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Abstract

The sciences differ in the precision of their empirical tests. A central determinant of this
precision are the applied auxiliary hypotheses, which can encompass everything from theories
to apparatus to data analysis. If they are subject to large variation within and between studies,
the obtained results will vary, too. This paper investigates how the ways to handle auxiliary
hypotheses differ across the sciences. This covers, for example, the possibility to separate and
test auxiliary hypotheses, to reveal them through intervention, or to construct the experimental
setup to exclude false ones. The paper focuses on a comparison of physical work in the
laboratory in the natural sciences to data work with computers in the social sciences. The
interaction with physical experimental setups allows natural scientists to better test,
manipulate, and neutralize auxiliary hypotheses. In contrast, the collecting, processing, and
analysis of data in the social sciences faces severe difficulties in choosing the right auxiliary
hypotheses. Too many of them seem equally true. Social scientists thus struggle with numerous
researcher degrees of freedom in their studies. Consequently, the natural sciences can better
narrow down false auxiliary hypotheses than the social sciences, which allows them to achieve
more precise empirical results and in turn reach deeper levels of theoretical development.
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1. Introduction

The sciences differ in the breadth and depth of their theories. Several empirical studies show
evidence in line with such a hierarchy of the sciences (Comte 1908). The natural sciences at the
bottom of the hierarchy achieve higher levels of consensus than the social sciences at the top
(e.g., Fanelli 2010, 2012, Fanelli and Glanzel 2013, Simonton 2004, Lamers et al. 2021, Chen et
al. 2018, Evans et al. 2016), implying that the former exhibit more fully articulated scientific
paradigms than the latter (Kuhn 1962). One central reason for this difference is the precision
of empirical tests (Kuhn 1961). Sciences that can produce more precise experimental results
are able to develop theories of greater breadth and depth.
Empirical precision has traditionally been discussed in light of the Duhem-Quine thesis (Duhem
1906, Quine 1951), which states that an experimental test of some hypothesis requires all kinds
of auxiliary hypotheses. Falsification of the main hypothesis is thus difficult, as some of these
auxiliary hypotheses might be false, and not the main hypothesis itself. Such auxiliary
hypotheses can refer to experiment, theory, but also basic assumptions like logic. Philosophers
of science like Popper (1959), Kuhn (1962), and Lakatos (1978) were mainly concerned with
the impact of the Duhem-Quine thesis on the falsification of the theory under investigation.
That is, whether a falsification refutes the theory or whether the possibility of modifying the
theory renders this difficult. In contrast, the focus in this paper will be on only the set of
auxiliary hypotheses used in experimental test. This is in line with the “new experimentalists”
in the philosophy of science (e.g., Hacking 1983, Ackerman 1985, Galison 1987, 1997, Giere
1988, Franklin 1989, 1990, Mayo 1996). These authors emphasize that in science providing
reliable observational evidence is essential and therefore focus on experiment in all its forms.
The central difficulty expressed by the Duhem-Quine thesis is knowing which, if any, of the
numerous auxiliary hypotheses might be false. Duhem (1906) argued that this process does not
follow clear methods or rules. The false auxiliary hypotheses cannot be pinned down by logical
analysis. However, in scientific practice, there are ways that make it possible to address the
Duhem-Quine thesis. Mayo (1996) argues that scientists combat the Duhem-Quine thesis by
actively searching for errors, or false auxiliary hypotheses. Scientists can narrow down false
auxiliary hypotheses. However, this is not possible to the same degree in all sciences.
This paper investigates how conditions, strategies, and findings to handle auxiliary hypotheses
differ between the natural and the social sciences. The comparison brings to light respective
strengths and weaknesses that otherwise remain more hidden. To describe the natural sciences,
the paper relies more on works from the philosophy of science, particularly from the new
experimentalist. In contrast, to describe the social sciences, the paper relies more on works
from the newly emerged field of metascience, which is the scientific study of science itself. The
paper argues that whereas the natural sciences generally rely on more auxiliary hypotheses
than the social sciences, they are nonetheless better able to narrow down false ones. They can
benefit from several distinct aspects laid out in detail throughout the paper. Consequently, the
natural sciences can put forward more precise empirical results.
Note that the concern of the paper is not specifically with the Duhem-Quine thesis; that is,
when we have experimental evidence that is contrary to a theory’s prediction. Instead, the
focus is more broadly on how a lack of control over auxiliary hypotheses manifests in variation
in experimental results. The latter hinders any kind of evaluation of theory. Variation in
auxiliary hypotheses stands in-between theory and observation. It can block effective
communication between the two and stall further development of theory.
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2. The hierarchy of the sciences

2.1 Consensus and progress

The large majority of scientists live and work within the normal science of their respective
scientific paradigms (Kuhn 1962). Normal science is cumulative. Over time, scientific theories
become more and more articulated and match to nature at an increasing number of points with
increasing precision (Kuhn 1970a). The famous scientific revolutions, where our most important
theories completely change their form, happen only infrequently. The central aspect of a
scientific paradigm is the consensus between scientists on what constitutes the fundamentals.
Scientists do not argue about basic issues but rather build their research on them. Together
the scientists can then investigate some field in a much higher detail. Kuhn (1962) even argues
that progress is possible only after normal science has emerged.

The rigor of normal science will over time isolate severe anomalies that cannot be ignored.
Kuhn (1961) emphasizes here the special importance of quantitative anomalies. In fact,
measurement shows its greatest strength in anomalies. Quantitative anomalies are much harder
to ignore than qualitative ones. Ad-hoc modifications of theories are easier to come by than ad-
hoc modifications of precise numerical estimates. Numbers are neutral arbiters. Quantitative
anomalies provide a ‘“razor-sharp instrument” for the evaluation of a theory. They demonstrate
deviations from theory with a strength that qualitative anomalies cannot imitate and are very
difficult to explain away. Scientists are seldom willing to compromise the numerical accuracy of
their theories. Quantitative anomalies therefore require looking for new qualitative phenomena.
They are the unambiguous signals of crisis and at the same time provide the materials for
revolution (Kuhn 1970Db).

The high precision of empirical results in the now mature natural sciences Kuhn speaks of has
sometimes created such quantitative anomalies that ultimately led to the demise of entire
paradigms. Empirical results in the social sciences have so far never been that precise; they
vary too much within and between studies. There are no important quantitative anomalies that
show stable numerical discrepancies between both theory and empirical results. And if there
appear indeed some such quantitative anomalies, they will not remain irrespective of further
empirical tests, as they will be again subject to wide variation. Because the inconsistencies
between theory and empirical results are not precise and stable in the social sciences, less clear
indications for new theories arise. Without a clearly defined set of quantitative anomalies that

resist resolution, social scientists have fewer reasons to transition to new paradigms.

2.2 The natural and the social sciences

The idea that the sciences are ordered in the form of hierarchy dates back to the sociologist
Auguste Comte (1908). The sciences at the bottom are simpler and more general, whereas the
sciences at the top are more complex and more special. The more complex sciences at the top
thereby depend upon the more simple sciences at the bottom. Comte proposed to group the
sciences in six primary divisions: mathematics, astronomy, physics, chemistry, biology, and
sociology. This hierarchy of the sciences has been extended and reformulated in different ways
over the past one and a half century.

However, the sciences also differ in their theoretical depth and empirical precision; that is, how
far the paradigms in a scientific field have developed. In some of the natural sciences, theories
and empirical facts develop closely together to create more knowledge. This knowledge then
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constitutes the fundament for new inquiries. Scientists can discover theories that match the
facts and then build on them to go deeper and discover new theories that again match the facts
and so on. Over time the knowledge covers more areas in greater detail; theories become deeper
and the empirical facts more precise. The sciences differ widely in this extension and reach of
their respective paradigms.

Physics, for example, is a very mature field that has seen large progress over the past centuries.
Until about the 1980s, physicists got ever deeper in their search for the fundamental building
blocks of the universe. They went from matter to molecules, to atoms, to electrons, protons,
and neutrons all the way down to the particles of the standard model. One reason for this
development has been the high precision in experimental test, which allows identifying clear-
cut empirical facts that constrain theories. The very high standards for precision show in the
required statistical significance of up to six sigmas in particle physics, for instance. Of course,
the research frontier in physics faces problems with numerous uncertain results, too, and
estimates can vary widely. However, over time, important differences are often resolved. In the
history of physics there has been strong disagreement about certain theories or experiments.
But many times, they were eventually settled and knowledge increased (Franklin 2018).

In fact, one striking aspect of physics is that over time scientists do show consensus for
important experimental results (Franklin and Perovic 2023). Similarly, in for instance
laboratory biology we see that scientist manage to establish empirical facts that everyone agrees
about (Latour and Woolgar 1979). This ability to achieve consensus on experimental results
seems to be characteristic to some natural sciences.!

The social sciences, in contrast, have not managed to establish such layers of theories that
accurately match empirical facts. Knowledge of the economy, society, or psyche still operates
close to the surface. Theories do not become deeper and thus more closely aligned with more
precise empirical facts. The resolution of important questions in economics, for example, has
been slow and uncertain (Solow 1982). In none of the social sciences do we have clear-cut
answers to the big questions. Instead, too many alternative theories compete to explain the
same phenomena.

Even (non-trivial) empirical facts are hard to establish in the social sciences. Empirical studies
cannot build on each other in the same way as they do in some of the natural sciences. When
a set of empirical studies present estimates of some effect, they do not together establish some
stable empirical fact that new empirical studies can incorporate and use as a steppingstone.
The estimates are much too imprecise and vary too greatly. They do not converge to some
precise estimate and thus offer no solid fundament to investigate the effect in more detail. New
studies rather start anew with alternative estimates.?

! The deep, empirically precise theories of some natural sciences are not secure either. They may still
turn out to be false after enough time has passed. But then the theories are usually replaced with even
deeper, even more empirically precise theories. These are the revolutionary changes occurring in science
from time to time (Kuhn 1962). They replace the paradigm dominant in a scientific field with an even

more accurate paradigm of greater scope.

2 The estimates of different studies do also not just average out to some empirical fact, because they are
seldom directly comparable to each other. All studies investigate all kinds of alternative versions of the
actual main hypotheses with all kinds of alternative empirical approaches in all kinds of alternative
contexts. We thus do not know whether their different results emerge either from their different empirical
approaches or from their different hypotheses or contexts. In practice, if findings between studies differ,
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Hence, the research landscape in the social sciences grows broader, but the resolution remains
about the same. New studies stay on similar levels of generality and do not become much more
detailed. They cannot refine some previously established estimates and thus also lack systematic
connection to them. They can complement aspects left out in previous studies. Yet the estimates
from all the studies do not hang together to give rise to some coherent whole for deeper research.
Studies in the social sciences tend to add-up and do not progress vertically but rather
horizontally.

Notably economics does reach deeper levels of theoretical sophistication, too, but this
development is largely decoupled from empirical facts. Economic theory is not grounded to the
same degree in the empirical world as for example the theories in physics are. Economic models
are idealizations that give intuition, they do not map the actual economy. The ability to obtain
deeper and more precise levels of knowledge in the form of a match between theory and empirics
has been most characteristic of physics in the past. In contrast, modern particle physics for
instance suffers from a decoupling of theory and the empirical world, too, as experimentation
has become more and more difficult or even impossible (Hossenfelder 2018). Things become too
small or too distant to measure with simple means. Facts get sparse and a manyfold of theories
takes over. It has run into similar obstacles as the social sciences.

Because the social sciences are less bound to empirical facts, they generate a larger diversity of
different ideas. They can seem more creative than the natural sciences, which are much more
bound to what empirical inputs dictate. Those researchers that can create what other
researchers like become successful. This in turn is not necessarily what corresponds to the facts.
Some fields in the social sciences may become very popular, even though they show little
connection to the empirical world. The main findings in several such fields in psychology have

collapsed during the replication crisis (see, e.g., Open Science Collaboration 2015).

2.3 The empirical evidence

There are a number of studies showing empirical evidence for the existence of a hierarchy of
the sciences. Most of these studies rank the sciences in their ability to achieve consensus and
thus to accumulate knowledge. A mature science shares a “common background of established
theories, facts, and methods”, which can in turn serve as the basis for further research (Fanelli
and Glénzel 2013). Importantly, consensus is a necessary but not a sufficient condition for the
accumulation of knowledge. Scientists can reach consensus on false research findings, too (see,
e.g., Nissen et al. 2016).

For example, Fanelli and Glénzel (2013) use bibliometric data to show evidence for a hierarchy
of the sciences. Fanelli (2010, 2012) further shows that in in the social sciences, researchers
have more room to achieve favorable empirical results than in the natural sciences. Simonton
(2004), Smith et al. (2000), Best et al. (2001), and Ashar and Shapiro (1990) use various
indicators such as use of graphs to create composite measures that find evidence for a hierarchy
of the sciences. Finally, Lamers et al. (2021), Chen et al. (2018), and Evans et al. (2016) use

scientists compare the studies and isolate those factors that differ between them. However, to what
degree these factors influence the findings is extremely difficult to assess. One does not see from the
published study itself the importance of design, analysis, setting, or data gathering. Hence, scientists
have a hard time knowing which factors are in effect responsible for the difference in all the findings.
They usually choose some plausible aspects, like the country where the study took place. Since these
may not have been the relevant factors after all, the understanding of the literature is often false.
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text mining to show that disagreement, uncertainty, and consensus in different scientific fields
follow a hierarchy of the sciences.

Note that these studies are social science studies, too. The ranking of and the distance between
the sciences therefore vary from study to study and are far from stable. As in most social
science instances, it would be hard to pursue more detailed empirical research on the basis of
the evidence these studies present. Nonetheless, for the purpose of the present paper, evidence
for the existence of a hierarchy of the sciences is sufficient. We do not need a precise ranking
with many details; only that the sciences do show some hierarchy in terms of consensus and
thus likely also in accumulation of knowledge.

3. Two categories: manual vs. data work

To illustrate the category of the natural sciences, the paper will focus on certain core aspects
of laboratory experiments in physics, both small and large as well as old and new. Physics has
long had the lead in experimental science, pioneering new techniques, methods, and settings
(Franklin and Perovic 2023). To shed light on the category of the social sciences, quantitative
observational studies using (large) datasets in economics, sociology, and political science will
occupy the center stage. Nonetheless, the paper will discuss aspects of experiments in the social
sciences, such as laboratory studies in psychology or field experiments in economics. Moreover,
to broaden the category of the natural sciences, the paper will also consider certain aspects of
laboratory experiment in biology. Biology is a large science, and fields like evolutionary biology
are probably closer to the social sciences. However, the laboratory experiment remains the most
characteristic element of modern biology (Weber 2004).

The paper focuses on the key differences in the ways to handle auxiliary hypotheses between
manual work with physical objects in the laboratory, most characteristic of the natural sciences,
and data work in front of the computer, most characteristic of the social sciences. Of course,
data has become very prominent in the natural sciences, too. It is, however, always connected
to at least some interactions with the physical and seldom based on just analyzing (given)
datasets. Nonetheless, the more a science relies on data work, the more it will resemble the
social sciences. Conversely, laboratory and especially field experiments have prominently
entered all the social sciences. They are in their nature closer to the natural sciences again and
can benefit from many important ways to handle auxiliary hypotheses.

4. The number of auxiliary hypotheses

The more auxiliary hypotheses an experiment involves, the more likely it becomes that at least
some of them are false, which can in turn invalidate the experimental results. For example,
compare the heroic tales of Galileo’s experiments with the inclined plane to the experiments
conducted in modern particle physics. Whereas the former rely on only very few auxiliary
hypotheses, which are part of a very simple setup and visible by eye to everyone, the latter
involve millions of auxiliary hypotheses, which are embedded in extremely complex setups and
understandable only to very specialized experts.

Even at the beginning of the twentieth century, experiments in particle physics involved only a
few scientists in a laboratory, with simple experimental setups and relatively cheap equipment.
This is in stark contrast to today with for example the Large Hydron Collider in Geneva, where
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experiments involve highly complex machinery and thousands of scientists. Galison (1987,
p.263) argues that in particle physics the “material basis for experimental work has grown
literally to monumental proportions”. Of course, such large-scale experiments always show a
high division of labor. They are organized like some large corporation. The actual work is still
done in smaller teams, they are just connected to an overall whole. The large-scale experiments
contain within them many separate, much smaller experiments.

We have observed a growth in the number of auxiliary hypotheses across all sciences over the
last decades. Experiments have increased in size and complexity in almost every field. Using
only few auxiliary hypotheses may allow for higher precision, but today such experiments
cannot tackle our most important research questions anymore. Interesting experiments in all
sciences build on an elaborate network of crucial auxiliary hypotheses. The deeper scientists
want to go in their inquiries, the more auxiliary hypotheses they need. Nonetheless, large and
complex experiments are not doomed to deliver biased results. To the contrary, the following
chapters will show that some experimental sciences can handle even very large numbers of
auxiliary hypotheses. Much more important is the question of how different scientific fields can
handle them.

5. The ability to test

5.1 Piecemeal

A first strategy scientists use to handle auxiliary hypotheses is to proceed piecemeal (Popper
1963). When scientists add new auxiliary hypotheses to their experiment, they may test them,
alone or in conjunction with others. This is possible when scientists can proceed step-by-step
in building their experimental setup. Similarly, before the trial, scientists may check all auxiliary
hypotheses, and after the trial, especially when it is a surprising result, they may check them
again. Of course, it is impossible to test every auxiliary hypothesis. Each inquiry where we try
to test auxiliary hypotheses can only go so far that doubt becomes unreasonable. We must give
up testing of the testing at some point, since otherwise it becomes infinite (Popper 1959).
Auxiliary hypotheses in the natural sciences are better separable and testable because many of
them are physical in nature. In physics, for example, the auxiliary hypotheses are to a large
degree machines, apparatus, instruments, detectors, or physical tools. They mediate between
the microworld and the world of knowledge (Galison 1997). In biology, laboratories consist of
a combination of biological materials, measurement instruments, preparation tools, etc. (Weber
2004). Scientists can take these apart and, if necessary, test each piece to receive evidence for
their adequacy (Knorr Cetina 1999, p.57). This is much less feasible in the work with given
datasets in social science studies. Scientists cannot just separate and test individual auxiliary
hypotheses.

In data work, knowledge of the truth or falsity of most auxiliary hypotheses in the setup of a
study is impossible. The true statistical model remains invisible. For example, how can one
know whether the statistical model includes all relevant explanatory variables? There is no
solid background which choices of auxiliary hypotheses can be compared against. To learn from
errors, we need a hard surface against which we can identify errors in the first place. We need
to be able to know whether a particular auxiliary hypothesis is false or not. This is difficult in
data work, where scientists can often only argue for something but seldom test it. For most
auxiliary hypotheses, scientists have no other way than to assume them as true. Of course,
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scientists can give reasons why some important assumptions should hold: exogenous shocks,
placebo tests, balancing tests, etc. The context of the study can provide such indications,
making some settings more credible than others. Scientists thus provide arguments why some
estimate is not endogenous, although they will not know its actual extent; some simple
correlational effect may in fact be less endogenous. However, for the large majority of auxiliary
hypotheses, providing reasons why they should hold is not possible. Unfortunately, imposing
these other auxiliary hypotheses nonetheless has a strong impact on the results (as shown, for
example, in multi-analyst studies like Silberzahn et al. 2015, Breznau et al. 2022, or Huntington
et al. 2025).

Natural scientists can also better test their experimental setup in a piecemeal fashion against
the relevant theoretical foundations in their field. This includes many well-established theories
of the apparatus. For example, scientists can create detector response models to compare how
many events a detector sees with how many it should see (Knorr Cetina 1999). Theories in the
natural sciences are much better representations of the empirical world and can thus better
inform decisions about auxiliary hypotheses. They are also much more consistent with each
other and together forbid numerous steps involving false auxiliary hypotheses. Social scientists
cannot do this in their studies to the same degree, as variation between all the various possible
theories to test against is way too high. They usually have no theoretical foundations against
which they can compare their intermediate steps and thus have difficulties knowing whether
they are on the right path in data collection, processing, and analysis.

Experiments in the social sciences suffer from a similar problem. Important auxiliary hypotheses
are here task, conditions, and rules of the game. They correspond to the apparatus. Because
these auxiliary hypotheses are abstracted, it becomes hard to evaluate whether they are true
or not. They are always false in a sense. At most they can be adequate models. This makes it
difficult to test auxiliary hypotheses. Against what background can such auxiliaries even be
true? The real world is explicitly excluded. The experiments create effects that rely on
conditions that are never satisfied in social or economic life. The mechanisms there may be
very different. Experiments in the social sciences thus offer a wealth of possible ways to create
effects, but whether they indeed occur this way in the world is often open.

Overall, in the work with data, most auxiliary hypotheses remain glued together, and scientists
must often take this network of auxiliary hypotheses as a whole without the ability to separate
and test its elements. They cannot, for example, test for the correctness of the coding of the
variables relevant for the data analysis. In general, the more physical objects and the less data
an investigation involves, the better separable and testable the auxiliary hypotheses are. Such
tests also often appear in separate scientific studies.

5.2 Calibration

A second strategy is to test the apparatus of the experiment on some known test object. Should
the apparatus be able to correctly detect the properties of the object, scientists can infer that
the apparatus operates properly, which in turn validates other results from the apparatus. It
would be a large coincidence otherwise for the apparatus to correctly detect the properties of
the test object (Hacking 1983). This strategy is widely used across the sciences and usually
called the calibration of the experimental apparatus (Franklin 1989). Scientists often also test
their apparatus on other apparatus that vary in attributes, use different techniques, or are
based on distinct theories. It would again be a large coincidence for apparatus varying along
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such dimensions to produce identical results (Hacking 1983). The idea is to deploy one set of
auxiliary hypotheses to test another, separate set of auxiliary hypotheses.

The use of calibration to verify auxiliary hypotheses is crucial in the natural sciences. Scientists
can test their apparatus on known results from past studies; things about which they already
know the relevant properties, the more varied the tests, the better. Mayo (1996) argues that,
in data work, scientists can make use of statistics in a similar way as with a physical instrument.
They can apply it as tool to identify effects. However, scientists cannot identify the reliability
of their statistical tools in the same way scientists with physical tools can. In the social sciences,
we cannot know whether we have true effects. There is no repertoire of known results from past
studies on which we can test our statistical tools to for instance calibrate them. The only
method social scientists have in this respect is Monte Carlo simulations. However, they are
artificial environments where we can never know whether real environments indeed represent
those simulations. The assumptions Monte Carlo simulations rely on to test statistical tools are
usually very strong.

5.3 Sub experiments

A third strategy is dividing the experiment into a series of smaller sub experiments (Galison
1987). The different sub experiments would need to be consistent with each other. Systematic
variation of the respective experimental conditions will unearth artifacts by causing
discrepancies between them. To separate an empirical study into mutually consistent sub
experiments is widely spread in the natural sciences. Latour and Woolgar (1979) describe how
in laboratories in biology scientists undertake many such sub experiments. Together they serve
as mutual controls. The demand to pass through all of them reduces the probability of an
artefact. Large-scale experiments in physics also run separate sub experiments that contribute
to the overall understanding (Galison 1987). Scientists design their sub experiments to test
certain confounding factors. Several sub experiments simultaneously allow cross-checking the
different approaches (Franklin 1989). If they agree, all the better. If not, the sub experiments
must be reconsidered in detail, since some of the applied approaches might not work correctly.
Their agreement or disagreement delivers important information about the measured
quantities. Experimental physicists sometimes even conduct “sister experiments”’, where they
set up experiments independently from each other to compare their respective results (Knorr
Cetina 1999). Natural scientists in general often justify the ceteris paribus clause in their studies
by relying on past experimental results that rule out the influence of confounding factors,
similar to a series of sub experiments conducted by third-parties (Mayo 1996). This is an aspect
foreign to the social sciences. Empirical studies do not rely on other published studies to justify
the ceteris paribus clause. More generally, social scientists do not pursue sub experiments in
the form of additional studies to rule out some possible confounding factors. To the contrary,
a study is usually seen as interesting if it shows the existence of some alternative factor, not if
it rules it out. However, social science studies do triangulate results with different sub
experiments within the scope of the same study, especially in psychology, where scientists
pursue several sub experiments that target the same underlying theoretical explanation. In
contrast, this is more difficult in observational studies in economics, sociology, or political
sciences. These are usually restricted to a single or at least very similar quasi or natural
experiments and cannot rely on additional sub experiments.



5.4 The results themselves

A fourth strategy is testing whether the results align with well-corroborated theories. Alignment
of the observations with such theories provide reasons to believe in the observations. Conversely,
using apparatus that rests on a well-corroborated theory provides apriori confidence in the
apparatus itself (Franklin 1990). The results themselves can also speak for the correctness of a
result, especially if they form a consistent pattern. A fifth strategy is relying on pre-trial or
after-trial research on important components of the main experiment. Scientists can estimate
the influence of a critical auxiliary hypothesis in some separate experiment. This helps ruling
out potential problems. In some sciences, entire subfields concern themselves with the study of
such problems.

The fourth and the fifth strategies are present across both the social and natural sciences.
Results can speak for themselves in every context. Consider, for instance, the construction of
the first cyclotron: ,,There is no doubt that the agreement between Lawrence’s theoretical
calculation and instrumental behavior was central to their confidence that the four-inch
cyclotron was working properly. However, the phenomenon itself must not be lost of sight.
Livingston observed a sharp, recognizable, and repeatable change in the collector current as he
varied the magnetic field strength. The effect is just too dramatic to be noise. (Baird 2004,
p.b3). A series of results that are consistent with each other is very well possible in the social
sciences, too, such as effect sizes that increase monotonically in the theoretically expected
direction. On the use of pre-trial or after-trial research in particle physics, Galison (1997, p.429)
comments that: “We have seen many new methods of avoiding misreading arise with the growing
scale of particle physics. These include the development of subfields for the study and control
of distortions, the understanding of personal error, and the avoidance of spurious ascription of
patterns®. The social sciences do extensive research on such distortions, errors, and statistical
noise, too. For example, the nascent field of metascience or specific fields in applied statistics
or econometrics. However, this research is seldom targeted at specific problems that appear in
one large experiment.

5.5 Robustness checks

A fifth, overall strategy is an explicit search for errors in the auxiliary hypotheses (Mayo 1996).
For example, scientists can vary critical auxiliary hypotheses in the experiment and see what
happens, amplify potential errors and observe how the patterns change, or introduce some
standard to the experiment and see how the results deviate from it. Such discrepancies may be
very informative. They can separate artifacts from genuine effects. When the results of the
variation in auxiliary hypotheses are similar, we gain some assurance that they pose no problem.
We likely have no artifact. When the results are different, we may be able to quantify the part
that is due to an artifact and subtract it out, or at least have an estimate of its impact on the
measured effect. If that impact is too small, one can discount it.

The main tool of the social sciences to mitigate the problem of false auxiliary hypotheses in
their data work are robustness checks. They embody Mayo’s (1996) search for errors. Social
scientists use them extensively. They can identify whether particular auxiliary hypotheses exert
a strong influence on the results. If the results hold up to variation in crucial auxiliary
hypotheses, scientists can rule out their influence and it becomes less important whether they
are true or false. The more auxiliary hypotheses scientists can rule out, the more confidence
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they can have in their results, since it eliminates them as alternative explanations. However,
many auxiliary hypotheses cannot be varied because they comprise the fundament of the entire
study and are beyond the scientists’ control. To check their robustness, scientists would need
to run a new study.

6. Intervention

A further way to test applied apparatus and thus the network of auxiliary hypotheses is
intervention (Hacking 1983). Scientists can manipulate the object under investigation and
predict what should happen. If the detected results align with the prediction, this is evidence
for a proper working of the apparatus. In the same way scientists can also learn whether some
apparatus does not work properly. Over numerous trials, they will develop close familiarity
with how the apparatus works, so they can know whether something is off. The systematic
error of the apparatus will reveal itself. Scientists learn step by step how the apparatus
functions, by trying it on all kinds of different objects, until they can confidently separate the
real structures from artifacts of the apparatus (Hacking 1983).

However, given that the apparatus works properly, intervention can also serve a further purpose:
scientists can improve their knowledge of the structures or mechanism of the object. They can
explore whether some manipulation of the experimental setup changes the object under
investigation in the expected direction, by for example varying specific conditions. Repeated
trials will show how the objects tend to change and reveal potential artifacts. If, on the other
hand, the results all support each other and are consistent, scientists can rule out an artifact.
Each manipulation that leads to the same results about the object eliminates some alternative
explanation (Hacking 1983, Woodward 1989, Galison 1987).

Hence, the two aims of intervention are testing the apparatus and learning about the
experimental outcome. Intervention is possible in every science that works with physical objects.
For example, in a biology experiment, scientists can use different fixing methods to different
cells, vary the environmental conditions, or check for implausible behavior under specific
circumstances, and thereby always observe results before and after (Franklin 1989). If the
results of the intervention are in line with the predicted outcome, this provides evidence for
either a proper working of the apparatus or gives insights into the experimental outcome itself,
such as a significant effect on the investigated physical object.

For example, if microscopes were in general producing false images of specimen, scientists would
have noted this by experimenting with them. The vision through microscopes and the ensuing
manipulation of specimen would have led to inconsistencies (Hacking 1983). Similarly, when
using a microscope, scientists can vary the setup with which they investigate an object. If some
aspect of the object remains the same under varying conditions, they can have more confidence
in it.

The key to successful intervention is the ability to alter the experimental setup and to do so
fast. While such repeated trials are well possible in the laboratory, this not the case in
observational studies in the social sciences. Observational evidence happens only once. The
data is given and the scientists have no way to see how it changes through intervention. In
contrast, laboratory experiments in the social sciences have the possibility to intervene to some
extent. Scientists can test alternative choices for the research design: the operationalizations of
the concepts, the instructions, and, crucially, the design of the treatments. An artifact would
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be a result that holds only for a narrow range of these possible design choices, while successive
trials could lead the way to some robust overall design. However, in comparison with the rapid
trials that scientists can run on a physical object in for instance a laboratory experiment in
biology, this remains a slow process.

Finally, the social sciences do have the possibility of conceptual replication. If scientists vary
the data analysis and the results change in line with theory, they can profit from the same
underlying idea behind intervention. However, the applicability of this conceptual replication
depends strongly on what the dataset offers. It needs to include important alternative
theoretical concepts.

7. Skill

Making an experiments work is a difficult task (Hacking 1983). To produce or create phenomena
in a stable way requires a lot of skill. Education in the laboratory is therefore mainly learning
the ability to know when an experiment works, and how to put it right if it does not. A course
in the laboratory where in experiments all goes right the first time would teach little about
experimentation, since learning is not as great as if many things would have failed repeatedly.
Scientists need to be able to make a distinction between an experiment that works and one
that does not.

The key to learning in the laboratory is the replication of known phenomena. Aspiring scientists
must know what results they are supposed to obtain. This allows checking whether the auxiliary
hypotheses in their experimental setups have been valid or not. Getting good at generating
known results teaches a lot about how to work with research objects. Scientists get a feeling
for how to do experiments. They can embark on alternative ways to produce a phenomenon.
Scientists thereby learn how to interact with nature, like kids on a playground. They also learn
how to debug everything that is unusual. Such information is usually not in the published
papers, but very crucial to make the experiment work (Hacking 1983).

In the natural sciences, young scientists are trained on important and successful past
experiments that produce well-established results. This way they can learn to develop the
necessary knowledge of whether an experiment has worked or not. Over time they become
skilled experts. Consider, for example, Jean Baptiste Perrin, who in his studies of Brownian
motion repeated nearly all the past empirical tests from other physicists he based his work on,
because repeating and getting good at reproducing anticipated results thought him much about
his experimental objects, it gave a certain “feeling” for them (Mayo 1996).

Well-established, known results are something the social sciences do not really have. Scientists
cannot learn well with replicating past experiments because they do not know whether those
studies in fact produced true results or not, and therefore whether their applied approaches are
in fact correct. When they do replicate some past landmark studies, they have few ways of
knowing whether they have learned the right things. Of course, in actual practice younger social
scientists do learn many things from past experiments, too. However, they may just keep
repeating the same mistakes again and again, while at the same time getting more and more
certain about them. The social sciences can sometimes create illusory expertise. Certain setups
and patterns of data in a social science study are surely more convincing than other setups and
patterns of data, and scientists can study how to recognize them. But they can never be quite
certain whether they just learned how to create or interpret elaborate statistical bias or noise.
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Consequently, if experimental scientists work in an environment that has a strong basis of well-
established results, they will become true experts with time, like craftsmen. In contrast, if the
environment is mostly consisting of work with complex datasets, the skill they learn is much
more ambiguous, and a lot if it will only be convention that is not said to better approach true
results.

8. The malleable and the given

8.1 Create clean data

An important aspect to achieve precise measurements is the ability to control auxiliary
hypotheses. Scientists can build the experiment in a way that excludes important confounding
factors that may otherwise have a systematic influence on the results (Galison 1987). The idea
is to build the experiments in a way that allows isolating some effect.

Natural scientists can often build the physical setup of their experiments in a way that excludes
certain confounding factors and allows identifying the effect. They can make their auxiliary
hypotheses true. Natural scientists can also test whether potential disturbances have an
influence on the results. If they do, they can change the experimental setup to exclude them.
In physics, for example, scientists can explicitly introduce confounding factors like electrical,
magnetic, thermal, acoustic, or seismic disturbances to the experimental setup and measure
their effects. If they have an influence, scientists can then proceed to create a more isolated
environment for the experiment. Natural scientists are not faced with a given situation that
can only be so good. They are much less bound to what is given to them than social scientists.
They can invent their way out of some impasse and actively create the experimental setup. An
adequate setup then also implies that the applied set of auxiliary hypotheses is true.
Consequently, while natural scientists build experiments that create their data in a way that
suits them, social scientists must often take their data as given. In observational studies,
researchers choose an economic, historic, or social situation such that their experimental setup
becomes appropriate. Social scientists cannot just replicate the setup and vary only some aspect
and hold all others constant to find out which aspect has a decisive influence. In the natural
sciences, if two theories differ, scientists can sometimes create physical environments that
embody the exact situation where the consequences of the two theories differ. In observational
studies in the social sciences, scientists must look for where such a situation may have happened
naturally. They cannot alter the situation in the way they desire. Social scientists can only
search for datasets that meet the design of their experiments. This data will generally be less
clean than any data tailored for answering a specific question. It limits the possibilities of what
to ask.

Hence, a central problem with observational studies in the social sciences, both well-identified
and not, is their reliance on given datasets. Of course, for each research design, scientists have
a certain flexibility in how they adapt it to the specific circumstances of the data. Research
designs in alternative contexts differ in their exact specifications, for example. Social scientists
can build a strategy to identify causal effects with their data, too. However, they cannot do it
to the same degree. The building of physical apparatus has numerous more possibilities to
exclude different confounding factors than the work with data. In the latter, scientists must be
content with that what nature offers them.
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In contrast, field and laboratory experiments in the social sciences can certainly also profit from
such an active creation of the experimental setup, since much of their implementation takes
place in the physical world, too. In general, across all the sciences, while observational studies
happen more in the data world, experiments happen more in the physical word. And the more
a study rests on the physical, the better the control of the auxiliary hypotheses and the cleaner,
that is, less confounded, the data becomes. We therefore have two overlapping advantages the
physical offers in all scientific experiments. First, scientists can create their experimental setup
to produce correct results. Second, scientists can also test whether their setup has produced
corrects results. They can make the results, and they can also test them.

8.2 The use of statistics

In an experiment, scientists intend to distinguish real effects from artifacts. If they had perfect
control, they would not need statistics. The measured effects are exogenous by construction. If
the only way a change in the outcome can happen is through the treatment, and no other
possible factors can influence it, one does not need much data analysis.

For example, in the laboratory in biology, scientists do not use much statistics because they
instead rely on “control experiments” (Weber 2004). Scientists vary experimental conditions to
eliminate disturbing causal influences. These methods are qualitative but still informative about
how the experimental treatment works. Experimental biologists can causally intervene in their
experiments. Control experiments show that a result does not stem from some other process,
such as contamination. They allow checking whether the scientists have made some errors in
their experiments. The more varied the experimental conditions, the more possible errors
scientists can rule out. Because scientists can exclude errors this way, they need not to cancel
them out through using statistics.

The use of control experiments and the ensuing absence of complex statistics implies that in
laboratory biology bias in the estimated effects is generally low but noise can still be high. Even
though biologists document in detail all the things they have used to build their experiments,
results can still differ markedly between different experiments, because the investigated samples
are often (very) small. They may contain only a handful of mice showing quite particular traits,
for example. The produced figures, graphs, or tables can thus vary substantially between
different samples. This is one important reason why many results in biology have not replicated
(see, e.g., Errington et al. 2021).

Mayo (1996) argues that demonstrating the absence of errors in an experiment provides a severe
test for the hypothesis under investigation. How to avoid errors, that is, how not to fall under
the spell of the Duhem-Quine problem, is mostly discussed from the perspective of using the
tools of error statistics. Mayo constructs error statistics as a broad account that consists of
methods and models from classical and Neyman-Pearson statistics. She lays less emphasis on
how scientists assure with the elegant physical design of experiments that they do not commit
errors. Yet here lies a crucial difference between the natural and the social sciences. They both
make use of error statistics, but only the former can devise severe tests. The latter suffer from
all kinds of errors in their empirical tests. Good experimental design, strengthened by the use
of reliable apparatus, assures high quality data, which in turn makes the use of error statistics
straightforward and valid.

14



8.3 Simulations

In the early 1900s scientists could in their experiments readily build around some arising error.
The comparatively small size and low cost of the used apparatus made it possible to quickly
rebuild everything such that the error could be eliminated. This includes redesigning the
experiment, vary the setup, or build additional devices (Mayo 1996). Such reconstruction made
the data exogenous again. Today, in contrast, the apparatus is in many experiments, especially
in particle physics, so large and expensive that reconstruction is an option only to some extent.
This means that the data must remain more endogenous. Scientists therefore resort to running
simulations to be able to nonetheless isolate the targeted effect (Galison 1987). Instead of
changing the apparatus, they simulate changes of the apparatus on the computer. It allows
scientist to see through the computer what would happen if they had actually changed the
apparatus. For example, physicists use computer simulations to calculate how many
observations would have happened through unwanted systematic factors. They can simulate
hypothetical worlds where problematic confounding factors were at play. To simulate the
behavior of big machines on the computer compensates for the lost ability to physically
manipulate them. “The computer simulation allows the experimentalist to see what would
happen if a larger spark chamber were on the floor, if a shield were thicker, or if the multitone
concrete walls were removed* (Galison 1987, p.265). The computer simulation can create
situations that cannot even exist in nature and allows investigating alternative universes. In
such simulations, scientists work similar to actual experiments. They can vary the inputs of the
simulations and compare the respective outputs with each other. If they observe stability, they
know they are on the right path. Simulations lie somewhere between physical experiment and
data analysis. The intense use of simulations in some parts of the natural sciences has moved
them away from the benefits of the physical more towards the issues prevalent in data work.

9. Repeated runs

9.1 Selection of observations

Noise without systematic bias manifests in smaller-scale experiments in physics as imprecision
in the experimental run. The same experimental setup delivers different results for each run.
The run itself may thereby be only a single datapoint, in the form of a measurement but also
a graph or a counter. Consider here, for example, the famous oil-drop experiment of Millikan,
which measured the negative charge of a single electron (Ackermann 1985). Scientists can
usually stop the experiment early or late or exclude some datapoints. They can thereby select
favorably. How to decide between true and false observations? How to recognize erroneous
experimental runs? When measurement is imprecise and the sample is small, scientists can
simply choose those noisy versions of the experimental runs that look best for their purpose.
This is a particular way of fitting noise.

A closely related issue in all experiments is the problem of the stopping rule (see, e.g., Franklin
1990). The obtained results may influence scientists to stop the experiment and give up looking
for false auxiliaries. For example, they may stop the experiment as soon as it agrees with
theoretical predictions. This is a problem, as there might still be more false auxiliaries. The
experiment should be stopped when they are all correct, or as correct as possible, and not based
on the obtained results. If an experiment is run only once and it exactly confirms a theoretical
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prediction, it may still be that some of the auxiliaries are false and the result is an artifact.
However, this requires quite some coincidence. The more auxiliaries are involved and the more
precise the prediction, the larger the coincidence. If, on the other hand, scientists can adjust
and play around with auxiliaries until the result fits, the smaller the coincidence and the
likelihood of an artifact increases. The more auxiliaries are involved and the less precise the
prediction, the higher the likelihood of some artifact.

Selection of observations is a large problem with small samples. In large datasets, however, it
becomes less decisive, given that the variables are not fat-tailed (which is a distinct, but large
problem in all the social sciences). Here the problem of the stopping rule is more important. In
fact, a more general instance of the stopping rule has become very prominent as a central
shortfall of data work over the last decades. We will discuss this in the next chapter.

9.2 Hacking p-values and research designs

In experiments, repeated runs are an advantage, as they can help identifying false auxiliary
hypotheses. The question is thus not just whether a science relies on data or not, but whether
the data responds directly to the runs. Manipulations of the experimental setup can produce a
stream of always different data. In contrast, datasets in observational studies remain the same
for all runs. They are not newly generated with the respective runs. This has the consequence
that repeated runs do not benefit the quality of evidence but rather devalue it. This is the
problem of p-hacking, or result-hacking more generally.

In data collection, processing, and analysis, scientists often use the researcher degrees of
freedom available to them to search for some specifications that show their desired results
(Simmons et al. 2011). This could be a theoretically predicted or more credible estimate but
also a specification in which placebo tests hold up. If in such a search scientists target statistical
significance, we speak of p-hacking. Scientists try to lower the p-values or shrink the confidence
intervals in order to make their empirical evidence seem stronger. Since researcher degrees of
freedom in data analysis but also in collecting and processing the raw data are always numerous,
scientists have a lot of room to hack their results in a specific direction. Because the term p-
hacking is more widely spread, we will use it instead of result-hacking.

We can further differentiate between fragile and robust p-hacking. Fragile p-hacking means that
scientists search for some statistically significant specifications that would collapse if they
changed only some minor researcher degrees of freedoms. In contrast, robust p-hacking means
that scientists search for some statistically significant specifications that reside within an entire
set of specifications that are all statistically significant. The results would also hold up if the
scientists changed some more major researcher degrees of freedom. Robust p-hacking is a trial
and error process where the theoretical arguments develop together with the empirical findings.
It ends only after the scientists have built apparently elegant matches between theory and
empirics. While fragile p-hacking is widely regarded as problematic, robust p-hacking is a much
more accepted practice.

Any type of p-hacking faces two distinct problems (Spescha 2021). First, searching through
researcher degrees of freedom may fit statistical noise and this way create an artifact. Repeated
runs invalidate the p-value, the filter that separates signal from noise. This is called the multiple
comparisons problem. With statistically independent runs, for example, the actual p-value
would about half each time. Second, researcher degrees of freedom are not all equally valid. P-
hacking can increase the problem of false choices of researcher degrees of freedom because
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statistical significance has the lead and not the theoretical implications. Hence, scientists mold
their statistical model into a mixture of the true effect size together with noise and bias.?

A related problem is research design hacking, where scientists misuse the fact that the
experimental setups often have many alternative implementations and none of them are clearly
superior. The researcher degrees of freedom happen not in the data analysis stage but in the
setup of the experiment. Some versions of the research design might product an effect, others
not. Scientists can then present those research designs that produce favorable results. Of course,
if the effects move in line with theoretically meaningful variation of the research design, it will
not be a problem but actually an improvement. In contrast, if the effects move in line with
seemingly irrelevant aspects of the research design, the produced evidence will be weak. Note
that in observational studies, the research design is given and less hacking takes place. However,
the uncertainty behind it is equally large or even larger. One just does not observe it.

A complete theory would for every context describe the experimental setup or research design
and the required data analytic decisions. Unfortunately, we never have such a theory. Scientists
can thus exploit variations in research design, data analysis, and context to their advantage.
They can hack all three: the experimental setup in the laboratory, the data analysis in
observational studies, or the context in field experiments.

9.3 Some remedies

P-hacking is widely spread in the social sciences (see., e.g., Brodeur et al. 2016, John et al.
2012, Necker 2014, Banks et al. 2016). Unfortunately, while replication using alternative
specifications can uncover fragile p-hacking, this is less feasible with robust p-hacking. P-hacked
results are robust by their very design. They have been chosen because they hold up to other
specifications. The results of some robustly p-hacked specification change only little if one varies
a single researcher degree of freedom. Of course, in many cases already modest variation of only
two or three researcher degrees of freedom together can still falsify such results. Nonetheless,
to uncover robustly p-hacked results, new data is necessary. This is not possible in observational
studies, and cost and time intensive in experiments. We thus do not know to what degree the
social sciences are plagued by robust p-hacking. However, we have indirect evidence, because
meta-analyses show that in most studies statistical power is too low and effect sizes are
overestimated (see, e.g., loannidis et al. 2017). Robust p-hacking is a way to nonetheless find
statistical significance in samples that would otherwise show nothing in particular. Because it
capitalizes on statistical noise, effects are generally overestimated.

P-hacking happens in the natural sciences, too. It is a central reason for the replication crisis
in both medicine and biology. In many of those fields, samples are small and noise is high. For
example, scientists tend to take those images where results are strongest and best fit their
theory. This selection on favorable outcomes is similar to the overestimation of effect sizes in
p-hacking.

In the large-scale experiments of particle physics, data analysis has become very important and
exceedingly complex. It makes the data analysis in the social sciences seem simplistic. However,

3 In data analysis, scientists usually give room to the effect they want to identify. They unearth a robust
relationship for that one effect that takes center stage. Had they had another focus, and the effect would
only have been a side-story, it would have been much less consistent and less pronounced over all results.
The scientists diminish other effects in the data on behalf of the one they want to identify. For example,
if you read the online appendix of a study instead of the main text, results will generally be much weaker.
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experimental physicists combat the arising problems more actively (Franklin 2018). Data
analysis in many high energy physics experiments uses ,,blind*“ techniques, where they agree on
the steps of the data analysis before looking at the data. Alternatively, they divide themselves
up in separate teams, each using their ideal methods on the data, and then reveal all results
jointly. In the last decade, the social sciences have seen many initiatives going into this direction,
too, with pre-analysis-plans or registered reports. However, they are still far away from being
the standard.

One solution to p-hacking and research design hacking would be to test and then present as
many specifications and research designs as possible. This would provide an overview of
alternative scenarios. Whereas showing many research designs is possible only in some small-
scale experiments, showing alternative specifications is always easily feasible. Presentation of
numerous different specifications in some aggregated way would help the credibility of most
studies substantially (see, e.g., the specification curves of Simonsohn et al. 2020).

10. Constructing the apparatus

Constructing physical apparatus is a complex craft requiring substantial effort. To obtain
reliable results, much repetition is required. Scientists usually select some early line of
experimentation that seems promising. They then constantly improve the experimental setup
in a trial and error way (Ackermann 1985). Insights that occur during experimentation are
incorporated. Scientists discover false auxiliary hypotheses and replace them with true ones.
Overall this leads to a convergence toward an apparatus that gradually produces cleaner and
thus better sets of data. The measurement becomes more and more precise.

The first prototype of a new apparatus is always crude. Arthur (2009, p.133), for instance,
describes how Lawrence’s first cyclotron used “a kitchen chair, a clothes tree, window glass,
sealing wax, and brass fittings.” It is already a success if the prototype works at all. The key is
that scientists can successively improve it. Collins (1992) gives the example of a scientist
building a prototype of a TEA laser, where it first showed many anomalies that only trial and
error could fix. The physical theories that explain the function of most prototypes are often
rather basic. Experimental apparatus is thus seldom derived from some physical theory but
instead the product of continuous improvement.

Giere (1988) argues that the Duhem-Quine problem can be resolved by technology. Background
knowledge in scientific testing does not consist exclusively in theoretical terms as hypotheses
previously confirmed, that is, propositional knowledge. Some background knowledge is better
thought of as embodied knowledge, in the technology used in performing experiments. The
physical existence of the technology in the laboratory is thus a quite different dimension of
scientific progress. It corresponds to knowledge embodied physically in the various research
apparatus, which provides it with an exceptional reliability. Baird and Faust (1990) even
describe scientific progress in the form of the accumulation of new scientific instruments. Today
we have vastly greater ability to manipulate, control, and measure nature by means of vastly

increased arsenal of scientific instruments.
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11. Improving of the experiment

11.1 Narrow down false auxiliary hypotheses

We have seen that the open-endedness of the physical world offers more room, or options, to
generate setups that produce unbiased effects than the data world. Scientists can build around
arising errors. However, the physical world may offer so much room that it becomes a
disadvantage. The open-endedness of the physical world is often orders of magnitudes larger
than the openness of the data world. Physical setups incur thus also plenty more degrees of
freedom than data setups. The question is thereby how to arrange the auxiliary hypotheses in
the wake of the design of the experiment; that is, how exactly the parts of the experimental
apparatus are built together. Scientists could in principle construct any type of highly original
but also totally false experimental setup.

Nonetheless, in physical setups, there is usually a rather tight link between theories, apparatus,
and research objects. Setups in the data world remain much more indeterminate. Statistical
theories, theories of the object, and statistical modelling can map in numerous possible ways.
The difference is that the more physical world of the natural sciences allows better narrowing
down the false auxiliary hypotheses.

In physical setups, scientists can make use of all the discussed ways to rule out false auxiliary
hypotheses: a) separate the parts of the apparatus and test them, using for example calibration,
b) intervene by varying the experimental setup to uncover errors, c¢) learn experimental skill by
replicating well-established findings, d) build around sources of error learned discovered during
experimenting or from previous experiments, e) repeat the experiment to better separate signal
from noise, and f) construct tailor-made apparatus. Scientists can do this until they are
confident that they have eliminated all false auxiliary hypotheses. Together the different ways
represent a potent arsenal to correct false auxiliary hypotheses.

In setups with data, in contrast, scientists have fewer of these means to identify and correct
false auxiliary hypotheses. The applied methods have much less bite. Social scientists can
certainly refine their empirical strategies and try to better isolate effects. But data setups in
the social sciences suffer from a fundamental inability to verify most choices of auxiliary
hypotheses. They can go over them repeatedly, but they have few means to test whether any
choice is superior to another. Their refinements could have worsened instead of improved the
study.

11.2 Too much freedom

Because false auxiliary hypotheses are harder to narrow down in the work with data, the
consequence are numerous researcher degrees of freedom in data collection, processing, and
analysis. Depending on the respective choices they cause substantial variation in results. This
crucial problem has become more and more evident over the last two decades, especially in the
social sciences. In most empirical studies, scientists face a veritable “garden of forking paths”
(Gelman and Loken 2013), where they have too much room in choosing between different ways
to collect, process, and analyze their data.

Researcher degrees of freedom are auxiliary hypotheses that all seem equally true but are in
many instances not. Some of the available researcher degrees of freedom might be more, some
less adequate. They merely imply that scientists do not have sufficient information to verify
which of them are the correct ones. Scientists have no ways to assess their choices of researcher
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degrees of freedom. Which path they will ultimately take instead depends on their respective
information, previous experiences, or beliefs. Different scientists will choose differently, leading
to potentially large variation in results for the same main hypothesis. Many choices of researcher
degrees of freedom are also conventions that have developed over time. Scientists can become
more and more confident about choices that need not be correct. They may enforce certain
errors in their data work repeatedly without being aware of it.

By now the literature contains many multiple analyst studies that illustrate the problem for
different scientific fields: economics (Huntington-Klein et al. 2021, 2025), sociology (Breznau et
al. 2022), finance (Menkveld et al. 2024), psychology (Silberzahn et al. 2018, Starns et al. 2019,
Schweinsberg et al. 2021, Hoogeveen et al. 2023), psychiatry (Bastiaansen et al. 2020), ecology
(Gould et al. 2023), and neuroscience (Botvinik-Nezer et al. 2020). These studies do not just
show the presence of many researcher degrees of freedom in the work with data, but also that
these give rise to sizeable differences in the obtained results. The more complex the study
becomes, the more pressing the problem, as researcher degrees of freedom multiply very fast.
A similar problem arises for the setup of experimental studies in the social sciences. In this
case, scientists can create the context of their studies and thus answer the theoretical hypothesis
they want, if feasible. However, theoretical hypotheses in the social sciences are very imprecise.
They do not map the empirical world very closely but are often abstract models. Each
theoretical hypothesis thus allows for the creation of numerous alternative experimental designs.
Hence, it again entails degrees of freedom. Scientists do not have the necessary information how
theory and context should connect to tie down all the alternatives. Nonetheless, how the
experiment and treatments are designed and concepts operationalized and measured can greatly
influence results. The chosen experimental setup may not generalize to other, equally relevant
setups and changes in setups can lead to large variation in results.

For example, experiments in psychology are often quite particular, specific implementations of
some theoretical, usually verbal, claim (Yarkoni 2020). The experiments are implicitly thought
to hold over many more alternative implementations of the general theoretical idea. If one
adequately incorporated all those various alternative implementations, the uncertainty intervals
of the estimates would be many times larger. Factors that produce variation in estimates are
subjects, stimuli, task, instructions, site, experimenter, culture, and such seemingly insignificant
factors like weather, etc. Collectively they contribute large variation. Yet most experiments in
psychology proceed as if they would not vary.

In field experiments in the social sciences, the setup to produce the effects is less abstract than
in laboratory experiments. The scientists look at real environments with real treatments. They
may be smaller and cover only a subset of all environments or treatments. Nonetheless, the
treatments themselves are actual implementations in the worlds of politics, economics, or
society. However, the correspondence between the respective treatments and theory remains
loose. Many treatments from many different contexts could account for the same theoretical
hypothesis.

Consequently, experimental designs in the social sciences, both in the field and in the lab, suffer
from many researcher degrees of freedom, too; neither theory nor the actual context can pin
them down sufficiently. Experiments push researcher degrees of freedom from the analysis stage
toward the setup of the entire experiment. In fact, variation in experimental design can be
tested by running the same hypotheses with different experimental setups on different random
subsamples. Overall, the two sources show a similar impact on variation of results (Holzmeister
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et al. 2024). As long as the social sciences lack the empirical methods necessary to align
auxiliary hypotheses with the right theories or contexts, such variation will be an integral part
of these disciplines. The large variation of estimates visible in the various multiple analyst
studies is itself evidence that they have not yet found those methods.

12. Structure in the chain of auxiliaries

Hacking (1988, 1992) argues that the laboratory sciences consist of the following 15 elements,
divided into three parts: 1) ideas: questions, background knowledge, systematic theory, topical
hypotheses, modelling of the apparatus. 2) things: target, source of modification, detectors,
tools, data generators. 3) marks: data, data assessment, data reduction, data analysis,
interpretation. Variation in estimated effects can come from all these 15 sources. All of them
are plastic, that is, scientists can alter them.

In observational studies, we have only ideas and marks. This could be seen as an advantage,
that is, less auxiliary hypotheses that could be false and thus less worries about potential
variation. However, the things bring a structure to the experiment that simplifies both ideas
and marks. They can reduce theoretical problems (e.g., exclude confounding factors or other
sources of error) and statistical problems (the data are tailored to the research questions at
hand). The things bring both ideas and marks together more directly.

13. Well-established scienti/c theories

Together the different ways to handle auxiliary hypotheses can deliver a state of unproblematic
background knowledge, such that scientists can trust the results of their studies. Importantly,
once the new results become themselves well-established, scientists may use them in their
investigations in other new studies. The results become themselves auxiliary hypotheses and
part of the unproblematic background knowledge. Over time, this process may repeat in a
virtuous cycle. Altogether this creates scientific progress with results that go ever deeper.

13.1 Replication for a cumulative literature

Replicability of experimental results is a must. Without it, experimental results cannot serve
their role as the guiding instances in empirical science. For example, Popper (1959) argues that
only replicable effects can falsify or corroborate a theory. Widely varying experimental results
cannot do so. He argues that we should only take observations as scientific if we have tested
them repeatedly. Only replicability can convince us that we are not dealing with a mere
coincidence. Otherwise, science cannot get off the ground.

Unfortunately, all scientific fields contain non-replicable or invalid results. However, some do so
more than others. Psychology and medicine have been hit particularly hard by the replication
crisis. The main reason here is that one can actually replicate their experiments and find out
whether they uphold or not. These fields often rely on experiments that are comparatively easy,
cheap, and fast to replicate. In contrast, the other social sciences did not have a substantial
replication crisis because most studies cannot even be replicated. They are snapshots of unique
places and times, not replicable experiments. The most one can do is reanalysis. To replicate
important quasi or natural experiments, scientists must rely on other contexts. Hence, in much
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of the social sciences, we do not even know the extent to which studies are non-replicable or
invalid. One might suspect that the state is at least as bad as in psychology and medicine.
Because only few studies are replicated, it can happen that some false study nonetheless gathers
hundreds of citations. Due to the abundant researcher degrees of freedom, it may even gather
many conceptual replications. In contrast, the cumulative nature of many natural sciences
requires that important studies are replicable (see, e.g., Peterson 2025). In laboratory work in
biology, when scientists publish something important, other scientists replicate it since they
want to use it for their own work. Scientists first need to know whether the relevant findings
are reliable. They thus conduct replication of others’ works in their own laboratory, to see
whether they can indeed build their own research on them. This means that popular methods
or findings are regularly checked because they are used by others. If a study does not replicate,
the community will get to know this. The possibility to use the results of others is a strong
incentive to redo important studies. The key is therefore the cumulative nature of laboratory
biology, how it builds on previous work and then goes deeper. Some studies establish a new
fact, which raises a new question. This question is in turn answered by a new fact, which again
raises a new question and so on. Studies build on the results of previous studies. Even within
the same project in a laboratory, biologists use control experiments to verify the facts they
think they know, often together with new assumptions. If some of those control experiments
give different results, the scientists will have to go through everything again to track down the
problem. They redo and retest all things. Knowledge is therefore cumulative within as well as
across scientists.

The social sciences do not require that a study is replicable. This mechanism of control is
mostly absent. It does not matter for the estimate of a treatment effect in your context whether
others have estimated different treatment effects in their work. Empirical estimates in the social
sciences do not directly build on each other. In the social sciences, due to the countless
researcher degrees of freedom, any replication will anyway turn out differently and scientists do
not really want to open this box of pandora. The absence of much replication makes it necessary
to rely on only the published empirical findings. These are incorporated into subsequent
research. If the estimates are generally precise, subsequent research will not be lead too far
astray. In contrast, if they vary highly, later research will vary, too.

13.2 Bandwagon e} ects and convergence

Franklin (2018) argues that successful replication is a goal of experimental physics. Important
results are likely to be replicated, while less important results may often not be so. Physics has
a tradition of rigorous replication, especially for groundbreaking discoveries. Because it has
such a strong theoretical fundament, when empirical studies show new discoveries that go
against this fundament, it raises skepticism among scientists and the studies get extra scrutiny
in replication attempts.

Of course, in the measurement of physical quantities, such as physical constants and properties
of elementary particles, estimates can vary in size, too (Franklin 2018). Sometimes large changes
occur, which may be due to smaller systematic errors, corrections of older experiments, or
smaller errors in general. Sometimes flukes can happen, too. In fact, experimental results often
show bandwagon effects, where they tend to agree more with previous measurements or with
theoretical calculations, and only over time converge to some specific value measured with
greater precision. One reason for this pattern is violation of the stopping rule (Franklin 1989).
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Estimates move toward the true value, but in small steps, as experimenters do not want to
deviate too strongly from the previously measured results.

Bandwagon effects are quite common in particle physics (Franklin 2018). The crucial point is
that, over time, the measurements do (slowly) converge toward the true value. The results of
studies in the social sciences do not show such bandwagon effects. Estimates from empirical
studies do not converge toward some specific value. Instead, they vary quite unsystematically
and scientists do seldom come to an agreement about the precise value of some effect.?

13.3 The construction of facts

If there has been much research in the past, and the research led to well-established scientific
theories, scientists can use them for their experiments and take them for granted. They count
as unproblematic background knowledge. Giere (1988) gives the example of protons as research
tools. They are part of the technology that investigates nuclear structure, for instance. Scientists
use the proton in so many alternative ways during their experiments that the theories describing
them become almost trivially true for them. The same holds for the investigation of many
research objects, like some biological organism. Past research has established many parts or
mechanisms of the object, which can then serve as at least approximately true auxiliary
hypotheses for further investigations. For example, genes in cell biology have such a function.
They have become useful tools. Scientists use genes to learn about the processes under
investigation, by for instance using them to manipulate outcomes. The genes have become
knowledge that is so well-established that they become an instrument themselves.

Latour and Woolgar (1979) describe how scientists in a laboratory in biology construct scientific
facts. They differentiate between five levels of facticity in scientific papers. The highest level
are statements so persuasive that no reference is needed. They are recognized as facts by
everyone in the field. Middle-level facts are statements that need citations to other scientific
papers. The lowest level are statements in the form of conjectures or speculations. They appear
most common in the conclusion. Scientific activity itself causes some statements to move up
and others down this ladder. It does so by supporting certain statements with figures, diagrams,
and statistics. Among the large numbers of statements scientists produce, a mere fraction
becomes a fact, whereas all other statements stagnate, as no scientists take them up. Once a
fact is established, scientists no longer contest it. Instead, it becomes the basis of further
discussion and disappears from daily scientific activity and enters textbooks.

There is no such ability to construct empirical facts in the social sciences. At most, scientists
can try to weigh empirical evidence for some effect from different studies against each other.
They can then form a judgement about what the effect might be. But it does not become an
empirical fact that is recognized by everyone in the field. The findings that enter textbooks are
theories, often even based on mathematical proofs, but not empirical facts. The former are

4 Replications of experiments in physics are often not exact, that is, identical attempts. Such exact
replications happens mostly when a result seems hard to believe to the community. Instead, scientists
try to do the same thing better, such as to produce less noisy or more stable effects (Woodward 1989).
Scientists thus use different, and if possible better apparatus. This broader type of replication happens
in the social sciences, too, where scientists try address the some effect with better methods. However,
studies with only improved method are quite rare. Hypotheses and contexts are usually different, too.
The studies are therefore generally too distinct to count as replications. Most often such studies are more
like series of alternative measurements, and none are clearly superior to the others.
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elaborate hypothetical constructions, and not empirical facts like in cell biology, for instance,
about what a cell is made of, how it functions, and what it does. In biology, years of controversy
between scientists sometimes crystallize into the construction of some unambiguous and
uncontested empirical fact. Most of the time such controversy leads nowhere, but sometimes it
does. Unfortunately, in the social sciences, it almost never leads to such an outcome.

14. Conclusion

We have seen that the sciences differ substantially over several dimensions in their ways to
handle auxiliary hypotheses. Each scientific field would score differently on each of them.
Consequently, to construct an exact ranking is difficult. However, we can point out some main
lessons from the preceding discussion.

While we can find studies with any number of auxiliary hypotheses in any field, the natural
sciences tend in general to rely on more auxiliary hypotheses. Their experimental setups are
usually larger and more complex than the data collection, processing, and analysis in the social
sciences. Nonetheless, the natural sciences produce more precise experimental results. Hence,
the question opens us why this is so.

First, the auxiliary hypotheses in the natural sciences are mostly physical in nature. Scientists
can take them apart and, if necessary, test each piece to receive evidence for their adequacy.
For example, they can calibrate their apparatus on known results or cross-check it with other
instruments. In contrast, in the social sciences, auxiliary hypotheses cannot be tested against
some solid background. Instead, scientists must simply assume most auxiliary hypotheses. They
can give evidence only for some more important auxiliaries.

The main tool in the data work of the social sciences are robustness checks, where scientists
vary auxiliary hypotheses to observe their influence on the results. They are heavily used in all
studies. However, robustness checks can only show that some auxiliary hypothesis has little
influence on the results, but they can do nothing about it if it has large influence.

Second, intervention is much better feasible and much faster in the laboratory. Scientists can
vary their experimental setups to exclude artifacts of the apparatus, for instance. Such fast
intervention altering the entire setup is not possible in the social sciences, where scientists are
usually bound to the respective quasi or natural experiment. It is possible in experiments in
the social sciences, yet still orders of magnitudes slower than in the laboratory.

Third, repeating experiments from past studies builds up important skills in the natural
sciences. However, this requires a repertoire of well-established past results. This is less feasible
in the social sciences, because well-established results are scarce. Scientists therefore do not
know whether they may in fact have learned some false approaches.

Fourth, whereas natural scientists can build experimental setups that exclude false auxiliary
hypotheses, observational studies in the social sciences do not have much room for altering
their research designs. They can address minor shortcomings, but the environmental context
defines whether the research design is appropriate or not. In contrast, this does not hold for
experiments in the social sciences. They can certainly build around sources of error, too.
Fifth, in experiments in the natural sciences, the data reacts to alternative runs of the
experiment. Variation in the setup also changes the produced data. Especially smaller
experiments can be repeated until the data is satisfactory. In contrast, observational studies,
but also most field experiments, cannot be run more than once. Scientists usually run repeated
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data analysis though. However, this does not improve the data but rather devalues it. Scientists
can use the researcher degrees of freedom available to them to show favorable results. They
may mold their empirical specifications into a mixture of statistical noise and bias.

Together these (and more) aspects allow the natural sciences to better narrow down false
auxiliary hypotheses. In contrast, in the social sciences we observe potentially large variation
in auxiliary hypotheses, both within and between studies, leading to large variation in the
observed empirical results. The estimated effects do not converge to some value over time, like
in some of the natural sciences. One key difference between the natural and the social sciences
is therefore that the former can sometimes establish new empirical facts. These in turn serve
themselves as auxiliary hypotheses in even deeper inquiries that again establish new empirical
facts. An overall virtuous cycle takes place. Consequently, the natural sciences are much more
cumulative than the social sciences.

Data analysis has become more important across all sciences. In modern particle physics, for
example, apparatus has become too large, complex, and expensive to systematically vary it.
With less control over the physical apparatus, control over data has become more and more
central, in sometimes very complex ways. The experiments have in some instances lost contact
with the physical world entirely and data analysis has often become the experiment itself
(Galison 1997). This shift from the physical work to data work has introduced an extra
dimension of variation that has been absent in the experiments of the past. In contrast, in the
social sciences, data analysis has replaced less precise methods and has rather reduced variation
in results. It offers a more condensed window to the social world than the qualitative work that
dominated earlier periods. In any case, with data analysis in all its various forms becoming
more and more important, the sciences will move closer together, from the physical and the
qualitative towards more data work. Similar problems will thus show up in all of them. Data
analysis adds a layer of variation to experimental results in all sciences. In fact, scientific
progress seems to have slowed down across all fields. Studies have become less disruptive over
time (Park et al. 2023). One reason for this development may be that we cannot go physical
enough anymore and must rely too much on data analysis. It causes an imprecision in empirical
investigation that makes it more difficult going broader and deeper with our theories.
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