p(E|H,B) are defined on the assumption that background knowledge B is
fixed and logically closed when new evidence E is received. The inferen-
tial rules address the converse problem: how background knowledge changes
when new derivational information arrives, while knowledge of empirical ev-
idence remains fixed. In other words, the aim is to study how p(R|C,B)
and p(R|A;,B) vary with derivational information when p(E|R) and p(E)
are held constant. Accordingly, expressions such as p(R|C,B) and p(R|A;,B)
should not be interpreted in the standard way. Under the usual interpreta-
tion, p(R|A;,B) would be undefined, since A; is known to be false and thus
p(A;|B)=0 in the ratio %.

The inferential rules describe how conditional probabilities p(R|C) change
as new derivational information from models becomes available. Under log-
ical omniscience, such probabilities would be meaningless. The expression
p(CA; A3 A3)FR) represents the modeller’s belief about whether R can be
derived from the conjunction (C'A;AyA3) before the derivation is carried
out. Ultimately, however, the focus is on the role of an individual compo-
nent X in the derivation. The most natural interpretation of p(R|X, B) is
how likely is it that X is necessary for deriving R?’—denoted p(XFcR|B)
(The rationale for this notation will be provided in Sect. 2.2.). Such be-
liefs concern derivability or expectedness. When these beliefs are applied to
evaluating how empirical evidence E (where p(E|R)>p(E)) confirms X or a
result derivable with X, the background belief p(X+cR|B) helps determine
p(R|X,B) together with other information. This conditional probability is
interpreted almost standardly, except that B need not be logically closed; it
reflects modellers’ subjective beliefs about how E bears on X through the
strength of p(R|X,B).

The probability of being able to derive R from Ms, given background
knowledge By: (C' A3 A2A3)FR is expressed as p((C'A] As A3)FR|(C A1 A As)FR
), where the solidus denotes conditioning on derivational information. This
knowledge underlies the belief p(R|C,By)=p(CFcR|Bo)=p(C F¢ R|C A1 A3A3)FR),
which represents the probabability that C is necessary for deriving R in a
model family, given the background derivability information (C'A; Ay A3)FR.
Although (C'A;A3A3)FR becomes a tautology once R is derived from My,



this does not make C+R tautological, since C alone typically does not en-
tail R in cases of robustness. The expression p(R|C,B;) abbreviates p(C' ¢
R|(CA1 A3 A3)FR, (CA A2 A3)FR).

Strengthening the robust theorem occurs when p(R|C,B) increases as R
is derived from multiple models that all include C, such that

p(R|C, B1) > p(R|C, By) <+

Earlier we considered p(C'A; Ay A3)FR), which in this framework can equiva-
lently be expressed as p(R|CA; A3 A3 ). AlthoughA; is known to be false, this
probability is not undefined, since conditioning here concerns derivability, not
the truth of CA1A2A3.

In what follows, p(XFcR|B) and p(R|C,B) are used interchangeably. Al-
though it would be more economical to retain one notation, p(R|C,B) is kept
to highlight how changes in p(X+cR|B) affect the evaluation of empirical ev-
idence through p(R|C,B). Using p(R|C,B) alone would be misleading, since
p(R|B) is undefined unless the basis of derivation is specified. To express that
an element X is believed irrelevant to deriving R, it is therefore more natural
to write p(XFcR|B)=0 rather than p(R|X,B) = p(R|B). Conversely, when a
modeller believes X may be relevant or necessary for R, this is captured by
p(XFcR|B)>0, which expresses the strength of that belief.

There are two inferential rules: one governing probability increase and
the other decrease. The Derivational Confirmation Rule (DCR) and the
Derivational Disconfirmation Rule (DDR) are defined as follows:

DCR: If aresult R is derived using a conjunction of identified elements that
include X, and this specific set of elements has not previously been
used to derive R, then the conditional probability p(R|X) justifiably
increases: p(R|X,B1)>p(R|X,By).

DDR: If a result R is derived using a conjunction of identified elements that
do not include X, then the conditional probability p(R|X,B;) decreases,
or the probability of derivability p(XFcR|B;) is set to zero.

Let us now examine how applying the inferential rules justifies the inequality
p(R|C,B1)>p(R|C,Byp) in this example. Before Volterra derived the Volterra
principle, it is plausible that his contemporaries had little confidence that
negative coupling best explained the wartime increase in predator abundance



in the Adriatic Sea. Let B_; denote this background knowledge prior to
eq. (2). According to the Derivational Confirmation Rule DCR, p(R|C,By)
>p(R|C,B_;), since the derivation of R included C and had not been car-
ried out previously. Although Volterra may have suspected that the auxil-
iary assumptions about prey cover (A;) and predator density independence
(Ag) were irrelevant to the relation betwen C and R, DCR likewise implies
p(R|A1,Bo)>p(R|A1,B_1), and analogously for Ay and As.

When the Volterra principle is shown to be robust by deriving (3), apply-
ing DCR yields p(R|C,By)>p(R|C,Bo), p(R|A2,B1)>p(R|A2,By), and p(R|A3,B1)>p(R|A3,By),
since M, introduces a new set of elements from which R is derived with these
components. In contrast, applying DDR to A; gives p(R|A1,B;)<p(R|A1,By),
because R was derived without A;. The inequalities for C and As indicate
that the Volterra principle is non-empirically confirmed by the derivation of
(3). According to DCR, the same derivation also justifies p(R|A3,B1)>p(R|A2,By),
though this does not imply that A, is necessary for deriving R - indeed later
studies have shown that the principle is somewhat robust to changes in As,.

Although DCR can apply to entirely new results, demonstrating the ro-
bustness of an existing result also requires DDR. Once a result has been
derived at least once, p(R|C) increases only if some auxiliary that might
have produced R is shown to be dispensable. In this case, the assumption
that prey cannot take cover (A;) was such an auxiliary. Applying DDR al-
lows modellers to conclude that p(R|A;,Bg)>p(R|A1,B;) even though DCR
previously implied p(R|A1,Bg)>p(R|A1,B_1). The Volterra principle there-
fore does not depend on the assumption A;. Indeed, once A; is shown to be
irrelevant to R, DDR entails p(A;FcR|B1)=0.

Before examining the rationality of the inferential rules in detail, it is
useful to outline their intuitive basis. Showing that some elements thought
necessary for deriving a result are in fact dispensable rationally increases con-
fidence that the remaining elements are essential. Even some critics of robust-
ness implicitly accept this intuition and, by extension, DCR. For instance,
Harris (2021) critiques the independence condition proposed by Kuorikoski
et al. (2010), which requires that if a result R is derived with the core C and
an auxiliary A;, then learning this should not alter one’s belief about whether
R can be derived with C and another auxiliary A;. Harris argues that this
condition is violated because the core (e.g., C in Eq. 2) appears in both
derivations, thereby increasing modellers’ expectation that it is essential for
deriving R. Her argument is cogent, but only if the DCR is accepted.



2.2 The tacking threat and genuine confirmation

While DDR can also be justified on intuitive grounds, I now briefly justify
both rules using conceptual considerations. A more extensive formal treat-
ment, drawing on genuine confirmation, is provided in the online appendix at:
https://www.mv.helsinki.fi/home/alehtine /publications/EJPSappendix.pdf.

It is easy to construct an apparent counterexample to the rationality of
DCR. Given a model

M1 — (CA1A2A3) l_ R, (4)

we can tack on any irrelevant assumption A (e.g. “the moon is made of green
cheese”) to obtain

M] = (CA Ay A3 A) - R. (5)

By monotonicity of entailment, DCR would treat this as confirming,
even though A is known to be irrelevant. This is simply the tacking—or
conjunction—problem applied to DCR, and a reviewer rightly raised it. How-
ever, the problem extends to indirect confirmation. A piece of evidence E
confirms a component X indirectly when X does not entail E, yet E still
supports X. Since the next section analyses such confirmation relations, it is
necessary to address the potential problem. The solution is to use DDR to
assign p(A-cR|B)=0: DDR blocks tacking by recognising that irrelevant as-
sumptions are not necessary for deriving R. Schurz’s (2014) condition makes
this precise: confirmation spreads from a conjunction to one of its content
elements only if that element is necessary for making the evidence likely.
Since M makes R at least as probable as M;", A fails this necessity test
and is not confirmed.

Thus p(XFcR|B) expresses® a belief about whether X is necessary for
deriving R, and only such elements can be genuinely confirmed. Schurz’s
condition thereby blocks tacking and secures the rationality of DCR, DDR,
and indirect confirmation. His condition functions as a constraint on rational
belief: it is not enough to propose a probability distribution that violates it—
one must also show that such a distribution would be rational.

3The ’F¢’ sign thus refers to the content element relation that replaces entailment in
accounts of genuine confirmation.
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2.3 Preconditions for the use of the inferential rules
and the strength of non-empirical confirmation

All accounts of robustness presuppose some degree of model variation and
often a measure of independence among the varied elements. Although the
inferential rules are not formulated as explicit independence conditions, to-
gether with their preconditions they embody a degree of diversity and weak
independence similar to Schupbach’s (2018) RA-diversity. This subsection
articulates those preconditions, compares them with Schupbach’s require-
ments, and clarifies where the inferential rules diverge from his account.

The key point is that if robustness is demonstrated only with respect
to auxiliaries that modellers already expect to be irrelevant, any resulting
change in p(R|C) will be negligible. This is why preconditions are needed:
without them, the inferential rules may lack relevance. Because some changes
in assumptions leave conditional probabilities unaffected, additional con-
straints on applying the rules are required. As noted, the rules do not fully
determine the background knowledge about conditional dependencies among
model elements and results; the content of assumptions and the nature of the
results also matter. Background information may already indicate that an
auxiliary A; cannot affect R, even if A; appears in every known derivation. In
such cases, p(A;-=cR|Bg)~0 beforehand and p(A;FcR|B1)=0 after deriving
R without it. If robustness eliminates only such an assumption, any increase
in p(R|C) will be negligible.

Let Ufie denote the set of elements known to contribute to deriving R
within a model family associated with the robust theorem ’cp, if C then
R’. Thus Uf¢ comprises those elements which, according to the modeller’s
background knowledge, have been used in deriving R in a model containing
C. When the robustness of R is established, some of these elements are shown
to be superfluous.

Since the inferential rules operate on what modellers know and can iden-
tify, the elements of Uf¢ are precisely those identified by the modeller. In (2),
URe={C,A1,A5,A3}, and in (3), Ufc={C,A1,A»,A3,A4,A5}. A demonstra-
tion of robustness justifiably increases p(R|C,B) only if at least one auxiliary
assumption in UR¢ that might have contributed to R is shown to be irrelevant
to the robust result.

Note that U does not include factors which, according to modellers’
background knowledge, could in reality contribute to R but which were not
included in the model family associated with the robust theorem concerning

11



C and R. R could be causally overdetermined by X and other factors omitted
from the model family. This is why rule DDR does not necessarily yield
p(XFcR|B1)=0, but instead merely decreases it.

For example, institutionalised racism in city planning provided an in-
dependent explanation for racial segregation when Schelling introduced his
checkerboard model. If both mild same-race preferences and institutionalised
racism are independently sufficient to produce segregation, then segregation
is causally overdetermined by these mechanisms. Deriving the segregation
result without invoking institutionalised racism reduces the probability of
segregation given that factor, but does not eliminate its possible causal con-
tribution.

If DDR is reformulated to apply only to the elements of Uf¢, it can be
stated in a stronger form:

Rule DDR: If XeU®  and a result R is derived using a conjunction of
identified elements that does not include X, then p(X+cR|B;)=0.

We are now ready to state the two preconditions.

Precondition 1: No component X used to derive R may be known to entail
R on its own: p(R|X,Bg)<1 for all XeUfc,

Precondition 2: The Derivational Confirmation Rule operates only if there
exists at least one auxiliary A;€U%¢ such that p(A;-cR|Bg)>0 and

The first precondition is not especially restrictive, as it is almost always
met in real cases of robustness. The second precondition is more substan-
tive: it requires that at least some auxiliaries shown by robustness to be
irrelevant were not already known to be entirely irrelevant beforehand (i.e.,
p(A;FcR)=0 prior to the derivation). Saying that X is not known to entail
R on its own means that R is not known to be a deductive consequence of
X. Modellers may know, for example, that (X A3A;)FR and (X A3)FR, but
not that XFR. Put differently, X would be known to entail R by itself only
if, for all conceivable auxiliaries: p(A;FcR)=0.

The reason the preconditions for the inferential rules must differ from
Schupbach’s account is somewhat intricate, so I will first outline the core
problem. Schupbach assumes that if a result R is explainable by a target hy-
pothesis H, it will be detected with near-unit probability after several prior
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detections of R. Yet such a high probability could arise only if the new deriva-
tion of R eliminates assumptions that modellers already expected to be ir-
relevant (i.e., for which p(A;FcR)~0). Schupbach quantifies explanatoriness
using a probabilistic notion that renders explanatoriness and expectedness
indistinguishable. Since this measure is assessed prior to the derivation, it
implies that the expected probability of detecting the robust result is already
close to one before the detection occurs. Such an expectation can approach
unity only if the components varied across derivations are already believed
to differ minimally—or if all auxiliaries that change between derivations are
assumed irrelevant from the outset.

If a modeller is genuinely uncertain whether a false auxiliary assumption
is necessary for obtaining a result, this very uncertainty implies, ipso facto,
that she does mot expect the robust result to be derivable with near-unit
probability after changing that assumption while keeping the core fixed. Ro-
bustness gains epistemic relevance only when it shows that at least some
assumptions about which modellers hold such uncertainty are, in fact, irrel-
evant. Accordingly, the modeller’s prior expectation that the robust result
could be derived under these changes cannot itself be close to unity.

The inferential rules avoid this problem in a straightforward way. Their
preconditions incorporate expectations about derivability, but they do not
require that the rules apply only when all auxiliaries shown to be irrelevant
by robustness were already expected to be irrelevant.

Let us now examine Schupbach’s account more closely. It imposes a re-
quirement similar to Precondition 2, stipulating that an alternative hypoth-
esis must be capable of explaining previous detections of the robust result.
Robustness Analysis (RA) diversity is defined as follows:

Means of detecting R are RA-diverse with respect to poten-
tial explanation (target hypothesis) H and its competitors to the
extent that their detections (R;,Rz,...,R;) can be put into a se-
quence for which any member is explanatorily discriminating be-
tween H and some competing explanation(s) not yet ruled out by
the prior members of that sequence (Schupbach 2018, p. 288).

In Schupbach’s framework, altering an auxiliary assumption can yield the
requisite weak independence, provided that the change enables explanatory
discrimination between competing hypotheses. The inferential rules proposed
here recognise a similar role for such auxiliary variation but are formulated in

13



terms of expectedness rather than explanatoriness, since Schupbach’s specific
formulation of explanatory discrimination is rejected.

The basic intuition behind explanatory discrimination is sound; the prob-
lem lies in Schupbach’s excessively strong assumption needed to prove that
robustness confirms. Like RA-diversity, DCR requires variation among the
elements used to derive the robust result and interprets the epistemic gain
from robustness as the elimination of false auxiliaries. The point is not to
deny the relevance of explanatory considerations, but to note that, for any
formal proof of confirmatory robustness, such considerations must be medi-
ated through the expectedness of results (see also Roche & Sober 2013).

Since Schupbach uses the Volterra principle to characterise the hypothesis
H in the modelling context, the most natural interpretation of H’s competitor
H’ is that some auxiliary A; causes R. Schupbach denotes the conjunction of
prior detections of the result R{&Rq&...&R,,_1 by E, and requires that both H
and H’ explain E. In modelling, 'detection’ corresponds to deriving the result.
More formally, the success condition states that e(E,H)=c(E,H’)>0, where ¢
is the probabilistic measure of explanatory power defined by Schupbach and
Sprenger (2011):

ey — PHI) —pll ~ )
p(hle) + p(h| ~€)

where h is explanans and e explanandum. The success condition parallels
precondition 2.

Schupbach defines explanatory discrimination as the requirement that
there exists an explanatorily discriminating means of potentially detecting
R,. In other words, H should strongly explain detecting the result once
again (R,,), while H" should strongly explain not detecting it (~R,,). Thus,
the discrimination condition demands that H explains the renewed detec-
tion of the robust result, whereas H” does not. Formally, this is expressed
using the probabilistic measure of explanatory power e: ¢(R,,,H/E)~1, and
e(~R,,H |[E)~1.4

In the modelling context, RA-diversity can be interpreted as follows: a
series of models, each entailing the robust result R, are RA-diverse if every

4Substituting H for h and R,, for e in g(e,h), and conditioning on E, yields ¢(R,,,H|E).
Schupbach’s (2018) framework does not explicitly include an assumption corresponding to
rule DDRC. However, eliminative reasoning requires such an assumption, and Schupbach’s
stipulation that a hypothesis is discarded if it fails to explain the n nth detection of R
serves the same function. This is why he assumes that £(R,,,H’|E)=0.
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derivation shows that some auxiliary used in an earlier derivation is unnec-
essary, since R can be derived without it.

Let us now see why the inferential rules do not rely on explanatory dis-
crimination. The concepts €(e,h) and the conditional probability p(e|h) are
closely interrelated (Schupbach 2017), such that (R, ,H|E) cannot increase
unless p(R,|H,E) also increases, and vice versa. Hence, when ¢ is used,
explanatoriness and expectedness become indistinguishable. Unlike in ex-
perimental contexts, where hypotheses typically concern causal relations, in
modelling both H and H” address whether a component (C or A;) is neces-
sary for deriving the robust result. If an auxiliary A; is shown to be irrelevant
for R by deriving R from a model lacking A;, then the competing hypothesis
H’—claiming that A; causes R—cannot explain why R,, can still be derived.
This explains Schupbach’s assumption that ¢(~R,,, H" | E) ~ 1.

A derivational history of the robust result R in a sequence of n—1 models,
E, that satisfies the success condition could look as follows:

Rl : M1 = (CA1A2A3A4)|_R
RQ . M2 == (CA1A2A3A5)|_R (6)
Rn—l . Mn—l == (OA1A2A3A6A7>|_R

The explanatory power e(R,,,H|E) is then evaluated prior to conducting
the next derivation:

Schupbach assumes that when RA-diversity is satisfied, using C to derive the
robust result R increases €(R,,,H|E). He further assumes that ¢ not only in-
creases but approaches unity—e(R,,,H|E)~1—when an auxiliary A; initially
used to derive R in M;,....M,,_; is later replaced byA’. The assumption that
p(R,|H,E)~1 implies that detecting R,, is virtually certain, given the robust
theorem and prior derivations of R(E). This assumption is overly strong, as
it limits the account’s applicability to trivial cases.

To see why, consider the following question: if £(R,,,H|E)~1 results from
C participating in the derivation of R in M, while A; does not, did the
preceding derivations—R;,Ras,...,R,,_1—already drive the explanatory pow-
ers €(R,,_1,H|E), e(R,,—2,H|E), and soe on, close to unity? In a framework
where explanatoriness and expectedness coincide, this is equivalent to ask-
ing whether the earlier detections themselves were expected with near-unit
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probability—that is, whether p(R,,—1|H,E), p(R,_o|H,E),... were already
close to one.

McLoone et al. (2025) note that Schupbach’s account violates logical
omniscience (LO), and that under LO it would be impossible to fail to de-
tect a deductive consequence of any conjunction of elements from which R is
derivable. This, in turn, implies that € could never change, since the condi-
tional probabilities p(R|H, E) and the detection probabilities p(R,—1|H,E),
p(R,—2/H,E), and so forth would already be unitary. Under LO, therefore,
there would be no need for a sequence of derivations—or for studying robust-
ness at all—because every value of € would simply equal one. This is correct,
but it only shows that, under LO, no learning from robustness is possible:
modellers would already know all derivational results in advance.

Schupbach need not assume logical omniscience; in that case the values of
e—and the associated expectations—are specified prior to the actual deriva-
tion. The inferential rules also incorporate prior expectations via the precon-
ditions, but they do not restrict those expectations to extreme values close
to unity. Relaxing logical omniscience allows €, p(R,,|H,E), p(R,—1|H,E) and
so on to change, but to explain how the previous detections could still have
been expected with near-unit probability, recall that Schupbach distinguishes
the robust result R from its individual detections Ry,...,R,,.

Since the hypothesis H concerns the core C and its relation to R, we
can express p(H) = p(R|C). Schupbach’s framework concerns the probability
of detecting the result—R,,—given earlier detections E=R;,...,R,,_1 and H.
Modellers may still regard the robust theorem as open to (non-empirical) con-
firmation, even when the probability of detecting the result in the next model
is already high. This is because, in Harris’ (2021) terminology, ¢, p(R,,|H,E),
p(R,-1/H,E) and so on concern the expectations about the model-world,
whereas H - and thereby p(R|C) - concerns the real world in Schupbach’s
account.

It is instructive to recall a familiar criticism of robustness: that it yields
no epistemic gain unless all possible idealisations are neutralised (e.g., Oden-
baugh & Alexandrova 2011; Harris 2021). Harris further contends that ro-
bustness does not necessarily warrant transferring claims from the model
world to the real world. Thus, even if p(R,_1|H, E), p(R,—2|H, E), and so
on are close to unity, p(R|C) may still be considerably lower if some auxiliaries
that might be necessary for deriving R have not yet been tested for robust-
ness. The formulation of the robust theorem (’ceteris paribus, if C then R’)
may suggest that R is highly probable given C. A confirmation theorist might
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interpret the theorem as implicitly invoking absolute confirmation—that is,
as claiming that the conditional probability p(R|C) exceeds some threshold.
While many theorists are satisfied with the conventional view that absolute
confirmation requires only p(H|E)>1/2, one might reasonably insist, espe-
cially for the theorem’s applicability to real-world cases (see Harris 2021;
Harris & Frigg 2023), that p(R|C) must be substantially higher. These crit-
icisms are apt if robustness were claimed to provide absolute confirmation.
However, it only provides incremental confirmation. The situation in which
the expectation is near-unit even though p(R|C) is not is entirely coherent.
It naturally raises the question of under what circumstances it could occur.
However, posing this question reveals a surprising problem for Schupbach’s
assumption that (R, ,H|E)~1.

To see the problem, consider what could justify believing that the robust
result will be derivable from a new set of assumptions with probability close
to one, given E. This could only be because the previous derivations E relied
on assumptions almost identical to those in the new model. In particular,
any difference between two derivations would have to involve auxiliaries al-
ready expected to be nearly irrelevant to deriving R. If this were not the
case—if changing an auxiliary (such as Az in our example) were thought
likely to affect derivability—then the modeller could not simultaneously ex-
pect p(R,|H, E) ~ 1 for a derivation that alters that assumption. In short,
near-unit expectations are possible only when auxiliary variation is already
believed to be irrelevant, which makes the corresponding robustness result
epistemically trivial.

Because explanatory discrimination cannot address auxiliaries that could
be believed to be necessary for the robust result, any learning from robust-
ness becomes trivial at each stage, leaving p(R|C) virtually unchanged. Con-
versely, if any of the earlier values—e(R,,—1,H|E), ¢(R,,—2,H|E), and so on—
were not close to unity, Schupbach’s proof of confirmatory robustness (i.e.,
that p(H|R,-1, E) > p(H|R,_2, E)) could not hold for that stage. In short,
insofar as Schupbach’s account assumes e(R,,,H|E)a1, it applies only to cases
where robustness rules out auxiliaries that were already known to be trivial.
The epistemic payoff is negligible if robustness merely shows the irrelevance
of assumptions already expected to be irrelevant.

The inferential rules apply directly to R, C, and the auxiliaries A;. Demon-
strating the irrelevance of an auxiliary increases p(R|C), but since modellers
are aware that not all auxiliaries have been shown to be irrelevant, this con-
ditional probability may still remain far from unity. In other words, applying
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the inferential rules raises p(R|C), but it does not guarantee that its absolute
value will be high.

Admittedly, the expectation p(R,,_1|H, E) could approach unity if p(R|C)
were already close to one. Yet the nearer it comes to unity, the closer one
is to violating Precondition 1, which is meant to exclude this second form
of irrelevance. Some earlier accounts (e.g., Weisberg 2006; Kuorikoski et al.
2010, Dethier 2024) explicitly adopt such an assumption. It is, however,
unwise to rely on it when arguing for the confirmatory value of robustness,
since increases in p(R|C) do not require that this probability be high to begin
with. The inferential rules certainly do not depend on this assumption.

It is conceivable that Schupbach’s proof could be reformulated under the
weaker assumption that (R, H|E) >e(Ry.1, H|E). Yet philosophers’ beliefs
about whether such a proof can be given also violate logical omniscience: we
cannot know whether such a proof exists until someone actually constructs
it—or demonstrates, by impossibility, that none can be.

The preconditions for the inferential rules also reveal what the epistemic
relevance of robustness depends on: the difference between the expected
derivability of a result and the established knowledge of derivability once
robustness is demonstrated. Crucially, modellers need neither to know all
possible auxiliaries that could be varied nor to verify that the true auxiliary
is among those considered for robustness to yield incremental epistemic gain.
Deriving the robust result once more, as in (7), provides non-empirical con-
firmation even if some false auxiliaries remain. The relevant assumptions are
those in U%¢ | not the set of all conceivable ones.

When auxiliaries are nearly true, modellers may feel less concerned about
their potential to generate erroneous results. Yet, in assessing how p(R|C,B),
or p(R|A;,B) changes with the robustness of R, modellers focus on the deriva-
tional relationship between C or A; and R, not on their truth values. The
increase in non-empirical confirmation of the robust theorem depends on the
irrelevance of certain auxiliaries, not on their truth. By contrast, the truth
values of auxiliaries matter when evaluating the absolute degree of confirma-
tion of the robust result, especially when it lacks direct empirical support.
In short, establishing p(R|C,B;)>p(R|C,By) requires believing that the core
C has become more relevant following the demonstration of robustness, and
that at least some auxiliaries are irrelevant to R.

While preconditions 1 and 2 specify when the inferential rules can be
applied, reformulating them also indicates how much non-empirical confir-
mation these rules can yield. The underlying intuition is that the more
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strongly a modeller initially believes that certain false auxiliaries might be
necessary for the robust result R, and the less confidence they have that C is
necessary, the greater the increase in p(R|C) once R is shown to be robust.

For instance, if a modeller begins with M;=(CA;A3A3)FR, believing that
auxiliary A; is essential, then discovering through Ms=(CA3A4A5)FR that
Ay is unnecessary increases confidence that the remaining elements are gen-
uinely needed. Conversely, if a robust theorem is already well established,
additional demonstrations of its robustness can contribute only marginally
to its confirmation. The strength rules are as follows.

Strength rule 1: The smaller p(R|X,By) is initially, the more demonstrating
the robustness of R with a set containing X can increase it.

Strength rule 2: The greater the number of assumptions A;€U%¢ for which
p(A;FcR|Bo)>0, and the greater the inequality p(A;FcR|Bg)>p(A;-cR|B1)
for auxiliaries shown to be irrelevant, the larger the potential increase
in p(R|X,B).

In exceptional cases—such as Einstein’s derivation of Mercury’s perihelion
precession from general relativity—a single derivation can dramatically raise
the relevant conditional probability. In more typical instances of deriva-
tional robustness, however, one, two, or even several derivations do not raise
p(R|C, By) to unity. Further demonstrations of robustness continue to in-
crease this probability, but each successive derivation yields a progressively
smaller quantitative gain.

The key difference from Schupbach’s account is that the inferential rules
do not assume ¢(R,,,H|E)~1, since this assumption effectively requires that
the inequalities p(A;-cR)>0 and p(R|A;,B1)<p(R|A;,Bo) be negligible. Schup-
bach’s framework applies only when, for for A,eUfc : p(A;-cR)Z0 and
p(R|A;,B1)Sp(R|A:,Bo). By contrast, the inferential rules also apply when
p(A;FcR)#0 for the auxiliaries being modified, and the strength rules specify
how the quantitative increase in p(R|X) depends on these probabilities.

3 Inferential rules for experimental robust-
ness

The inferential rules discussed above concern derivational robustness, but
analogous—though slightly different—rules can be formulated for experi-
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ments and measurements. To clarify these distinctions, let us examine the
main differences between experiments and models.

First, unlike modellers, experimenters do not necessarily know all the
components involved in their experiments. In this context, the elements in
parentheses in equations (2) and (3) represent the set of elements the experi-
menter recognises, rather than an exhaustive list of all operative components.
Second, experimenters may fail to identify the core elements that generate
their results—for example, Brown did not initially understand the cause of
pollen movement in Brownian motion. Moreover, there may be no common
elements shared across all experiments that yield the same result R. Third,
while a degree of variety is typically required in both contexts, a substan-
tial body of work (e.g., Bovens & Hartmann 2003; Claveau 2013; Osimani
& Landes 2023; see also Landes 2020) suggests that the variety-of-evidence
thesis may fail if repeated experiments provide sufficiently strong information
about experimental reliability. Finally, because R itself constitutes empirical
evidence, the experimenter’s conditional probabilities can be interpreted in
terms of expected experimental results given those already observed. Re-
latedly, experimenters need not be assumed to violate logical omniscience.
Consequently, since R is empirical, the conditional probability p(R|B;) is
well defined.

Casini and Landes (2024) argue that a model’s robustness can yield con-
firmation even without variation among auxiliaries, suggesting that results
from the variety-of-evidence literature in experimentation apply, mutatis mu-
tandis, to modelling. I disagree. Modelling differs from experimentation in
a crucial respect: deriving R with M; after already establishing it in (2)
provides no new information. An increase in p(R|C,B;) requires that the
new set of auxiliaries contain at least one element not previously shown to
be irrelevant. In experimentation, replication can be epistemically valuable;
in modelling, by contrast, it is not—since deriving the same result from the
same assumptions repeatedly adds no epistemically relevant information.?

In summary, once a result has been derived from a given set of elements,
repeating the same derivation cannot enhance the reliability of the inference
and is therefore epistemically uninformative. Although the inferential rules
are similar across modelling, experimentation, and measurement, they are
not identical. The variety-of-evidence thesis cannot fail in modelling in the

5Computer simulations differ from analytical models in this respect, since running the
same program on different physical machines may yield different results.
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same way it can in experimental or measurement contexts. Hence, Rule
DCR includes the variety condition: “if this same set of elements has not
already been used to derive R.” When a result is derived for the first time,
this condition is redundant but automatically satisfied. Accordingly, the
corresponding experimental rules omit the variety requirement.

The rules for experimental robustness can thus be formulated as follows:

Experimental confirmation rule (ECR): If a result R is obtained in an ex-

periment that includes component X, then the conditional probability
p(R|X) justifiably increases: p(R|X,B1)>p(R|X,By).

Experimental disconfirmation rule (EDR): If a result R is obtained in an
experiment that excludes component X, then the conditional probabil-
ity p(R|X,B;) decreases, or is set equal to p(R|By).

The inferential rules apply, with slight modifications, to both experimental
and derivational robustness, though their confirmatory roles differ. In exper-
iments, the robust result itself constitutes empirical evidence, and robustness
strengthens confirmation by increasing evidential variety. In modelling, by
contrast, the result R may be theoretical, and robustness then provides only
non-empirical confirmation. If R, or some related result, is supported by
empirical evidence E such that p(E|R)>p(E), derivational robustness can
also yield empirical confirmation. An increase in p(R|C) alone does not con-
stitute empirical confirmation, though it is a necessary precondition for it
in modelling. Empirical confirmation involves additional, indirect relations
that seldom arise in experimentation or measurement, where robust results
already serve as evidence.

Because an increase in p(R|C) within modelling contexts does not yet
amount to empirical confirmation, I develop an account that does—by refor-
mulating and extending Lehtinen’s account of indirect confirmation through
robustness using the inferential rules.

4 Empirical confirmation from derivational ro-
bustness

In this section, I will provide a systematic account of empirical confirmation
from derivational robustness. I will use Lloyd’s (2015) account of 'model
robustness’ in climate models (see also O’Loughlin 2021) as a starting point
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for identifying the possible confirmation and robustness relations in a family
of models. Given that her account is designed to apply to climate modelling, I
will adopt her interpretations of the model components. Models dealing with
complex systems often involve a multitude of variables and various types of
relevant empirical evidence. Lloyd (2010) and Lehtinen (2018) discuss the
following robust theorem: ’cp, if there is an increase in COs forcing (C), the
global mean surface temperature rises (R)’ (see also Winsberg 2021).

Climate studies aim to determine future temperatures and understand
how they depend on CO, forcing, which makes the robustness of this rela-
tionship crucial. A single model could be described as follows:

T I (8)
Ry, Baro, Rys B By By

Here, C can be interpreted as CO, forcing, and A; as auxiliaries con-
cerning, for example, cloud formation or different ice albedo. E represents
data on global mean surface temperature, R the model’s prediction of said
temperature, and Rj; the model’s prediction of future global mean surface
temperature. The difference between results like Ry/1, Ry2 and R 3 and res-
ults Ry, Ry etc., is that the former lack direct supporting evidence, whereas
the latter possess it. The vertical line represents the evidential relations. For
example the line between Ry and E means p(R;|E)>p(R).

Graph (9) provides a different representation of (8) in that results Ry,
Rus, and Rse, Rs,... are omitted, while some of the model elements are
displayed.

M= (C A Ay, A) F R

T | | | 9)
Ry Eo Ear Eax Eas E

Let’s assume that other models M; in the same model family have com-
parable support for their auxiliaries:

T I | | | (10)
Ry Ec FEa Ear FEas E

Lloyd (2015) claims that model robustness confirms due to variety of direct
and indirect evidence. An individual model M; in a model family may possess
direct empirical evidence for:
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i) the core structure of the model C (E¢),

ii) the auxiliaries A; (Ea;),

iii) the result R (E),

iv) the relationship between C and R.

As O’Loughlin (2021) and Gluck (2023) note, Lloyd argues that all these
pieces of evidence contribute to the confirmation of climate models as a
whole, rather than providing a confirmation-theoretically strict notion of con-
firmation. While I appreciate Lloyd’s effort to incorporate various kinds of
empirical evidence into the discussion on robustness, her case-study-focused
approach does not explain in detail how robustness affects the different in-
direct confirmation relations into which such evidence can enter. For this
reason, I will examine all the relationships in which these pieces of evidence
may play a role. My aim is to determine whether these relations are relevant
to robustness and, where robustness is pertinent, to clarify the nature of that
relevance.

Lloyd (2015) mentions indirect but not direct evidence for C. In the con-
text of climate modelling, such evidence consists of measured CO5 emissions
from the past. Given that there is little uncertainty about the accuracy of
these measurements, and they are embedded as part of the climate models, it
is natural for her to omit such evidence. I have included it here for the sake
of completeness, and because in some other contexts the core is not modelled
by parameterising it with empirical data.

Lloyd claims that empirical evidence E, E,, Es,...and all the E 4; provide
indirect evidence for the core structure C by increasing the variety of evi-
dence. There are several ways to interpret what 'variety of evidence’ means.
Here, Lloyd appeals to a concept closest to Whewellian consilience: the va-
riety of evidence stems from the differences in content and origin of E, Eo,
Es,..., Ec, Ea1,... etc. Although Lloyd argues that variety of evidence is con-
ceptually distinct from robustness, her notion of model robustness does not
specify the exact relationship between the two. Since this variety of evidence
would accrue to the core C even if there were only a single model M;, and
thus no robust results, the role of robustness in confirmation remains unclear
in her account. On the other hand, the degree to which evidence E, Ey, Eg,...
confirm C as well the future prediction about temperature R;; depends on
the robustness of the results. However, such claims cannot be justified with-
out resorting to an explicit account of indirect confirmation (Lehtinen 2016,
2018). He argued that derivational robustness confirms by strengthening
the derivational links in indirect confirmation. In this paper, this somewhat

23



ambiguous expression is replaced by an application of the inferential rules,
providing a clearer account of the difference between non-empirical and em-
pirical confirmation. Indirect confirmation arises from the fact that a result
demonstrably depends on the same model components as another empirically
confirmed model result.

Clearly, model robustness must be confirmatory if all the elements listed
above and their possible relationships belong to model robustness. For in-
stance, Ec undeniably confirms C, and Ej4; confirms A; etc. I am also
confident that climate researchers consider all of these confirmation relation-
ships to be relevant. Nevertheless, those who dispute that robustness offers
confirmation might justifiably argue that Lloyd claims 'robustness confirms’
merely because robustness has been redefined as a practice encompassing el-
ements that are not related to robustness in terms of the sameness of results.
A strict interpretation of robustness poses a more precise question: What is
the contribution of the fact that R is derived from both M; and M; to the
confirmation of something?

Winsberg (2021) attempts to articulate the distinction between Lloyd
(2010, 2015) and Parker (2011) by claiming that Parker asks the precise
question, whereas Lloyd does not (see also Gluck 2023). I will now pro-
vide answers to this precise question by applying the inferential rules to the
indirect confirmation relations.

Since robustness of results R or Ry, could not affect the conditional prob-
abilities p(E |R), p(E¢|C), p(Ea1|Aq), etc., one can focus on the conditional
probabilities between C and R or Ry, A; and R or Ry, and so on. Let 'X
R-confirms Y’ denote "X confirms Y more than it would if some result were
not (known to be) robust’.% T will make the following eight claims.

Evidence for the core structure of the model C (E¢) R-confirms

6Given that there are several standard measures of the degree of confirmation—
namely, the difference measure Dp(H,E) = p(H|E)—p(H), the ratio measure
Dr(H,E)=p(H|E)/p(H), and the likelihood measure Dy (H,E)=p(E|H)/p(E|"H)) —
one might wonder whether R-confirmation behaves differently depending on the chosen
measure. However, it is not necessary to distinguish between these measures here, be-
cause all three satisfy the following adequacy condition under standard assumptions: If
two pieces of evidence E; and Es both confirm a hypothesis H (i.e., p(H|E1)>p(H) and
p(H|E2)>p(H)), and if p(H|E1)>p(H|E3), then the degree of confirmation of H by E;
exceeds that by Eo. This is because each of these measures is monotonic in the posterior
probability p(H|E) when appropriate background parameters (e.g., priors or likelihoods)
are held fixed. See Fitelson (1999) and Sprenger & Hartmann (2019, ch. 5-6) for detailed
discussion.
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al) Ry, iff the robustness of Ry, justifies the inference p(R/|C,B1)>p(Ras|C,By),
and it R-confirms

a2) R, iff the robustness of R justifies the inference p(R|C,B1)>p(R|C,By),
Evidence for the auxiliary A; (F4;) R-confirms

b1l) R, iff the robustness or R justifies the inference p(R|A;,B1)>p(R|A;,By).
However, if a given auxiliary A; does not take part in every derivation
of a robust result R, then p(A;FcR|B1)=0, and evidence for such an
auxiliary cannot confirm the robust result.

b2) Ry, iff Rys’s robustness justifies the inference p(Ras|A;,B1)>p(Ras|A4,Bo),
and the robustness of R justifies the inference p(R|A;,B1)>p(R|A;,By).
As in bl), if an auxiliary is replaced by another auxiliary in either
derivation, evidence for it cannot confirm due to robustness.

Evidence for the result R (E) R-confirms

cl) the core C, or the hypothesis that C causes R, iff the robustness of R
justifies the inference p(C|R,B1)>p(C|R,By).

c2) R,y iff the robustness of result R/ justifies the inference (R/|C,B1)>p(R/|C,By)
and the robustness of result R justifies the inference (R|C,B1)>p(R|C,By).

d) Empirical evidence for the relationship between C and R confirms R, but
the robustness of R could not affect its strength.

e) R-confirmation due to derivational robustness of results is non-monotonic.

A few comments about these claims. First, given that each confirmation
relation is based on whether the robustness of a result changes the relevant
conditional probabilities, there cannot be empirical R-confirmation without
non-empirical confirmation from robustness. Second, the expression ’justifies
the inference’ above is short for ’applying the inferential rules justifies the
inference’. It follows that none of these results are acceptable if my argu-
ments for the inferential rules are not deemed acceptable. Third, all of these
cases necessitate the ability to pinpoint which individual components within
the models are being confirmed. Finally, all the claims pertain to indirect
confirmation.

Lehtinen (2016, 2018) has already made similar arguments for b1, c1, and
c2. Here, I aim to further clarify bl in response to objections raised against
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Lehtinen’s claim, and provide a more accessible account of ¢l and ¢2. Lloyd
(2015) discusses the overall confirmation of climate models and claims that
it also contributes to the trustworthiness of future projections. I am propos-
ing c2 as a possible interpretation of Lloyd’s claim, and I consider it as the
single most important form of empirical confirmation derived from robust-
ness. In the context of climate science, for example, this concerns whether
the robustness of current climate model ensembles indirectly confirms future
temperature projections.

This paper precisely articulates the intuition underpinning indirect con-
firmation via robustness: if robustness shows that a result (Ry,) depends on
the same assumptions (the core C) as another empirically confirmed result
(R), then Ry, may be indirectly confirmed through empirical evidence for
R. Robustness can reveal that the result R,; relies on assumptions not only
better supported by evidence for R, but also more aligned with R than was
indicated by the modellers’ background knowledge (By), thus indirectly con-
firming it. I will demonstrate how this intuition can be precisely analysed by
applying the inferential rules to the indirect confirmation relations relevant
for derivational robustness.

Recall that, following Orzack and Sober’s (1993) argument, derivational
robustness can empirically confirm only indirectly. Although confirmational
support is not generally transitive, indirect confirmation specifically requires
the transmission of support along a chain. Before proceeding to the case-
by-case analysis, it is important to emphasise a result from Shogenji (2017):
while the transitivity of overall confirmation cannot be guaranteed, the indi-
rect component of confirmation is transitive. That is, although other proba-
bilistic dependencies may block overall confirmation from evidence E (here
E, E¢, or Ey;, depending on the case) to a target hypothesis H (here C,
Ras or R), the support that E transmits via an intermediary hypothesis H’
(here C or R) is preserved. Since our analysis modifies only one conditional
probability at a time, with all other background conditions held constant,
the possibility of non-transitivity in overall confirmation does not undermine
the validity of the results presented here.

4.1 al) Evidence for the core (E¢) R-confirms Ry,

To show that Ex confirms the result Ry, it is helpful to express models (9)
and (10) as follows:
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Mi - (C Al AQ Ag) l_ RM Mj - (C A2 A4 A5) l_ RM
I N I D
Ec Ea Ea Eas Ec Eap Eay Eas
(11)
Given that the two models contain different auxiliaries but share C, apply-
ing rules DCR and DDR to R, and C justifies the inference p(Ry/|C,B1)>p(R|C,By).
This means that evidence E¢x confirms Ry, more strongly after demonstrat-
ing the robustness of Ry, because the likelihood p(E¢|C,) is unchanged when
the robustness of R is demonstrated in (10). Note that the robustness of Ry,
R-confirms itself. 1 reiterate, the robustness of result R,; empirically con-
firms R, itself! Nonetheless, it lacks confirmation from any direct piece of
evidence since it doesn’t have any. Its R-confirmation is empirical, genuine,
incremental, and indirect.

4.2 a2) Evidence for the core (E¢) R-confirms R

The argument for why the robustness of R confirms R itself is similar. Given
that the two models contain different auxiliaries but share C, applying rules
DCR and DDR justifies the inference that p(R|C,B;)>p(R|C,By).

4.3 bl), b2) Evidence for the auxiliaries (£4;) R-confirms
R or R,; only if they are used in deriving the re-
sults in all models

Consider the case of direct empirical evidence for auxiliary A;, after having
derived R from model M; but not from model M;. Initially, it might seem
plausible that A; is necessary for deriving R, so E4; indirectly supports R.
However, the robustness of R—following its derivation from M;, where A; is
absent—demonstrates that A; is not necessary for deriving R. This removes
any initial confirmation provided by E,;. Therefore, evidence for the auxil-
iaries A; does not confirm the result R or R); due to robustness unless the
auxiliary is involved in the derivation of these results in all relevant mod-
els. When it becomes evident that an auxiliary like A; is irrelevant to the
result R, empirical evidence for that auxiliary no longer contributes to the
indirect confirmation of R. This is because the confirmation relation between
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E4; and R is shown to be non-genuine. Suggesting that evidence for irrele-
vant auxiliaries confirms a robust result would imply that tacking irrelevant
components to models is acceptable and that evidence for these components
matters when evaluating results derived from these models. Therefore, ap-
plying rule DDR justifies the conclusion that R is not confirmed by E 4;.

This argument was originally presented by Lehtinen (2018), and I have
rephrased it here in light of objections from O’Loughlin & Li (2022. see
also Fuller & Schulz 2021). Lehtinen’s initial statement might have appeared
misleading because it seemed to suggest that the auxiliary assumptions had
to be mutually incompatible. Indeed, the literature on climate modeling,
which was his case study, acknowledges the potential for such incompatibility.
However, contrary to what O’Loughlin & Li (2022) claim, this argument
does not depend on whether the auxiliaries have dichotomous truth values
or are mutually incompatible. The key issue is whether these assumptions
are relevant for deriving the result R.

Even if auxiliary assumptions share common content, that commonality
is relevant to the robust result R. However, in such cases, the shared content
must be explicitly represented when evaluating its relevance to robust results.
I have depicted the auxiliaries as having distinct but not necessarily incom-
patible content, with the empirical evidence E 4; concerning that specific con-
tent. To the best of my knowledge, different cloud formation modules, for
example, do have overlapping content. Therefore, if the empirical evidence
concerns entire modules, it should not be represented like E4; in diagrams
like (9) and (10). A more accurate representation would involve replacing A;
and Ay with modules O1=(A;A;A/A,,...) and O4=(A4A,A A, ...), where
common elements A,, A, A,,...are explicitly shown. If no specific evidence
pertains to A; or A4 another example should be used to illustrate the point.

Since auxiliary A, takes part in both derivations (9) and (10), the em-
pirical evidence E 45 genuinely and indirectly confirms both R and Rj;. This
demonstrates the importance of distinguishing between absolute and incre-
mental confirmation when discussing the confirmation of a robust result. If
any auxiliary that is essential to all derivations of a robust result is discon-
firmed by direct evidence, then that evidence also disconfirms the robust
result. This gives weight to the criticisms of robustness in scientific mod-
elling, which argue that robustness does not guarantee truth in many cases.
The reason for this is that the remaining shared false auxiliaries could still
be responsible for a robust result.

However, the incremental confirmation provided by robustness is still rel-
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evant. The robustness of R brings incremental confirmation from empirical
evidence for an auxiliary A; if A; is necessary for deriving R. This holds
true even though robustness may not guarantee a high absolute probabil-
ity of R being true. Lloyd, O’Loughlin, and Li are correct to emphasize the
significance of direct evidence for auxiliaries when assessing the absolute con-
firmation of a robust result. But the logic underlying genuine confirmation,
as expressed by rule DDR, indicates that such evidence incrementally con-
firms the robust result R due to robustness only if the auxiliaries are shared
among all the models that derive R.

4.4 cl) Evidence for the robust result (E) R-confirms
the core C

The likelihood p(E|C) represents how closely the core C is related to the
evidence E. In this setting, we can decompose p(E|C) into p(E|R), the prob-
ability of the evidence given the result R, and p(R|C), the probability of the
result given the core structure. Since p(E|R) is determined by various data-
to-phenomena inferences (Bogen and Woodward 1988) and is unaffected by
the robustness of R, the conditional probabilities p(E|R) and p(R|C) are in-
dependent of each other. Consider the consequences of demonstrating the
robustness of R by learning (10) when (9) is already at hand. Since C takes
part in both derivations, applying rule DCR imples that p(R|C) increases.
Here robustness strengthens the connection between R and C. As a result,
p(E|C) increases, even though p(E|R) is unchanged. Thus, by increasing the
probability of R given C, robustness indirectly increases the probability of
the old evidence E given C. This reasoning explains how evidence for the
robust result R can R-confirm the core C, despite E being old evidence. Ro-
bustness strengthens the logical connection between the core and the result,
leading to an increase in the confirmation of C from the evidence E.

According to Bayes’ theorem, the posterior probability of C' given E
and B; is p(C|E,B;)= ’%. Since E is old evidence, we assume
p(E,B1)=p(E,Bg)=1. Additionally, it is reasonable to assume that p(C|B;)>p(C|By).
From the fact that p(E|C,B,)>p(E|C,By) it follows that p(C|E,B;)>p(C|E,By).
Therefore, since demonstrating robustness shows that C is more closely con-
nected to R than previously thought, evidence E for R indirectly R-confirms
C.

Casini and Landes (2024) discuss a case in which p(E|R) and p(R|C)
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are not distinguished from each other. Instead, they assume that p(E|C)
increases due to robustness. By Bayes’ theorem, C is confirmed by E in this
simplified case too.

4.5 c¢2) Evidence for the robust result (E) R-confirms
result Ry,

Given that p(E|R) is fixed, the goal here is to show that p(R/|R,B1)>p(Ra|R,Bo).
The intuition is that Ry, is genuinely indirectly confirmed by E if it depends
on the same model components as the confirmed result R. The robustness
of R R-confirms Rj; because the application of the inferential rules demon-
strates that these dependency relations are more secure than they would be
without robustness. Unlike other confirmation relations, this one requires
that both results R and R,; be robust. To see why, consider a counterfactual
scenario in which one of the results is not robust. Suppose climate modellers
run the first model only until the present time and do not draw any conclu-
sions about the future. Further, assume that all the auxiliaries involved are
disconfirmed by the direct evidence:

Mi - (C Al AQ Ag) l_ R

| | | | | (12)
Ec ~Exn ~Ejsp ~ Eygs E

Now consider that model M; is used to derive results for both the present
and the future:

M= (C A, A, A F R

J

T | | | | | (13)
Ry Eco ~FEay ~FEar ~ Eys E

Although applying DCR justifies the inference p(R|C,B;1)>p(R|C,By),
there remains some ambiguity regarding whether E genuinely indirectly con-
firms Ry;. This arises because it is unclear whether the components confirmed
by applying rule DCR, (namely C and As,) are indeed required for deriving
Ry from M;. It could well be the case that Rj; is actually dependent
on auxiliaries A4 or Ajs rather than C and Ay, meaning that the evidence
E does not contribute to confirming Rj,;. Given that these auxiliaries are
known to be false, Ry, could be highly suspect. Moreover, if it were found
that (A1A3) |—RM, then, applying rule DDR to this background information
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B, p(CrcR|B)=p(As-cR|B)=0 and hence p(RyHcE|B2)=0 because A; and
A3 would be shown to be relevant to R,;, but irrelevant to the confirmed
result R and, consequently, to the confirming evidence E. However, if instead
Ry is now shown to be robust by deriving it from M;, we get the following:

M= (C A A, A3 F R

T ! | | \ ! (14)
Ry Eo ~Ear ~Ea ~Eas E

In this scenario, Ry; becomes indirectly R-confirmed by E, as it is shown
to depend, via an application of the inferential rules, on the components C
and As, which are genuinely confirmed by E. According to DCR, since C and
A, participate in deriving Ry, in (13), using these same components to de-
rive R, in another model that introduces some new auxiliaries and excludes
others, as in (14), increases p(Rps|CAz). Consequently, given the background
knowledge By that arises from deriving (14), we have p(Rp/|CA2,B2)>p(Ra|CAg,By).
Since B; already implies that C&A, is R-confirmed by the robustness of R:
p(CA2|E,B1)>p(CA2|E,By), combining these consequences of the robustness
of R and of Ry, yields p(Ry|E,B2)>p(Ru|E,By). Consequently, Ry, is gen-
uinely indirectly confirmed by its own robustness once the robustness of R
is established. Once again, the robustness of a result confirms itself. This
increased confirmation results from showing that the confirmation E confers
on C&A, (via R) is more likely to be genuine, and that C&A, is more likely
to genuinely confirm R,;. The application of rules DCR and DDR demon-
strates how robustness strengthens the logical connections within the indirect
confirmation structure. The graph (15) illustrates this indirect confirmation
structure, with the symbols k¢ and 1 indicating that the logical links have
become stronger.

(C’Ag) Fo R
Te T (15)
RMl FE

Now, let’s interpret this result in the context of climate models. The con-
sistency between model-predicted and observed temperatures—expressed as
p(R)<p(R|E) —indirectly confirms the common prediction of the model fam-
ily, namely the rise in GMST in the future (Rj;). This indirect confirmation
structure was already established in equation(13). However, robustness has
strengthened these connections by strengthening the two robust theorems.
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Consider that, in our example, the confirmation from evidence E is allo-
cated to the conjunction of C and A, instead of C alone. If we fail to establish
the irrelevance of every auxiliary, the absolute confirmation of the robust re-
sult or the robust theorem (if C, then R or Rj;) may remain low, even after
demonstrating the robustness of R or R),. However, the fact that demon-
strating robustness has not eliminated all the auxiliaries does not imply a
complete lack of confirmation.

McLoone (2025) argues that components known to be false cannot be con-
firmed and, therefore, do not contribute to indirect confirmation. The falsity
of Ay leads to p(CA5)=0. Additionally, according to Bayes’ theorem, we have
p(CAL|E,By)=2L (E|CA;’(%))’7 (©42) (). More generally, adopting this perspective
implies that models can never be confirmed, as they always involve ideal-
isations that have a zero prior probability of being true (see Shaffer 2012,
Sayan 2005). However, this viewpoint is unnecessarily restrictive, as it may
be rational for modellers to take into account background information not
obtained from formally demonstrating the irrelevance of auxiliaries, as we
have seen. For instance, their background information might suggest that
it is highly unlikely for A; to be necessary for deriving R or R,;, despite
its consistent inclusion in these derivations due to its content. In such cases,
modellers may consider the possibility of showing, for example, the following:

My= (C A Ay A) + R

T ! | | \ | (16)
Ry Eo ~Eq ~Eas ~Eapy E

even before the actual derivation is conducted. It would then be rational to
infer that the robustness of the two results indirectly R-confirm R;; because
p(Ru|C,B2)>p(R|C,By) even though a small probability remains that Ay
could be responsible for these results. For such inferences, the degree to which
the auxiliary deviates from the truth is of little consequence; what truly
matters is the possibility that it could be required in deriving the robust
results. I therefore suggest that while the inability to eliminate all false
auxiliaries diminishes the extent to which robustness indirectly confirms the
robust result Ry, (or a robust theorem), it does not negate the confirmation
entirely. I acknowledge that I am only proposing a preliminary outline of how
an account of confirming models with empirical evidence might take shape,
and that a more comprehensive analysis is necessary. Nevertheless, even a
sketch could prove more useful than outright denying that models can be
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confirmed due to the zero-probability problem.

4.6 Evidence for the connection between C and R

Direct empirical evidence for the connection between C' and R can be ob-
tained, for instance, if C is found to be correlated with R in a statistical test
or through experiments, as noted by Lloyd, O’loughlin, and Li.” While such
evidence is undeniably important for evaluating the absolute confirmation of
the robust theorem, the robustness of R does not influence it in any way:.
There can also be significant derivational evidence for this connection based
on non-robustness. In climate science, modellers aim to test the robustness
of the connection between the core (CO, forcing) and the robust result R
(the observed global temperature rise) using 'control runs’ that exclude the
core from the climate model. These control runs typically demonstrate that
the observed global temperature increase of about 1 °C cannot be replicated
by a model lacking COs forcing (e.g., Hegerl et al. 2007; Lloyd 2010, 2015).
This derivational evidence, highlighting the lack of robustness of R when C
is absent, is indeed relevant and bolsters climate models.

If, counterfactually, R were to remain robust even without the inclusion of
core C in the model, as discussed in point b) above, this would negate any in-
direct confirmation (E¢) conveyed by the core to R. Thus, these studies offer
another means of strengthening the robust theorem, but they achieve this by
demonstrating that alternative explanations (such as natural causes like vari-
ations in solar radiation or internal climate variability) cannot alone account
for the observed climate change. Interestingly, the control runs exemplify
explanatory reasoning that utilises non-robustness, but their relevance for
the robust theorem concerning C and R can also be evaluated by applying
the two inferential rules. The inferential rules are relevant beyond robustness
in this sense.

"A terminological clarification is necessary here. O’loughlin and Li (2022) assert that
the ’causal core’ in climate models consists of the 'relationship between CO5 and tempera-
ture’. In the context of this paper, this concept corresponds to the robust theorem ’ceteris
paribus, if C then R’, rather than a specific set of model components C'. Thus, when they
refer to ’evidence for the core,” they mean evidence for the connection between C and R,
rather than evidence for C itself. Here, as in Lloyd (2015), the core refers to the increase
in CO2 together with the other central causal relationships rather than the relationship
of this increase to the temperature.
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4.7 The non-monotonicity of empirical confirmation
from robustness

The monotonicity of entailment was discussed in section 2.2. Here we dis-
cuss a different monotonicity concept concerning confirmation. Empirical
confirmation from robustness is strictly monotonic if every new demonstra-
tion of robustness of a result confirms something, and it is weakly monotonic
if demonstrating the robustness of a result never decreases the confirmation
of some result. Empirical confirmation from robustness is neither because it
depends on the modellers’ backgound information. A given demonstration of
robustness may not indirectly confirm in one set of circumstances, while con-
firming in another. If this is so, confirmation from robustness is not strictly
monotonic. Suppose now that R,; is robust but R is not:

Mi = (C Al AQ Ag) Mj = (C A2 A4 A5)
T | | | | T | | | |

Ry Eo ~FEa ~Ejp ~FEaz Ry Ec ~FEx ~FEa ~ Egs

(17)

Although demonstrating that Ry is robust by deriving it from M, con-

firms non-empirically by increasing the conditional probability p(R/|C), it

does not empirically confirm itself (unlike in case ¢2). While R, is known to

be closely related to C&As, R is not. To show that robustness can decrease

the confirmation of a result, showing that it violates even weak monotonon-
icity, suppose that with (17) at hand, modellers first derive

Mi — (C Al Ag Ag) l_ R MJ — (C A2 A4
T | | | | T | | |
Ry Eo ~Ear ~Ea ~Eas Ry Ec ~Ejs ~Ep
(18)

According to DCR, this derivation increases p(R|C) and p(R|As), and
thereby indirectly p(Ry/|E). However, if they then derive

E

A5)

~ Eus

Mz/ = (Al A2 Ag) F R Mj = (C A2 A4 A5) F
T | | | T | | | |
Ry ~FEa ~Ejy ~ Egs Ry Ec ~Ejp ~Ea ~Egs

(19)
applying DDR yields p(CF.R)=0 and the indirect confirmation of Ry,
p(Ry|E) decreases. The non-monotonicity highlights a key distinction be-
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tween experimental/measurement robustness and derivational robustness:
since indirect confirmation is neither needed nor relevant for experimental
robustness, the confirmatory benefits from robustness are monotonic in that
context. The non-monotonicity of R-confirmation thus arises from the fact
that it is indirect.

5 Conclusion

In this paper, I have presented an account of how confirmation increases
due to the robustness of results by proposing two inferential rules for rea-
soning with robustness. These rules dictate how researchers should adjust
their subjective conditional probabilities in response to new information re-
garding derivational relationships or the connections between experimental
results and the components used to generate them. These rules are broadly
applicable, as they closely resemble each other in experimental and modelling
contexts.

However, there are important differences in how the consequences of these
rules are applied across different contexts. Since experimental results are
themselves empirical, applying the rules leads to an increase in empirical
confirmation through a variety of evidence. In contrast, the results from
models do not necessarily correspond to empirical evidence; thus, changes
in conditional probabilities may strengthen the robust theorem without pro-
viding any empirical confirmation. In this sense, derivational robustness is
a non-empirical confirmation procedure. However, if empirical evidence ex-
ists for various components or results of models, then robustness can lead to
empirical confirmation as well, but all relevant confirmation relations are in-
direct. Importantly, since non-empirical confirmation is a necessary condition
for empirical confirmation via derivational robustness, empirical confirmation
from robustness hinges crucially on the acceptability of the inferential rules.

A major difference between experimental and derivational robustness is
that the former yields empirical confirmation even without the need for in-
direct confirmation, while the latter does not. While the inferential rules are
nearly identical in both contexts, empirical confirmation from derivational
robustness requires additional resources from genuine confirmation to justify
inferences concerning indirect empirical confirmation. In contrast, experi-
mental robustness requires no such resources; a successful application of the
inferential rules alone suffices for confirmation.
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There are additional reasons why derivational and experimental robust-
ness should be accounted for differently. I have argued that there are relevant
differences in the roles of hypotheses and robust theorems, in the applicabil-
ity of logical omniscience, and in whether the variety of evidence thesis can
fail with replications.

The most important conclusion from the analysis of indirect confirmation
is that if robustness shows that a result relies on the same assumptions as
another empirically confirmed result, and if the robustness of either result
allocates confirmation from empirical evidence based on those same assump-
tions, then the first result is indirectly R-confirmed through robustness.

Many critics of robustness have questioned its epistemic benefits, often
tacitly assuming that proponents argue for a high absolute degree of con-
firmation for robust theorems. Some proponents may have contributed to
this confusion by suggesting that robustness yields a high degree of absolute
confirmation or that it requires a high initial degree of confirmation. How-
ever, it is clear that applying the inferential rules does not necessitate a high
initial confidence in the robust theorem. In fact, the weaker the initial con-
fidence, the greater the potential increase in confidence due to robustness.
This conclusion directly follows from the inferential rules, which require that
robustness demonstrate the irrelevance of at least one false auxiliary or at
least one feature in an experiment.

However, these rules do not guarantee that a robust theorem or hypoth-
esis is confirmed—either empirically or non-empirically—to a high absolute
degree. My arguments for these rules, if successful, justify only an increase
in confirmation. Conversely, these arguments show that critical objections to
the confirmatory advantages of robustness are relevant only when aiming for
a high absolute degree of confirmation. The strength of absolute confirmation
ranges from very low to only slightly higher than it would be without robust-
ness. However, since this confirmation is both incremental and indirect, it
may never be very strong.
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