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Abstract

We prove that every open connected region of relativistic spacetime (M, g) that
encloses a b-incomplete half-curve has an open connected subregion that encloses
a b-incomplete half-curve and is also ‘small’ in the following sense: it is the
image, under the bundle projection map, of some open region in the (connected)
orthonormal frame bundle OT M over that spacetime which is bounded, and
whose closure is Cauchy incomplete, with respect to any ‘natural’ distance func-
tion on Ot M. As a corollary, it follows that every b-incomplete half-curve can
be covered by a sequence of singular regions which are images of a sequence of
bounded subsets of O M whose diameter, with respect to any ‘natural’ distance
function on Ot M, tends to zero. We discuss to what extent these results can
be interpreted in favour of the claim that singular structure in classical general
relativity is ‘localizable’.
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1 Introduction

In classical general relativity, a (relativistic) spacetime (M, g) is said to be singular
just in case it contains curves that are incomplete in some appropriate sense. Different
authors take different kinds of curves to witness singular structure of relativistic space-
times: incomplete timelike or causal geodesics [1]; incomplete causal curves of bounded
acceleration [2],[3]; or b-incomplete curves [4],[5]. Here we will focus on spacetimes
that are singular in the weakest of these three senses: namely, those which contain
b-incomplete curves.

Still, whatever kind of curves one designates to witness singular structure, the
resulting definition of ‘singular spacetime’ would arguably be insufficient to account
for all the intuitions we have associated with singular structure in classical general
relativity. Among other things, it seems plausible that in certain singular spacetimes,
some regions of such spacetimes are singular, whereas others are not. For example: in
the Kruskal-Schwarzschild spacetime, it seems true to say that Region I is not singu-
lar, whereas Region II is. To account for this, one cannot treat such proper regions
as spacetimes on their own and then apply some general definition of ‘singular space-
time’; for any such spacetime would be extendible and therefore contain an incomplete
timelike geodesic [5, p. 8] and count as singular on any plausible definition. This moti-
vates the following generalisation of the definition of ‘singular spacetime’ to arbitrary
connected spacetime regions:

Definition 1 For any relativistic spacetime (M, g), an open connected subset U of M is a
singular region of (M, g) iff there is an incomplete half-curve 7 : [0,a) — M (for 0 < a < c0)
of appropriate kind whose image is contained in U.

This definition invites the following conceptual question: if singular structure in
classical general relativity can be considered a property of spacetime regions, is it
always possible to find, in any singular spacetime, a sufficiently ‘small’ region of that
spacetime that is singular? A positive answer to that question would have a desirable
consequence that singular structure of spacetime would be, in some sense, localizable.
Since we focus on spacetimes that contain b-incomplete curves, we will focus on b-
incomplete singular regions: that is, regions that contain the images of b-incomplete
half-curves. And we will show that for this definition of ‘singular region’, any singular
spacetime will have a singular region which is, in a way we will make precise, ‘small’.

Section 2 contains technical preliminaries. In Section 3, we pin down some aspects
of the relationship between: (a) b-incompleteness of regions of a given spacetime, and
(b) boundedness and Cauchy incompleteness of metric subspaces of the orthonormal
bundle over that spacetime. More precisely, we prove the following result:

Proposition 1 Let (M, g) be a relativistic spacetime, U be an open subset of M, and otM
be the connected component of the orthonormal frame bundle over (M,g). Then, if there
exists a curve v : [0,a) — M with finite generalised affine length, and no endpoint, whose
image is contained in U, then there exists a b-incomplete singular region V' C U and an open



V C O"M such that: (i) V is bounded, (ii) cl(V) is Cauchy incomplete (both (i) and (ii)

d
understood with respect to any ‘natural’ distance function on O M), and (iii) 7[V] = V.
We also prove the following corollary of Proposition 1:

Corollary 2 Let (M, g) be a relativistic spacetime, U be an open subset of M, and otm
be the connected component of the orthonormal frame bundle over (M, g). Then, if there
exists a curve v : [0,a) — M with finite generalised affine length, no endpoint, and whose
image is contained in U, and {tn},en — @ as n — 0o, then there exists a sequence {Vn }pen
of open subsets of O M such that, for any natural distance function d on O M: (i) each Va
is bounded and cl(V4,) is Cauchy incomplete, (i) Vy, := m(V;,) is a singular region of (M, g)
which contains the image of 7|}, 4), and (iii) the diameter of Vp, tends to zero as n — co.

We also note that the ‘converse’ relationship between Cauchy incompleteness and
b-incompleteness—that any open connected subset of the (connected) orthonormal
frame bundle whose closure is Cauchy incomplete with respect to any choice of the
‘natural’ metric projects onto an open b-incomplete singular region of spacetime—is
a relatively straightforward consequence of a theorem due to Hawking and Ellis [4],
which extends and draws on the results of Schmidt [6],[7].

Even though these results are of conceptual interest, we remark that the proofs
involve little but straightforward metric space theory and rely on techniques and
results that were available by the time Hawking and Ellis published their classical
monograph [4]. Also, it is worth stressing that Schmidt developed the notions of b-
incompleteness and natural distance functions on the frame bundle to propose a new
boundary construction for relativistic spacetimes and identify singularities with points
on that boundary. Our approach, however, is manifestly different: we do not pro-
pose any boundary construction, nor do we identify singularities with any points or
regions. We use the concepts and techniques developed by Schmidt to extract a novel
metric-invariant statement about the ‘localization’ of singular behaviour in an arbi-
trary singular spacetime. Indeed, in Section 4, we briefly discuss to what extent our
results might be interpreted in favour of the claim that singular structure is ‘localizable’
in classical general relativity.

2 Preliminaries

First, we will introduce the notions of generalised affine parameter and b-
incompleteness. Then, we will introduce the notion of ‘natural’ Riemannian metrics
on the orthonormal frame bundle over spacetime [6],[4],[8],[5].

A (relativistic) spacetime is a pair (M,g), where M is a connected, Hausdorft,
smooth 4-manifold, and g is a smooth Lorentz metric of signature (3,1).! We also
assume that (M, g) is time- and space-orientable. This assumption is essential for
Theorem 3 and Proposition 4, but can be dropped for Proposition 1 and Corollary 2
(see n. 4 below).

1See [1] and [9]. We use regular brackets for n-tuples of models and boldface font for tensors (as in [4]).



Let I be a half-open interval [0, a) with 0 < a < co. Given any C! curvey : I — M,
we define the notion of a generalised affine parameter A for v as follows. Given any
basis {e;} for T, M (with 1 <4 < 4), extend this basis to tangent spaces on all of
v[I] by parallel transport (so that {e;|,«)} is a basis of T%,4)M). Then, for any t € I,
any vector X[, in Ty )M can be represented as X[, ) = >, X*(t)€;|)- Now, given
a curve v : I — M with tangent vectors V|, the generalised affine parameter X for
7, relative to the choice of basis {e;|, (o)} for Ty M, is given by:

. 1/2
)\(t):/o (Zv%’ﬁ) dt’,

where V*(t') are components of V|, in the given basis. Importantly, whether the
length of a curve v as defined with respect to a given generalised affine parameter
(known as ‘generalised affine length’) is finite, does not depend on the choice of bases
[4, p. 259]. So, we speak of any curve as having finite, or infinite, generalised affine
length without reliance on any particular choice of bases for the tangent spaces along
the curve. This allows us to say, without any further specification, that a curve = :
I — M is b-incomplete iff it has finite generalised affine length and no endpoint (that
is, there is no point p € M such that for every neighbourhood U of p there exists t € T
where v(t') € U for all ¢ > t). We then say that a spacetime (M, g) is b-incomplete
iff it contains a b-incomplete curve.

Now, let us turn to some basic definitions from the theory of bundles. The frame
bundle FM T M over a spacetime (M, g) is the principal fibre bundle with structure
group GL(4,R), where F'M is the set of all pairs of the form (p, {e;|,}), ranging over
all p € M and all frames {e;],} at p.? Any g € GL(4,R) acts freely on points in
FM from the right by its usual action on the frame. If M is orientable, F'M has two
connected components. From now on, we assume that an orientation on M is chosen,
and we restrict our attention to the positive connected component F+ M of FM and
the structure group acting on it is the component of GL(4, R) connected to the identity.

We say that the lift 7 of a curve v : [0,a) — M at a point u = (7(0), {€i[,(0}) in
F*M is given by the curve 7 : [0,a) — F* M such that: ¥(0) = u, w[y(t)] = ¥(t), and
where the frame at any point 7(¢), for 0 < ¢ < a, is obtained by parallel transport
of {e;|,(0)} from (0), along ~, to ¥(t). In this way, the Levi-Civita connection on M
also provides a connection one-form w on F'TM which, for each u € F*M, gives the
map wy, : Ty FTM — gl(4,R), whereas the frame bundle structure gives the canonical
one-form @ which, for each u € F™M, gives the map 6, : T,F "M — R* [10],[6].

Now, suppose (-, -)gi(4,r) and (-, -)rs+ are Euclidean inner products on gl(4,R) and
R*, respectively. Following Schmidt [6] and Marathe [13], we define a Riemannian
metric h on F* M, relative to a particular choice of inner products, by its pointwise
action on arbitrary vector fields X and Y on FtM, as follows:

h(X,Y)[, = <Wu(X|u)aWu(Y|u)>gl(4,R) + (0u(Xlu), 0u(Yu))re

2For a general definition of a principal fibre bundle, see [10, p. 50]. For some examples of physical interest,
see [11, pp. 221-24]. It is worth mentioning that the projection map for fibre bundles is a submersion, and
therefore open [12, p. 271].



As with any Riemannian metric on a connected manifold, h defines the canonical
distance function d : F*M x FTM — R thereby turning F* M into a metric space
(there is no canonical distance function definable from the metric when the manifold is
not connected—hence our restriction to F*M). We will refer to any thus-constructed
Riemannian metric h as a natural metric on F™M, and to the associated distance
function d, definable from any such metric h, as a natural distance function on F* M.
Such metrics are ‘natural’ in the sense that they are derived from the Levi-Civita
connection on M that is uniquely specified by the metric tensor g on M. Any two
natural metrics h; and hy, which differ over the choice of Euclidean inner products on
gl(4,R) and R*, give rise to uniformly equivalent distance functions d; and ds: that is,
there exist a,b € R™ such that for any u,w € F*M, ady (u, w) < da(u,w) < bdy (u,w)
[6],[8]-

Now, suppose H is a closed Lie subgroup of GL(4,R) and HM ™ M is the prin-
cipal fibre bundle over M with the structure group H. If there is a smooth bundle
morphism ¢ : HM — FM that agrees with bundle projections and commutes with
right actions, and the pullback of the connection on F'M induced by the Levi-Civita
connection on M by ¢ defines a connection on HM, the construction of the natu-
ral Riemannian metrics can be restricted to HM ™2 M [10],[14]. In particular, for
time- and space-orientable spacetimes, the component SO (3, 1) of the Lorentz group
0(3,1) connected to the identity is a closed Lie subgroup of GL(4,R), and the con-

nection on the (connected) orthonormal frame bundle O+ M —% M over spacetime
with structure group SO7T(3,1) can be pulled back from that on FM = M; so we
can restrict our natural Riemannian metric to O M, and define associated distance
functions in the usual way [14],[8].

3 Main result

Now we prove the following result:

Proposition 1 Let (M, g) be a relativistic spacetime, U be an open subset of M, and otM
be the positive connected component of the orthonormal frame bundle over (M, g). Then, if
there exists a curve v : [0,a) — M with finite generalised affine length, and no endpoint,
whose image is contained in U, then there exists a b-incomplete singular region V. C U and
an open V.C OTM such that: (i) V is bounded, (i) cl(V) is Cauchy incomplete (both (i) and
(i) understood with respect to any natural distance function on OT M), and (iii) ©[V] = V.

Proof.

Consider any curve v in (M,g), and the lift 7 of v to O™ M such that: (a) 7(0)
passes through u = (7(0), {ei|,(0)}), and (b) 7(t) passes through (v(t),{ei|()}) for
{eil(t)} obtained by parallel transport of {e;|,()} along 7. Then, the arc length of
7 from the initial point 7(0), as measured by any natural metric h, is equal to the
generalised affine parameter of () with respect to the basis {e;|,)}. So, if v has
finite generalised affine length, then 7 has finite arc length with respect to any h.
Now, assume v : [0,a) — U, for U C M, is a curve with finite generalised affine length
and no endpoint in M. Take any point v = (7(0), {ei|y(0)}) in OTM, and suppose



that the generalised affine length of v with respect to the parallelly propagated basis
{€il(0)} is b. (It follows that the arc length of the lift 7 of v through wu is also equal to
b.) Now, choose a particular natural metric h; on O M with the associated natural
distance function d;, and consider, for any point v € 7, an open ball B.(v) C Ot M
around v of radius e. Then, the set W := UUG,Y «(v) is open in OT M and bounded

above, as a metric subspace of (Ot M, dy), by b+ 2e. It follows that V := 7~ [U]N W
is also open in OTM and bounded above by b + 2¢ in (OTM,d;). Since any two
natural distance functions are uniformly equivalent, these boundedness claims hold
independently of any particular choice of h; (although the bounds might differ). Also,
since the projection map in fibre bundles is open, V := W[V] is an open subset of U;
and it also contains -y, so it is singular in the b-incomplete sense.

Now, given any choice of the natural distance function d, assume, for reductio,
that cl( ) is Cauchy complete with respect to d.> Recall that b is the generalised
affine length of v with respect to the parallely propagated basis {e;|(}, and con-
sider the sequence of points {z,},en+ on 7, where z,, is the lift of the point in +
with generalised affine length b — (b/(2")). This sequence is Cauchy: since for any
c € Rt and any € > 0, there exists N € N* such that 1/2V < €/c, we have it that
for any € > 0, there exist x;, z; with j > i such that d(z;,z;) < b(1/2" —1/27) < e.
Since cl(V) is assumed to be Cauchy complete, it contains the limit z of {z,}. Now,
consider any open neighbourhood W of 7(x) in M. Then, #~![W] will be an open
neighbourhood of z, and will contain infinitely many elements of {z,}, since it will
contain some open ball centred at . Thus, W will contain infinitely many points of
m({x,}), and since the generalised affine length of + is finite, there will be tg such
that W contains 7(t) for any ¢t > t¢. But then, m(x) would be an endpoint of ~,
contrary to our assumption. So, cl(f/) is Cauchy incomplete. (]

Proposition 1 also leads to the following corollary, which shows that, for any sin-
gular spacetime (M, g), one can always find a sequence of subsets in the orthonormal
frame bundle OF M, which project onto singular regions of (M, g), and whose diameter
tends to zero regardless of the choice of the natural distance function on O M.

Corollary 2 Let (M, g) be a relativistic spacetime, U be an open subset of M, and OTM be
the positive connected component of the orthonormal frame bundle over (M, g). Then, if there
exists a curve v : [0,a) — M with finite generalised affine length, no endpoint, and whose
image is contamed in U, and {tn}nen s a sequence in [0,a) such that tn — a as n — oo,
then there exists a sequence {Vn}neN of open subsets of O M such that, for any natural
distance function d on OTM: (i) each Vi, is bounded and cl(Vy) is Cauchy incomplete, (ii)
Vi := m(Vy) is a singular region of (M, g) which contains the image of Yitn,a), and (iii) the

diameter of Vi, tends to zero as n — oo.

Proof.
Choose a particular distance function d; on O M, and for each t, in {t,}, suppose

3Strictly speaking this should be the restriction of d to CI(V), but I omit that for notational hygiene.



that the restriction 7, := 7|, q) of 7 is now the half-curve that witnesses the b-
incompleteness of (M, g), as in the statement of Proposition 1. Proceeding as in the
proof of Proposition 1, construct an open subset V,,, but with an extra requirement
that, for any v € 7z, the open ball B, (v) has radius €, := ¢/n. By Proposition 1,
it follows that Vj, is bounded, cl(V,) is Cauchy incomplete, and V,, := =(V},) is a
singular region containing the image of ~,,. Moreover, these facts hold independently
of our choice of d;. Also, the diameter of V,, is bounded by b, + 2¢, with respect
to di, and it is clear that this tends to zero as n — oo. But since natural distance
functions on O M are uniformly equivalent, these diameters will tend to zero for any
choice of such distance function.* O

One can also derive the ‘converse’ result to Proposition 1, which infers b-
incompleteness of spacetime regions from Cauchy incompleteness of appropriate
bundle subspaces; but, in that case, there is no need to assume that the appropriate
bundle subspace is bounded—hence scare quotes around ‘converse’. To do this, we will
rely on an important theorem due to Hawking and Ellis [4], which extends and draws
on the results of Schmidt [6],[7], and is proved only for O M. It might be considered
a partial Lorentzian surrogate of the Hopf-Rinow theorem:®

Theorem 3 (Schmidt, Hawking and Ellis) A spacetime (M, g) is b-incomplete iff, for any
natural distance function d on O M, (O+M, d) is Cauchy incomplete.

Proof.
See Propositions 8.3.1 and 8.3.2 in Hawking and Ellis [4, pp. 278-82]. O

Then, the right-to-left direction of Theorem 3 allows us to prove the following:

Proposition 4 If V is an open, connected subsel of otMm such that, for some choice of the
natural distance function d, cl(V') is Cauchy incomplete, then [V is a b-incomplete singular
region of M.

Proof.
Suppose cl(V') is Cauchy incomplete with respect to the restriction of some natural
distance function d. Now, let {z,},en+ be a Cauchy sequence witnessing the incom-

pleteness of cl(V). One can approximate this sequence by a Cauchy sequence {y,}

4Note that the proofs of Proposition 1 and Corollary 2 would work just as well for the FT*M Zs M
bundle.

5The Hopf-Rinow theorem states that the following properties of a connected Riemannian manifold
(M, h) are equivalent: (a) (M, h) is geodesically complete, (b) (M, dn), as a metric space, is Cauchy com-
plete, and (c) every closed and bounded subset in (M, dn) is compact. This theorem cannot be generalised
to the Lorentzian setting in any straightforward way. First, unlike in the Riemannian case, there is no
natural distance function definable from the metric tensor that can turn the Lorentzian manifold into a
metric space. Second, there are examples of compact Lorentzian manifolds, such as the Clifton—Pohl torus,
that are geodesically incomplete [9, p. 193]. So, when we say that Theorem 3 might be considered a par-
tial Lorentzian surrogate of the Hopf-Rinow theorem, all we mean is that it relates a certain kind of curve
incompleteness of a manifold with Cauchy incompleteness of a closely related space (somewhat analogously
to the properties (a) and (b) in Hopf-Rinow), even though it says nothing about the Lorenztian surrogate
for the notion of a bounded subset.



in V that also does not converge in cl(f/): let d; := d(x;, z;41) and, for any z;, con-
sider an open ball By, (z;) of radius d; around z;. Since V is open in OTM and thus
a topological manifold, it has no isolated points which ensures that By, (z;) will con-
tain some y; from V. For any such choice of y; and y; 1, the distance d(y;,yit1) is
bounded by 2d; +d;41, so {y,} is Cauchy and approximates {x,, } since d(zn,yn) — 0
as n — 0o (so it also does not converge in cl(V)). Now, we can take {y,} as a wit-
ness of incompleteness of V and apply right-to-left direction of Theorem 3 for W[‘N/]
treated as spacetime on its own (which it can be, since it is connected and open in

M, as 7 is an open map), to get a curve v : [0, 7f,) — 7[V] with finite generalised
affine length and no endpoint in w[V]. But this curve will have no endpoint in cl(x[V])
either, for otherwise {yx} would converge in 7~ ![cl(7[V])]. And in that case, it would

also converge cl(V'), as it is contained in V', contrary to what we have shown. ([

4 Further discussion

Let us now turn to the conceptual moral that one can draw from these results. First,
note that it is a common desideratum for a successful analysis of singular structure
in classical general relativity that it would vindicate the idea that singular struc-
ture is, in some sense, localizable [15],[16]. A particularly forceful and straightforward
way of ensuring localizability is to demonstrate that singular structure is instanti-
ated by objects—singularities—that can be represented by well-defined points on the
boundary of some mathematical space which is structurally apt to represent a possi-
ble physical spacetime described by classical general relativity [17],[6],[18],[19],[20]. As
is well-known, however, such boundary constructions face serious obstacles: some of
them fail to appropriately separate points on the boundary from those in spacetime’s
interior; others misclassify the intuitive cases of singular structure; and yet others pre-
suppose fairly severe causal conditions that a spacetime must meet in order to have a
well-defined boundary [21],[22],[23],[16].

Faced with the obstacles regarding boundary constructions, one might seek a
weaker sense in which singular structure can be localizable. In particular, one might
hope that singular behaviour can be ‘localized’ in a suitably ‘small’ region of space-
time. Then, one could point at such a ‘small’ region and say ‘This is where singular
structure is exhibited’. An immediate idea might be that a region is ‘small’ just in case
it is bounded; but, of course, there is no natural notion of a ‘bounded region’ in the
Lorentzian setting, since the Lorentzian metric does not induce a standard distance
function. Neither is it appropriate to rely on relative compactness: excisions of points
or closed sets from arbitrarily small open regions can result in both geodesic incom-
pleteness and failure of relative compactness, as witnessed most clearly by Minkowski
spacetime with an excised point.°

SNor is it appropriate to rely on the failure of relative compactness of causal diamonds. First, this
cannot happen in globally hyperbolic spacetimes, some of which are singular [1, p. 207]. Second, there are
geodesically complete (and so non-singular) spacetimes which have causal diamonds that are not relatively
compact, such as universal anti de Sitter spacetime [24],[25]. Nor is it appropriate to rely on the technical
notion of ‘b-boundedness’, for any b-complete spacetime is b-bounded [4, p. 292],[8, p. 448].



An alternative notion of a ‘small’ region of a relativistic spacetime is offered by
Proposition 1.7 For that proposition says, roughly speaking, that any singular region
of spacetime will have a singular subregion that can be thought of as the ‘shadow’
of some bounded and incomplete region of the orthonormal frame bundle over that
spacetime (where the latter region is bounded and incomplete according to any natural
way of specifying the metric in the bundle). One could say that we can now ‘localize’
the singular structure by pointing to the ‘shadow’ subregion and claim that this is
where singular structure is localized. This does more justice to the intuition behind
the concept of localizability, because the region we are pointing at is an image of
a bounded region in the bundle under a smooth surjective map. Intuitively, if the
bounded region in the bundle is sufficiently ‘small’, then its image under any smooth
surjection is sufficiently ‘small’ as well. Corollary 2 makes the point even stronger.
For it says, roughly, that for any singular spacetime, we can always find a sequence
of singular regions in that spacetime which approach ‘zero size’ as the b-incomplete
curve they cover ‘approaches the singularity’.

We believe that these results make progress in our understanding of what it might
mean for singular structure in classical general relativity to be ‘localizable’, without
the need to define singularities as boundary points of extended spacetimes. Still, we
must add a qualification: even if there a sense in which the ‘shadow’ regions are ‘small’,
and tend to ‘zero size’, in a well-defined mathematical sense, it is uncertain to what
extent these facts render singular regions ‘localizable’ in a physically meaningful sense.
That is because the physical significance of natural Riemannian metrics on the frame
bundle remains opaque, and whereas the fact that they are derived purely from the
physically meaningful Levi-Civita connection on the spacetime manifold signifies their
naturalness, their wider theoretical and practical applicability remains underexplored.®
We hope, however, that future work will shed light on this issue.
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