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Abstract. An agent is inequity averse if their preferences reflect a distaste for material
inequality. Inequity aversion is of both scientific and philosophical interest. In behavioral
economics, it is central to popular explanations of “anomalous” behavior in resource-division
games. In social and political philosophy, it is of interest because it embodies an egalitarian
approach to distributive bargaining. We use the indirect evolutionary approach, an extension
of standard evolutionary game theory, to consider whether inequity aversion can survive
competition with selfishness under natural dynamics like social learning and Darwinian
evolution. In particular, we study evolution in populations playing a variant of the Nash
demand game, a popular model of bargaining. Unlike related extant work, we assume that
individuals play the base game repeatedly within their lifetimes, learning as they do. The
central result is that, under a broad range of assumptions about the evolutionary dynamics
and the initial population state, inequity aversion goes to fixation in populations comprising
both inequity averse and selfish agents. Incorporating learning turns out to be crucial to the
evolutionary result. The model thus supports two conclusions. First, egalitarian attitudes
can survive and proliferate in competition with selfish ones. Second, in applying the indirect
evolutionary approach, integrating intragenerational learning can influence the evolutionary
dynamics in important ways.

1. Introduction

Fairness is a topic of perennial philosophical interest. It has also attracted significant
attention in economics, much of which has been directed toward experiments on resource-
division games. In these experiments, subjects play games in which their choices determine
how much of some material good—typically money—each will receive. Although there is
significant cultural variation in the behavior observed in such games (Henrich et al. 1991),
one cross-culturally robust finding is that subjects’ choices routinely seem to violate the
assumption that players choose so as to maximize their own material gain. In some games,
subjects consistently turn down free money (see Güth and Kocher 2014). In others, they give
away money they could instead keep without consequence (Engel 2011). In still others, they
show a strong bias favoring equal splits that cannot be explained by appealing to standard
assumptions about rationality and selfishness alone (Skyrms 1996, ch. 1).
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These and similar findings have been interpreted as evidence that human choice reflects
a concern for more than material self interest: we also care about fairness. Although this is
a familiar feature of our psychology, it raises puzzles for economists and biologists, since fair
behavior is often costly—for example, in ultimatum games, where acting fairly sometimes
involves turning down freely-offered resources.1 What explains the prevalence of a psycholog-
ical disposition that appears to straightforwardly conflict with its bearer’s material interests?

One approach to explaining our concern for fairness uses tools from evolutionary game
theory to identify conditions under which fair behavior is likely to be selected for under bio-
logical or cultural evolution. Evolutionary game theoretic models consider large populations
of individuals each pre-programmed to choose some strategy in a base game. Members of
the population repeatedly play the base game with randomly assigned partners. Over time,
some individuals reproduce and others die off, with the Darwinian fitness for each strategy
being proportional to the average payoff for its adopters in the base game, relative to the
current population state. Evolution is modeled with a selection dynamics that describes
rates of change for the proportion of the population playing each strategy in terms in terms
of that strategy’s fitness. Random mutation might also be modeled. Standard evolutionary
game theoretic analysis is concerned with identifying population states that are evolution-
arily significant because they have special stability properties or are reliably reached and
settled on from a large range of initial population states.

A well-known example from the evolution of fairness literature is Nowak et al. (2000).
They show that fair behavior in the ultimatum game can evolve in populations where pro-
posers have access to information about the past play of responders. The evolutionary success
of fair behavior is due to fairminded responders developing a reputation for rejecting small
offers which induces Responders to make larger offers against them than they would against
players with a history of accepting low offers. For an evolutionary game theoretic approach
to fairness in the Nash demand game, a classic reference is Skyrms (1996). Skyrms uses
computer simulations to compare the evolutionary significance of the various stable popu-
lation states for the Nash demand game under the replicator dynamics, a popular model of
evolution in games. He finds that, under a broad range of conditions, the state in which all
players demand half evolves from a larger share of initial states than the other asymmetric
stable states (Skyrms 1996, 20-22).

In these models, selection operates directly on strategies in the base game. The standard
interpretation, mentioned above, is that members of the population are equipped with all-or-
nothing dispositions to choose a particular strategy. What if we want to model populations
of more sophisticated agents, whose behavior is dictated flexibly by their preferences and

1For an overview of the puzzles concerning rationality and evolution raised by these findings, see Debove et
al. (2016)
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beliefs? In considering fairness, one motivation for developing such a model is that a popular
approach explains fair behavior as a consequence of preferences that reflect a “taste for
fairness” (see, e.g., Fehr and Schmidt 1999, Fehr and Schmidt 2002, Bolton and Ockenfels
2000). On such accounts, fair behavior is explained as expected-utility-maximizing choice for
an agent whose utilities are sensitive to fairness-relevant features of distributive outcomes,
in addition to their own material interests. How might we model the evolution of these sorts
of preferences?

The indirect evolutionary approach, introduced in Güth and Yaari (1992), provides a
framework for doing just this. The key innovation, explicated in greater detail in the next
section, is to define a base game in terms of two distinct payoff functions: first, the players’
subjective utilities, which represent the profiles of preferences on which selection operates,
and, second, the underlying material payoffs the players receive under each strategy profile,
which are assumed to be proportional to Darwinian fitness. While players are assumed to
choose intragenerationally according to their subjective payoffs, the intergenerational rate
of change for each preference type’s share of the population is determined by the average
material payoff to players with those preferences.

The present project uses the indirect evolutionary approach to model the evolution of
a taste for fairness in the context of the Nash demand game. In the model, a taste for
fairness is operationalized in terms of inequity aversion, that is, preferences that disfavor
material inequality among players. We find that, in populations comprising both inequity
averse agents and materially self-interested ones, a large class of selective dynamics strongly
favors the inequity averse type. More precisely, the inequity averse type will take over the
population under any payoff monotone dynamics, as long as the inequity-averse type has
non-zero proportional representation in the initial population state. This result is further
supported by simulations of evolution in finite populations, reported in the Appendix.

As is discussed in the next section, applying the indirect evolutionary approach frame-
work to issues of fairness is not novel. But unlike extant work in this vein, my project uses a
model of inductive learning in games (specifically, fictitious play) to estimate the fitnesses of
different types of preferences in a given population state. This is in contrast to the standard
approach, which uses solution concepts from classical game theory—in particular, the Nash
equilibrium and its refinements—to predict intragenerational play and calculate the average
material payoffs players with different kinds of preferences will receive in different population
states. The central evolutionary result, mentioned above, depends crucially on the use of a
learning model to estimate intragenerational payoffs. There is a methodological moral here:
in the context of the indirect evolutionary approach, considering intragenerational learning
can have important consequences for a model’s evolutionary results.



4

Section 2 introduces the indirect evolutionary approach and reviews extant applications
of that approach to issues of fairness. Section 3 defines the base bargaining game, as well as
the two kinds of preferences whose evolution we will consider: fairminded preferences, which
exhibit inequity aversion, and Homo Economicus preferences, which reflect material self-
interest alone. Section 4 provides a static analysis of the base game as played by agents with
these two kinds of preferences. Section 5 introduces fictitious play, the model of learning used
to estimate intragenerational material payoffs, and gives results for simulations of fictitious
play learning for all preference-type pairings. Section 6 uses these simulation results to model
evolution in populations of inequity averse and selfish individuals and shows that the central
evolutionary result, mentioned above, follows from a well-known theorem in evolutionary
game theory. Section 7 discusses some interpretational issues and concludes.

2. Fairness and the Indirect Evolutionary Approach

The indirect evolutionary approach is a framework for modeling the evolution of pref-
erences in populations of rational choosers. An indirect evolutionary game is played by a
large population of rational agents, each typed according to the preferences governing their
choice behavior in a specified base game. In each generation, the members of the population
are randomly paired to play the base game, with players choosing according to the prefer-
ences associated with their type. It is assumed that material resources are at stake in the
base game, and that the players’ preferences, represented by numerical utilities, need not
be identical with these.2 We assume further that these material payoffs are proportional
to Darwinian fitness and that intergenerational selection operates on the preference-defined
types, so that the rate at which a type grows in the population is a function of the average
material payoff to individuals of that type in a given population state. An indirect evolution-
ary game thus involves a dual payoff structure: while the type-dependent subjective utilities
determine individuals’ choices in intra-generational play, it is the material consequences of
those choices that dictate the rate at which types are reproduced intergenerationally.

Typically, solution concepts from classical game theory, especially the Nash equilibrium
and its refinements, are used to predict which strategies individuals of each type will choose
against each other type in the base game (see Königstein and Müller 2000, p. 239). Crucially,
the chosen solution concept is applied to the game defined by the players’ subjective utilities.
With determinate predictions about how individuals will play under each possible pairing
of types, the modeler can construct an evolutionary game in which the space of strategies is
the set of types in the population and the payoff matrix is filled in with the material payoffs
induced by the strategies predicted by the classical equilibrium analysis. Then, standard

2Since standard measures of subjective (preference-representing) utility are interval-scaled, “identical with”
in this context is to be read as “linear in.”



5

evolutionary game theoretic methods (e.g., identifying evolutionary stable strategies) can be
applied to the derived evolutionary game to study how the population will evolve in terms
of the proportional shares of the preference-defined types.

The literature applying the indirect evolutionary approach to issues of fairness dates back
to Güth and Yaari (1992). They consider the ultimatum game, showing that preferences sup-
porting rejecting small offers and proposing relatively large offers can outcompete materially
self-interested preferences in populations comprising the two types. In their model, the evo-
lutionary success of the fairness-concerned type depends crucially on the fact that players can
observe their partner’s type. Huck and Oechssler (1996) relax this assumption, showing that
punishment of lowball offers in a simplified variant of the ultimatum game can persist when
players know only the empirical distribution of types in the population. Subsequent work has
extended these models in multiple directions. Berninghaus et al. (2007), for example, model
the evolution of reciprocity and inequity concerns in populations playing both an ultimatum
game and the closely-related dictator game, while Güth and Pull (2004) consider evolution
in populations comprising “equity-driven” and “strategic” individuals playing the Nash de-
mand game, on the assumption that players always choose strategy profiles corresponding
to Nash’s axiomatic bargaining solution (Nash 1950).

Kim and Lee (2023) offer a different model of the evolution of fairness in the Nash demand
game. They consider populations playing a variant of that game in which the total stock to
be divided is unknown to the players and alternating offers are allowed. Following earlier
work, populations comprise two types, one self-interested and the other fairness-concerned.
Kim and Lee explicate concern for fairness in terms of inequity aversion. Inequity aversion,
introduced by Fehr and Schmidt (1999) as an explanation for experimental behavior in
ultimatum games, refers to any pattern of preferences which reflects a distaste for material
inequality. Kim and Lee find that inequity aversion evolves when players know their partner’s
type but that this result is not robust against introducing uncertainty about partner type.

As in Kim and Lee’s project, the present paper considers the evolution of fairness in the
context of a variant of the Nash demand game, where fairness is explicated in terms of in-
equity aversion. The main innovation concerns the method used to predict intragenerational
play among types. Extant work predicts intragenerational play using classical solution con-
cepts. The present model instead assumes players learn how to play with randomly-chosen
partners with whom they repeatedly interact in blocks of bargaining problems. An individ-
ual’s fitness is proportional to the average material payoffs they receive in these blocks. Both
the relative speeds at which different pairs of types learn equilibria in the base game and the
relative frequencies with which the different equilibria are learned are crucial to the central
evolutionary result of the paper. Both are consequences of intragenerational learning. There
is a methodological moral here: in the context of indirect evolutionary models, introducing
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learning can lead to population-level outcomes that could not have been predicted with static
solution concepts alone.

Appealing to learning in explaining fair behavior in resource-division games is not with-
out precedent. Roth and Erev (1995) show that fair behavior can emerge and stabilize
in pairs of simple reinforcement learners playing repeated ultimatum games. Camerer and
Ho (1999) suggest that their Experience-Weighted Attraction Learning, a form of reinforce-
ment learning that is sensitive to counterfactual as well as actual payoffs, could similarly
explain behavior observed in ultimatum game experiments. Mengel (2012) considers how
subgame-imperfect play in the ultimatum game could arise in a model where players facing
multiple similar bargaining games learn how to categorize those games as they play. The
novelty of the present approach lies in its integration of learning and evolutionary dynamics
in explaining how fairness might evolve. Rather than showing that learning produces fair
behavior directly, it shows that learners with fairminded preferences tend to fare better ma-
terially than selfish ones in blocks of repeated bargaining games, and so those preferences
are selected for evolutionarily.

It is worth noting that there is significant scholarly disagreement about the role of in-
equity aversion in explaining fair behavior (see Bergh (2008) and Binmore and Shaked (2010)
for critical treatments). Reasons of space prevent a detailed discussion of the difficult empir-
ical questions raised in that literature. Happily, the interest of the present project does not
depend on settling those questions. If inequity aversion is indeed responsible for important
kinds of fair behavior, then the question of its evolutionary origins is of obvious scientific
interest. But even if inequity aversion is very uncommon or explanatorily insignificant in
connection with fair behavior, investigating its evolutionary prospects in competition with
selfishness may be of interest to social and political philosophers. There are longstanding
debates in the history of political thought about the status of material self-interest as a mo-
tive for action. There are views on which some form of selfishness is an immutable feature of
human nature that ought to constrain institutional choice. Others see the motivational role
of self-interest as itself significantly shaped by social and economic institutions, holding that
egalitarian or altruistic attitudes could (or did, or would) proliferate under the appropriate
social or material conditions. Investigating the possibility of egalitarian preferences surviving
natural dynamic processes like social learning or Darwinian evolution in competition with
selfishness is a useful first step in approaching these debates. Moreover, the methodological
moral mentioned above, concerning the significance of intragenerational learning vis-a-vis the
indirect evolutionary approach, does not depend on the prevalence or behavioral significance
of inequity aversion.
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3. The Stage Game

The resource-division game we consider is a variant of the Nash demand game.3 In our
game, two players make competing demands on a fixed stock of some good. The set of
possible demands is the same for each player, and we assume it contains just three elements:
l, m, and h (for “low,” “medium,” and “high”). The value of m is always equal to half the
quantity of the good available, and we assume that l and h together perfectly divide the
resource. Each player chooses how much to demand without knowing what their partner
will choose. We will use (di, dj) to denote the pair of demands chosen by i and j.

Each player then receives a share determined by both their own demand and that of their
partner. To facilitate developing an indirect evolutionary model, we must describe the game
in terms of both the players’ material payoffs and their subjective utilities. The material
payoffs are described by a pair of objective payoff functions πi and πj defined on the space
possible pairs of demands, where πi(di, dj) is the number of units of the good i receives in
the event that i demands di and j demands dj. Each player gets the share they demanded
if the sum of the players’ demands does not exceed the total quantity of the good available;
otherwise, the players have made incompatible demands, thereby realizing the disagreement
point in which neither player gets anything.4

The subjective utilities are captured by a pair of functions ui and uj, also defined on
the possible pairs of demands, where ui(di, dj) gives the subjective utility i attaches to the
outcome resulting from i demanding di and j demanding dj. Unlike the material payoffs,
which represent quantities of a physical good, the payoffs captured by ui are just a numerical
representation of an agent’s preferences. The kinds of distributive preferences evolution acts
on correspond will be captured by different assumptions about how a player’s subjective
utility function related to the underlying objective payoffs in the game.

We consider two types of players: Homo Economicus (HE) and Fairminded (FM). An
HE player’s subjective utilities depend only on the objective payoffs they receive for each pair
of demands; that is, if player i is an HE type, then ui is a function of πi. This entails that
an HE player’s utilities are independent of the objective payoff received by their bargaining
partner. This is a key feature of the standard homo economicus model of choice: “economic
man” cares only about the material payoffs he receives in different outcomes.

For HE players, we assume the simplest functional relationship between objective and
subjective payoffs, such that for HE player i, ui = πi. Note that since VNM utilities are
interval scaled, any linear transformation of ui is equivalent to ui as a representation of player

3For more on the Nash demand game, see Nash 1950, Skyrms 1996.
4More general models of bargaining allow for non-zero payoffs at the disagreement point. Payoff asymmetries
between the players at the disagreement point can also be modeled. See, e.g., O’Connor (2019), Bruner
(2022).
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FM
l m h

HE
l (2.5, 2.5) (2.5, 4.375) (2.5, 6.25)
m (5, 1.875) (5, 5) (0, 0)
h (7.5, 1.25) (0, 0) (0, 0)

Table 1. Subjective payoff matrix for the bargaining game defined by (l, m, h) =
(2.5, 5, 7.5), played by an HE and a fairminded player (α = 0.25).

FM
l m h

FM
l (2.5, 2.5) (1.875, 4.375) (1.25, 6.25)
m (4.375, 1.875) (5, 5) (0, 0)
h (6.25, 1.25) (0, 0) (0, 0)

Table 2. Subjective payoff matrix for the bargaining game defined by (l, m, h) =
(2.5, 5, 7.5), played by two FM players (α = 0.25).

i’s preferences. So, we say an HE player’s utility function is linear in units of the good to be
divided.5

By contrast, if player i is Fairminded, their subjective utilities cannot be represented as
a function of their own material payoffs alone. An FM player’s utilities are a function of both
their own material payoff and the material payoff to their partner. If player i is Fairminded,
then for every pair of demands (di, dj) (where j is i’s bargaining partner),

ui (di, dj) = πi(di, dj) − α|(πi (di, dj) − πj (di, dj) |

where α > 0. The idea is that, other things equal, an FM player likes an outcome less
the larger the inequality between what they receive and what their partner receives in that
outcome. More precisely, this rule discounts the utility of an outcome by an amount pro-
portional to the magnitude of the material inequality prevailing in that outcome, with no
discounting applied to outcomes in which the players receive equal amounts of the good.

A Nash equilibrium of a game is an assignment of strategies, one for each player, such
that no player could realize a strictly greater payoff by unilaterally deviating from their
assigned strategy. In bargaining games, the strategies are demand levels, so in our game a
5I also studied a variant of the model with subjective utility functions that reflect diminishing marginal
utility in objective payoff. In this treatment, subjective utilities for HE players are given by ui(di, dj) =
ln(πi(di, dj)) and subjective utilities for FM players are given by ui (di, dj) = ln(πi(di, dj))−α|ln(πi (di, dj))−
ln(πj (di, dj))|. See Appendix 8.4 for details concerning the indirect evolutionary game played by a population
of players with such utility functions.
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HE
l m h

HE
l (2.5, 2.5) (2.5, 5) (2.5, 7.5)
m (5, 2.5) (5, 5) (0, 0)
h (7.5, 2.5) (0, 0) (0, 0)

Table 3. Subjective payoff matrix for the bargaining game defined by (l, m, h) =
(2.5, 5, 7.5), played by two HE players.

strategy profile is just a pair of demands. We are interested in the Nash equilibria defined
by players’ subjective utilities, rather than objective payoffs, since the subjective utilities are
what guide their choices. When α = 0.25 for the FM type, there are three Nash equilibria
for all type pairings: (m, m), (h, l), and (l, h). When α ≥ 0.5, the equilibria for FM–HE and
FM–FM pairings change. Appendix 8.2 provides details.

4. Static Analysis

Before modeling learning—and, later, evolution—for HE and FM agents, it will be
helpful to consider the choice behavior of each type of player as a function of their be-
liefs about their partner’s strategy. All results reported here are for the bargaining game
with demand levels (l, m, h) = (2.5, 5, 7.5). Games with demand levels given by (l, h) ∈
{(1, 9), (2, 8), (3, 7), (4, 6)} (with m = 5) were also tested.6

We assume our players are expected utility maximizers. That is, a player’s choice in
the stage game is determined by their subjective utility function and a probability function
describing their uncertainty concerning how their partner will choose, such that they always
choose a strategy that maximizes the utility they expect to receive, given their beliefs.
Figures 1 and 2 plot the optimal strategy relative to each possible set of beliefs about one’s
partner’s demand for the two types we consider. The visualization works as follows. Consider
the set containing all triples defining possible probability distributions (pi(l), pi(m), pi(h)) of
player i’s degrees of belief over her partner j’s available strategies in the bargaining game.
Since probabilities must sum to one, we can infer the probability of the third strategy if we
know the probabilities for the other two. This allows us to represent the space of possible
probability distributions two-dimensionally by projecting each point (x1, x2, x3) down to the
point (x1, x2). The result is an equilateral triangle with vertices corresponding to belief
states in which the player is certain that their partner will make a certain demand. Points
in the interior of the triangle represent belief states in which they are uncertain about their
partner’s demand.

6See Appendix 8.4 for details.
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For a given utility function u and demand level d, we can represent the set of belief states
relative to which d maximizes expected utility with the set of all points (x1, x2) ∈ R2 such
that d maximizes expected utility relative to the probability function given by: p(m) = x1,
p(h) = x2, p(l) = 1 − (x1 + x2). Figures 1 and 2 record, for each type, the ranges of
credal states in which players of that type will choose each strategy (given the specified
parameters). This information is represented by filling in different regions of the triangle
representing possible belief states with different colors corresponding to the available demand
levels. The yellow region includes all the belief states in which a rational chooser makes the
low demand, the orange region covers all the belief states in which they make the medium
demand, and the red region consists of the belief states in which they make the high demand.
In Figure 1, for example, the point at (1

3 , 1
3) is orange, meaning that if the focal agent thought

it equally like that their partner would choose any of the three available demands, they would
make the medium demand.

Figure 1. Expected-utility-maximizing choices for an HE agent in the stage game
with demand levels (l, m, h) = (2.5, 5, 7.5).

Figure 2. Expected-utility-maximizing choices for a Fairminded agent (α = 0.25)
in the stage game with demand levels (l, m, h) = (2.5, 5, 7.5).
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Figure 1 assumes an HE-type utility function and Figure 2 assumes an FM type with
α = 0.25. Comparing these figures reveals that there is a smaller range of credal states
relative to which an FM player will choose either l or h as compared with an HE player.
This is intuitive: since an FM player prefers outcomes that minimize material inequality,
they will choose the unique demand compatible with an equal split more often than will a
player that cares only about their own material gain. As α increases, the share of the space
of possible credal states for which m maximizes expected utility grows. When α ≥ 0.5, the
low demand maximizes expected utility for an FM player only when they are certain their
partner will choose high.

5. The Learning Model

To model evolution in a population of learners, we must specify a learning dynamics
and estimate how much material payoff each type will get, on average, in each possible
type pairing. These estimates will allow us to calculate mean objective payoffs for each type
relative to any population state and so to model the evolutionary dynamics of a population of
FM and HE agents, on the assumption that fitness is determined by objective payoffs. The
main advantage in moving to a learning model in estimating within-generation objective
payoffs is psychological realism. Classical solution concepts make strong rationality and
knowledge assumptions about players, while simple models of inductive learning require
much less of the agents that implement them. In particular, the model of learning we
adopt here does not require that players have knowledge of their partner’s rationality, their
partner’s type, or the type proportions in the current population state.

It is assumed that players learn by fictitious play, a simple and widely used model of
inductive learning in games. Fictitious play is a best-response dynamics (see Fudenberg and
Levine 1998). This means that a fictitious play learner is rational in the Bayesian sense:
they always choose a strategy that maximizes expected utility given their beliefs about their
partner’s strategy. The dynamical content of fictitious play is given by a rule specifying
how each player’s credences evolve over time as a function of their experience. The rule
can be modeled with balls and urns. Maintaining the assumption of a two-player game, a
fictitious play learner’s probabilities can be represented with an urn containing balls with
labels 1, 2, ..., k, where qi(t) denotes the number of i-labeled balls in the urn at time t. The
agent’s credence that their partner chooses strategy si at t is given by

p(si) = qi(t)∑k
j=1 qj(t)

The initial contents of the urn q1(0), q2(0), ..., qk(0) correspond to the learner’s prior proba-
bilities, which represent their pre-play assumptions about how their partner will choose. As
the game is repeated, the contents of their urn are updated according to the following rule:
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qi(t + 1) =

qi(t) if partner did not choose si at t.

qi(t) + 1 if partner chose si at t.
In terms of balls and urns, the rule just says that the player adds an i-labeled ball to her
urn whenever her partner chooses strategy si. At each timestep, she chooses a strategy that
maximizes expected (subjective) utility relative to the beliefs given by the contents of her
urn.

The main motivation for using fictitious play as a model of learning is that it is equivalent
to Bayesian inference under two conditions: (1) the learner assumes their partner’s choices
are well-modeled by a sequence of independent and identically distributed random variables
with a fixed but unknown distribution, and (2) the learner’s prior over candidate partner-
play-generating distributions is Dirichlet distributed.7 It is worth noting that at every step
in the repeated game, each player chooses only the demand to they will make at that step. In
particular, they cannot adopt more sophisticated diachronic strategies that require planning.

Another property of fictitious play is significant for our model. Every strict Nash equilib-
rium is an absorbing state of a fictitious play process. This means that, if a strategy profile
is a Nash equilibrium, then once that strategy profile is realized on some timestep, it will
be realized on every subsequent timestep (see Proposition 2.1 in chapter 2 of Fudenberg and
Levine (1998)).

We use fictitious play learning to estimate lifetime objective payoffs for HE and FM
individuals in an evolving population. We assume that each agent’s lifetime comprises a
fifty-period repeated game with a partner chosen at random from the population. The
agents learn by fictitious play. And at the end of their lifetime, they reproduce at a rate
determined by the total quantity of objective payoff they accrued with their partner, with
offspring inheriting their distributive preferences.

To estimate lifetime material payoffs, we ran computer simulations. In considering their
results, we are mainly interested in comparing the cumulative objective payoffs that players of
each type typically receive in a given run. Of course, the absolute values are not meaningful
here, since the objective payoffs have not been given a concrete interpretation. But their
relative values will be crucial for getting results for the evolutionary model.

Each simulated run consisted of a series of 50 plays of a repeated bargaining game in
which players learned by fictitious play. As above, results are reported for the game with
demand levels (l, m, h) = (2.5, 5, 7.5). For each run, the players’ prior probabilities are chosen
randomly and independently. Specifically, for each player, three random numbers in the unit
interval are chosen to serve as initial weights ql(0), qm(0), qh(0), where the prior probability

7See Chapter 2 of Fudenberg and Levine 1998 for details.
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p is defined by
p(s) = qs(t)∑

s′∈S qs′(t) ,

for all strategies s ∈ S = {l, m, h}. The evolution of the player’s beliefs is described by the
fictitious play dynamics, so that

qi(t + 1) =

qi(t) if partner did not choose si at t.

qi(t) + k if partner chose si at t.

with k = 0.02.8 Holding initial propensities fixed, larger k corresponds to faster learning
and smaller k corresponds to slower learning. The discounting factors α for FM players were
varied between the values {0.25, 0.5, 0.75, 1}.9

For each assignment of parameters, we collected results for 105 runs. As long as α = 0.25,
the Nash equilibria (relative to the players’ subjective utilities) of the base game for all
pairings of player types (HE–HE, HE–FM, FM–FM) are the same. In particular, (m, m),
(h, l), and (l, h) are the Nash equilibria. For pairings involving an FM player with α > 0.25,
the equilibria change. See Appendix 8.2 for details. Since every Nash equilibrium is an
absorbing state under fictitious play, once the players play a pair of strategies that constitute
a Nash equilibrium, they will always choose that strategy profile in subsequent play.

We recorded the strategy profile chosen on the final play of each run to determine whether
an equilibrium had been reached on that run and, if it had, whether that equilibrium was
more favorable to one or the other of the players.10 We also recorded the cumulative objective
payoffs for each player on each run. For a given player and run, the cumulative objective
payoff is calculated by taking the sum of the objective payoffs the player received in each
play of that run. This value reflects more than just the final state a pair of players reached
in a run; it also depends on the payoffs realized in early play prior to the players reaching
an equilibrium.

When an HE agent plays another HE agent, the (m, m) equilibrium is realized on about
82% of runs. The rest of the time—aside from a handful of exceptions in which the players
fail to learn any equilibrium–an (l, h) or (h, l) equilibrium is reached, with each occurring in
roughly 9% of runs. On average, an equilibrium is learned in about 6.1 timesteps. The mean
cumulative payoff for an HE player paired with another HE player is approximately 228.

8If we want to preserve the aptness of the balls-and-urns interpretation, we can set k = 1 and multiply the
initial weights by 50.
9See table 7 in the Appendix for estimated lifetime material payoffs for the parameter settings not discussed
in this section.
10If the strategy profile on the final play was not a Nash equilibrium, then the players had never chosen an
equilibrium strategy profile on that run; otherwise, they would have played that equilibrium profile on every
play after the first time it was chosen.
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The dynamics are very different when the game is played by a HE player and an FM one.
Results for these pairings are recorded in Table 3. The equilibrium realized column reports the
proportion of runs on which the players converged to each Nash equilibrium, while the mean
cumulative objective payoffs column records mean total of objective payoffs received across
the 50–play run for agents of each type, rounded to the nearest whole number. The mean
time-to-convergence column records how many timesteps, on average, it took players in each
batch of runs to learn an equilibrium. Notice that, in these runs, the egalitarian convention
is again the most common outcome, occurring in about 90% of runs for α = 0.25. Larger
α corresponds to a larger share of runs ending in an (m, m) equilibrium. When α ≥ 0.5,
no run ended in an (h, l) strategy profile favoring the HE player. This is unsurprising, since
choosing l never maximizes expected utility for an FM player when α ≥ 0.5.

Table 4. Homo Economicus/Fairminded Pairings

α equilibrium realized: (dHE , dF M )
mean cumulative
objective payoffs

mean conv.
time

(m,m) (h,l) (l,h) other HE FM
0.25 0.898 0.021 0.072 0.009 223 236 4.87
0.5 0.943 0 0.048 0.009 226 239 4.39
0.75 0.971 0 0.024 0.005 230 240 4.18

1 1 0 0 0 235 240 4.12
Results for simulated fictitious play learning in 50–play blocks of repeated

bargaining games (HE/FM pairings).

Pairings comprising two FM players exhibited the strongest tendency toward the egal-
itarian equilibrium. For α = 0.25, about 95% of runs ended with equal splits. That value
rises as α increases, with all runs ending in the egalitarian equilibrium when α = 1. This
is because making the medium demand maximizes expected utility unless the player is ab-
solutely certain that their partner will demand either low or high, for an FM player with
α = 1.

Notice that, for any fixed α, FM players receive a higher mean cumulative payoff when
paired with other FM players than do HE players paired with FM players. And in FM–HE
pairings, the FM players receive a higher mean cumulative payoff than HE players as well.

FM agents outperform HE agents in HE–FM matchups because the players are more
likely to learn the equilibrium that favors the FM player than the one that favors the HE
player, in the unlikely event that they do not learn the egalitarian equilibrium. The reason
for this asymmetry has to do with differences in how the strategic behavior of players of
the two types depends on their beliefs. In order for the players to land in an inequitable
equilibrium, there has to be some timestep on which the high demand maximizes expected
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Table 5. Fairminded/Fairminded Pairings

α
proportion of runs ending in

(m,m) equilibrium
mean cumulative

obj. payoff
mean time to
convergence

0.25 0.949 234 2.76
0.5 0.984 241 1.04
0.75 0.996 247 0.31

1 1 250 0
Results for simulated fictitious play learning in 50–play blocks of repeated

bargaining games (FM/FM pairings).

utility for one player and the low demand maximizes expected utility for the other. Figures
1 and 2 show that the high demand is a best response relative to a slightly larger set of belief
states for an HE player than for an FM one. Similarly, there is a larger range of credal states
for which the low demand is a best response for an HE player as compared with an FM one,
only here the difference is much larger—relative to an HE player, an FM player must place
very high probability on their partner making the high demand in order for demanding low
to be a best response. As a result, the HE–FM pairs more often realize a state in which the
FM player demands high and the HE player demands low than vice versa.

The reason for the difference in mean objective payoff between FM–FM and HE–HE
pairings is different. Here, the explanation has to do with how quickly each kind of pairing
reaches an equilibrium under the learning dynamics. In FM–FM pairings (with α = 0.25),
the players reach an equilibrium strategy profile just over three timesteps earlier than players
in HE–HE matchups do, on average. The reason this difference matters is that when a pair
plays a non-Nash strategy profile at some time step, some amount of the resource being split
goes to waste. At the disagreement point, the players jointly receive zero units of objective
payoff; in the (l, l) outcome, 2m − 2l of the resource goes to no one. So, slower convergence
to an equilibrium in pairings of agents of the same type corresponds to smaller mean payoff
for players of that type.

The quicker convergence in FM–FM matchups is explained by the fact that the medium
demand is the optimal choice relative to most possible credal states for an FM player, on
all values for α tested. Only relatively extreme credal states (i.e., those which place a large
probability mass on their partner making a low demand) support a low or high demand
as a best response. As a consequence, when two FM players meet, they are likely quickly
coordinate on the egalitarian equilibrium. By contrast, the best response for a HE player is
more sensitive to the player’s beliefs (as reflected in the more equal distribution of colors in
Figure 1), resulting in more failures to coordinate on a Nash strategy profile in early play.
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6. Evolutionary Analysis

The next step is to use the simulation results from the learning model to construct a
payoff matrix in which the strategies labeling rows and columns are the HE and FM types and
the payoffs in each cell are the expected per-block payoffs for the corresponding pair of types.
Then, following the usual practice on the indirect evolutionary approach, we apply standard
evolutionary game theoretic tools to study the evolution of the two types of preferences. We
begin by qualitatively describing the evolutionary setting.

We assume consider an effectively infinite population comprising both HE and FM in-
dividuals. Each individual is initially assigned a random partner from the population, and
their lifetime comprises a fifty-period repeated bargaining game played with that partner.
When two players meet, their prior probabilities over each other’s strategies are chosen at
random, and each player learns by fictitious play. The proportions of HE and FM players
evolve under a selection dynamics, with fitness determined by material payoffs. In particular,
the fitness associated with each type is equal to the expected material payoff to an individual
with that type’s preferences over a 50-play block against a randomly-selected member of the
current population. A type’s fitness thus depends on two factors: first, how much material
payoff an individual of that type can expect to get in a block of play against an individual
of each possible type, and, second, the proportion of the population comprising each type.

Since pairing is random and the population is very large, we assume that the average
per-block objective payoff for, say, HE-type individuals in interactions with, say, FM-type
individuals is equal to the mean per-block cumulative objective payoffs reported for HE–FM
pairings in the simulations of the learning model discussed above. Of course, this will hold
for all type pairings (HE–HE, FM–HE, FM–FM). Thus, we will use the simulation results
for the learning model as estimates of the average cumulative per-block objective payoffs for
each pairing of types in the evolutionary model. Let E[π(i, j)] denote the expected objective
payoff for an i-type agent in a 50-play iterated game played with a j-type agent. Estimates
of this value for each type pairing, with α = 0.25, are as follows:

E[π(HE, HE)] = 228

E[π(HE, FM)] = 223

E[π(FM, HE)] = 236

E[π(FM, FM)] = 234

Given random pairing, the mean per-block objective payoff to each type in a given population
state is a weighted average of the mean payoffs members of that type receive against their own
type and against the other type, with weights given by the corresponding type proportions.
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The next step is to consider the population dynamics for HE and FM types in the
evolutionary setting described above by applying standard evolutionary game theoretic tools
to the game defined in Table 5. Notice that (FM, FM) is the only Nash equilibrium in pure
strategies, and that it is strict. This is the case for all values of α tested in both discounting
treatments (with and without diminishing marginal utility in objective payoffs; see footnote
5 and Appendix 8.4).

HE FM

HE (228, 228) (223, 236)

FM (236, 223) (234, 234)

Table 6. Payoff matrix (in expected lifetime objective payoffs) for indirect
evolutionary game with α = 0.25.

Since FM–FM is the unique strict Nash equilibrium, the evolutionary analysis is straight-
forward. In particular, since FM strictly dominates HE11, it follows from a classic result that
the fairminded type will eventually take over the population entirely, as long it has non-zero
proportional representation in the initial population, under a broad class of selection dynam-
ics (see Weibull 1997, p. 147).12 The relevant class is the set of payoff monotone dynamics,
where a selection dynamics is payoff monotone if it is such that the growth rate of every
strategy is increasing in the average payoff to players who use that strategy.

To sum up, in populations comprising both selfish and inequity averse players, the in-
equity averse type will eventually take over the population under any payoff monotone selec-
tion dynamics as long as it has non-zero representation in the initial state.13 The dominance
result underlying this conclusion is robust against varying the intensity of the FM type’s pref-
erence for equal outcomes and varying whether the agent’s preferences reflect diminishing
marginal utility in objective payoffs (see footnote 7).

11As mentioned above, we also ran simulations for games in which h ∈ {0.6, 0.7, 0.8, 0.9} and l = 1 − h
(for all parameter settings considered, m was set to 0.5). Estimated lifetime material payoffs are reported
in Appendix 8.4, with the same simulation protocol as described in Section 5. For all treatments except
l, h = 4, 6, the strict dominance of FM over HE holds. For l, h = 4, 6 (with payoff estimates rounded to the
nearest whole number), FM only weakly dominates HE.
12The relevant result: for any game with finitely many strategies, the population share of any pure strategy
which is strictly dominated by another pure strategy will go to zero in the limit under any payoff monotonic
selection dynamics, as long as every strategy has a non-zero population share in the initial state. For details
on the relationships among dominance concepts and selection dynamics, see Nachbar (1990), and Dekel and
Scotchmer (1992), and Hofbauer and Weibull (1996).
13Results for the finite-population simulations described in the Appendix are qualitatively similar: the FM
type took over the population in all but a handful of runs in which it represented a tiny proportion of the
initial population.
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7. Discussion

We have considered the evolution of inequity aversion in the context of a discretized vari-
ant of the Nash demand game. The model makes use of the indirect evolutionary approach,
incorporating a dual payoff structure where individual choice is directed by subjective payoffs
and Darwinian fitness is proportional to material payoffs. But unlike extant work adopting
the indirect evolutionary approach, the average material payoffs for each type in a given gen-
eration are predicted using a model of learning, rather than a classical solution concept. On
a broad range of parameter settings, inequity averse players receive higher material payoffs,
on average, than selfish players, both when paired against their own type and when paired
against the selfish type. So, when the two types compete in a population over evolutionary
time, any payoff monotone selection dynamics will lead to inequity aversion taking over the
population, as long as it has non-zero proportional representation in the initial state. The
evolutionary dominance of inequity aversion is further reinforced by simulations of evolution
in finite populations, reported in the Appendix. What’s more, the asymmetries in mean cu-
mulative material payoff between fairminded and selfish players that drive the evolutionary
result depend crucially on the fact that players learn their strategies.

Does these results suggest that should we always expect to observe inequity aversion
in human populations? If so, that might be a serious problem for the model, given the
substantial evidence of cultural variation in attitudes about fairness (Henrich et al. 2001).
Fortunately, there are at least two strong reasons to resist this interpretation. Although
the model is very general with respect to the class of selection dynamics considered, it
makes rather special assumptions about the types of distributive preferences represented
in the population and the range of interactions that determine an individual’s fitness in a
given generation. When these assumptions are relaxed, we have good reason to think other
evolutionary outcomes are possible.

The first reason is that our central evolutionary result only applies to populations com-
prising two types of agents: Fairminded and Homo Economicus. Results for these popula-
tions tell us little about how evolution would go in a more general setting including other
types of distributive preferences. Second, in the setting we consider, fitness depends only
on material payoffs realized in a version of the Nash demand game. But humans engage
in many different kinds of strategic interactions. The fitness contribution of a given profile
of distributive preferences will be sensitive to the consequences of having those preferences
in social interactions that are not well-modeled by the Nash demand game. While inequity
aversion is adaptive in the version of that game we consider here, it may well be maladap-
tive in other resource-division games, and in a population that plays such games alongside
(or instead of) the game considered here, different kinds of distributive preferences may be
favored evolutionarily.
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While our results do not support any particular prediction about the prevalence or extent
of inequity aversion in real human populations, they have two significant upshots. First, our
results establish the possibility of the proliferation and persistence of egalitarian preferences
in competition with selfish ones in a particular kind of bargaining game. Second, they
highlight the role of learning as a potential mechanism by which such a taste for fairness
might evolve.
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8. Appendix

8.1. Evolution in Finite Populations. We ran simulations of evolution in finite popula-
tions of Fairminded and Homo Economicus agents under a variant of the replicator dynamics.
The model works as follows. At the beginning of each generation, each member i of an n-
agent population is randomly paired with a different member j. Players i and j then play 50
iterations of the stage game (the game is the same for all pairs of players and all plays in the
generation). Each generation thus consists of 50 timesteps, at each of which every assigned
pair plays a single round of the stage game. The players learn by fictitious play, with the
same parameters as in the learning simulations described in Section 4. Priors are assigned
by the same procedure as in the earlier model as well.

The rule describing how proportions of types in the population change between genera-
tions is a finite-population variant of the replicator dynamics. Fitness scores for each type
are equal to the mean cumulative objective payoffs realized by individuals of that type in
a given generation. Let the players in the population at generation g be enumerated as
P(g) = {1, 2, ..., n}, and let Ti(g) denote the subset of P(g) containing all and only individ-
uals of type i ∈ {HE, FM}. Use Πi(g) to denote the total payout to type i in generation g,
where Πi is calculated by summing over the cumulative payoffs for each individual of type i

in generation g. Formally:

Πi (g) =
∑
j∈Pi

( 49∑
t=0

(πj(t))
)

,

where t ranges over the timesteps in g and πj(t) denotes the objective payoff received by
player j at timestep t. Dividing Πi(g) by the total number of i-type individuals in the
population yields the fitness fi(g) of type i, given by the mean cumulative payoff to i-type
players in generation g:

fi(g) = Πi(g)
|Ti(g)| .

Let pri(g) = denote the proportion of the population comprised of i-type individuals in
generation g. Let µ(g) denote the mean cumulative payoff for the entire population:

µ(g) =
∑

i

(pri (g) fi (g)) ,

where i ranges over types in the population. The time-evolution of the type proportions is
governed by a discretized version of the standard replicator dynamics. Let near : R+ → N
be the function that takes any non-negative real number r and returns the natural number
n nearest to r (i.e. the n that minimizes |n − r|). The dynamics is given by

pri(g + 1) = near
(

pri(g)fi(g)
µ(g)

)
.
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Figure 3. Initial and final type distributions for populations comprised of HE
and Fairminded agents.

I simulated 1000 generations of evolution (each generation consisting of 50 timesteps)
for 1000 randomly generated 200-member populations comprising both HE and Fairminded
agents. Initial type proportions for each population were determined by generating a random
number 0 < k < 200 and setting the number of Fairminded individuals in the population to
k and the number of HE individuals to 200 − k.

These runs typically ended with the Fairminded type having taken over the population
entirely; this occurred in 990 runs. In the remaining 10 runs, the HE type took over the entire
population. In no run did a mixture of types persist to the end of the simulation. Figure 3
illustrates this by plotting initial and final counts of Fairminded agents for each run. Each
square at coordinates (x, y) records the number of runs in which the initial type distribution
lay in range y, among those in which the final distribution lay in range x. Notice that every
run that ended with an HE-only population also began with a very large proportion of HE
agents in the population. And even among those runs with 20 or fewer Fairminded agents
in the initial population, the majority (77 out of 87) ended in a complete takeover by the
Fairminded type.
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8.2. Stage Game Payoff Matrices. Below are payoff matrices for the stage game with
l, m, h = 2.5, 5, 7.5, in various type pairings with α varied among {0.5, 0.75, 1} for the FM
type. Payoffs are given in subjective utilities. Nash equilibria are bolded.

α = 0

l m h

α = 1
2

l (2.5, 2.5) (1.25, 5) (0,7.5)

m (3.75, 2.5) (5,5) (0, 0)

h (5,2.5) (0, 0) (0, 0)

α = 1
2

l m h

α = 1
2

l (2.5, 2.5) (1.25, 3.75) (0,5)

m (3.75, 1.25) (5,5) (0, 0)

h (5,0) (0, 0) (0,0)

α = 0

l m h

α = 3
4

l (2.5, 2.5) (0.625, 5) (−1.25, 7.5)

m (3.125, 2.5) (5,5) (0, 0)

h (3.75,2.5) (0, 0) (0, 0)

α = 3
4

l m h

α = 3
4

l (2.5, 2.5) (0.625, 3.125) (−1.25, 3.75)

m (3.125, 0.625) (5,5) (0, 0)

h (3.75, −1.25) (0, 0) (0,0)

α = 0

l m h

α = 1

l (2.5, 2.5) (0, 5) (−2.5, 7.5)

m (2.5, 2.5) (5,5) (0, 0)

h (2.5,2.5) (0, 0) (0, 0)

α = 1

l m h

α = 1

l (2.5,2.5) (0, 2.5) (−2.5, 2.5)

m (2.5, 0) (5,5) (0, 0)

h (2.5, −2.5) (0, 0) (0,0)

8.3. Learning Results for Other α Values. Below are estimated lifetime objective payoffs
for pairs of players with various degrees of inequity aversion in 50-period repeated Nash
demand games with l, m, h = 2.5, 5, 7.5. Players learned by ficitious play with all details of
the simulation protocol as described in section 5.

a 0 0.25 0.5 0.75 1

0 228,228 223,236 225,239 231,239 235,240

0.25 236,223 234,234 236,239 239,241 243,244

0.5 239,225 239,236 241,241 244,244 247,247

0.75 239,231 241,239 244,244 247,247 249,249

1 240,235 244,243 247,247 249,249 250,250
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8.4. Indirect Evolutionary Games: Variants. Below are payoff matrices for indirect
evolutionary games with demand levels given by m = 5, l ∈ {1, 2, 3, 4}, and h = 10 − l.
Results are also reported for populations of players with log-utility functions as described in
footnote 5, with l, m, h = 2.5, 5, 7.5. Lifetime objective payoffs for the various type-pairings
are calculated according to the same protocol as above. For all treatments, α = 0.25 for the
FM type.

HE FM

HE (179, 179) (192, 194)

FM (194, 192) (205, 205)

l, m, h = 1, 5, 9

HE FM

HE (212, 212) (212, 222)

FM (222, 212) (224, 224)

l, m, h = 2, 5, 8

HE FM

HE (234, 234) (230, 243)

FM (243, 230) (240, 240)

l, m, h = 3, 5, 7

HE FM

HE (222, 222) (222, 222)

FM (222, 222) (223, 223)

l, m, h = 4, 5, 6

HE FM

HE (237, 237) (234, 245)

FM (245, 234) (244, 244)

l, m, h = 2.5, 5, 7.5, log utilities
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