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Abstract

Contrary to long-standing textbook doctrine, we demonstrate that the Aharonov-
Bohm (AB) phase for a closed interferometric loop — the relative phase governing
interference — becomes gauge dependent when backreaction of the test charge on
the electromagnetic source is included in a fully quantum treatment. The standard
Stokes-theorem argument fails because different interfering paths become entangled
with distinct field configurations, permitting branch-dependent gauge transforma-
tions. We prove that the total phase decomposes into (1) a gauge-invariant core
tied to the fixed background flux, which fully accounts for the observed interference
shift, and (2) a purely gauge-dependent backreaction term that can be eliminated
by an appropriate gauge choice and carries no observable consequences. This de-
composition follows from a general framework for observables in gauge theories,
which we establish from a foundational axiom that purely gauge-dependent quan-
tities have no observational consequences. From this axiom, we derive theorems
showing that any gauge-dependent quantity contains an extractable gauge-invariant
core that constitutes its measurable content, while the remaining gauge-dependent
component is physically irrelevant. This framework resolves the apparent paradox
between formal gauge dependence and robust experimental observations, and offers
a conceptually sharper understanding of observables in quantum electrodynamics,
non-abelian gauge theories, general relativity, and other gauge-based theories.

1 Introduction

The Aharonov-Bohm (AB) effect stands as one of the most profound and conceptually
challenging phenomena in modern physics 3|, 1, [11], 10, 2]. For over six decades, it has been
celebrated as a paradigmatic demonstration of gauge invariance in quantum theory. The
standard interpretation is elegant and compelling: in the AB setup, a charged particle’s
wave function splits into two paths v; and v, that together form a closed loop I' = vy, —
around a magnetic flux. The relative phase A¢ = e §, A, da" can be expressed via
Stokes’ theorem as A¢ = e fz F,,do*”, where F,, is the gauge-invariant field strength.
This argument has convinced generations of physicists that closed-loop phases in gauge
theories are necessarily gauge invariant.
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However, this reasoning contains a critical hidden assumption: that the electromag-
netic field configuration is independent of the charged particle’s path. In the standard
AB setup, the solenoid current is treated as fixed and unaffected by the electron’s mo-
tion. While this approximation is excellent for most experimental situations, it represents
an incomplete quantum treatment. When one considers the complete quantum electro-
dynamical system—including the backreaction of the electron’s electromagnetic field on
the solenoid—a startling result emerges: the AB phase for the closed loop becomes gauge
dependent.

This surprising finding challenges what has been considered a fundamental principle
of quantum gauge theories. The resolution of this apparent paradox requires a careful
distinction between two fundamentally different physical regimes:

1. The standard AB effect with a fixed classical background field, where all paths
experience the same electromagnetic configuration.

2. The complete quantum treatment with dynamical sources, where different electron
paths induce different responses in the solenoid, creating a quantum superposition
of distinct field configurations.

In this paper, we provide a comprehensive analysis of both regimes, establishing a
new framework for understanding observables in gauge theories. We begin by reviewing
the standard AB effect and proving the gauge invariance of the closed-loop phase in the
fixed-background approximation (Section [2). Section [3] introduces backreaction effects
and demonstrates how the quantum superposition of field configurations leads to gauge
dependence of the phase through branch-dependent gauge transformations. Section
clarifies the distinction between classical gauge transformations and proper quantum
gauge transformations, showing that both approaches confirm the gauge dependence when
backreaction is included.

The core of our analysis is presented in Section [5] where we resolve the apparent con-
tradiction between formal gauge dependence and experimental observations. We estab-
lish a foundational axiom that purely gauge-dependent quantities have no observational
consequences, from which we derive theorems demonstrating that any gauge-dependent
quantity decomposes into a gauge-invariant core (the observable content) and a gauge-
dependent remainder (unobservable). For the AB effect, this yields the decomposition
A¢p = Ay + A(0¢), where A¢y is the gauge-invariant phase associated with fixed back-
ground flux and A(d¢) is the gauge-dependent backreaction contribution. This explains
why experiments measure only the flux-proportional interference shift while the total
phase is formally gauge dependent.

Section [6] extends this framework to other gauge-invariant phenomena, including the
Aharonov-Casher effect, non-abelian AB effects, and gravitational AB effects. Section
examines why this gauge dependence has not been widely recognized, discussing histori-
cal, conceptual, and experimental factors. Finally, Section |8/ summarizes our findings and
discusses implications for gauge theories and future research directions.

Our analysis reveals a profound insight: gauge invariance in quantum theory is not
an absolute principle but rather depends on the physical context. When fields become
dynamical and entangled with matter degrees of freedom, the standard gauge invariance
arguments require careful reexamination. The resulting framework provides a clearer
understanding of what is truly measurable in quantum gauge theories.



2 Standard Aharonov-Bohm Effect

The standard magnetic AB effect considers an electron moving in the presence of an
infinite solenoid carrying a constant magnetic flux ®. The solenoid is assumed to be
perfectly shielded such that the magnetic field B vanishes outside the solenoid, while the
vector potential A does not. The electron’s wave function splits into two paths v, and
9 that form a closed loop I' = 7; — 79 enclosing the solenoid. The AB phase difference
between the two paths is:

A = e%Adex“ =e (/ Al dxt —/ AZdw“) , (1)
r gé! V2

where A} is the vector potential due to the solenoid current j¥, which is assumed fixed
and unaffected by the electron.
Applying Stokes’” theorem to convert the line integral to a surface integral yields:

Ap = e%Adea:“ = e/ F,dat, (2)
r s

where X is any surface bounded by I', and F};, = 9,A4; — 0, Aj, is the electromagnetic field
strength. Since F, is gauge invariant, the phase difference A¢ is gauge invariant. An
alternative proof considers the effect of a gauge transformation A, — A, + d,A on the
phase. Suppose the two paths 7; and 75 connect the same source point S to the same
detector point D. The phase along each individual path transforms as:

¢i = di +e[AD) — A(S)], i=1,2 (3)
Consequently, the relative phase transforms as:
Ap = Ag + e ([A(D) — A(S)] = [A(D) = A(S)]) = Ag. (4)

Thus, the AB phase difference—and hence the interference pattern—remains invariant
under gauge transformations.

Both proofs rely on the critical assumption that the solenoid current j# is unaffected
by the electron’s presence, and thus the electromagnetic field configuration Aj is fixed and
identical for both paths. This assumption corresponds to treating the electromagnetic
field as a classical background field rather than a dynamical quantum entity. While
this approximation is excellent for most experimental setups, it represents an incomplete
quantum treatment. The full quantum electrodynamical system includes backreaction:
the electron’s electromagnetic field perturbs the solenoid current, which in turn affects
the total electromagnetic field. This leads to the surprising results explored in the next
section.

3 Aharonov-Bohm Effect with Back-Reaction

When backreaction is included, the electromagnetic field becomes quantum dynamical.
Different electron paths induce different responses in the solenoid, leading to entanglement
between the electron’s path and the electromagnetic field state. The complete quantum
state is:

v) (I} sol) [ARD) + ) [solz) [ AF2)) (5)
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where |7;) represents the electron along path ~;, [sol;) represents the solenoid state re-
sponding to path ~;, and |A/(f)> represents the electromagnetic field configuration asso-
ciated with path 7;. Crucially, |A/(})> and |A£L2)> are different physical field configura-
tions—they are distinct quantum states of the electromagnetic field. This represents a
quantum superposition of field configurations, not merely different paths through the
same field.

In the quantum superposition regime, the notion of gauge transformation must be
reconsidered. Because A,(}) and Aff) are distinct field configurations in the superposition,
they can be transformed independently. This leads to branch-dependent gauge transfor-
mations, namely applying different A;(z) to each branch:

[0) = —= (™ ) lsolu) | ALY + 9uhs) + €2 |na) [sola) | AR + 9, A2)) (6)
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where A; and A, are independent functions. Mathematically, branch-dependent transfor-
mations are allowed because A,(}) and ALQ) are different points in the configuration space
A. The gauge group acts independently on each configuration. Physically, this corre-
sponds to using different gauge conventions to describe different physical situations—just
as different experimental setups may use different coordinate systems.

Now consider the electron traveling from source S to detector D along two paths v,
and 7,. The phase accumulated along each path in the presence of its associated field
configuration is:

O; = e/ Al(f)dx“. (7)
i
Under a branch-dependent gauge transformation:
AW — AW 4 9,4, (8)
the phase transforms as:
¢i = ¢i + e [Ni(D) — Ai(5)] (9)

and the AB phase difference transforms as:
A¢ — A¢ +e[(M(D) = As(D)) — (A1(S) — Aa(9))] - (10)

The key observation is that if A; and A, are independent, then A;(D) — Ay(D) and
A1(S) — A2(S) can be chosen arbitrarily. In particular, we can choose A; and Ay such
that:

(A(D) = Ax(D)) = (A1(5) = As(S5)) # 0. (11)

This demonstrates that the AB phase shift for a closed loop becomes gauge dependent
when backreaction creates a quantum superposition of field configurations.

Note that the standard Stokes argument fails because the two interfering paths couple
to distinct gauge potentials, Al(tl) and AE?). Their phase difference f71 Aftl)d:v“— fw Af)d:v“
cannot be expressed as a closed-loop integral of any single 1-form, so no common surface
flux exists to which Stokes” theorem could apply. Consequently, the gauge-invariance
proof based on converting the line integral into a flux integral breaks down.



4 Quantum Gauge Transformations in QED

The analysis in Section |3| demonstrated that the AB phase becomes gauge dependent
when backreaction is included, using a branch-dependent gauge transformation argu-
ment. However, to establish this result rigorously within quantum field theory (QFT),
we must clarify what constitutes a valid gauge transformation in the quantum context.
Classical gauge transformations, while intuitive and useful in semiclassical contexts, are
mathematically inconsistent in full quantum electrodynamics. The correct implementa-
tion of gauge symmetry in QFT involves changes of gauge-fixing conditions in the path
integral, which transform the photon propagator in a specific, translationally invariant
manner. This section provides a systematic treatment of gauge transformations in QED,
distinguishes between classical and quantum implementations, and demonstrates how
proper quantum gauge transformations confirm the gauge dependence of the AB phase
in the presence of backreaction.

4.1 Incomnsistency of Classical Gauge Transformations in QFT

Classical gauge transformations of the form A,(z) — A, (x)+0,A(z) with an arbitrary c-
number function A(x) are fundamental in classical electrodynamics, where they represent
a redundancy in the mathematical description of the same physical electromagnetic field.
However, when one attempts to apply such transformations directly in QFT, significant
inconsistencies emerge.

In QED, the photon propagator D, (x —y) = (0|T'A,(x)A,(y)|0) is derived from a
gauge-fixed action, typically using a covariant gauge condition such as d,A" = 0 with
gauge-fixing parameter £. A naive application of a classical gauge shift to the quantum
propagator yields:

Dl (,y) = Dun(x — y) + O OUA(@)A(y)]. (12)

This transformed propagator violates the fundamental principle of translational invari-
ance (unless A is constant), as it depends separately on x and y rather than their difference
x —y. Moreover, it shifts the expectation value (A4,) from zero to d,A. This breaks the
consistency of the gauge-fixed quantum action and does not correspond to a symmetry
of the quantized theory.

The fundamental issue is that classical gauge transformations treat the gauge function
A(x) as an external c-number field, whereas in QFT, gauge transformations must pre-
serve the structure of correlation functions and respect the gauge-fixing conditions that
define the quantum theory. Thus, classical gauge transformations are not valid symmetry
operations in QFT; they instead correspond to adding external classical potentials rather
than changing the description of the same quantum system.

4.2 Proper Quantum Gauge Transformations

The correct implementation of gauge symmetry in QFT is through changes of gauge-
fixing conditions in the path integral formulation. In covariant gauges, the gauge-fixed
Lagrangian includes a term —%(@A“)Q, where £ is the gauge-fixing parameter. Changing
from one gauge condition to another (e.g., from & to ¢’) transforms the photon propagator
in a specific, translationally invariant manner.



In momentum space, the transformation takes the form:

. . —1 k. k
D' (k) =D, (k) + ——(& — &)L~ 1
,uu() 'u<)+]€2+26(€ 5) kQ (3)
This can be written in the general form:
D, (k) = Dy (k) + kuk, F(K), (14)
where F (k) is a function of k?. In position space, this becomes:
Dj(x —y) = Dyu(x —y) + 0,00 F(z — y), (15)

with F(x — y) translationally invariant. This transformation preserves the structure of
the theory and represents a genuine change of gauge in the quantum context, leaving all
physical observables invariant when applied consistently throughout the calculation.
The key distinction from classical gauge transformations is that quantum gauge trans-
formations maintain translational invariance and respect the gauge-fixed structure of the
path integral. They represent proper symmetry operations that connect equivalent de-
scriptions of the same quantum system, whereas classical gauge transformations do not.

4.3 Relationship Between Classical and Quantum Transforma-
tions

Despite their formal inconsistency in QFT, classical gauge transformations can be un-
derstood as a restricted subclass of proper quantum transformations under specific con-
ditions. This explains why classical reasoning often yields correct results in semiclassical
approximations.

If we consider a classical gauge function A(x) that is a linear functional of the current:

Ax) = / YOV (z — )7 (y), (16)

then the classical shift A, — A, + d,A produces the same propagator transformation as
the quantum gauge-fixing change in Eq. . In this case, the classical transformation
happens to preserve the structure of correlation functions, making it compatible with the
quantum theory.

This relationship clarifies why the semiclassical treatment of the AB effect, which
uses classical gauge transformations, correctly predicts gauge invariance for closed loops
in the fixed-background approximation. However, when backreaction is included and
different paths become entangled with distinct field configurations, the simple classical
reasoning breaks down. The effective gauge function becomes path-dependent through its
functional dependence on the source currents, leading to the gauge dependence identified
in Section 3B

Thus, while classical gauge transformations can serve as a useful heuristic in certain
limits, they must be replaced by proper quantum gauge transformations when analyzing
the full quantum system with dynamical fields and backreaction.



4.4 Confirming Gauge Dependence with Quantum Gauge Trans-
formations

We now provide an explicit demonstration that the AB phase for a closed loop becomes
gauge dependent when backreaction is included, using the framework of proper quantum
gauge transformations. The crucial insight is that the corresponding classical gauge
function A(z) becomes path-dependent through its functional dependence on the source
currents.

The interaction term contributing to the phase along path ~ is

ol =e [ s [ aly )@ Do - ) 1w a7)
Under a proper quantum gauge transformation of the photon propagator
Dy (x —y) — Du(r —y)+0,00F (z —y), (18)
the phase acquires the additional term
Bo) =e [ s [ty b)) (000F @~ )i b)) (19)

Using the definition of the effective gauge function already introduced in the previous
subsection,

Afa) = [ dyarFe - ) ). 20

we can immediately rewrite the double integral as
Ao = e [ dte bl 3, (o) £

This is the same as the classical expression. For a point-like electron, we obtain

Ag[y] = e[A, (D) — Ay(5)], (22)

where S and D are the source and detector points/regions. For a closed loop containing
two paths v; and 7., the AB phase changes by

8(Aan) = Adfn] — Adfa] = e (A, (D) = 4,,(9)) = (An(D) = A (9)]. (23)

Because backreaction makes the induced solenoid current path-dependent, j¥[v1] # j7%[2],
and therefore the effective gauge functions are different:

Ap(@) # Ale) for 31 # 7. (24)
As a result, the boundary terms no longer cancel and
6(Adag) # 0. (25)

Moreover, since F'(x —y) can be chosen freely (within the class of translationally invariant
functions), this shift can be made arbitrarily large.



4.5 Summary

The quantum electrodynamical treatment given in this Section provides a more funda-
mental and explicit proof of gauge dependence of the AB phase compared to the branch-
dependent argument in Section [3] While the branch-dependent approach physically
motivates the possibility of independent gauge choices on different paths, the present
calculation rigorously derives the non-invariance from the structure of the gauge-fixed
propagator transformation and the resulting current-dependent A, (x).

Concretely speaking, proper quantum gauge transformations in QED are implemented
globally: a single, translationally invariant function F'(z — y) modifies the photon propa-
gator throughout the theory[l] The path dependence necessary to produce a non-vanishing
relative shift 0(A¢@ap) arises naturally from the path-dependent induced currents 05%[v]
themselves, which lead to different effective gauge functions A, (z) even when the same
F(x—y) is used for the entire system. This provides a rigorous and consistent demonstra-
tion within the QFT framework that the relative AB phase is genuinely gauge dependent
when backreaction is included.

5 Resolving the Paradox: A Framework for Observ-
ables in Gauge Theories

The previous analysis of the AB effect with backreaction presents a significant conceptual
challenge. On the one hand, the analysis in Sections|3|and 4| rigorously demonstrates that
the AB phase accumulated for a closed loop becomes gauge dependent in the full quan-
tum electrodynamical treatment with dynamical sources. On the other hand, decades
of experimental observations consistently measure interference shifts proportional to the
enclosed magnetic flux ®y, which are universally interpreted as gauge-invariant phenom-
ena. This apparent contradiction between theoretical formalism and experimental reality
requires careful resolution.

The paradox arises from conflicting interpretations of what constitutes an observable
in gauge theories. The standard textbook treatment emphasizes that closed-loop phases
must be gauge invariant by Stokes’ theorem, but this argument implicitly assumes a fixed
background field configuration. When this assumption is relaxed to include backreaction
effects, the mathematical structure changes fundamentally: different interfering paths
become entangled with distinct field configurations, permitting branch-dependent gauge
transformations that render the total phase gauge dependent. Yet experiments continue
to measure unambiguous, reproducible results. This tension motivates a deeper examina-
tion of the relationship between gauge dependence and observability in quantum gauge
theories.

5.1 Foundational Axiom: Unobservability of Pure Gauge Terms

At the heart of all gauge theories lies a fundamental principle: gauge transformations
represent redundant descriptions of the same physical reality. Different gauge choices
correspond to different coordinate systems or mathematical representations of identical

!Note that the use of a single, global F(x — y) is required because proper quantum gauge trans-
formations act on the entire gauge-fixed path integral and photon propagator, preserving translational
invariance and the structure of the theory across all field configurations and branches of the superposition.



physical configurations. This redundancy is not merely a mathematical convenience but
a defining feature of gauge theories that enables their formulation while maintaining
physical consistency. From this foundational principle follows a crucial axiom that governs
the interpretation of all gauge-dependent quantities:

Axiom (Observational Insignificance of Pure Gauge): Any quantity
that transforms non-trivially under gauge transformations and possesses no
gauge-invariant content cannot have observational consequences. If such a
quantity could affect measurements, then physical predictions would depend
on arbitrary gauge choices, violating the redundancy principle that defines
gauge theories.

This axiom represents the minimal condition necessary for gauge theories to describe
physical reality rather than mathematical artifacts. It is implicitly assumed in all con-
sistent formulations of gauge theories, from classical electrodynamics to quantum field
theory and general relativity. The axiom does not claim that gauge-dependent quanti-
ties are mathematically ill-defined or physically meaningless; rather, it asserts that their
physical significance is necessarily mediated through their relationship to gauge-invariant
components. Any observable effect must ultimately be expressible in terms of quantities
that remain unchanged under gauge transformations.

The justification for this axiom is both pragmatic and fundamental. Pragmatically,
if physical predictions depended on gauge choices, experiments would yield inconsistent
results when different researchers used different gauges to analyze the same phenomenon.
Fundamentally, gauge symmetry represents a redundancy in our mathematical descrip-
tion of reality, not a symmetry of the physical world itself. Observable quantities must
therefore be invariant under such redundancies, just as measurable distances in geometry
must be independent of coordinate system choices.

5.2 Derived Theorem from the Foundational Axiom

From this foundational axiom, we derive the central theorem that establishes the rela-
tionship between gauge dependence and observability. This theorem provides the logical
framework for resolving the AB paradox and for understanding observables in gauge
theories more generally.

Theorem 1 (Invariant Core as Observable Content). For any quantity Qo that can be
decomposed as Qiotal = Qinv + Q gauge; where Q iy 15 gauge-invariant and Q gauge 15 purely
gauge-dependent, the observable value of Qiotar 1S exactly Qiny.

Proof. Let M be any physical measurement. By the foundational axiom, the purely
gauge-dependent quantity QQgause has no observational consequences. Therefore, adding
Qgauge 10 Qiny cannot change the measurement outcome:

M(Qinv + anuge) = M(Qinv)-

Since Qtotal = Qinv + Quauge, this means M (Qiota1) = M (Qiny). Hence, every measurement
yields the same result for Qioa as for Qi alone, proving that the observable content of

Qtotal is Qinv- [



This theorem provides the crucial link between formally gauge-dependent expressions
and their observable content. It demonstrates that when a quantity can be separated
into invariant and purely gauge-dependent parts, only the invariant part contributes to
physical measurements.

A straightforward application of this theorem occurs in the standard semiclassical
treatment of the AB effect (without backaction). Consider two open paths y; and 7,
with distinct endpoints, as may occur during an electron interferometer. The total phase
difference between the two paths comprises two distinct contributions: the AB phase,
arising from the line integral of the vector potential A along the paths, and the kinetic
phase, stemming from differences in travel velocity. In the WKB approximation, the total
phase accumulated along a trajectory « is given by the action

1
Grotal = / (émv2 +eA - V> dt. (26)
il
The phase difference thus decomposes as

Adiotal = AP + Ain, (27)

where Agap = € (f71 A - dx — fw A - dx) and A¢yin = fm smuidt — fw smv?dt. Under

a gauge transformation A — A 4 Vy, the AB term shifts by e[x(x1) — x(x2)] (where x;
and X, are the end points of the two paths, respectively), rendering it gauge-dependent,
while the kinetic phase A¢y, is gauge-invariant. By Theorem 1, the observable part of
Adiotal 18 Adrin. This explains why, for open paths, the AB phase is not observable, yet
the kinetic phase remains fully observable through nonlocal correlation measurements

5, 16, [7].

5.3 Application to the AB Effect with Backreaction

With the general framework established, we now apply it to resolve the specific paradox
in the AB effect with backreaction.

For the AB effect with backreaction, the total phase accumulated along a path ~
can be expressed in terms of the interaction between the electron current and the total
electromagnetic field. Using the linearity of the interaction and the separation of the
solenoid current into fixed background and induced components, we obtain:

¢l =e / d'z / d*y ji[)(@) D (z = y) [0 (y) + 05 ()] (28)

where jY, is the fixed background solenoid current (independent of the electron path),
and §j”[v] is the backreaction current induced by the electron’s electromagnetic field,
which depends on the specific path 7. This naturally decomposes into two components:

-~

obl=e [ & [ dyittl@Dute—niaw +e [ a'e [ atyibl@ Dz —u)sitblw).
$o 6]

ol]

(29)

The first term, ¢y[7], depends only on the fixed background current j%,. The second term,
d¢[v], involves the path-dependent induced current §;5¥[7].

10



We now consider the relative phase between two paths y; and 7, forming a closed
loop I' = 71 — 2. The relative phase governing the interference pattern is:

AQstotal = ¢[’Yl] - QS[/Y?] = A¢0 + A(5¢)’ (30)

where A¢y = ¢o[711] — dol12] and A(6p) = dp|[y1] — 0¢[y2]. As established in previous
sections, the relative phase A¢y is manifestly gauge invariant, and A(d¢) is purely gauge
dependent, carrying no invariant physical content. Thus, the total relative phase can
be separated into a gauge-invariant core A¢y (proportional to the background magnetic
flux) and a gauge-dependent backreaction term A(J¢).

The decomposition precisely fits the structure of Theorem 1, with A¢y as the
gauge-invariant core and A(d¢) as the purely gauge-dependent remainder. Applying
Theorem 1, we conclude that the observable interference shift is exactly A¢g = e®y,
where @ is the magnetic flux enclosed by the loop 71 —~2. The backreaction contribution
d(Ag) is purely gauge-dependent and therefore unobservable.

This resolves the apparent paradox completely. The formal gauge dependence of the
total phase Aioral is real but physically irrelevant: it affects only the unobservable com-
ponent 6(A¢). Experimental measurements necessarily probe only the gauge-invariant
core A¢g, which remains robust and unambiguous regardless of gauge choices or backre-
action effects.

5.4 Philosophical and Conceptual Implications

The decomposition framework developed in this section reveals a profound rethinking of
how observables emerge in gauge theories. Rather than being primitive entities defined ab
initio as gauge-invariant objects, observables are shown to arise naturally as the invariant
cores of more general gauge-dependent quantities. This represents a significant conceptual
shift: instead of viewing gauge invariance as a rigid constraint to be imposed on all
physical quantities, we now recognize it as a structural feature that emerges through
careful decomposition of gauge-dependent quantities.

This perspective resolves a longstanding tension in the interpretation of gauge theo-
ries. Traditional approaches often treat gauge-dependent quantities as physically mean-
ingless, requiring purification through elaborate constructions of gauge-invariant observ-
ables. Our framework demonstrates that gauge-dependent quantities are not deficient
but rather contain within them both physical content (the gauge-invariant core) and
mathematical redundancy (the gauge-dependent remainder). The observable physics is
not something external to these quantities but is encoded within them, waiting to be
extracted through appropriate decomposition.

This decomposition approach also clarifies the relationship between mathematical de-
scription and physical measurement in gauge theories. When we have a gauge-dependent
quantity, we do not have something unphysical; rather, we have a complete mathemati-
cal description that contains both physical information and representational redundancy.
The process of measurement effectively projects out the invariant core, discarding the
gauge-dependent remainder. This projection is not arbitrary but follows from the funda-
mental axiom of gauge theories and the nature of physical interactions.

Finally, this understanding provides practical guidance for theoretical physics. When
faced with a gauge-dependent quantity, we need not abandon it as unphysical. Instead,
we can systematically decompose it to extract its invariant core, which will correspond
to observable effects. The AB effect, long viewed as a paradigm of gauge invariance, thus

11



serves as a gateway to a more nuanced understanding of gauge principles in quantum
theory. This approach is particularly valuable in QFT and general relativity, where gauge
(or coordinate) dependence is ubiquitous. By embracing gauge dependence as a feature
rather than a bug, we gain access to powerful mathematical tools while maintaining clear
connections to observable physics.

6 Extensions to Other Gauge-Invariant Phenomena

The discovery that the AB phase becomes gauge dependent when backreaction is included
raises important questions about other gauge-invariant phenomena. In this section, we
identify and analyze phenomena that share the structural characteristics necessary for
similar revisions.

6.1 Criteria for AB-Type Revisions

The gauge dependence mechanism identified in the AB effect relies on a specific structural
feature: the observable phase is a relative phase between quantum-superposed branches
(physically distinct interfering paths), and backreaction entangles those branches with
distinct field configurations. This entanglement permits branch-dependent gauge trans-
formations (independent gauge choices A; on each branch), rendering the total relative
phase gauge-dependent while the experimentally relevant contribution decomposes into
a gauge-invariant core and an unobservable, gaugable-away backreaction term.
We therefore adopt the following strict criterion for an AB-type revision:

AB-type gauge dependence arises if and only if a phase is a relative phase
between quantum-superposed branches and the gauge transformation required
to compare those branches is branch-dependent due to backreaction.

Only phenomena satisfying this condition exhibit the same direct form of gauge depen-
dence as analyzed for the AB effect. Other gauge/geometric invariants may still be
influenced by backreaction and entanglement, but typically preserve invariance for single
closed contours or single-branch evolutions.

6.2 Phenomena Exhibiting Similar Gauge Dependence

The following cases share the essential interfering-branch structure of the AB effect and
thus require the same revision.

6.2.1 The Aharonov-Casher Effect

The Aharonov-Casher (AC) effect is the direct dual of the AB effect: a neutral parti-
cle with magnetic moment interferes after traversing two paths around a line of electric
charge. The phase shift is a relative phase between the superposed paths. When the
charge line is treated as dynamical (full quantum treatment), backreaction from the par-
ticle’s magnetic field perturbs the source, entangling the two paths with distinct electric
field configurations. This permits branch-dependent gauge transformations on the scalar
potential, making the total relative phase gauge-dependent. The decomposition approach
applies analogously: the observable interference is determined by a gauge-invariant core
proportional to the enclosed electric flux, with the backreaction term unobservable.

12



6.2.2 Non-Abelian AB Effects

In fundamental Yang—Mills theories such as QCD, the analog of the AB phase for a closed
loop I' is encoded in the Wilson loop operator

Wl = TrPexp(igj{AZ(x)Tadx“), (31)

where AST, is a Lie-algebra-valued connection, g is the coupling constant, and 7, are the
generators of the gauge group. In the fixed-background approximation, the gauge field
is taken to be a classical configuration Aj,. The AB phase is then given directly by the
phase of the classical Wilson loop

Wh[l'] = TrPexp(igéAgu(x)Tadx“>, (32)

which is a gauge-invariant complex number.

When backreaction is included, the gauge field becomes dynamical and the two inter-
fering paths become entangled with distinct field configurations. This permits branch-dependent
gauge transformations—independent gauge transformations on each path. The observ-
able quantity in the full quantum treatment is the expectation value of the Wilson loop
operator:

(W[L)) == <TrPexp<ig?€AZ(:r)Tadx“>>, (33)

where the expectation value is taken over the quantum gauge field, including backreaction.
Following the decomposition framework, we write (W/[I']) in polar form:

(WIL]) = (W) | exp(i®eall]), (34)
where @[] is the effective (total) phase. This phase decomposes additively as:
q)eff[r] = (I)core [F] + CIDgauge [F]

The gauge-invariant core is defined as
Doore[[] 1= arg(WU [F]) = arg(TrPeXp(igj(I{AgMTadx“)) (35)
r

This is precisely the phase of the fixed-background Wilson loop. It is manifestly gauge-invariant
and reduces to the standard non-Abelian AB phase. It constitutes the observable inter-
ference shift. The gauge-dependent backreaction contribution is defined as

<Tr[U(72)1U(%)]>A)
Woll'] '

Pyange[l'] := arg( (36)
This term encodes all effects of branch-dependent backreaction. It transforms non-trivially
under gauge transformations and can be shifted arbitrarily by gauge choice. By the foun-
dational axiom, it carries no observational consequences and is unobservable.

Thus, the measurable interference pattern is determined solely by the gauge-invariant
core @.qe[['], which corresponds to the AB phase computed from the fixed background
flux. The gauge-dependent term ®guuee[l'] is unobservable and can be gauged away.
This decomposition provides a non-Abelian generalization of the result derived for the
electromagnetic AB effect.
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In analog non-Abelian systems—such as condensed matter, cold atoms, or photonic
lattices that simulate non-Abelian gauge fields—the “gauge field” is typically externally
imposed and non-dynamical. It represents a fixed classical parameter in the effective
Hamiltonian and does not respond dynamically to the particle’s motion. There is no
backreaction, no entanglement between the particle’s path and the gauge configuration,
and therefore no possibility of branch-dependent gauge transformations. Consequently,
the standard picture of a gauge-invariant phase determined by the Wilson loop remains
valid without revision.

6.2.3 Gravitational AB Effect

The gravitational AB (GAB) effect refers to a quantum phase shift acquired by particles
traveling along different paths in a gravitational field, even in regions where the gravi-
tational force or spacetime curvature vanishes locally along the trajectories. The GAB
phase may arise from the scalar gravitational potential or from the enclosed gravitomag-
netic flux generated by rotating masses.

In the standard semiclassical treatment—where the gravitational source is treated as
fixed and classical, and the metric is an unperturbed background—the GAB phase is
diffeomorphism-invariant. The observable interference shift is determined by coordinate-
independent quantities: the integrated proper-time difference for the scalar case, or the
holonomy associated with the gravitomagnetic connection for the rotating case.

However, when backreaction is considered in a fully dynamical treatment of gravity
(e.g., perturbative quantum gravity), the test particle’s stress-energy perturbs the met-
ric. In an interferometric superposition, the different paths could in principle become en-
tangled with distinct metric configurations, allowing branch-dependent diffeomorphisms
(independent coordinate choices on each branch). This would render the total relative
phase formally diffeomorphism-dependent. Following the framework developed for the
electromagnetic AB effect, the phase would decompose into a diffeomorphism-invariant
core, proportional to the enclosed gravitational potential difference (scalar) or gravito-
magnetic flux (vector) of the fixed background, and a purely diffeomorphism-dependent
backreaction term that carries no observational content and can be eliminated by an ap-
propriate coordinate choice. The observable interference would then be governed solely
by the invariant core.

6.3 Summary

To summarize, the AB-type gauge dependence mechanism is tied to the interference
of physically distinct quantum paths entangled with distinct field configurations. The
AC effect, non-abelian AB variants, and gravitational AB effect fully satisfy this cri-
terion. The broader principle—that formally gauge-dependent quantities often contain
observable gauge-invariant cores—remains applicable across gauge theories, even when
backreaction does not induce branch-dependent gauge transformations.
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7 Why This Gauge Dependence Remained Unrecog-
nized

The result that the total closed-loop AB phase becomes gauge dependent in a fully quan-
tum electrodynamical treatment with dynamical sources and backreaction—while de-
composing into an observable gauge-invariant core and an unobservable gauge-dependent
backreaction term—may appear surprising in light of the long-standing textbook consen-
sus on gauge invariance. After all, quantum entanglement, backreaction, and the sub-
tleties of gauge transformations in QFT are well-established concepts. Yet this specific
implication for closed-loop phases has remained largely unemphasized in the literature
for over six decades. In this section, we examine the historical, conceptual, experimental,
and theoretical reasons for this persistent oversight.

7.1 Historical and Conceptual Reliance on Semiclassical Ap-
proximations

The original proposal by Aharonov and Bohm in 1959 [I] (and the earlier independent
derivation by Ehrenberg and Siday in 1949 [3]) was framed within a semiclassical context:
the electromagnetic source (e.g., solenoid) is treated as a fixed classical background with
infinite mass or rigidity, so that the probe particle exerts no backreaction on it. In
this limit, all interfering paths experience the identical field configuration, and Stokes’
theorem applies directly, converting the line integral of the vector potential to a surface
integral of the gauge-invariant field strength. Gauge invariance for closed loops follows
immediately, and the phase shift is proportional to the enclosed magnetic flux—a result
that matches experimental observations perfectly.

This semiclassical idealization became the standard paradigm in textbooks and review
articles. The approximation is extraordinarily accurate for macroscopic setups, where
backreaction effects are suppressed by enormous factors. As a consequence, the need
to consider full quantization of the source, with its attendant entanglement between
electron paths and distinct field configurations, was rarely pursued. The conceptual
shift to branch-dependent gauge transformations in superpositions of field states was not
necessary for practical calculations, so it remained unexplored in mainstream treatments.

7.2 Theoretical Dogma and Focus on Gauge Invariance as a
Principle

Gauge invariance is one of the most cherished principles in modern physics, underpinning
the construction of all fundamental gauge theories (QED, QCD, electroweak theory, etc.).
Textbooks and foundational works emphasize that physical observables must be gauge
invariant, with the AB effect often cited as the paradigmatic demonstration that closed-
loop phases are invariant via Stokes’ theorem. This created a strong conceptual bias:
questioning invariance for closed loops felt like challenging a bedrock principle without
compelling reason.

When critiques of the standard picture appeared, they typically focused on open paths
or on locality debates [12], 9] [4]. Hayashi [8] explicitly demonstrated gauge dependence of
the AB phase in a QED framework but concluded that invariance holds for closed loops.
These works advanced the discussion but did not extend the analysis to closed loops
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under full backreaction with entanglement and superposition of field configurations—the
key step that reveals the decomposition into invariant core and dependent term.

The distinction between classical gauge shifts (inconsistent in QFT) and proper quan-
tum gauge-fixing changes (Section further obscured the issue. Many analyses re-
mained within semiclassical or approximate QED frameworks that implicitly retained
fixed sources, missing the path-dependent effective gauge functions A,(z) that cause
boundary terms to fail to cancel in the relative phase.

7.3 Delayed Recognition of Entanglement in Dynamical Gauge
Fields

While particle entanglement has been intensively studied since the 1980s (e.g., Bell tests),
the entanglement of probe degrees of freedom with dynamical gauge field configurations
received less attention until the 2000s-2010s, driven by advances in quantum optics,
condensed matter analogs, and holographic duality. In standard QED pedagogy, the
electromagnetic field is often treated as external or in the vacuum state, so the possibility
of path-dependent superpositions of field states (enabling branch-dependent gauges) was
not foregrounded in AB discussions.

Only with the rise of quantum technologies and renewed interest in foundational issues
(e.g., the role of potentials, locality in gauge theories) has the full quantum treatment
gained traction. Recent works and related critiques highlight gauge dependence in QED
frameworks, but the synthesis into a general principle—of gauge-dependent quantities
containing observable invariant cores—has been rare until now.

In summary, the oversight stems from a powerful combination of excellent approxi-
mations that match experiment, the sanctity of gauge invariance as a guiding principle,
the practical invisibility of backreaction in traditional setups, and the historical focus on
fixed-background treatments. The present analysis, by explicitly incorporating backre-
action, entanglement, and the decomposition approach, reveals a subtler structure that
resolves apparent paradoxes while preserving agreement with observations. This per-
spective invites a reevaluation of gauge invariance in quantum gauge theories not as
an absolute rule, but as context-dependent—holding rigorously only when sources are
effectively classical.

8 Conclusion and Future Directions

In this work, we have systematically analyzed the gauge transformation properties of the
AB phase when backreaction effects are included in a fully quantum treatment. Our inves-
tigation reveals that the conventional wisdom regarding gauge invariance of closed-loop
phases requires significant revision, and establishes a new framework for understanding
observables in gauge theories.

The key findings of our analysis can be summarized as follows. First, when back-
reaction is properly accounted for in quantum electrodynamics, different electron paths
become entangled with distinct electromagnetic field configurations. This entanglement
permits branch-dependent gauge transformations that render the total AB phase for a
closed loop genuinely gauge dependent. This result challenges the textbook claim that
closed-loop phases are necessarily gauge invariant via Stokes’ theorem, demonstrating
instead that this invariance holds only in the fixed-background approximation where all
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paths experience identical field configurations.

Second, we have established a rigorous framework for understanding observables in
gauge theories. Beginning from the fundamental axiom that purely gauge-dependent
quantities cannot have observational consequences, we derived theorems showing that
any gauge-dependent quantity decomposes into a gauge-invariant core (which constitutes
its observable content) and a gauge-dependent remainder (which is unobservable and can
be eliminated by gauge choice). For the AB effect, this decomposition takes the specific
form A¢ = A¢y + A(d¢), where Ay is the gauge-invariant phase associated with fixed
background flux and A(d¢) is the gauge-dependent backreaction contribution.

Third, this decomposition resolves the apparent paradox between the formal gauge
dependence of the total phase and the experimentally observed flux-proportional inter-
ference shifts. Experiments necessarily measure only the gauge-invariant core A¢q, while
the gauge-dependent backreaction term A(d¢) represents an unobservable mathematical
artifact. The robust experimental confirmation of AB interference thus provides empirical
support for the gauge-invariant core while remaining insensitive to the gauge-dependent
remainder.

The implications of this work extend well beyond the specific context of the AB effect.
Our decomposition framework provides a general approach for extracting physical observ-
ables from gauge-dependent formalisms across various domains of theoretical physics. In
QFT, the approach clarifies how observables emerge from gauge-dependent correlation
functions and Wilson lines. It provides conceptual clarity for interpreting quantities that
are formally gauge dependent yet yield unambiguous physical predictions when their
invariant cores are properly identified. In general relativity and gravitational physics,
the framework offers insight into the nature of observables in diffeomorphism-invariant
theories. Coordinate-dependent quantities can be understood as containing invariant
cores that correspond to measurable effects, with coordinate artifacts playing the role of
gauge-dependent remainders.

Philosophically, this work challenges the traditional view that gauge dependence is
merely a mathematical nuisance to be eliminated. Instead, gauge dependence serves a
constructive role in revealing the separation between invariant cores and gauge-dependent
remainders. This perspective shifts the focus from insisting on gauge invariance as an
absolute requirement to identifying invariant structures through physically motivated
decompositions.

Several promising directions for future research emerge from this work. Experimental
tests could be designed to probe the decomposition more directly, particularly in regimes
where backreaction effects become non-negligible. Theoretical extensions could apply the
decomposition framework to non-abelian gauge theories like QCD, where similar issues
arise in the interpretation of Wilson loops and confinement. Applications to quantum
gravity could explore how observable spacetime structure emerges from gauge-dependent
(diffeomorphism-dependent) descriptions. Foundational investigations could further ex-
plore the relationship between gauge symmetry, entanglement, and the emergence of
observables in quantum theories.

In conclusion, our analysis demonstrates that gauge invariance in quantum theory is
more nuanced than traditionally assumed. The AB effect, long celebrated as a paradigm
of gauge invariance, actually reveals the limitations of this principle when systems are
treated fully quantum mechanically. By recognizing that gauge-dependent quantities
contain within them invariant cores that encode observable physics, we gain a more so-
phisticated understanding of what is truly measurable in gauge theories. This perspective
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not only resolves specific paradoxes but also enriches our understanding of how mathe-
matical structures in theoretical physics encode physical reality, providing a clearer path
forward for interpreting observables in gauge theories across the spectrum of modern
physics.
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