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How do we fundamentally discover new things? In a letter to Maurice Solovine, Albert Einstein con-
ceptualized discovery as a cyclical process involving an intuitive ’jump’ from sensory experience to
axioms, followed by logical deduction. While Generative AI has mastered Induction (statistical pattern
matching) and is rapidly conquering Deduction (formal proof), we argue it lacks the mechanism for
Abduction—the generation of novel explanatory hypotheses. Using Einstein’s formulation of General
Relativity as a computational case study, we demonstrate that the prevailing theory of "creativity as
data compression" (induction) fails to account for discoveries where observational data is scarce. This
position paper argues that while a modern Large Language Model could plausibly execute the deductive
phase of proving theorems from established premises, it is structurally incapable of the abductive ’Jump’
required to formulate those premises. We identify the translation of simulation into formal axioms as the
critical bottleneck in artificial scientific invention, and propose that physically consistent, multimodal
world models offer the necessary sensory grounding to bridge this divide.

1. Introduction

What characterizes the cognitive leap required for
scientific invention? A prevailing view in the AI com-
munity, notably championed by Schmidhuber (2008),
suggests that scientific discovery is fundamentally
a problem of compression—the search for a simple
program that concisely explains observations. This
view implicitly frames discovery as Induction: inferring
general rules from observations based on statistical
frequency. Concurrently, the success of systems like
AlphaProof (Hubert et al., 2025) in Olympiad-level
mathematics suggests that AI is mastering Deduction:
the formal derivation of theorems from established
premises.

If scientific discovery were merely the sum of these
two parts, modern Large Language Models (LLMs)
should theoretically be capable of inventing theories
like General Relativity given sufficient compute.

In this paper, we challenge this reductionist premise
by treating Albert Einstein’s formulation of General
Relativity as a computational case study. Adopting
Einstein’s cyclical model of invention—illustrated in
Fig. 1—we map the process from Sense Experience
(𝐸) to a System of Axioms (𝐴) via a conceptual Jump
(𝐽), followed by the deduction and verification of the-
orems. While we concede that a modern LLM could
plausibly perform the deductive work if initialized
with Einstein’s assumptions, the formulation of the
axioms remains the bottleneck.

By reconstructing the historical context in Section 2,
we show that the scarcity of experimental data pre-
cludes induction as an explanation. Since axioms also
cannot be deduced (being premises), we propose that
scientific discovery requires a cognitive mechanism

Figure 1 | A generative AI reconstruction of Einstein’s
E-J-A diagram. Einstein drew this diagram in a letter
to Maurice Solovine, showing a cyclical line jump-
ing from Sense Experience (E) to Axioms (A) via a
Jump (J), and then deducing logical consequences.
Ironically, the hallucination of the axiomatic symbols
highlights the very difficulty of automating the jump.

beyond induction and deduction: Abduction.

To formalize this, we adopt the framework of Peirce
(1934), which categorizes inference based on the struc-
tural permutation of a Rule (function definition), a
Case (input), and a Result (return value):

• Deduction (Rule+Case → Result) is the analytic
application of a Rule to a Case to predict a Result.
It is the only mode that guarantees truth (e.g.,
executing code to verify output).

• Induction (Case + Result → Rule) is the syn-
thetic derivation of a Rule from the accumula-
tion of Cases and Results. It validates hypotheses
through statistical frequency (e.g., generating a
function to satisfy unit tests).

• Abduction (Rule + Result → Case) is the infer-
ence of a Case (or a new Rule) to explain a sur-
prising Result.

© 2026 Google DeepMind. All rights reserved



LLMs can’t jump

Unlike deduction, which guarantees truth, or in-
duction, which finds pattern that generalize in data,
abduction is a creative leap that invents a cause for
a singular phenomenon. Crucially, Einstein achieved
this via embodied simulation—using thought exper-
iments to ground abstract symbols in physical sen-
sation—enabling him to formulate axioms where no
symbolic data previously existed. We argue that while
Large Language Models have mastered the inductive
compression of data and the deductive verification of
theorems, they are structurally incapable of the ab-
ductive ’jump’ required for scientific invention. We
posit that this creative leap demands not just better
language processing, but the integration of physically
consistent World Models that ground abstract symbols
in sensory simulation.

2. Background

2.1. Mechanics

In the 19th century, mechanics was regarded as the
foundation of all physics. Through the lens of par-
tial differential equations, scientists could explain a
vast array of phenomena: the propagation of sound,
hydrodynamics, the motion of discrete masses, and
even the kinetic theory of gases (linking viscosity, heat
conduction, and diffusion). At the time, even light
was understood through this mechanical framework,
described as a wave moving through the ether.

Yet, the mechanical worldview began to fracture.
Through the contributions of Maxwell, Faraday, Hertz,
and Mach, the laws of electromagnetism were uni-
fied into Maxwell’s equations. Newtonian mechanics
struggled to explain these electromagnetic fields, sig-
naling the end of mechanics as the sole governing
paradigm of physics. Physics found itself divided into
two conceptual elements: material points with forces
at a distance between them and continuous fields. Ein-
stein found this division unacceptable and was driven
to create a field theory for gravity that would replace
the old idea of action at a distance.

Meanwhile, a crisis was brewing regarding the na-
ture of light. Because light behaves as a wave, scien-
tists assumed it traveled through a medium they called
the ether. However, the famous Michelson-Morley ex-
periment in the late 19th century shattered this as-
sumption. They attempted to measure Earth’s velocity
relative to the ether but failed to do so. Even more
shocking was the observation that the speed of light
did not vary with the Earth’s movement around the
Sun. Attempts to salvage the ether theory resulted in
increasingly complex and artificial explanations, such
as ether wind, all of which ultimately proved futile.

In addition, Newton’s theory of gravitation was in-
credibly robust, accurate to an astonishingly small mar-

gin of error. Newton confirmed Galileo’s discovery that
all bodies fall at the same speed regardless of mass by
performing pendulum experiments. In particular we
have, 𝐹𝑔𝑟𝑎𝑣 = 𝑚𝑖

𝑑2𝑥
𝑑𝑡2

= 𝑚𝑔𝑔, so if 𝑚𝑖 = 𝑚𝑔 we have that
the acceleration is constant 𝑑2𝑥

𝑑𝑡2
= 𝑔 and independent

of mass. Newton’s experiments validated that 𝑚𝑖

𝑚𝑔
= 1

with an accuracy of 10−3. Over the centuries, this
precision was refined even further—Laplace achieved
10−7 and Eötvös reached 10−9.

In fact, there was only one known anomaly: a tiny
shift in Mercury’s orbit known as the advance of peri-
helion (Leverrier 1845). Scientists were so confident
in Newton’s laws that they didn’t question the the-
ory; instead, they hypothesized that an undiscovered
planet, dubbed ’Vulcan,’ was hiding near the Sun and
causing the disturbance.

2.2. Special relativity

In 1905, Einstein resolved the contradictions of the
Michelson-Morley experiment in a way that fully
aligned with Maxwell’s equations. He founded his
new theory on two key postulates. Principle of rela-
tivity: The laws of physics are identical in all inertial
frames of reference. Invariance of the speed of light:
The speed of light in a vacuum, 𝑐, is constant in all
inertial frames of reference.

The Michelson-Morely experiment was designed to
detect Earth’s movement through a hypothetical ether,
and found that there is no change in light speed; Light
always travels at 𝑐 so its speed doesn’t change relative
to a moving Earth, exactly the second postulate.

From the two postulates, Einstein derived the
Lorentz transformation, which relates the coordinates
of a rest frame to one moving at a constant relative
velocity 𝑣. The resulting transformation for time is:

𝑡′ =
𝑡 − 𝑣

𝑐2
𝑥√︃

1 − 𝑣2

𝑐2

. (1)

Historically, predecessors like Poincaré referred to the
variable 𝑡′ as ’fictitious time’. However, Einstein’s in-
terpretation was radical. He argued that 𝑡′ was not a
calculation artifact, but "time plain and simple". To
demonstrate this, he introduced the concept of time
dilation: if two originally synchronized clocks are sep-
arated and one undergoes motion at velocity 𝑣, they
will no longer report the same time upon clearer re-
unification. With this insight, Einstein shattered the
Newtonian paradigm of absolute, universal time, re-
placing it with a temporal reality that is local to every
observer.

2



LLMs can’t jump

2.3. General relativity

Einstein’s new theory was intrinsically limited to iner-
tial frames—observers moving at constant velocities
without acceleration. This specific constraint is the
origin of the name ’special’ relativity. Motivated by the
earlier work of Ernst Mach, Einstein was convinced
that inertial frames should hold no privileged status.
Consequently, he sought a generalization of the theory
applicable to any frame of reference, embarking on the
quest for General relativity. This seven-year odyssey
was characterized by profound physical hunches, vivid
thought experiments, and rigorous mathematical for-
malization, interspersed with periods of exhaustion
and error. In the following analysis, we adopt the
framework of Norton (2020), examining Einstein’s
progress through three distinct phases.

Ideation (1907-1912). Einstein took his first con-
crete steps toward General Relativity in 1907, when
Johannes Stark commissioned him to write a compre-
hensive review of relativity. The task initially seemed
straightforward: Einstein needed to examine estab-
lished branches of physics to ensure they fit within the
new framework of space and time he had proposed in
1905.

The work progressed smoothly. Electrodynamics re-
quired no changes, as it was already compatible with
the Lorentz transformation. Mechanics needed some
adjustment, specifically regarding energy, momentum,
and mass, which led Einstein to formalize the equiva-
lence of mass and energy (𝐸 = 𝑚𝑐2). He even sketched
out a relativistic treatment for thermodynamics.

However, as he finalized the review, Einstein felt a
compelling need to go further. He wanted to general-
ize the principle of relativity to include not just con-
stant motion, but accelerated motion. He was struck
by a profound insight—later calling it his ’happiest
thought’—that acceleration mimics gravity, suggest-
ing that inertia itself is a gravitational effect. These
ideas culminated in his 1912 theory of static gravita-
tional fields, where he boldly proposed that gravity
bends light, slows down clocks, and that the speed
of light is not constant, but varies depending on the
gravitational potential.

Consolidation (1912-1913). The pivotal transition
toward General Relativity occurred between the sum-
mer of 1912 and early 1913. Struggling to translate
his physical intuition into a rigorous theory, Einstein
realized that the mathematics of curvature was the key.
To master this complex field, he turned to his friend
and mathematician, Marcel Grossmann, in Zurich.
Their collaboration was documented in the famous
"Zurich Notebook" and culminated in the 1913 paper
known as the Entwurf ("Sketch").

Einstein consolidated a set of physical requirements
and conceptual pillars that he intended the new theory

to satisfy (see Section B for more details):

1. Generalized Relativity Principle: Extension of spe-
cial relativity to accelerated frames

2. Equivalence Principle: Indistinguishability of
gravity and acceleration

3. Geodesic Principle: The motion of free-falling
bodies in spacetime

4. "Gravity Gravitates": Gravitational energy itself
acts as a source

5. Stress-Energy Tensor: The source of the gravita-
tional field

6. Generalized Poisson Equation: The field equation
structure

7. Newtonian Limit: Recovery of classical gravity

The Fatal Error. In the mathematical section, Gross-
mann came agonizingly close to the final answer. He
identified the Riemann curvature tensor as the correct
measure for spacetime curvature. He even contracted
this tensor to derive a quantity (𝐺𝑖𝑘) that is nearly iden-
tical to the modern Einstein tensor. From a modern
perspective, the finish line was in sight. But despite all
of this, they stopped short. The new equations had to
pass a crucial test: they needed to reproduce Newton’s
simple law of gravity in weak, static fields (Principle
7). In a fatal error, Grossmann concluded that their
candidate tensor did not reduce to the Newtonian ex-
pression. However, as they only figured out later, the
error lay not in the geometry, but in the assumption
about the static field itself.

Believing this path was blocked, they abandoned it.
Einstein was forced to construct a set of field equations
based purely on physical clues, such as conservation
laws and his earlier work on static fields. The result
was a mess: instead of one simple Newtonian equation,
he produced ten complicated, non-linear equations
with no clear geometric meaning—a detour that would
delay the final theory for two more years.

Mathematical validation (1913-1915).

The years 1913 to 1915 were defined by a grueling
struggle to correct and perfect the 1913 draft. With
the publication of the ’Entwurf ’ paper in mid-1913,
Einstein initially believed the heavy lifting was done
and only details remained. This feeling was short-
lived. As months turned into years, he found himself
working harder and harder to justify a theory that
was, at its core, misshapen.

By the summer of 1915, the evidence against his
old theory was mounting. He knew it failed to ex-
plain the anomalous orbit of Mercury. He discovered
it could not account for rotational motion. Finally, he
realized that his sophisticated attempts to prove the
theory’s uniqueness in late 1914 were flawed. In a
state of mounting desperation, Einstein abandoned
the ’adapted’ coordinate systems of the ’Entwurf ’ and
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returned to his earlier intuition from 1912: the theory
needed to work in all coordinate systems.

What ensued was perhaps the most intense month
of Einstein’s career. Spurred by the knowledge that the
renowned mathematician David Hilbert was racing to
solve the same problem, Einstein entered a frenzy of
productivity, submitting a new paper to the Prussian
Academy every week for four consecutive weeks. His
first communication on November 4 proposed a solu-
tion, yet errors persisted. By November 11, he had
refined the theory but difficulties remained; however,
on November 18, he announced the thrilling result
that his evolving equations correctly predicted the
anomalous orbit of Mercury. Finally, on November
25, the fourth communication unveiled the completed
field equations of General Relativity:

𝑅𝑖𝑘 −
1
2
𝑔𝑖𝑘𝑅 = −𝜅𝑇𝑖𝑘. (2)

Here, 𝑅𝑖𝑘 is the Ricci curvature tensor, 𝑅 is the Ricci
scalar, 𝑇𝑖𝑘 is the Stress-Energy tensor, and 𝑔𝑖𝑘 is the
metric tensor. The expression on the left represents
the geometry of spacetime (curvature) as determined
by the metric, while the expression on the right repre-
sents the matter and energy.

3. The Limits of Inductive Inference

"One not infrequently hears the viewpoint
expressed that physicists are merely notic-
ing patterns... It seems to me, however, that
such a viewpoint is extraordinarily wide of its
mark... When Einstein’s theory was first put
forward, there was really no need for it on ob-
servational grounds. ...Einstein was not just
‘noticing patterns’ in the behavior of physical
objects. He was uncovering profound mathe-
matical structure that was already hidden in
the very working of the world."

– Roger Penrose

This distinction between noticing patterns and un-
covering structure highlights the boundary between
AI as it exists today and the AI required for scientific
invention. The prevailing view in machine learning
aligns with the "Theory of Compression Progress,"
(Schmidhuber, 2008) which posits that scientific dis-
covery is driven by the inductive desire to compress
data. In this framework, the "joy" of discovery is the
rate at which complex observations become subjec-
tively simpler through better prediction. This induc-
tive approach has yielded impressive results in data
rich environments: sparse optimization has success-
fully extracted partial differential equations from data
(Schaeffer, 2017), and the "AI Physicist" (Wu and

Tegmark, 2019) successfully rediscovered conserva-
tion laws from simulated trajectories.

However, we argue that this inductive framework is
insufficient to explain the invention of General Rela-
tivity. While Einstein sought logical simplicity, his pro-
cess was not driven by data compression—primarily
because there was no statistically significant super-
vised training set to compress.

At the time of invention, Newtonian gravity faced
no empirical crisis. The equivalence of inertial and
gravitational mass had been verified to a precision
of 10−9, and Newton’s laws were accurate to an as-
tonishingly small margin of error. The only known
anomaly—the advance of Mercury’s perihelion—was
viewed not as a failure, but as evidence of a hidden
variable: the undiscovered planet "Vulcan".

This highlights the fundamental limitation of "cre-
ativity as compression": scientific invention often oc-
curs in the absence of a supervised error signal. An AI
operating as an inductive optimization engine would
have found the Newtonian loss function to be near-
zero. Without a significant discrepancy between pre-
diction and observation, there is no gradient to drive
the system toward a foundational restructuring of
spacetime.

If modern Transformer models struggle to reverse-
engineer basic arithmetic rules (Gambardella et al.,
2024; Yang et al., 2024), it is difficult to see how it
could invent a new physics in the absence of mas-
sive datasets. Furthermore, even when data is avail-
able, inductive systems risk converging on heuristic
shortcuts rather than causal laws. Vafa et al. (2025)
demonstrate that without the correct inductive bias,
foundation models often discover flawed world models
that satisfy the data but fail to capture the underlying
structure. The empirical evidence required to validate
General Relativity—from the Eddington experiment to
relativistic GPS corrections—arrived after the theory
was formulated. Einstein was not compressing a noisy
dataset to fit a regression curve; he was constructing
a logical framework to uncover a physical structure
that the data had not yet revealed.

Lastly, it could be argued that while Einstein was
not compressing data, he was compressing the hypoth-
esis space by seeking to unify the laws of inertia and
gravity into a single framework (MinimumDescription
Length). However, logical simplicity is often a retro-
spective property. While the final theory of General
Relativity is elegant, the search path to get there was
paved with complexity, abandoned tensors, and incor-
rect equations. A compression-driven AI might prefer
to patch Newtonian gravity with a parameter like the
’Vulcan’ planet hypothesis rather than expanding the
hypothesis space to include non-Euclidean geometry,
which increases complexity before it simplifies it.
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4. The Limits of Deduction

"I see on one side the totality of sense ex-
periences, and on the other, the totality of
the concepts and propositions that are laid
down in books. The relations between con-
cepts and propositions among themselves
are of a logical nature... The concepts and
propositions get ’meaning’, or ’content’, only
through their connection with sense experi-
ences."

– Albert Einstein

Einstein explicitly distinguished between the do-
main of sensory experience and the domain of logical
processing. In our framework, this latter domain cor-
responds to Deduction (𝐴 → 𝑆): the derivation of
theorems from a set of axioms.

Even the motivation to begin the search for General
Relativity contained a strong deductive component.
Einstein’s drive was not sparked by data anomalies.
There was no "error signal" in the Newtonian obser-
vation history, but by a conceptual inconsistency: the
clash between mechanical action at a distance and the
emerging field theories of electromagnetism. While
modern LLMs will struggle to find such an idea due to
the "weak signal" (there was no requirement to replace
Newton’s gravity), the structural task of proposing a
field theory for gravity by mimicking Maxwell’s equa-
tions is fundamentally a deduction.

It is plausible that a modern AI, optimized to search
for inconsistencies in scientific literature, could iden-
tify this contradiction. Much like a system identifying
"buggy code," an AI could flag that the constant speed
of light in Maxwell’s equations is incompatible with
Newtonian absolute time. However, identifying the
error is distinct from generating the fix. While the
structural task of proposing a field theory for gravity
is a deductive operation, selecting the correct axioms
to resolve the conflict requires more than logical con-
sistency.

The period between 1913 and 1915 illustrates this
deductive struggle. It was defined not by flashes of
insight, but by a grueling, mechanical search to iden-
tify the correct mathematical framework to satisfy
Einstein’s postulates. This phase closely mirrors the
capabilities of modern neuro-symbolic AI. Einstein’s
collaboration with Marcel Grossmann was essentially
a "search" process over geometric constraints. No-
tably, they identified the Riemann curvature tensor
as the correct object but discarded it due to a "fatal
error"—the mistaken belief that it did not reduce to
Newtonian gravity in static fields. It took two years of
exhaustion to debug this assumption and produce the
final field equations.

The landscape of mathematical discovery has been

recently transformed by automation. Proof assistants
based on dependent type theory, such as Lean, have
matured into robust platforms supported by extensive
libraries (mathlib Community, 2019). In 2024 LLMs
have achieved remarkable fluency in proof genera-
tion: AlphaProof (Hubert et al., 2025) achieved silver-
medal performance on IMO problems. Successors like
Gemini, DeepSeekMathV2, and GPT-5 attained gold-
level performance in 2025 and systems like Aristotle
(Achim et al., 2025) produced verified solutions to
open research questions.

"At the age of twelve I experienced a second
wonder of totally different nature - in a little
book dealing with Euclidean plan geometry,
..., were assertions, that could be proved with
such certainty that any doubt appeared to be
out of question. This lucidity and certainty
made an indescribable impression on me."

– Albert Einstein

Given this trajectory, we posit that a modern LLM,
initialized with the specific physical assumptions avail-
able to Einstein in 1915, could plausibly derive Gen-
eral Relativity. The derivation of the perihelion pre-
cession of Mercury, once the field equations are set,
is a verifiable logical task (𝐴 → 𝑆). Furthermore, cur-
rent systems are theoretically capable of identifying
and eliminating erroneous constraints—such as Ein-
stein’s error regarding static fields—by systematically
optimizing over subsets of axioms.

However, this capability comes with a critical caveat.
An AI can deduce the consequences of "The Equiva-
lence Principle" only if those concepts are provided as
inputs. As Einstein noted, logical thinking is limited to
connections between concepts; it cannot generate the
concepts themselves from raw sensory data. The 1913
derivation failed not because the logic was flawed, but
because the axioms were incorrect. This leads us to
the fundamental bottleneck: what cognitive process
allowed Einstein to generate the "Equivalence Princi-
ple" in the first place? To understand this, we must
look beyond logic to the mechanism of the "Jump" (𝐽).

Finally, even if an AI possesses the deductive capac-
ity to derive Einstein’s equations from his postulates, a
fundamental problem of intent remains. Unlike formal
theorem proving, where the goal is a specific open con-
jecture, Einstein was not trying to prove a theorem but
to construct a predictive model of reality. While the
anomalous perihelion of Mercury offered a verification
target, it was not considered important enough. Cru-
cially, the definitive validation—measuring the gravi-
tational bending of starlight passing near the Sun by
Eddington—arrived years after the theory was formu-
lated. Deduction (𝐴 → 𝑆) is strictly a downstream
process: it unfolds the logical consequences of a the-
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ory, but it lacks both the upstream capacity to generate
axioms and the external grounding to validate them.

5. Abduction: The missing Jump

"Then there occurred to me the happiest
thought of my life... for an observer falling
freely from the roof of a house there ex-
ists—at least in his immediate surround-
ings—no gravitational field... The observer
therefore has the right to interpret his state
as ’at rest.’ Because of this idea, the uncom-
monly peculiar experimental law that in the
gravitational field all bodies fall with the
same acceleration attained at once a deep
physical meaning."

– Albert Einstein

How does the mind formulate new axioms in the ab-
sence of sufficient data? Einstein’s ’happiest thought’
provides the answer: Manipulative Abduction (Mag-
nani et al., 2009). This process relies on embodied
simulation—an active interaction with mental mod-
els to generate hypotheses through thinking by doing,
thereby accessing knowledge beyond the reach of pure
deduction. Einstein did not bridge Special Relativity
and gravitation by gathering observations, but by sim-
ulating the physical feelings of an observer inside a
sealed environment.

We conceptualize this thought experiment as a two-
stage process. First, an observation is imagined via
simulation. Second, an explanation is derived for that
observation via abductive reasoning. Modern bench-
marks like ARC-AGI (Chollet et al., 2025) already test
the latter. In ARC, models must infer hidden rules
from sparse examples (2–5 grid pairs). Since the
data is too sparse for statistical induction and lacks
the explicit instructions required for deduction, the
solver must make an abductive leap to the most plau-
sible explanation. However, as we argue next, while

Figure 2 | Einstein’s thought experiment of the equiv-
alence principle (AI generated).

ARC captures the logical leap, it misses the manipula-
tive component—the physical sensation and embodied
simulation that drove Einstein’s insight.

Simulation as Physical Variation. The first pro-
cess—inventing a question to force progress—can be
viewed through the lens of modern AI as Test Time
Reinforcement Learning. This paradigm involves in-
venting new variations of a problem and learning to
solve them, a strategy successfully applied to solve the
Penrose position in chess (Zahavy et al., 2024) and
to achieve silver medal standards in the IMO (Hubert
et al., 2025).

However, a critical distinction remains. While sym-
bolic variations in chess and mathematics are bounded
by fixed rules (axioms), Einstein’s variation required
inventing new axioms based on a physical intuition
that did not yet exist in the mathematics. He envi-
sioned a physicist inside an elevator being uniformly
accelerated through deep space (Fig. 2). Inside this
enclosure, the sensory experience reveals a specific
pattern: when objects are released, the floor rushes
up to meet them. To the physicist, the objects ap-
pear to fall with identical acceleration, regardless of
composition. Thus, the simulation here was not a per-
mutation of symbols, but a manipulation of perceptual
experience.

Abduction and the Physical Prior. The second
process is Abductive Reasoning: the inference to the
best explanation. Unlike deduction, which guarantees
truth from premises, abduction seeks the simplest,
most likely cause for an observation.

In Einstein’s scenario, the existing Newtonian frame-
work offered no satisfying explanation for his imag-
ined observation. He faced a silence in the space of
language—a lack of prior symbolic representation:

"The words or the language, as they are writ-
ten or spoken, do not seem to play any role
in my mechanism of thought."

– Albert Einstein

To fill this void, he relied on a physical prior. Because
the simulated sensory experience of acceleration was
indistinguishable from the remembered sensory ex-
perience of gravity, Einstein abducted that they must
be the same phenomenon. The field inside the box
was not a fake inertial effect; it was, by definition, a
genuine gravitational field.

From Chinese Rooms to World Models. This cog-
nitive process—anchoring abstract symbols in tangible
physical simulations—is known as manipulative ab-
duction (Magnani et al., 2009). This stands in sharp
contrast to the operational mechanics of LLMs.

While LLMs excel at Induction (finding patterns in
data), they lack the sensory agency required to ground
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these symbols in physical reality. They operate as high-
dimensional "Chinese Rooms" (Harnad, 1990), manip-
ulating the language of physics without access to the
physical referents that give that language meaning.
This limitation prevents the AI from making the Ab-
ductive Jump (𝐸 → 𝐴). While Einstein could ground
his axioms in the physical experience of a falling body,
an LLM is confined to the logical deduction of existing
texts.

This deficit in physical grounding is central to recent
critiques of AI. Experts contend that despite linguis-
tic mastery, current systems lack the spatial intelli-
gence(Li, 2025) and internal world models(LeCun,
2022) required to reason about physical reality. With-
out the ability to perceive or interact with the world,
LLMs struggle with spatial reasoning tasks that are
trivial for toddlers .

The emergence of World Models offers a pathway
to bridge this divide, but a critical distinction must
be drawn between visual prediction and interactive
simulation. Current video generation models like Veo
exhibit intuitive physics(Hassabis, 2025) primarily as
a byproduct of statistical correlation; they correctly
generate a falling apple not because they model grav-
ity, but because falling is the dominant continuation
of unsupported object in their training distribution.

However, recent architectures like Genie (Bruce
et al., 2024) mark a fundamental shift by introduc-
ing action-controllability into generative world mod-
els. Unlike passive video generators, Genie learns an
action space that allows for agentic intervention—a
prerequisite for Manipulative Abduction (thinking by
doing). To replicate Einstein’s elevator thought ex-
periment, an AI cannot merely watch a video of an
elevator; it must possess the capacity for counterfac-
tual intervention (Pearl andMackenzie, 2018). It must
be able to essentially take control of the simulation
to conceptually cut the cable. We propose that future
iterations of such interactive environments, operating
on a consistent latent physics manifold rather than
just pixels, will provide the synthetic laboratory neces-
sary to transform the Abductive Jump from a mystical
insight into a reproducible algorithmic process.

Lastly, its important to note that Einstein relied
on his Physical Prior, using the sensation of gravity
to prune the search space of possible axioms. How-
ever, manipulative abduction extends beyond physics.
Historical scientific revolutions are often driven by
strong, pre-symbolic intuitions—whether Kepler’s Neo-
platonic belief in the centrality of the Sun or the ’ob-
jective anger’ that drove Marx’s modeling of capital.
To automate invention, we may need systems that do
not just simulate the world, but hold strong beliefs
or priors about how that world should be structured,
using simulation to test those specific intuitions.

6. Conclusion

In this paper, we posed a fundamental question: Could
a modern Artificial Intelligence, given the knowledge
available to Einstein, invent General Relativity? Our
investigation suggests that for current Large Language
Models, the answer is no. While the field has success-
fully mechanized Induction (via statistical compres-
sion) and Deduction (via formal verification), these
mechanisms alone are insufficient to sustain the cycle
of scientific invention.

The prevailing Creativity as Compression hypoth-
esis fails to account for this discovery because it pre-
sumes the existence of a pervasive error signal. Yet,
the Newtonian paradigm faced no such crisis, and the
data required to validate General Relativity did not
exist until years after its formulation. Furthermore,
while the deduction paradigm offers a path to derive
field equations once axioms are set, it is ultimately a
downstream process—a verification step within the
invention loop, rather than the mechanism of inven-
tion.

This limitation is visible even in the apex of today’s
automated discovery systems. Agents such as Sakana’s
AI Scientist (Lu et al., 2024) and Google DeepMind’s
AlphaEvolve (Novikov et al., 2025) demonstrate the
immense power of mechanizing scientific loops and
evolutionary optimization. However, they highlight
the very abductive gap we identify. The AI Scientist
recombines existing symbolic concepts to optimize
metrics—a sophisticated "Chinese Room" operation
that lacks the sensory grounding to invent axioms
without symbolic precedent. Similarly, while AlphaE-
volve excels at optimization within a fixed framework,
it relies on a gradient; Einstein, by contrast, had no
error signal from Newtonian mechanics to drive his
discovery. These systems lack the embodied world
model required to perform the counterfactual physical
simulations that drive the abductive Jump to entirely
new paradigms.

Our analysis confirms that the critical bottleneck is
this intuitive Jump from sensory experience to formal
axioms (𝐸 → 𝐴). Einstein did not discover General
Relativity by searching over symbols; he discovered
it by simulating the sensual experience of a falling
observer. The formulation of the Equivalence Principle
was a self-contained act of physical abduction, where
the premises were established solely through inter-
nal simulation, independent of immediate external
verification.

To build an AI capable of true invention, we must
therefore move beyond systems that merely read scien-
tific literature to systems that can perceive the physical
world. The emergence of physically consistent World
Models offers a pathway to a synthetic laboratory. By
enabling agents to run counterfactual simulations—to
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experience the physical consequences of a thought
experiment—we may finally mechanize the feedback
loop between intuition and logic.

Finally, we emphasize that this proposal is specifi-
cally tailored to the physical sciences, where the ob-
ject of study is external material reality. In abstract
domains such as Mathematics or Computer Science,
the Sense Experience (𝐸) may be grounded in high-
dimensional topology or have other goals such as gen-
erality or minimality. While the necessity of the Ab-
ductive Jump remains universal, the nature of the
simulation must be adapted to the ontology of the
discipline: for physics, the substrate is the world; for
mathematics, it is the abstract landscape of formal
systems.
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A. Novikov, N. Vũ, M. Eisenberger, E. Dupont, P.-S.
Huang, A. Z. Wagner, S. Shirobokov, B. Kozlovskii,
F. J. R. Ruiz, A. Mehrabian, M. P. Kumar, A. See,
S. Chaudhuri, G. Holland, A. Davies, S. Nowozin,
P. Kohli, and M. Balog. Alphaevolve: A coding agent
for scientific and algorithmic discovery, 2025. URL
https://arxiv.org/abs/2506.13131.

J. Pearl and D. Mackenzie. The Book of Why: The New
Science of Cause and Effect. Basic Books, 2018.

C. S. Peirce. Collected papers of charles sanders peirce.
Harvard University Press., 1934.

R. Penrose. Shadows of the Mind, volume 4. Oxford
University Press Oxford, 1994.

H. Schaeffer. Learning partial differential equations
via data discovery and sparse optimization. Pro-
ceedings of the Royal Society A: Mathematical, Physi-
cal and Engineering Sciences, 473(2197):20160446,
2017.

J. Schmidhuber. Driven by compression progress: A
simple principle explains essential aspects of subjec-
tive beauty, novelty, surprise, interestingness, atten-
tion, curiosity, creativity, art, science, music, jokes.
In Workshop on anticipatory behavior in adaptive
learning systems, pages 48–76. Springer, 2008.

K. Vafa, P. G. Chang, A. Rambachan, and S. Mul-
lainathan. What has a foundation model found?
using inductive bias to probe for world models. In
Proceedings of the 42nd International Conference on
Machine Learning, volume 267, Vancouver, Canada,
2025. PMLR.

T. Wu and M. Tegmark. Toward an artificial intelli-
gence physicist for unsupervised learning. Physical
Review E, 100(3), Sept. 2019. ISSN 2470-0053. doi:
10.1103/physreve.100.033311. URL http://dx.
doi.org/10.1103/PhysRevE.100.033311.

Z. Yang, M. Ding, Q. Lv, Z. Jiang, Z. He, Y. Guo,
J. Bai, and J. Tang. GPT can solve mathematical
problems without a calculator, 2024. URL https:
//openreview.net/forum?id=LojXXo2xaf.

T. Zahavy, V. Veeriah, S. Hou, K. Waugh, M. Lai,
E. Leurent, N. Tomasev, L. Schut, D. Hassabis, and
S. Singh. Diversifying ai: Towards creative chess
with alphazero, 2024. URL https://arxiv.org/
abs/2308.09175.

9

https://arxiv.org/abs/2408.06292
https://arxiv.org/abs/2408.06292
http://arxiv.org/abs/1910.09336
http://arxiv.org/abs/1910.09336
https://sites.pitt.edu/~jdnorton/teaching/HPS_0410/chapters/general_relativity_pathway/index.html
https://sites.pitt.edu/~jdnorton/teaching/HPS_0410/chapters/general_relativity_pathway/index.html
https://sites.pitt.edu/~jdnorton/teaching/HPS_0410/chapters/general_relativity_pathway/index.html
https://arxiv.org/abs/2506.13131
http://dx.doi.org/10.1103/PhysRevE.100.033311
http://dx.doi.org/10.1103/PhysRevE.100.033311
https://openreview.net/forum?id=LojXXo2xaf
https://openreview.net/forum?id=LojXXo2xaf
https://arxiv.org/abs/2308.09175
https://arxiv.org/abs/2308.09175


LLMs can’t jump

A. Author’s Note

In a past interview regarding the nature of creativity, Demis Hassabis identified scientific invention as its
highest form. This perspective resonated with my long-standing interest in the philosophy of science and
the history of physics. It compelled me to investigate how we might approach invention within Artificial
Intelligence, specifically questioning whether modern systems are capable of such feats and identifying the
necessary research directions to achieve them.

While I hold a BSc in physics and electrical engineering, my doctoral and professional work has focused on
AI, particularly Deep Reinforcement Learning. Although I have co-authored papers in physics, I do not claim
the title of physicist. Therefore, it is important to clarify that this work does not aim to offer novel historical
or physical interpretations of Einstein’s theories; such analysis lies outside my expertise. Instead, I rely on
established sources to explore what Einstein’s thought process implies for the future of AI creativity.

My inquiry began in earnest around 2020. Having learned Special Relativity in school, I had a foundational
understanding, but reading The Emperor’s New Mind and (Penrose, 1994) sparked a deeper fascination with
the mechanisms of scientific discovery. I was particularly struck by Penrose’s argument that the discovery of
relativity was driven by logic rather than new measurements—a theme central to this paper.

The ideas presented here crystallized in 2024. While working on the AlphaProof project, I maintained
a living document on computational creativity. A comment I wrote regarding Penrose’s arguments caught
the attention of my colleague, Oliver Nash. Oliver provided a detailed timeline and historical context that
significantly deepened my understanding, leading to the research and synthesis presented in this work.

The author utilized Gemini to refine and rephrase specific sections of the original text.

I would like to thank the Discovery team at Google Deepmind as well as Alex Dikopoltsev, Lior Shani and
Massimiliano Ciaramita for discussion and feedback that helped to improve this work.

B. Einstein’s postulates of general relativity

(1) Generalized Relativity: While Special Relativity was restricted to inertial frames (those moving at constant
relative velocities), Einstein sought to extend the principle of relativity to all frames of reference, including
those in non-uniform, accelerated motion.

(2) The Equivalence Principle: Termed by Einstein as "the happiest thought of my life," this principle asserts
that the local effects of a homogeneous gravitational field are physically equivalent to those of uniform acceler-
ation in gravitation-free space. This thought experiment yielded immediate testable predictions, specifically
the gravitational redshift of clocks and the deflection of light rays by massive bodies.

(3) The Geodesic Principle: This principle posits that free-falling objects traverse ’timelike geodesics’—the
straightest possible trajectories within curved spacetime—thereby redefining gravity as a geometric phenomenon
rather than a force. This generalizes the non-relativistic notion of a geodesic (such as the shortest path across a
two-dimensional surface) into the four-dimensional framework of relativity.

(4) "Gravity Gravitates": By synthesizing the mass-energy equivalence (𝐸 = 𝑚𝑐2) with the equivalence of
inertial and gravitational mass (𝑚𝑖 = 𝑚𝑔), Einstein deduced that the fundamental source of gravity must be
energy density. Crucially, this implies that the energy of the gravitational field itself contributes to the field,
creating a feedback loop. Mathematically, this necessitates that the field equations must be non-linear.

(5) The Stress-Energy Tensor: Einstein identified Laue’s stress-energy tensor (𝑇𝑖 𝑗) as the energy density.
Its components provide a complete physical description of the source matter: 𝑇00: The energy density (mass-
energy). 𝑇0𝑖: The momentum density (and energy flux). 𝑇 𝑖 𝑗: The flux of momentum, representing pressure
(where 𝑖 = 𝑗) and shear stress (where 𝑖 ≠ 𝑗).

(6) Generalized Poisson Equation: In Newtonian gravity, the potential 𝜙 is governed by Poisson’s equation,
∇2𝜙 = 4𝜋𝜅𝜌 (where ∇2𝜙 = 0 in a vacuum). In the relativistic framework, Einstein sought a tensor generalization
of this law. He replaced the scalar term ∇2𝜙 with the curvature tensor 𝑅𝑖𝑘 and the mass density 𝜌 with the
stress-energy tensor term −𝜅𝑇𝑖𝑘.
(7) The Newtonian Limit: This requirement demands that under specific conditions—weak gravitational

fields, slow motion (𝑣 ≪ 𝑐), and static fields—General Relativity must simplify to match Newton’s laws. In this
limit, spacetime curvature becomes negligible and geodesics reduce to Newtonian trajectories (𝐹 = 𝑚𝑎).
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