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Abstract 

The sciences differ in the precision of their empirical tests. A central determinant of this 

precision are the applied auxiliary hypotheses, which can encompass everything from theories 

to apparatus to data analysis. If they are subject to large variation within and between studies, 

the obtained results will vary, too. This paper investigates how the ways to handle auxiliary 

hypotheses differ across the sciences. This covers, for example, the possibility to separate and 

test auxiliary hypotheses, to reveal them through intervention, or to construct the experimental 

setup to exclude false ones. The paper focuses on a comparison of physical work in the 

laboratory in the natural sciences to data work with computers in the social sciences. The 

interaction with physical experimental setups allows natural scientists to better test, 

manipulate, and neutralize auxiliary hypotheses. In contrast, the collecting, processing, and 

analysis of data in the social sciences faces severe difficulties in choosing the right auxiliary 

hypotheses. Too many of them seem equally true. Social scientists thus struggle with numerous 

researcher degrees of freedom in their studies. Consequently, the natural sciences can better 

narrow down false auxiliary hypotheses than the social sciences, which allows them to achieve 

more precise empirical results and in turn reach deeper levels of theoretical development. 
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1. Introduction 

The sciences differ in the breadth and depth of their theories. Several empirical studies show 

evidence in line with such a hierarchy of the sciences (Comte 1908). The natural sciences at the 

bottom of the hierarchy achieve higher levels of consensus than the social sciences at the top 

(e.g., Fanelli 2010, 2012, Fanelli and Glänzel 2013, Simonton 2004, Lamers et al. 2021, Chen et 

al. 2018, Evans et al. 2016), implying that the former exhibit more fully articulated scientific 

paradigms than the latter (Kuhn 1962). One central reason for this difference is the precision 

of empirical tests (Kuhn 1961). Sciences that can produce more precise experimental results 

are able to develop theories of greater breadth and depth. 

Empirical precision has traditionally been discussed in light of the Duhem-Quine thesis (Duhem 

1906, Quine 1951), which states that an experimental test of some hypothesis requires all kinds 

of auxiliary hypotheses. Falsification of the main hypothesis is thus difficult, as some of these 

auxiliary hypotheses might be false, and not the main hypothesis itself. Such auxiliary 

hypotheses can refer to experiment, theory, but also basic assumptions like logic. Philosophers 

of science like Popper (1959), Kuhn (1962), and Lakatos (1978) were mainly concerned with 

the impact of the Duhem-Quine thesis on the falsification of the theory under investigation. 

That is, whether a falsification refutes the theory or whether the possibility of modifying the 

theory renders this difficult. In contrast, the focus in this paper will be on only the set of 

auxiliary hypotheses used in experimental test. This is in line with the “new experimentalists” 

in the philosophy of science (e.g., Hacking 1983, Ackerman 1985, Galison 1987, 1997, Giere 

1988, Franklin 1989, 1990, Mayo 1996). These authors emphasize that in science providing 

reliable observational evidence is essential and therefore focus on experiment in all its forms. 

The central difficulty expressed by the Duhem-Quine thesis is knowing which, if any, of the 

numerous auxiliary hypotheses might be false. Duhem (1906) argued that this process does not 

follow clear methods or rules. The false auxiliary hypotheses cannot be pinned down by logical 

analysis. However, in scientific practice, there are ways that make it possible to address the 

Duhem-Quine thesis. Mayo (1996) argues that scientists combat the Duhem-Quine thesis by 

actively searching for errors, or false auxiliary hypotheses. Scientists can narrow down false 

auxiliary hypotheses. However, this is not possible to the same degree in all sciences. 

This paper investigates how conditions, strategies, and findings to handle auxiliary hypotheses 

differ between the natural and the social sciences. The comparison brings to light respective 

strengths and weaknesses that otherwise remain more hidden. To describe the natural sciences, 

the paper relies more on works from the philosophy of science, particularly from the new 

experimentalist. In contrast, to describe the social sciences, the paper relies more on works 

from the newly emerged field of metascience, which is the scientific study of science itself. The 

paper argues that whereas the natural sciences generally rely on more auxiliary hypotheses 

than the social sciences, they are nonetheless better able to narrow down false ones. They can 

benefit from several distinct aspects laid out in detail throughout the paper. Consequently, the 

natural sciences can put forward more precise empirical results. 

Note that the concern of the paper is not specifically with the Duhem-Quine thesis; that is, 

when we have experimental evidence that is contrary to a theory’s prediction. Instead, the 

focus is more broadly on how a lack of control over auxiliary hypotheses manifests in variation 

in experimental results. The latter hinders any kind of evaluation of theory. Variation in 

auxiliary hypotheses stands in-between theory and observation. It can block effective 

communication between the two and stall further development of theory. 
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2. The hierarchy of the sciences 

2.1  Consensus and progress 

The large majority of scientists live and work within the normal science of their respective 

scientific paradigms (Kuhn 1962). Normal science is cumulative. Over time, scientific theories 

become more and more articulated and match to nature at an increasing number of points with 

increasing precision (Kuhn 1970a). The famous scientific revolutions, where our most important 

theories completely change their form, happen only infrequently. The central aspect of a 

scientific paradigm is the consensus between scientists on what constitutes the fundamentals. 

Scientists do not argue about basic issues but rather build their research on them. Together 

the scientists can then investigate some field in a much higher detail. Kuhn (1962) even argues 

that progress is possible only after normal science has emerged. 

The rigor of normal science will over time isolate severe anomalies that cannot be ignored. 

Kuhn (1961) emphasizes here the special importance of quantitative anomalies. In fact, 

measurement shows its greatest strength in anomalies. Quantitative anomalies are much harder 

to ignore than qualitative ones. Ad-hoc modifications of theories are easier to come by than ad-

hoc modifications of precise numerical estimates. Numbers are neutral arbiters. Quantitative 

anomalies provide a “razor-sharp instrument” for the evaluation of a theory. They demonstrate 

deviations from theory with a strength that qualitative anomalies cannot imitate and are very 

difficult to explain away. Scientists are seldom willing to compromise the numerical accuracy of 

their theories. Quantitative anomalies therefore require looking for new qualitative phenomena. 

They are the unambiguous signals of crisis and at the same time provide the materials for 

revolution (Kuhn 1970b). 

The high precision of empirical results in the now mature natural sciences Kuhn speaks of has 

sometimes created such quantitative anomalies that ultimately led to the demise of entire 

paradigms. Empirical results in the social sciences have so far never been that precise; they 

vary too much within and between studies. There are no important quantitative anomalies that 

show stable numerical discrepancies between both theory and empirical results. And if there 

appear indeed some such quantitative anomalies, they will not remain irrespective of further 

empirical tests, as they will be again subject to wide variation. Because the inconsistencies 

between theory and empirical results are not precise and stable in the social sciences, less clear 

indications for new theories arise. Without a clearly defined set of quantitative anomalies that 

resist resolution, social scientists have fewer reasons to transition to new paradigms. 

 

2.2  The natural and the social sciences 

The idea that the sciences are ordered in the form of hierarchy dates back to the sociologist 

Auguste Comte (1908). The sciences at the bottom are simpler and more general, whereas the 

sciences at the top are more complex and more special. The more complex sciences at the top 

thereby depend upon the more simple sciences at the bottom. Comte proposed to group the 

sciences in six primary divisions: mathematics, astronomy, physics, chemistry, biology, and 

sociology. This hierarchy of the sciences has been extended and reformulated in different ways 

over the past one and a half century. 

However, the sciences also differ in their theoretical depth and empirical precision; that is, how 

far the paradigms in a scientific field have developed. In some of the natural sciences, theories 

and empirical facts develop closely together to create more knowledge. This knowledge then 
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constitutes the fundament for new inquiries. Scientists can discover theories that match the 

facts and then build on them to go deeper and discover new theories that again match the facts 

and so on. Over time the knowledge covers more areas in greater detail; theories become deeper 

and the empirical facts more precise. The sciences differ widely in this extension and reach of 

their respective paradigms. 

Physics, for example, is a very mature field that has seen large progress over the past centuries. 

Until about the 1980s, physicists got ever deeper in their search for the fundamental building 

blocks of the universe. They went from matter to molecules, to atoms, to electrons, protons, 

and neutrons all the way down to the particles of the standard model. One reason for this 

development has been the high precision in experimental test, which allows identifying clear-

cut empirical facts that constrain theories. The very high standards for precision show in the 

required statistical significance of up to six sigmas in particle physics, for instance. Of course, 

the research frontier in physics faces problems with numerous uncertain results, too, and 

estimates can vary widely. However, over time, important differences are often resolved. In the 

history of physics there has been strong disagreement about certain theories or experiments. 

But many times, they were eventually settled and knowledge increased (Franklin 2018). 

In fact, one striking aspect of physics is that over time scientists do show consensus for 

important experimental results (Franklin and Perovic 2023). Similarly, in for instance 

laboratory biology we see that scientist manage to establish empirical facts that everyone agrees 

about (Latour and Woolgar 1979). This ability to achieve consensus on experimental results 

seems to be characteristic to some natural sciences.1 

The social sciences, in contrast, have not managed to establish such layers of theories that 

accurately match empirical facts. Knowledge of the economy, society, or psyche still operates 

close to the surface. Theories do not become deeper and thus more closely aligned with more 

precise empirical facts. The resolution of important questions in economics, for example, has 

been slow and uncertain (Solow 1982). In none of the social sciences do we have clear-cut 

answers to the big questions. Instead, too many alternative theories compete to explain the 

same phenomena. 

Even (non-trivial) empirical facts are hard to establish in the social sciences. Empirical studies 

cannot build on each other in the same way as they do in some of the natural sciences. When 

a set of empirical studies present estimates of some effect, they do not together establish some 

stable empirical fact that new empirical studies can incorporate and use as a steppingstone. 

The estimates are much too imprecise and vary too greatly. They do not converge to some 

precise estimate and thus offer no solid fundament to investigate the effect in more detail. New 

studies rather start anew with alternative estimates.2 

 
1 The deep, empirically precise theories of some natural sciences are not secure either. They may still 

turn out to be false after enough time has passed. But then the theories are usually replaced with even 

deeper, even more empirically precise theories. These are the revolutionary changes occurring in science 

from time to time (Kuhn 1962). They replace the paradigm dominant in a scientific field with an even 

more accurate paradigm of greater scope. 

 
2 The estimates of different studies do also not just average out to some empirical fact, because they are 

seldom directly comparable to each other. All studies investigate all kinds of alternative versions of the 

actual main hypotheses with all kinds of alternative empirical approaches in all kinds of alternative 

contexts. We thus do not know whether their different results emerge either from their different empirical 

approaches or from their different hypotheses or contexts. In practice, if findings between studies differ, 
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Hence, the research landscape in the social sciences grows broader, but the resolution remains 

about the same. New studies stay on similar levels of generality and do not become much more 

detailed. They cannot refine some previously established estimates and thus also lack systematic 

connection to them. They can complement aspects left out in previous studies. Yet the estimates 

from all the studies do not hang together to give rise to some coherent whole for deeper research. 

Studies in the social sciences tend to add-up and do not progress vertically but rather 

horizontally. 

Notably economics does reach deeper levels of theoretical sophistication, too, but this 

development is largely decoupled from empirical facts. Economic theory is not grounded to the 

same degree in the empirical world as for example the theories in physics are. Economic models 

are idealizations that give intuition, they do not map the actual economy. The ability to obtain 

deeper and more precise levels of knowledge in the form of a match between theory and empirics 

has been most characteristic of physics in the past. In contrast, modern particle physics for 

instance suffers from a decoupling of theory and the empirical world, too, as experimentation 

has become more and more difficult or even impossible (Hossenfelder 2018). Things become too 

small or too distant to measure with simple means. Facts get sparse and a manyfold of theories 

takes over. It has run into similar obstacles as the social sciences. 

Because the social sciences are less bound to empirical facts, they generate a larger diversity of 

different ideas. They can seem more creative than the natural sciences, which are much more 

bound to what empirical inputs dictate. Those researchers that can create what other 

researchers like become successful. This in turn is not necessarily what corresponds to the facts. 

Some fields in the social sciences may become very popular, even though they show little 

connection to the empirical world. The main findings in several such fields in psychology have 

collapsed during the replication crisis (see, e.g., Open Science Collaboration 2015). 

 

2.3  The empirical evidence  

There are a number of studies showing empirical evidence for the existence of a hierarchy of 

the sciences. Most of these studies rank the sciences in their ability to achieve consensus and 

thus to accumulate knowledge. A mature science shares a “common background of established 

theories, facts, and methods”, which can in turn serve as the basis for further research (Fanelli 

and Glänzel 2013). Importantly, consensus is a necessary but not a sufficient condition for the 

accumulation of knowledge. Scientists can reach consensus on false research findings, too (see, 

e.g., Nissen et al. 2016). 

For example, Fanelli and Glänzel (2013) use bibliometric data to show evidence for a hierarchy 

of the sciences. Fanelli (2010, 2012) further shows that in in the social sciences, researchers 

have more room to achieve favorable empirical results than in the natural sciences. Simonton 

(2004), Smith et al. (2000), Best et al. (2001), and Ashar and Shapiro (1990) use various 

indicators such as use of graphs to create composite measures that find evidence for a hierarchy 

of the sciences. Finally, Lamers et al. (2021), Chen et al. (2018), and Evans et al. (2016) use 

 
scientists compare the studies and isolate those factors that differ between them. However, to what 

degree these factors influence the findings is extremely difficult to assess. One does not see from the 

published study itself the importance of design, analysis, setting, or data gathering. Hence, scientists 

have a hard time knowing which factors are in effect responsible for the difference in all the findings. 

They usually choose some plausible aspects, like the country where the study took place. Since these 

may not have been the relevant factors after all, the understanding of the literature is often false. 
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text mining to show that disagreement, uncertainty, and consensus in different scientific fields 

follow a hierarchy of the sciences. 

Note that these studies are social science studies, too. The ranking of and the distance between 

the sciences therefore vary from study to study and are far from stable. As in most social 

science instances, it would be hard to pursue more detailed empirical research on the basis of 

the evidence these studies present. Nonetheless, for the purpose of the present paper, evidence 

for the existence of a hierarchy of the sciences is sufficient. We do not need a precise ranking 

with many details; only that the sciences do show some hierarchy in terms of consensus and 

thus likely also in accumulation of knowledge. 

 

3. Two categories: manual vs. data work 

To illustrate the category of the natural sciences, the paper will focus on certain core aspects 

of laboratory experiments in physics, both small and large as well as old and new. Physics has 

long had the lead in experimental science, pioneering new techniques, methods, and settings 

(Franklin and Perovic 2023). To shed light on the category of the social sciences, quantitative 

observational studies using (large) datasets in economics, sociology, and political science will 

occupy the center stage. Nonetheless, the paper will discuss aspects of experiments in the social 

sciences, such as laboratory studies in psychology or field experiments in economics. Moreover, 

to broaden the category of the natural sciences, the paper will also consider certain aspects of 

laboratory experiment in biology. Biology is a large science, and fields like evolutionary biology 

are probably closer to the social sciences. However, the laboratory experiment remains the most 

characteristic element of modern biology (Weber 2004). 

The paper focuses on the key differences in the ways to handle auxiliary hypotheses between 

manual work with physical objects in the laboratory, most characteristic of the natural sciences, 

and data work in front of the computer, most characteristic of the social sciences. Of course, 

data has become very prominent in the natural sciences, too. It is, however, always connected 

to at least some interactions with the physical and seldom based on just analyzing (given) 

datasets. Nonetheless, the more a science relies on data work, the more it will resemble the 

social sciences. Conversely, laboratory and especially field experiments have prominently 

entered all the social sciences. They are in their nature closer to the natural sciences again and 

can benefit from many important ways to handle auxiliary hypotheses. 

 

4. The number of auxiliary hypotheses 

The more auxiliary hypotheses an experiment involves, the more likely it becomes that at least 

some of them are false, which can in turn invalidate the experimental results. For example, 

compare the heroic tales of Galileo’s experiments with the inclined plane to the experiments 

conducted in modern particle physics. Whereas the former rely on only very few auxiliary 

hypotheses, which are part of a very simple setup and visible by eye to everyone, the latter 

involve millions of auxiliary hypotheses, which are embedded in extremely complex setups and 

understandable only to very specialized experts. 

Even at the beginning of the twentieth century, experiments in particle physics involved only a 

few scientists in a laboratory, with simple experimental setups and relatively cheap equipment. 

This is in stark contrast to today with for example the Large Hydron Collider in Geneva, where 
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experiments involve highly complex machinery and thousands of scientists. Galison (1987, 

p.263) argues that in particle physics the “material basis for experimental work has grown 

literally to monumental proportions”. Of course, such large-scale experiments always show a 

high division of labor. They are organized like some large corporation. The actual work is still 

done in smaller teams, they are just connected to an overall whole. The large-scale experiments 

contain within them many separate, much smaller experiments. 

We have observed a growth in the number of auxiliary hypotheses across all sciences over the 

last decades. Experiments have increased in size and complexity in almost every field. Using 

only few auxiliary hypotheses may allow for higher precision, but today such experiments 

cannot tackle our most important research questions anymore. Interesting experiments in all 

sciences build on an elaborate network of crucial auxiliary hypotheses. The deeper scientists 

want to go in their inquiries, the more auxiliary hypotheses they need. Nonetheless, large and 

complex experiments are not doomed to deliver biased results. To the contrary, the following 

chapters will show that some experimental sciences can handle even very large numbers of 

auxiliary hypotheses. Much more important is the question of how different scientific fields can 

handle them. 

 

5. The ability to test 

5.1  Piecemeal 

A first strategy scientists use to handle auxiliary hypotheses is to proceed piecemeal (Popper 

1963). When scientists add new auxiliary hypotheses to their experiment, they may test them, 

alone or in conjunction with others. This is possible when scientists can proceed step-by-step 

in building their experimental setup. Similarly, before the trial, scientists may check all auxiliary 

hypotheses, and after the trial, especially when it is a surprising result, they may check them 

again. Of course, it is impossible to test every auxiliary hypothesis. Each inquiry where we try 

to test auxiliary hypotheses can only go so far that doubt becomes unreasonable. We must give 

up testing of the testing at some point, since otherwise it becomes infinite (Popper 1959). 

Auxiliary hypotheses in the natural sciences are better separable and testable because many of 

them are physical in nature. In physics, for example, the auxiliary hypotheses are to a large 

degree machines, apparatus, instruments, detectors, or physical tools. They mediate between 

the microworld and the world of knowledge (Galison 1997). In biology, laboratories consist of 

a combination of biological materials, measurement instruments, preparation tools, etc. (Weber 

2004). Scientists can take these apart and, if necessary, test each piece to receive evidence for 

their adequacy (Knorr Cetina 1999, p.57). This is much less feasible in the work with given 

datasets in social science studies. Scientists cannot just separate and test individual auxiliary 

hypotheses. 

In data work, knowledge of the truth or falsity of most auxiliary hypotheses in the setup of a 

study is impossible. The true statistical model remains invisible. For example, how can one 

know whether the statistical model includes all relevant explanatory variables? There is no 

solid background which choices of auxiliary hypotheses can be compared against. To learn from 

errors, we need a hard surface against which we can identify errors in the first place. We need 

to be able to know whether a particular auxiliary hypothesis is false or not. This is difficult in 

data work, where scientists can often only argue for something but seldom test it. For most 

auxiliary hypotheses, scientists have no other way than to assume them as true. Of course, 
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scientists can give reasons why some important assumptions should hold: exogenous shocks, 

placebo tests, balancing tests, etc. The context of the study can provide such indications, 

making some settings more credible than others. Scientists thus provide arguments why some 

estimate is not endogenous, although they will not know its actual extent; some simple 

correlational effect may in fact be less endogenous. However, for the large majority of auxiliary 

hypotheses, providing reasons why they should hold is not possible. Unfortunately, imposing 

these other auxiliary hypotheses nonetheless has a strong impact on the results (as shown, for 

example, in multi-analyst studies like Silberzahn et al. 2015, Breznau et al. 2022, or Huntington 

et al. 2025). 

Natural scientists can also better test their experimental setup in a piecemeal fashion against 

the relevant theoretical foundations in their field. This includes many well-established theories 

of the apparatus. For example, scientists can create detector response models to compare how 

many events a detector sees with how many it should see (Knorr Cetina 1999). Theories in the 

natural sciences are much better representations of the empirical world and can thus better 

inform decisions about auxiliary hypotheses. They are also much more consistent with each 

other and together forbid numerous steps involving false auxiliary hypotheses. Social scientists 

cannot do this in their studies to the same degree, as variation between all the various possible 

theories to test against is way too high. They usually have no theoretical foundations against 

which they can compare their intermediate steps and thus have difficulties knowing whether 

they are on the right path in data collection, processing, and analysis. 

Experiments in the social sciences suffer from a similar problem. Important auxiliary hypotheses 

are here task, conditions, and rules of the game. They correspond to the apparatus. Because 

these auxiliary hypotheses are abstracted, it becomes hard to evaluate whether they are true 

or not. They are always false in a sense. At most they can be adequate models. This makes it 

difficult to test auxiliary hypotheses. Against what background can such auxiliaries even be 

true? The real world is explicitly excluded. The experiments create effects that rely on 

conditions that are never satisfied in social or economic life. The mechanisms there may be 

very different. Experiments in the social sciences thus offer a wealth of possible ways to create 

effects, but whether they indeed occur this way in the world is often open. 

Overall, in the work with data, most auxiliary hypotheses remain glued together, and scientists 

must often take this network of auxiliary hypotheses as a whole without the ability to separate 

and test its elements. They cannot, for example, test for the correctness of the coding of the 

variables relevant for the data analysis. In general, the more physical objects and the less data 

an investigation involves, the better separable and testable the auxiliary hypotheses are. Such 

tests also often appear in separate scientific studies. 

 

5.2  Calibration 

A second strategy is to test the apparatus of the experiment on some known test object. Should 

the apparatus be able to correctly detect the properties of the object, scientists can infer that 

the apparatus operates properly, which in turn validates other results from the apparatus. It 

would be a large coincidence otherwise for the apparatus to correctly detect the properties of 

the test object (Hacking 1983). This strategy is widely used across the sciences and usually 

called the calibration of the experimental apparatus (Franklin 1989). Scientists often also test 

their apparatus on other apparatus that vary in attributes, use different techniques, or are 

based on distinct theories. It would again be a large coincidence for apparatus varying along 
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such dimensions to produce identical results (Hacking 1983). The idea is to deploy one set of 

auxiliary hypotheses to test another, separate set of auxiliary hypotheses. 

The use of calibration to verify auxiliary hypotheses is crucial in the natural sciences. Scientists 

can test their apparatus on known results from past studies; things about which they already 

know the relevant properties, the more varied the tests, the better. Mayo (1996) argues that, 

in data work, scientists can make use of statistics in a similar way as with a physical instrument. 

They can apply it as tool to identify effects. However, scientists cannot identify the reliability 

of their statistical tools in the same way scientists with physical tools can. In the social sciences, 

we cannot know whether we have true effects. There is no repertoire of known results from past 

studies on which we can test our statistical tools to for instance calibrate them. The only 

method social scientists have in this respect is Monte Carlo simulations. However, they are 

artificial environments where we can never know whether real environments indeed represent 

those simulations. The assumptions Monte Carlo simulations rely on to test statistical tools are 

usually very strong. 

 

5.3  Sub experiments 

A third strategy is dividing the experiment into a series of smaller sub experiments (Galison 

1987). The different sub experiments would need to be consistent with each other. Systematic 

variation of the respective experimental conditions will unearth artifacts by causing 

discrepancies between them. To separate an empirical study into mutually consistent sub 

experiments is widely spread in the natural sciences. Latour and Woolgar (1979) describe how 

in laboratories in biology scientists undertake many such sub experiments. Together they serve 

as mutual controls. The demand to pass through all of them reduces the probability of an 

artefact. Large-scale experiments in physics also run separate sub experiments that contribute 

to the overall understanding (Galison 1987). Scientists design their sub experiments to test 

certain confounding factors. Several sub experiments simultaneously allow cross-checking the 

different approaches (Franklin 1989). If they agree, all the better. If not, the sub experiments 

must be reconsidered in detail, since some of the applied approaches might not work correctly. 

Their agreement or disagreement delivers important information about the measured 

quantities. Experimental physicists sometimes even conduct “sister experiments”, where they 

set up experiments independently from each other to compare their respective results (Knorr 

Cetina 1999). Natural scientists in general often justify the ceteris paribus clause in their studies 

by relying on past experimental results that rule out the influence of confounding factors, 

similar to a series of sub experiments conducted by third-parties (Mayo 1996). This is an aspect 

foreign to the social sciences. Empirical studies do not rely on other published studies to justify 

the ceteris paribus clause. More generally, social scientists do not pursue sub experiments in 

the form of additional studies to rule out some possible confounding factors. To the contrary, 

a study is usually seen as interesting if it shows the existence of some alternative factor, not if 

it rules it out. However, social science studies do triangulate results with different sub 

experiments within the scope of the same study, especially in psychology, where scientists 

pursue several sub experiments that target the same underlying theoretical explanation. In 

contrast, this is more difficult in observational studies in economics, sociology, or political 

sciences. These are usually restricted to a single or at least very similar quasi or natural 

experiments and cannot rely on additional sub experiments. 
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5.4 The results themselves 

A fourth strategy is testing whether the results align with well-corroborated theories. Alignment 

of the observations with such theories provide reasons to believe in the observations. Conversely, 

using apparatus that rests on a well-corroborated theory provides apriori confidence in the 

apparatus itself (Franklin 1990). The results themselves can also speak for the correctness of a 

result, especially if they form a consistent pattern. A fifth strategy is relying on pre-trial or 

after-trial research on important components of the main experiment. Scientists can estimate 

the influence of a critical auxiliary hypothesis in some separate experiment. This helps ruling 

out potential problems. In some sciences, entire subfields concern themselves with the study of 

such problems. 

The fourth and the fifth strategies are present across both the social and natural sciences. 

Results can speak for themselves in every context. Consider, for instance, the construction of 

the first cyclotron: „There is no doubt that the agreement between Lawrence’s theoretical 

calculation and instrumental behavior was central to their confidence that the four-inch 

cyclotron was working properly. However, the phenomenon itself must not be lost of sight. 

Livingston observed a sharp, recognizable, and repeatable change in the collector current as he 

varied the magnetic field strength. The effect is just too dramatic to be noise.“ (Baird 2004, 

p.53). A series of results that are consistent with each other is very well possible in the social 

sciences, too, such as effect sizes that increase monotonically in the theoretically expected 

direction. On the use of pre-trial or after-trial research in particle physics, Galison (1997, p.429) 

comments that: “We have seen many new methods of avoiding misreading arise with the growing 

scale of particle physics. These include the development of subfields for the study and control 

of distortions, the understanding of personal error, and the avoidance of spurious ascription of 

patterns“. The social sciences do extensive research on such distortions, errors, and statistical 

noise, too. For example, the nascent field of metascience or specific fields in applied statistics 

or econometrics. However, this research is seldom targeted at specific problems that appear in 

one large experiment. 

 

5.5 Robustness checks 

A fifth, overall strategy is an explicit search for errors in the auxiliary hypotheses (Mayo 1996). 

For example, scientists can vary critical auxiliary hypotheses in the experiment and see what 

happens, amplify potential errors and observe how the patterns change, or introduce some 

standard to the experiment and see how the results deviate from it. Such discrepancies may be 

very informative. They can separate artifacts from genuine effects. When the results of the 

variation in auxiliary hypotheses are similar, we gain some assurance that they pose no problem. 

We likely have no artifact. When the results are different, we may be able to quantify the part 

that is due to an artifact and subtract it out, or at least have an estimate of its impact on the 

measured effect. If that impact is too small, one can discount it. 

The main tool of the social sciences to mitigate the problem of false auxiliary hypotheses in 

their data work are robustness checks. They embody Mayo’s (1996) search for errors. Social 

scientists use them extensively. They can identify whether particular auxiliary hypotheses exert 

a strong influence on the results. If the results hold up to variation in crucial auxiliary 

hypotheses, scientists can rule out their influence and it becomes less important whether they 

are true or false. The more auxiliary hypotheses scientists can rule out, the more confidence 
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they can have in their results, since it eliminates them as alternative explanations. However, 

many auxiliary hypotheses cannot be varied because they comprise the fundament of the entire 

study and are beyond the scientists’ control. To check their robustness, scientists would need 

to run a new study. 

 

6. Intervention 

A further way to test applied apparatus and thus the network of auxiliary hypotheses is 

intervention (Hacking 1983). Scientists can manipulate the object under investigation and 

predict what should happen. If the detected results align with the prediction, this is evidence 

for a proper working of the apparatus. In the same way scientists can also learn whether some 

apparatus does not work properly. Over numerous trials, they will develop close familiarity 

with how the apparatus works, so they can know whether something is off. The systematic 

error of the apparatus will reveal itself. Scientists learn step by step how the apparatus 

functions, by trying it on all kinds of different objects, until they can confidently separate the 

real structures from artifacts of the apparatus (Hacking 1983). 

However, given that the apparatus works properly, intervention can also serve a further purpose: 

scientists can improve their knowledge of the structures or mechanism of the object. They can 

explore whether some manipulation of the experimental setup changes the object under 

investigation in the expected direction, by for example varying specific conditions. Repeated 

trials will show how the objects tend to change and reveal potential artifacts. If, on the other 

hand, the results all support each other and are consistent, scientists can rule out an artifact. 

Each manipulation that leads to the same results about the object eliminates some alternative 

explanation (Hacking 1983, Woodward 1989, Galison 1987). 

Hence, the two aims of intervention are testing the apparatus and learning about the 

experimental outcome. Intervention is possible in every science that works with physical objects. 

For example, in a biology experiment, scientists can use different fixing methods to different 

cells, vary the environmental conditions, or check for implausible behavior under specific 

circumstances, and thereby always observe results before and after (Franklin 1989). If the 

results of the intervention are in line with the predicted outcome, this provides evidence for 

either a proper working of the apparatus or gives insights into the experimental outcome itself, 

such as a significant effect on the investigated physical object. 

For example, if microscopes were in general producing false images of specimen, scientists would 

have noted this by experimenting with them. The vision through microscopes and the ensuing 

manipulation of specimen would have led to inconsistencies (Hacking 1983). Similarly, when 

using a microscope, scientists can vary the setup with which they investigate an object. If some 

aspect of the object remains the same under varying conditions, they can have more confidence 

in it. 

The key to successful intervention is the ability to alter the experimental setup and to do so 

fast. While such repeated trials are well possible in the laboratory, this not the case in 

observational studies in the social sciences. Observational evidence happens only once. The 

data is given and the scientists have no way to see how it changes through intervention. In 

contrast, laboratory experiments in the social sciences have the possibility to intervene to some 

extent. Scientists can test alternative choices for the research design: the operationalizations of 

the concepts, the instructions, and, crucially, the design of the treatments. An artifact would 
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be a result that holds only for a narrow range of these possible design choices, while successive 

trials could lead the way to some robust overall design. However, in comparison with the rapid 

trials that scientists can run on a physical object in for instance a laboratory experiment in 

biology, this remains a slow process. 

Finally, the social sciences do have the possibility of conceptual replication. If scientists vary 

the data analysis and the results change in line with theory, they can profit from the same 

underlying idea behind intervention. However, the applicability of this conceptual replication 

depends strongly on what the dataset offers. It needs to include important alternative 

theoretical concepts. 

 

7. Skill 

Making an experiments work is a difficult task (Hacking 1983). To produce or create phenomena 

in a stable way requires a lot of skill. Education in the laboratory is therefore mainly learning 

the ability to know when an experiment works, and how to put it right if it does not. A course 

in the laboratory where in experiments all goes right the first time would teach little about 

experimentation, since learning is not as great as if many things would have failed repeatedly. 

Scientists need to be able to make a distinction between an experiment that works and one 

that does not. 

The key to learning in the laboratory is the replication of known phenomena. Aspiring scientists 

must know what results they are supposed to obtain. This allows checking whether the auxiliary 

hypotheses in their experimental setups have been valid or not. Getting good at generating 

known results teaches a lot about how to work with research objects. Scientists get a feeling 

for how to do experiments. They can embark on alternative ways to produce a phenomenon. 

Scientists thereby learn how to interact with nature, like kids on a playground. They also learn 

how to debug everything that is unusual. Such information is usually not in the published 

papers, but very crucial to make the experiment work (Hacking 1983). 

In the natural sciences, young scientists are trained on important and successful past 

experiments that produce well-established results. This way they can learn to develop the 

necessary knowledge of whether an experiment has worked or not. Over time they become 

skilled experts. Consider, for example, Jean Baptiste Perrin, who in his studies of Brownian 

motion repeated nearly all the past empirical tests from other physicists he based his work on, 

because repeating and getting good at reproducing anticipated results thought him much about 

his experimental objects, it gave a certain “feeling” for them (Mayo 1996).  

Well-established, known results are something the social sciences do not really have. Scientists 

cannot learn well with replicating past experiments because they do not know whether those 

studies in fact produced true results or not, and therefore whether their applied approaches are 

in fact correct. When they do replicate some past landmark studies, they have few ways of 

knowing whether they have learned the right things. Of course, in actual practice younger social 

scientists do learn many things from past experiments, too. However, they may just keep 

repeating the same mistakes again and again, while at the same time getting more and more 

certain about them. The social sciences can sometimes create illusory expertise. Certain setups 

and patterns of data in a social science study are surely more convincing than other setups and 

patterns of data, and scientists can study how to recognize them. But they can never be quite 

certain whether they just learned how to create or interpret elaborate statistical bias or noise. 
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Consequently, if experimental scientists work in an environment that has a strong basis of well-

established results, they will become true experts with time, like craftsmen. In contrast, if the 

environment is mostly consisting of work with complex datasets, the skill they learn is much 

more ambiguous, and a lot if it will only be convention that is not said to better approach true 

results. 

 

8. The malleable and the given  

8.1  Create clean data 

An important aspect to achieve precise measurements is the ability to control auxiliary 

hypotheses. Scientists can build the experiment in a way that excludes important confounding 

factors that may otherwise have a systematic influence on the results (Galison 1987). The idea 

is to build the experiments in a way that allows isolating some effect.  

Natural scientists can often build the physical setup of their experiments in a way that excludes 

certain confounding factors and allows identifying the effect. They can make their auxiliary 

hypotheses true. Natural scientists can also test whether potential disturbances have an 

influence on the results. If they do, they can change the experimental setup to exclude them. 

In physics, for example, scientists can explicitly introduce confounding factors like electrical, 

magnetic, thermal, acoustic, or seismic disturbances to the experimental setup and measure 

their effects. If they have an influence, scientists can then proceed to create a more isolated 

environment for the experiment. Natural scientists are not faced with a given situation that 

can only be so good. They are much less bound to what is given to them than social scientists. 

They can invent their way out of some impasse and actively create the experimental setup. An 

adequate setup then also implies that the applied set of auxiliary hypotheses is true. 

Consequently, while natural scientists build experiments that create their data in a way that 

suits them, social scientists must often take their data as given. In observational studies, 

researchers choose an economic, historic, or social situation such that their experimental setup 

becomes appropriate. Social scientists cannot just replicate the setup and vary only some aspect 

and hold all others constant to find out which aspect has a decisive influence. In the natural 

sciences, if two theories differ, scientists can sometimes create physical environments that 

embody the exact situation where the consequences of the two theories differ. In observational 

studies in the social sciences, scientists must look for where such a situation may have happened 

naturally. They cannot alter the situation in the way they desire. Social scientists can only 

search for datasets that meet the design of their experiments. This data will generally be less 

clean than any data tailored for answering a specific question. It limits the possibilities of what 

to ask. 

Hence, a central problem with observational studies in the social sciences, both well-identified 

and not, is their reliance on given datasets. Of course, for each research design, scientists have 

a certain flexibility in how they adapt it to the specific circumstances of the data. Research 

designs in alternative contexts differ in their exact specifications, for example. Social scientists 

can build a strategy to identify causal effects with their data, too. However, they cannot do it 

to the same degree. The building of physical apparatus has numerous more possibilities to 

exclude different confounding factors than the work with data. In the latter, scientists must be 

content with that what nature offers them. 
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In contrast, field and laboratory experiments in the social sciences can certainly also profit from 

such an active creation of the experimental setup, since much of their implementation takes 

place in the physical world, too. In general, across all the sciences, while observational studies 

happen more in the data world, experiments happen more in the physical word. And the more 

a study rests on the physical, the better the control of the auxiliary hypotheses and the cleaner, 

that is, less confounded, the data becomes. We therefore have two overlapping advantages the 

physical offers in all scientific experiments. First, scientists can create their experimental setup 

to produce correct results. Second, scientists can also test whether their setup has produced 

corrects results. They can make the results, and they can also test them. 

 

8.2  The use of statistics 

In an experiment, scientists intend to distinguish real effects from artifacts. If they had perfect 

control, they would not need statistics. The measured effects are exogenous by construction. If 

the only way a change in the outcome can happen is through the treatment, and no other 

possible factors can influence it, one does not need much data analysis. 

For example, in the laboratory in biology, scientists do not use much statistics because they 

instead rely on “control experiments” (Weber 2004). Scientists vary experimental conditions to 

eliminate disturbing causal influences. These methods are qualitative but still informative about 

how the experimental treatment works. Experimental biologists can causally intervene in their 

experiments. Control experiments show that a result does not stem from some other process, 

such as contamination. They allow checking whether the scientists have made some errors in 

their experiments. The more varied the experimental conditions, the more possible errors 

scientists can rule out. Because scientists can exclude errors this way, they need not to cancel 

them out through using statistics. 

The use of control experiments and the ensuing absence of complex statistics implies that in 

laboratory biology bias in the estimated effects is generally low but noise can still be high. Even 

though biologists document in detail all the things they have used to build their experiments, 

results can still differ markedly between different experiments, because the investigated samples 

are often (very) small. They may contain only a handful of mice showing quite particular traits, 

for example. The produced figures, graphs, or tables can thus vary substantially between 

different samples. This is one important reason why many results in biology have not replicated 

(see, e.g., Errington et al. 2021). 

Mayo (1996) argues that demonstrating the absence of errors in an experiment provides a severe 

test for the hypothesis under investigation. How to avoid errors, that is, how not to fall under 

the spell of the Duhem-Quine problem, is mostly discussed from the perspective of using the 

tools of error statistics. Mayo constructs error statistics as a broad account that consists of 

methods and models from classical and Neyman-Pearson statistics. She lays less emphasis on 

how scientists assure with the elegant physical design of experiments that they do not commit 

errors. Yet here lies a crucial difference between the natural and the social sciences. They both 

make use of error statistics, but only the former can devise severe tests. The latter suffer from 

all kinds of errors in their empirical tests. Good experimental design, strengthened by the use 

of reliable apparatus, assures high quality data, which in turn makes the use of error statistics 

straightforward and valid. 
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8.3  Simulations 

In the early 1900s scientists could in their experiments readily build around some arising error. 

The comparatively small size and low cost of the used apparatus made it possible to quickly 

rebuild everything such that the error could be eliminated. This includes redesigning the 

experiment, vary the setup, or build additional devices (Mayo 1996). Such reconstruction made 

the data exogenous again. Today, in contrast, the apparatus is in many experiments, especially 

in particle physics, so large and expensive that reconstruction is an option only to some extent. 

This means that the data must remain more endogenous. Scientists therefore resort to running 

simulations to be able to nonetheless isolate the targeted effect (Galison 1987). Instead of 

changing the apparatus, they simulate changes of the apparatus on the computer. It allows 

scientist to see through the computer what would happen if they had actually changed the 

apparatus. For example, physicists use computer simulations to calculate how many 

observations would have happened through unwanted systematic factors. They can simulate 

hypothetical worlds where problematic confounding factors were at play. To simulate the 

behavior of big machines on the computer compensates for the lost ability to physically 

manipulate them. “The computer simulation allows the experimentalist to see what would 

happen if a larger spark chamber were on the floor, if a shield were thicker, or if the multitone 

concrete walls were removed“ (Galison 1987, p.265). The computer simulation can create 

situations that cannot even exist in nature and allows investigating alternative universes. In 

such simulations, scientists work similar to actual experiments. They can vary the inputs of the 

simulations and compare the respective outputs with each other. If they observe stability, they 

know they are on the right path. Simulations lie somewhere between physical experiment and 

data analysis. The intense use of simulations in some parts of the natural sciences has moved 

them away from the benefits of the physical more towards the issues prevalent in data work. 

 

9. Repeated runs 

9.1  Selection of observations 

Noise without systematic bias manifests in smaller-scale experiments in physics as imprecision 

in the experimental run. The same experimental setup delivers different results for each run. 

The run itself may thereby be only a single datapoint, in the form of a measurement but also 

a graph or a counter. Consider here, for example, the famous oil-drop experiment of Millikan, 

which measured the negative charge of a single electron (Ackermann 1985). Scientists can 

usually stop the experiment early or late or exclude some datapoints. They can thereby select 

favorably. How to decide between true and false observations? How to recognize erroneous 

experimental runs? When measurement is imprecise and the sample is small, scientists can 

simply choose those noisy versions of the experimental runs that look best for their purpose. 

This is a particular way of fitting noise. 

A closely related issue in all experiments is the problem of the stopping rule (see, e.g., Franklin 

1990). The obtained results may influence scientists to stop the experiment and give up looking 

for false auxiliaries. For example, they may stop the experiment as soon as it agrees with 

theoretical predictions. This is a problem, as there might still be more false auxiliaries. The 

experiment should be stopped when they are all correct, or as correct as possible, and not based 

on the obtained results. If an experiment is run only once and it exactly confirms a theoretical 
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prediction, it may still be that some of the auxiliaries are false and the result is an artifact. 

However, this requires quite some coincidence. The more auxiliaries are involved and the more 

precise the prediction, the larger the coincidence. If, on the other hand, scientists can adjust 

and play around with auxiliaries until the result fits, the smaller the coincidence and the 

likelihood of an artifact increases. The more auxiliaries are involved and the less precise the 

prediction, the higher the likelihood of some artifact. 

Selection of observations is a large problem with small samples. In large datasets, however, it 

becomes less decisive, given that the variables are not fat-tailed (which is a distinct, but large 

problem in all the social sciences). Here the problem of the stopping rule is more important. In 

fact, a more general instance of the stopping rule has become very prominent as a central 

shortfall of data work over the last decades. We will discuss this in the next chapter. 

 

9.2  Hacking p-values and research designs 

In experiments, repeated runs are an advantage, as they can help identifying false auxiliary 

hypotheses. The question is thus not just whether a science relies on data or not, but whether 

the data responds directly to the runs. Manipulations of the experimental setup can produce a 

stream of always different data. In contrast, datasets in observational studies remain the same 

for all runs. They are not newly generated with the respective runs. This has the consequence 

that repeated runs do not benefit the quality of evidence but rather devalue it. This is the 

problem of p-hacking, or result-hacking more generally. 

In data collection, processing, and analysis, scientists often use the researcher degrees of 

freedom available to them to search for some specifications that show their desired results 

(Simmons et al. 2011). This could be a theoretically predicted or more credible estimate but 

also a specification in which placebo tests hold up. If in such a search scientists target statistical 

significance, we speak of p-hacking. Scientists try to lower the p-values or shrink the confidence 

intervals in order to make their empirical evidence seem stronger. Since researcher degrees of 

freedom in data analysis but also in collecting and processing the raw data are always numerous, 

scientists have a lot of room to hack their results in a specific direction. Because the term p-

hacking is more widely spread, we will use it instead of result-hacking. 

We can further differentiate between fragile and robust p-hacking. Fragile p-hacking means that 

scientists search for some statistically significant specifications that would collapse if they 

changed only some minor researcher degrees of freedoms. In contrast, robust p-hacking means 

that scientists search for some statistically significant specifications that reside within an entire 

set of specifications that are all statistically significant. The results would also hold up if the 

scientists changed some more major researcher degrees of freedom. Robust p-hacking is a trial 

and error process where the theoretical arguments develop together with the empirical findings. 

It ends only after the scientists have built apparently elegant matches between theory and 

empirics. While fragile p-hacking is widely regarded as problematic, robust p-hacking is a much 

more accepted practice. 

Any type of p-hacking faces two distinct problems (Spescha 2021). First, searching through 

researcher degrees of freedom may fit statistical noise and this way create an artifact. Repeated 

runs invalidate the p-value, the filter that separates signal from noise. This is called the multiple 

comparisons problem. With statistically independent runs, for example, the actual p-value 

would about half each time. Second, researcher degrees of freedom are not all equally valid. P-

hacking can increase the problem of false choices of researcher degrees of freedom because 
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statistical significance has the lead and not the theoretical implications. Hence, scientists mold 

their statistical model into a mixture of the true effect size together with noise and bias.3 

A related problem is research design hacking, where scientists misuse the fact that the 

experimental setups often have many alternative implementations and none of them are clearly 

superior. The researcher degrees of freedom happen not in the data analysis stage but in the 

setup of the experiment. Some versions of the research design might product an effect, others 

not. Scientists can then present those research designs that produce favorable results. Of course, 

if the effects move in line with theoretically meaningful variation of the research design, it will 

not be a problem but actually an improvement. In contrast, if the effects move in line with 

seemingly irrelevant aspects of the research design, the produced evidence will be weak. Note 

that in observational studies, the research design is given and less hacking takes place. However, 

the uncertainty behind it is equally large or even larger. One just does not observe it. 

A complete theory would for every context describe the experimental setup or research design 

and the required data analytic decisions. Unfortunately, we never have such a theory. Scientists 

can thus exploit variations in research design, data analysis, and context to their advantage. 

They can hack all three: the experimental setup in the laboratory, the data analysis in 

observational studies, or the context in field experiments. 

 

9.3  Some remedies 

P-hacking is widely spread in the social sciences (see., e.g., Brodeur et al. 2016, John et al. 

2012, Necker 2014, Banks et al. 2016). Unfortunately, while replication using alternative 

specifications can uncover fragile p-hacking, this is less feasible with robust p-hacking. P-hacked 

results are robust by their very design. They have been chosen because they hold up to other 

specifications. The results of some robustly p-hacked specification change only little if one varies 

a single researcher degree of freedom. Of course, in many cases already modest variation of only 

two or three researcher degrees of freedom together can still falsify such results. Nonetheless, 

to uncover robustly p-hacked results, new data is necessary. This is not possible in observational 

studies, and cost and time intensive in experiments. We thus do not know to what degree the 

social sciences are plagued by robust p-hacking. However, we have indirect evidence, because 

meta-analyses show that in most studies statistical power is too low and effect sizes are 

overestimated (see, e.g., Ioannidis et al. 2017). Robust p-hacking is a way to nonetheless find 

statistical significance in samples that would otherwise show nothing in particular. Because it 

capitalizes on statistical noise, effects are generally overestimated. 

P-hacking happens in the natural sciences, too. It is a central reason for the replication crisis 

in both medicine and biology. In many of those fields, samples are small and noise is high. For 

example, scientists tend to take those images where results are strongest and best fit their 

theory. This selection on favorable outcomes is similar to the overestimation of effect sizes in 

p-hacking. 

In the large-scale experiments of particle physics, data analysis has become very important and 

exceedingly complex. It makes the data analysis in the social sciences seem simplistic. However, 

 
3 In data analysis, scientists usually give room to the effect they want to identify. They unearth a robust 

relationship for that one effect that takes center stage. Had they had another focus, and the effect would 

only have been a side-story, it would have been much less consistent and less pronounced over all results. 

The scientists diminish other effects in the data on behalf of the one they want to identify. For example, 

if you read the online appendix of a study instead of the main text, results will generally be much weaker. 
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experimental physicists combat the arising problems more actively (Franklin 2018). Data 

analysis in many high energy physics experiments uses „blind“ techniques, where they agree on 

the steps of the data analysis before looking at the data. Alternatively, they divide themselves 

up in separate teams, each using their ideal methods on the data, and then reveal all results 

jointly. In the last decade, the social sciences have seen many initiatives going into this direction, 

too, with pre-analysis-plans or registered reports. However, they are still far away from being 

the standard. 

One solution to p-hacking and research design hacking would be to test and then present as 

many specifications and research designs as possible. This would provide an overview of 

alternative scenarios. Whereas showing many research designs is possible only in some small-

scale experiments, showing alternative specifications is always easily feasible. Presentation of 

numerous different specifications in some aggregated way would help the credibility of most 

studies substantially (see, e.g., the specification curves of Simonsohn et al. 2020). 

 

10. Constructing the apparatus 

Constructing physical apparatus is a complex craft requiring substantial effort. To obtain 

reliable results, much repetition is required. Scientists usually select some early line of 

experimentation that seems promising. They then constantly improve the experimental setup 

in a trial and error way (Ackermann 1985). Insights that occur during experimentation are 

incorporated. Scientists discover false auxiliary hypotheses and replace them with true ones. 

Overall this leads to a convergence toward an apparatus that gradually produces cleaner and 

thus better sets of data. The measurement becomes more and more precise. 

The first prototype of a new apparatus is always crude. Arthur (2009, p.133), for instance, 

describes how Lawrence’s first cyclotron used “a kitchen chair, a clothes tree, window glass, 

sealing wax, and brass fittings.” It is already a success if the prototype works at all. The key is 

that scientists can successively improve it.  Collins (1992) gives the example of a scientist 

building a prototype of a TEA laser, where it first showed many anomalies that only trial and 

error could fix. The physical theories that explain the function of most prototypes are often 

rather basic. Experimental apparatus is thus seldom derived from some physical theory but 

instead the product of continuous improvement. 

Giere (1988) argues that the Duhem-Quine problem can be resolved by technology. Background 

knowledge in scientific testing does not consist exclusively in theoretical terms as hypotheses 

previously confirmed, that is, propositional knowledge. Some background knowledge is better 

thought of as embodied knowledge, in the technology used in performing experiments. The 

physical existence of the technology in the laboratory is thus a quite different dimension of 

scientific progress. It corresponds to knowledge embodied physically in the various research 

apparatus, which provides it with an exceptional reliability. Baird and Faust (1990) even 

describe scientific progress in the form of the accumulation of new scientific instruments. Today 

we have vastly greater ability to manipulate, control, and measure nature by means of vastly 

increased arsenal of scientific instruments. 
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11. Improving of the experiment 

11.1  Narrow down false auxiliary hypotheses 

We have seen that the open-endedness of the physical world offers more room, or options, to 

generate setups that produce unbiased effects than the data world. Scientists can build around 

arising errors. However, the physical world may offer so much room that it becomes a 

disadvantage. The open-endedness of the physical world is often orders of magnitudes larger 

than the openness of the data world. Physical setups incur thus also plenty more degrees of 

freedom than data setups. The question is thereby how to arrange the auxiliary hypotheses in 

the wake of the design of the experiment; that is, how exactly the parts of the experimental 

apparatus are built together. Scientists could in principle construct any type of highly original 

but also totally false experimental setup. 

Nonetheless, in physical setups, there is usually a rather tight link between theories, apparatus, 

and research objects. Setups in the data world remain much more indeterminate. Statistical 

theories, theories of the object, and statistical modelling can map in numerous possible ways. 

The difference is that the more physical world of the natural sciences allows better narrowing 

down the false auxiliary hypotheses.  

In physical setups, scientists can make use of all the discussed ways to rule out false auxiliary 

hypotheses: a) separate the parts of the apparatus and test them, using for example calibration, 

b) intervene by varying the experimental setup to uncover errors, c) learn experimental skill by 

replicating well-established findings, d) build around sources of error learned discovered during 

experimenting or from previous experiments, e) repeat the experiment to better separate signal 

from noise, and f) construct tailor-made apparatus. Scientists can do this until they are 

confident that they have eliminated all false auxiliary hypotheses. Together the different ways 

represent a potent arsenal to correct false auxiliary hypotheses.  

In setups with data, in contrast, scientists have fewer of these means to identify and correct 

false auxiliary hypotheses. The applied methods have much less bite. Social scientists can 

certainly refine their empirical strategies and try to better isolate effects. But data setups in 

the social sciences suffer from a fundamental inability to verify most choices of auxiliary 

hypotheses. They can go over them repeatedly, but they have few means to test whether any 

choice is superior to another. Their refinements could have worsened instead of improved the 

study. 

 

11.2  Too much freedom  

Because false auxiliary hypotheses are harder to narrow down in the work with data, the 

consequence are numerous researcher degrees of freedom in data collection, processing, and 

analysis. Depending on the respective choices they cause substantial variation in results. This 

crucial problem has become more and more evident over the last two decades, especially in the 

social sciences. In most empirical studies, scientists face a veritable “garden of forking paths” 

(Gelman and Loken 2013), where they have too much room in choosing between different ways 

to collect, process, and analyze their data. 

Researcher degrees of freedom are auxiliary hypotheses that all seem equally true but are in 

many instances not. Some of the available researcher degrees of freedom might be more, some 

less adequate. They merely imply that scientists do not have sufficient information to verify 

which of them are the correct ones. Scientists have no ways to assess their choices of researcher 
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degrees of freedom. Which path they will ultimately take instead depends on their respective 

information, previous experiences, or beliefs. Different scientists will choose differently, leading 

to potentially large variation in results for the same main hypothesis. Many choices of researcher 

degrees of freedom are also conventions that have developed over time. Scientists can become 

more and more confident about choices that need not be correct. They may enforce certain 

errors in their data work repeatedly without being aware of it. 

By now the literature contains many multiple analyst studies that illustrate the problem for 

different scientific fields: economics (Huntington-Klein et al. 2021, 2025), sociology (Breznau et 

al. 2022), finance (Menkveld et al. 2024), psychology (Silberzahn et al. 2018, Starns et al. 2019, 

Schweinsberg et al. 2021, Hoogeveen et al. 2023), psychiatry (Bastiaansen et al. 2020), ecology 

(Gould et al. 2023), and neuroscience (Botvinik-Nezer et al. 2020). These studies do not just 

show the presence of many researcher degrees of freedom in the work with data, but also that 

these give rise to sizeable differences in the obtained results. The more complex the study 

becomes, the more pressing the problem, as researcher degrees of freedom multiply very fast. 

A similar problem arises for the setup of experimental studies in the social sciences. In this 

case, scientists can create the context of their studies and thus answer the theoretical hypothesis 

they want, if feasible. However, theoretical hypotheses in the social sciences are very imprecise. 

They do not map the empirical world very closely but are often abstract models. Each 

theoretical hypothesis thus allows for the creation of numerous alternative experimental designs. 

Hence, it again entails degrees of freedom. Scientists do not have the necessary information how 

theory and context should connect to tie down all the alternatives. Nonetheless, how the 

experiment and treatments are designed and concepts operationalized and measured can greatly 

influence results. The chosen experimental setup may not generalize to other, equally relevant 

setups and changes in setups can lead to large variation in results. 

For example, experiments in psychology are often quite particular, specific implementations of 

some theoretical, usually verbal, claim (Yarkoni 2020). The experiments are implicitly thought 

to hold over many more alternative implementations of the general theoretical idea. If one 

adequately incorporated all those various alternative implementations, the uncertainty intervals 

of the estimates would be many times larger. Factors that produce variation in estimates are 

subjects, stimuli, task, instructions, site, experimenter, culture, and such seemingly insignificant 

factors like weather, etc. Collectively they contribute large variation. Yet most experiments in 

psychology proceed as if they would not vary.  

In field experiments in the social sciences, the setup to produce the effects is less abstract than 

in laboratory experiments. The scientists look at real environments with real treatments. They 

may be smaller and cover only a subset of all environments or treatments. Nonetheless, the 

treatments themselves are actual implementations in the worlds of politics, economics, or 

society. However, the correspondence between the respective treatments and theory remains 

loose. Many treatments from many different contexts could account for the same theoretical 

hypothesis. 

Consequently, experimental designs in the social sciences, both in the field and in the lab, suffer 

from many researcher degrees of freedom, too; neither theory nor the actual context can pin 

them down sufficiently. Experiments push researcher degrees of freedom from the analysis stage 

toward the setup of the entire experiment. In fact, variation in experimental design can be 

tested by running the same hypotheses with different experimental setups on different random 

subsamples. Overall, the two sources show a similar impact on variation of results (Holzmeister 
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et al. 2024). As long as the social sciences lack the empirical methods necessary to align 

auxiliary hypotheses with the right theories or contexts, such variation will be an integral part 

of these disciplines. The large variation of estimates visible in the various multiple analyst 

studies is itself evidence that they have not yet found those methods. 

 

12. Structure in the chain of auxiliaries 

Hacking (1988, 1992) argues that the laboratory sciences consist of the following 15 elements, 

divided into three parts: 1) ideas: questions, background knowledge, systematic theory, topical 

hypotheses, modelling of the apparatus. 2) things: target, source of modification, detectors, 

tools, data generators. 3) marks: data, data assessment, data reduction, data analysis, 

interpretation. Variation in estimated effects can come from all these 15 sources. All of them 

are plastic, that is, scientists can alter them. 

In observational studies, we have only ideas and marks. This could be seen as an advantage, 

that is, less auxiliary hypotheses that could be false and thus less worries about potential 

variation. However, the things bring a structure to the experiment that simplifies both ideas 

and marks. They can reduce theoretical problems (e.g., exclude confounding factors or other 

sources of error) and statistical problems (the data are tailored to the research questions at 

hand). The things bring both ideas and marks together more directly. 

 

13. Well-established scientifi c theories 

Together the different ways to handle auxiliary hypotheses can deliver a state of unproblematic 

background knowledge, such that scientists can trust the results of their studies. Importantly, 

once the new results become themselves well-established, scientists may use them in their 

investigations in other new studies. The results become themselves auxiliary hypotheses and 

part of the unproblematic background knowledge. Over time, this process may repeat in a 

virtuous cycle. Altogether this creates scientific progress with results that go ever deeper. 

 

13.1  Replication for a cumulative literature  

Replicability of experimental results is a must. Without it, experimental results cannot serve 

their role as the guiding instances in empirical science. For example, Popper (1959) argues that 

only replicable effects can falsify or corroborate a theory. Widely varying experimental results 

cannot do so. He argues that we should only take observations as scientific if we have tested 

them repeatedly. Only replicability can convince us that we are not dealing with a mere 

coincidence. Otherwise, science cannot get off the ground. 

Unfortunately, all scientific fields contain non-replicable or invalid results. However, some do so 

more than others. Psychology and medicine have been hit particularly hard by the replication 

crisis. The main reason here is that one can actually replicate their experiments and find out 

whether they uphold or not. These fields often rely on experiments that are comparatively easy, 

cheap, and fast to replicate. In contrast, the other social sciences did not have a substantial 

replication crisis because most studies cannot even be replicated. They are snapshots of unique 

places and times, not replicable experiments. The most one can do is reanalysis. To replicate 

important quasi or natural experiments, scientists must rely on other contexts. Hence, in much 
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of the social sciences, we do not even know the extent to which studies are non-replicable or 

invalid. One might suspect that the state is at least as bad as in psychology and medicine. 

Because only few studies are replicated, it can happen that some false study nonetheless gathers 

hundreds of citations. Due to the abundant researcher degrees of freedom, it may even gather 

many conceptual replications. In contrast, the cumulative nature of many natural sciences 

requires that important studies are replicable (see, e.g., Peterson 2025). In laboratory work in 

biology, when scientists publish something important, other scientists replicate it since they 

want to use it for their own work. Scientists first need to know whether the relevant findings 

are reliable. They thus conduct replication of others’ works in their own laboratory, to see 

whether they can indeed build their own research on them. This means that popular methods 

or findings are regularly checked because they are used by others. If a study does not replicate, 

the community will get to know this. The possibility to use the results of others is a strong 

incentive to redo important studies. The key is therefore the cumulative nature of laboratory 

biology, how it builds on previous work and then goes deeper. Some studies establish a new 

fact, which raises a new question. This question is in turn answered by a new fact, which again 

raises a new question and so on. Studies build on the results of previous studies. Even within 

the same project in a laboratory, biologists use control experiments to verify the facts they 

think they know, often together with new assumptions. If some of those control experiments 

give different results, the scientists will have to go through everything again to track down the 

problem. They redo and retest all things. Knowledge is therefore cumulative within as well as 

across scientists. 

The social sciences do not require that a study is replicable. This mechanism of control is 

mostly absent. It does not matter for the estimate of a treatment effect in your context whether 

others have estimated different treatment effects in their work. Empirical estimates in the social 

sciences do not directly build on each other. In the social sciences, due to the countless 

researcher degrees of freedom, any replication will anyway turn out differently and scientists do 

not really want to open this box of pandora. The absence of much replication makes it necessary 

to rely on only the published empirical findings. These are incorporated into subsequent 

research. If the estimates are generally precise, subsequent research will not be lead too far 

astray. In contrast, if they vary highly, later research will vary, too. 

 

13.2  Bandwagon eff ects and convergence  

Franklin (2018) argues that successful replication is a goal of experimental physics. Important 

results are likely to be replicated, while less important results may often not be so. Physics has 

a tradition of rigorous replication, especially for groundbreaking discoveries. Because it has 

such a strong theoretical fundament, when empirical studies show new discoveries that go 

against this fundament, it raises skepticism among scientists and the studies get extra scrutiny 

in replication attempts. 

Of course, in the measurement of physical quantities, such as physical constants and properties 

of elementary particles, estimates can vary in size, too (Franklin 2018). Sometimes large changes 

occur, which may be due to smaller systematic errors, corrections of older experiments, or 

smaller errors in general. Sometimes flukes can happen, too. In fact, experimental results often 

show bandwagon effects, where they tend to agree more with previous measurements or with 

theoretical calculations, and only over time converge to some specific value measured with 

greater precision. One reason for this pattern is violation of the stopping rule (Franklin 1989). 



23 
 

Estimates move toward the true value, but in small steps, as experimenters do not want to 

deviate too strongly from the previously measured results. 

Bandwagon effects are quite common in particle physics (Franklin 2018). The crucial point is 

that, over time, the measurements do (slowly) converge toward the true value. The results of 

studies in the social sciences do not show such bandwagon effects. Estimates from empirical 

studies do not converge toward some specific value. Instead, they vary quite unsystematically 

and scientists do seldom come to an agreement about the precise value of some effect.4 

 

13.3  The construction of facts 

If there has been much research in the past, and the research led to well-established scientific 

theories, scientists can use them for their experiments and take them for granted. They count 

as unproblematic background knowledge. Giere (1988) gives the example of protons as research 

tools. They are part of the technology that investigates nuclear structure, for instance. Scientists 

use the proton in so many alternative ways during their experiments that the theories describing 

them become almost trivially true for them. The same holds for the investigation of many 

research objects, like some biological organism. Past research has established many parts or 

mechanisms of the object, which can then serve as at least approximately true auxiliary 

hypotheses for further investigations. For example, genes in cell biology have such a function. 

They have become useful tools. Scientists use genes to learn about the processes under 

investigation, by for instance using them to manipulate outcomes. The genes have become 

knowledge that is so well-established that they become an instrument themselves. 

Latour and Woolgar (1979) describe how scientists in a laboratory in biology construct scientific 

facts. They differentiate between five levels of facticity in scientific papers. The highest level 

are statements so persuasive that no reference is needed. They are recognized as facts by 

everyone in the field. Middle-level facts are statements that need citations to other scientific 

papers. The lowest level are statements in the form of conjectures or speculations. They appear 

most common in the conclusion. Scientific activity itself causes some statements to move up 

and others down this ladder. It does so by supporting certain statements with figures, diagrams, 

and statistics. Among the large numbers of statements scientists produce, a mere fraction 

becomes a fact, whereas all other statements stagnate, as no scientists take them up. Once a 

fact is established, scientists no longer contest it. Instead, it becomes the basis of further 

discussion and disappears from daily scientific activity and enters textbooks. 

There is no such ability to construct empirical facts in the social sciences. At most, scientists 

can try to weigh empirical evidence for some effect from different studies against each other. 

They can then form a judgement about what the effect might be. But it does not become an 

empirical fact that is recognized by everyone in the field. The findings that enter textbooks are 

theories, often even based on mathematical proofs, but not empirical facts. The former are 

 
4 Replications of experiments in physics are often not exact, that is, identical attempts. Such exact 

replications happens mostly when a result seems hard to believe to the community. Instead, scientists 

try to do the same thing better, such as to produce less noisy or more stable effects (Woodward 1989). 

Scientists thus use different, and if possible better apparatus. This broader type of replication happens 

in the social sciences, too, where scientists try address the some effect with better methods. However, 

studies with only improved method are quite rare. Hypotheses and contexts are usually different, too. 

The studies are therefore generally too distinct to count as replications. Most often such studies are more 

like series of alternative measurements, and none are clearly superior to the others. 
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elaborate hypothetical constructions, and not empirical facts like in cell biology, for instance, 

about what a cell is made of, how it functions, and what it does. In biology, years of controversy 

between scientists sometimes crystallize into the construction of some unambiguous and 

uncontested empirical fact. Most of the time such controversy leads nowhere, but sometimes it 

does. Unfortunately, in the social sciences, it almost never leads to such an outcome. 

 

14. Conclusion 

We have seen that the sciences differ substantially over several dimensions in their ways to 

handle auxiliary hypotheses. Each scientific field would score differently on each of them. 

Consequently, to construct an exact ranking is difficult. However, we can point out some main 

lessons from the preceding discussion. 

While we can find studies with any number of auxiliary hypotheses in any field, the natural 

sciences tend in general to rely on more auxiliary hypotheses. Their experimental setups are 

usually larger and more complex than the data collection, processing, and analysis in the social 

sciences. Nonetheless, the natural sciences produce more precise experimental results. Hence, 

the question opens us why this is so. 

First, the auxiliary hypotheses in the natural sciences are mostly physical in nature. Scientists 

can take them apart and, if necessary, test each piece to receive evidence for their adequacy. 

For example, they can calibrate their apparatus on known results or cross-check it with other 

instruments. In contrast, in the social sciences, auxiliary hypotheses cannot be tested against 

some solid background. Instead, scientists must simply assume most auxiliary hypotheses. They 

can give evidence only for some more important auxiliaries.  

The main tool in the data work of the social sciences are robustness checks, where scientists 

vary auxiliary hypotheses to observe their influence on the results. They are heavily used in all 

studies. However, robustness checks can only show that some auxiliary hypothesis has little 

influence on the results, but they can do nothing about it if it has large influence. 

Second, intervention is much better feasible and much faster in the laboratory. Scientists can 

vary their experimental setups to exclude artifacts of the apparatus, for instance. Such fast 

intervention altering the entire setup is not possible in the social sciences, where scientists are 

usually bound to the respective quasi or natural experiment. It is possible in experiments in 

the social sciences, yet still orders of magnitudes slower than in the laboratory. 

Third, repeating experiments from past studies builds up important skills in the natural 

sciences. However, this requires a repertoire of well-established past results. This is less feasible 

in the social sciences, because well-established results are scarce. Scientists therefore do not 

know whether they may in fact have learned some false approaches. 

Fourth, whereas natural scientists can build experimental setups that exclude false auxiliary 

hypotheses, observational studies in the social sciences do not have much room for altering 

their research designs. They can address minor shortcomings, but the environmental context 

defines whether the research design is appropriate or not. In contrast, this does not hold for 

experiments in the social sciences. They can certainly build around sources of error, too. 

Fifth, in experiments in the natural sciences, the data reacts to alternative runs of the 

experiment. Variation in the setup also changes the produced data. Especially smaller 

experiments can be repeated until the data is satisfactory. In contrast, observational studies, 

but also most field experiments, cannot be run more than once. Scientists usually run repeated 
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data analysis though. However, this does not improve the data but rather devalues it. Scientists 

can use the researcher degrees of freedom available to them to show favorable results. They 

may mold their empirical specifications into a mixture of statistical noise and bias. 

Together these (and more) aspects allow the natural sciences to better narrow down false 

auxiliary hypotheses. In contrast, in the social sciences we observe potentially large variation 

in auxiliary hypotheses, both within and between studies, leading to large variation in the 

observed empirical results. The estimated effects do not converge to some value over time, like 

in some of the natural sciences. One key difference between the natural and the social sciences 

is therefore that the former can sometimes establish new empirical facts. These in turn serve 

themselves as auxiliary hypotheses in even deeper inquiries that again establish new empirical 

facts. An overall virtuous cycle takes place. Consequently, the natural sciences are much more 

cumulative than the social sciences. 

Data analysis has become more important across all sciences. In modern particle physics, for 

example, apparatus has become too large, complex, and expensive to systematically vary it. 

With less control over the physical apparatus, control over data has become more and more 

central, in sometimes very complex ways. The experiments have in some instances lost contact 

with the physical world entirely and data analysis has often become the experiment itself 

(Galison 1997). This shift from the physical work to data work has introduced an extra 

dimension of variation that has been absent in the experiments of the past. In contrast, in the 

social sciences, data analysis has replaced less precise methods and has rather reduced variation 

in results. It offers a more condensed window to the social world than the qualitative work that 

dominated earlier periods. In any case, with data analysis in all its various forms becoming 

more and more important, the sciences will move closer together, from the physical and the 

qualitative towards more data work. Similar problems will thus show up in all of them. Data 

analysis adds a layer of variation to experimental results in all sciences. In fact, scientific 

progress seems to have slowed down across all fields. Studies have become less disruptive over 

time (Park et al. 2023). One reason for this development may be that we cannot go physical 

enough anymore and must rely too much on data analysis. It causes an imprecision in empirical 

investigation that makes it more difficult going broader and deeper with our theories.  
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