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Abstract

In 1964, Aharonov, Bergmann, and Lebowitz introduced their well-known ‘ABL rule’ with
the intention of providing a time-symmetric formalism for computing novel kinds of conditional
probabilities in quantum theory. Later papers attached additional significance to the ABL rule,
including assertions that it supported violations of the uncertainty principle. The present work
challenges these claims, as well as subsequent attempts to salvage the original interpretation
of the ABL rule. Taking a broader view, this paper identifies a subtle category error at the
heart of the ABL rule that consists of confusing observables that belong to a single system
with emergent observables that arise only for physical ensembles. Along the way, this paper
points out other problems and fallacious reasoning in the research literature surrounding the
ABL rule, including the misuse of post-selection, a reliance on pattern matching to classical
formulas, and a posture of ‘measurementism’ that takes experimental data as providing answers

to interpretational questions.

1 Introduction

In 1964, Aharonov, Bergmann, and Lebowitz (ABL) published a highly influential paper titled “Time
Symmetry in the Quantum Process of Measurement” in the journal Physical Review (Aharonov,
Bergmann, Lebowitz, 1964). According to the Physical Review website, the ABL paper now has
over 700 citations, which include papers from a variety of areas: quantum foundations (Griffiths
1984), quantum cosmology (Gell-Mann, Hartle 1994), closed timelike curves (Lloyd et al. 2011),
and black holes (Horowitz, Maldacena; Lloyd 2006; Harlow 2016; Akers et al. 2024). It is worth
noting that all these cited papers not only refer to the ABL paper as a whole, but explicitly refer
to its claims at having provided a time-symmetric formulation of quantum theory.

Importantly, the ABL paper initiated the widespread use of post-selection in quantum theory.

It also inspired the development of weak values in a 1988 paper by Aharonov, Albert, and Vaidman
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that has since received over 2,200 citations (Aharonov, Albert, Vaidman 1988).!

The main result of the ABL paper was its derivation of the ‘ABL rule,” a formula for a certain
class of conditional probabilities that purportedly gives a time-symmetric formulation of quantum
theory. The present work will clarify the precise meaning of the conditional probabilities that
the ABL paper introduced, and argue that the ABL paper’s formulation was not, in fact, time
symmetric, but symmetric under a conceptually different class of transformations: chronological
reverse-orderings of measurement sequences. By way of analogy, consider the distinction between,
on the one hand, turning over a deck of face-down playing cards so that they are now all face-
up, and, on the other hand, separating out all the playing cards and then re-stacking them in the

opposite order while keeping them face-down the entire time.

The present work will also critique later papers that have attempted to salvage the original
time-symmetric interpretation of the ABL rule, or that have tried to extend the ABL rule in ways
that lead to supposed violations of the uncertainty principle. Other work will argue that weak
values do not provide supporting evidence for the arguments made in the ABL paper, and run into

fundamental interpretational difficulties of their own (Barandes 2026).

More broadly, this paper will argue that post-selection, whether used in the context of the ABL
rule or for other purposes in quantum-physics research, is not an innocent or innocuous procedure,
but routinely leads to statistical artifacts that are often mistakenly attributed to the exotic nature
of quantum theory. A corollary is a call for research journals to insist that authors who rely on
post-selection to obtain surprising results should explain why those results are features of quantum

mechanics itself and not merely artifacts of post-selection.

With all that said, this paper will not argue that all research inspired by the ABL paper is wrong
or does not work. To the contrary, the ABL paper has inspired new theoretical and experimental
frameworks that stand on their own merits and do not depend on unsupported interpretational

claims.

Section 2 will cover various preliminary topics that will be important for this paper’s critical
treatment of the ABL rule, including relevant foundational concepts in textbook quantum theory,
fallacies related to ensembles and post-selection, and fallacies related to pattern matching and
‘measurementism.” Section 3 will present a careful treatment of the ABL rule in detail, starting
with a first look at the ABL rule itself, followed by a discussion of the role played by boundary
conditions, a technical derivation of the ABL rule, an analysis of time symmetry in the ABL rule,
a rigorous analysis of the original ABL paper, an assessment of historical attempts to justify key
claims surrounding the ABL rule, and a novel perspective on arguments that the ABL rule provides
a loophole in the uncertainty principle. Section 4 will conclude with a summary and a discussion

of larger ramifications.

! A search using Google Scholar for {“quantum” AND (“postselection” OR “post-selection” OR “post-select” OR
“postselect” OR “post-selected” OR “postselected”)} yields no valid results from before 1964. For the span of years
stretching from 1964 to 2025, it yields almost 19,000 results, the vast majority after the year 2000. A search for
{*quantum” AND (“weak value” OR “weak values”)} yields over 6,000 results.

2



2 Preliminaries

2.1 Textbook Quantum Theory

A sufficiently precise deconstruction of the claims made by the ABL paper and subsequent research
will require engaging with the axiomatic foundations of orthodox or textbook quantum theory. To
be self-contained and to put all the cards on the table, here is a retelling of the standard axioms for
the textbook theory, as laid down by Dirac (1930) and von Neumann (1932) (DvN):

1. Quantum states: A quantum system is represented at any moment in time by a quantum state
associated with a Hilbert space of some finite or infinite dimension. In general, a quantum
state is a unit-trace, self-adjoint, positive semidefinite density matrix, or density operator, p.
If the density matrix is rank-one, then one can instead use a unit vector defined up to arbitrary
overall phase, called a state vector, or wave function, |¥). Sometimes one adds a mereological
postulate that the Hilbert spaces of composite quantum systems are the tensor products of
the respective Hilbert spaces of their constituent subsystems, where the quantum states of
subsystems are related to the quantum states of their composite systems by the partial-trace

operation.

2. Unitary time evolution: If a quantum system is a closed system, meaning that it is isolated
from mutual interactions with any other systems, then the system’s quantum state evolves
according to a time-indexed family of unitary operators, which collectively define a time-
dependent unitary operator known as the system’s time-evolution operator. Under appropriate
smoothness assumptions, one can express unitary time evolution as a differential equation
that is first-order in time—the von Neumann equation for density matrices or the Schrédinger

equation for state vectors.

3. Observables: A single quantum system has an associated set of observables. Each observable is
represented by a self-adjoint operator A = Af on the system’s Hilbert space, where the possible
numerical measurement outcomes that make up the observable’s spectrum correspond to the
eigenvalues of that self-adjoint operator. (More generally, one can work with positive-operator-

valued measures, or POVMs.)

4. The Born rule: To compute the probability with which a measurement of an observable will
yield an outcome belonging to some collection of eigenvalues of the associated self-adjoint
operator, one projects the quantum state down to the subspace corresponding to that set of
eigenvalues, and then one computes the trace of the resulting operator, or the norm-square of

the resulting vector.

5. Collapse: Immediately following this measurement outcome, one projects or collapses the
system’s quantum state down to the appropriate subspace and then renormalizes it so that it

has trace or norm equal to 1 again.



One should not take this paper’s use of the DvN axioms as an endorsement. The DvN axioms
famously do not define what precisely counts as a measurement, leading to ambiguities over when
to apply the second axiom (unitary time evolution) and when to apply the fifth axiom (collapse).
Unitary time evolution alone is not able to single out unique measurement outcomes, even with the
invocation of open-system dynamics and decoherence. These difficulties make up the famous mea-
surement problem. That said, most other axiomatic formulations and interpretations of quantum
theory make essentially equivalent predictions for the kinds of experimental protocols that will be

examined in this paper, so the DvN axioms will suffice.

2.2 Ensembles and Post-Selection

A central theme in this paper’s critical analysis will be the distinction between single-system observ-
ables, which are empirically accessible features of a single system, and ensemble observables, which
are irreducibly emergent features of a physical ensemble as a whole. As emphasized, for instance,
by Hance, Rarity, and Ladyman (2023, Section VI), ensemble observables are categorically different
from single-system observables—even if, in practice, it may sometimes be necessary to employ an
ensemble to study the observables of a single system. That is, the mere use of an ensemble to probe
a single-system observable does not make that observable an ensemble observable, because ensem-
ble observables are a categorically distinct notion. For example, in quantum theory, the eigenvalue
spectrum of an observable is a single-system concept, even if an experimentalist might use a physical
ensemble to survey that spectrum fully.

A corollary is that it is a category error to try to identify single-system observables with ensemble
observables, or to draw direct inferences about single-system observables from ensemble observables.

This category error will be called the ensemble fallacy:

The Ensemble Fallacy: The category error of attempting to identify a single-system
observable with an ensemble observable, or to draw direct inferences about a single- (1)

system observable from an ensemble observable without independent rigorous justi-

fication.

It is easy to confuse an emergent ensemble observable with a single-system observable, again be-
cause ensembles are sometimes used in practice to gain empirical access to single-system observables.
A simple example might therefore be worthwhile here.

A star has various observable features, like mass, volume, electromagnetic spectrum, chemical
composition, age, location, and so forth. One can certainly study these single-star observables by
using ensembles—say, by looking at lots of stars of similar mass at different moments during their
life cycle. For millennia, it has also been the case that human societies have selected ensembles of
stars in the sky that form various mythologically inspired shapes that we know as constellations. A
constellation is an ensemble observable that depends on arbitrary choices made by people, and is
not a single-star observable. The stars that make up a constellation are typically far apart in three-

dimensional space, and have essentially no mutual interactions. The fact that the constellation
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Orion refers to a hunter tells us exceedingly little about the observables of any of its individual
stars. It certainly does not suggest that each star contains a small degree of ‘hunter-ness’ among
its observables.?

One can also define ensembles by post-selection, which is a key component of the ABL rule.
Post-selection refers to culling—or, perhaps less politely, cherry-picking—members of an ensemble
after the fact, meaning after the experimental procedure, with the effect of changing the ensemble’s
statistical properties. Post-selection is a delicate issue in statistics, and can easily lead one to
draw erroneous conclusions about a set of data, an effect that is a form of selection bias (Hernan,
Hernandez-Diaz, Robins 2004). Indeed, one goal of many statisticians is to avoid or correct for
post-selection, as a way to escape or mitigate its potential consequences, whereas for the ABL rule,
one is supposed to implement post-selection quite deliberately. Also, by construction, post-selection
produces ensemble observables, not single-system observables, because the post-selection criteria are
entirely up to whoever does the culling or cherry-picking and are inherently statements about the

ensemble as a whole. It will be helpful to give this general class of errors a name:

The Post-Selection Fallacy: Drawing erroneous conclusions about a system or en- } 2)

semble due to the implicit or explicit use of post-selection.

One can easily come up with examples that illustrate both the ensemble fallacy and the post-

selection fallacy:

e Consider a classical ensemble of experimental trials consisting of identical coins with the
unusual observable feature that each time a coin lands on tails, it becomes 1% darker in
appearance. In each trial, a coin is tossed 100 times in a row, for the purpose of estimating
whether the coins are fair. If the ensemble of trials is post-selected on the coins being, say, at
least 70% dark at the end, then the post-selected ensemble will under-sample coins that land
frequently on heads. Any skewing of the final frequency distribution due to this post-selection
decision is obviously not an intrinsic feature of the individual coins, but an ensemble-level
statistical artifact of the arbitrary choice of post-selection. In particular, if the final frequency
distribution of heads and tails fails to be 50/50, then one would be incorrect to conclude that

the coins were not fair.

e Consider a health symptom S that arises if and only if a patient has a condition A, a con-
dition B, or both. Suppose that the conditions A and B are statistically independent in the
general population, and that each condition occurs with a probability of 10%. In terms of
the probabilities p4 for A, pp for B, and pap for the logical conjunction of A and B, one

therefore has
1 1 1
Tn PB= 75y PAB = PAPB = 7.5
10’ 10’ 100

2This particular example does not feature a cooperative form of emergence, because the stars essentially do not
interact with each other. By contrast, in the case of superradiance, an ensemble of systems interact with each
other to produce an irreducibly emergent pattern of radiation. However, superradiance, like a constellation, is not a
single-system observable, and to confuse it with one would be to commit the ensemble fallacy.

pA =
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It follows that if one imagines an ensemble of, say, N = 10,000 people in the general population,
then one would expect that N4 =~ pa /N = 1,000 have the condition A, that Ng ~ pgN = 1,000
have the condition B, and that Nap =~ pap/N = 100 have both conditions. However, suppose
that one post-selects on patients who have the health symptom S. By assumption, the number
of such patients is Ng = Ngo+Np—Nyp ~ 1,900, where the subtraction of N 4p avoids double-
counting patients who have both the conditions A and B. From among this post-selected
ensemble, one sees that Ngo/Ng ~ 10/19 have A, that Ng/Ng ~ 10/19 have B, and that
Nap/Ng =~ 1/19 have both A and B. However, 1/19 # 10/19 x 10/19, so the post-selected
sample shows a (negative) statistical correlation between A and B. This correlation, however,
is an ensemble-level statistical artifact of the choice of post-selection, and does not reflect a
true interdependence between A and B. This example is an instance of Berkson’s paradox
(Berkson 1946), or collider bias (Cole et al., 2009).

Consider an ensemble of trials involving stones and holes. In each trial, one tosses a small
stone in a slightly random direction toward a collection of holes. Suppose, further, that in
each trial, precisely one hole, picked at random, is completely covered up by a metal cover
or shutter. If the ensemble is post-selected to include only trials in which a metallic clanging
noise is recorded, then one will find that every stone in the post-selected ensemble of trials
has been blocked from entering a hole. It would obviously be incorrect to conclude from this
statistical analysis that the shutter itself possesses the mysterious capacity to cover all the
holes at once. The hole-blocking is an emergent property of the post-selected ensemble, and
not a single-system property of the shutter, so making inferences about the shutter from the
post-selected ensemble would be to commit the ensemble fallacy (1). The choice of this specific
example was not accidental—it is closely related to the subject of several papers on the use
of the ABL rule for quantum systems (Aharanov, Vaidman 2003; Kastner 2004).

Consider an ensemble of trials in which an object can be placed in any of three boxes. In
each trial, there is only one object. Suppose, moreover, that with 50/50 odds, a detection
machine will check either the first box for the object, or the second box, but not both. The
machine will show a bright green light if it succeeds in finding the object, and the machine
never checks the third box in any of the trials. If the trials are post-selected on the logically
conjunctive proposition that the machine has checked the first box and ends up displaying its
green light, then, among the members of the resulting ensemble, the odds of the object being
in the first box are 100%. If the trials are instead post-selected on the logical conjunction of the
machine checking the second box and showing its green light, then, among the members of that
ensemble, the odds of the object being in the second box are likewise 100%. However, despite
finding 100% odds in both cases, one would be incorrect to conclude from this experiment that
the object was somehow in both the first and second boxes. Again, this example was chosen
for a reason—a very similar example became a significant focus of interest in the research
literature on the ABL rule (Aharonov, Albert, D’Amato 1985; Aharonov, Vaidman 1991;
Cohen 1995; Vaidman 1996a; Vaidman 1998; Kastner 1999).
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This paper will show that the ABL rule similarly refers to emergent observables of physical
ensembles that cannot be identified as single-system observables and cannot be used to draw direct
inferences about single-system observables. To make such identifications or inferences would, again,
be precisely to commit the ensemble fallacy (1). This paper will also argue that some claimed
implications of the ABL rule run aground on the post-selection fallacy (2). Other work will argue
that weak values suffer from similar problems (Barandes 2026).

Again, none of this criticism should be taken to mean that all the spin-offs of the ABL rule
should be discarded. Ensemble observables are still observables, after all, and have their uses.
Indeed, constellations have helped people navigate the world for many generations (Huth 2013).
Those successful applications of constellations, however, have not revealed very much about the

intrinsic nature of individual stars.

2.3 Pattern Matching and Measurementism

Beyond the ensemble and post-selection fallacies introduced in Subsection 2.2, the present work
will identify two other, larger problems with the ABL paper and related research literature. The
first is an overuse of pattern matching to classical formulas or interpretations in quantum-physics
research. The second is ‘measurementism,” which will refer to the philosophical posture that if an
experiment ends up obtaining a specific quantity, then that experiment alone confirms a previously
favored interpretation of that quantity. (“We have measured it many times in the lab, so how could
it be wrong?” or “The fact that our theory leads to an experiment that can be performed is enough
to justify the theory.”)

In this paper, pattern matching will refer to the common practice of trying to impose, by decree,
relationships between classical notions and quantum notions. This practice is especially common
when the relevant notions play similar or analogous functional roles in classical physics and in
quantum physics, despite consisting of fundamentally different mathematical structures.

One specific form of pattern matching consists of looking at classical formulas that have reason-
ably transparent conceptual or physical meanings, and then trying to guess corresponding formulas
in the quantum case by formal analogy—say, by replacing random variables with self-adjoint op-
erators, replacing Poisson brackets with commutators, replacing classical probability distributions
with density matrices, replacing marginalization with partial traces, or replacing stochastic processes
with quantum channels. Dirac’s canonical quantization is explicitly a form of pattern matching of
this kind, and a great deal of ongoing research in quantum causal modeling involves explicit pattern
matching to the ingredients of classical causal models.

Notice that in each pair of mathematical objects in the previous paragraph—for instance, random
variables and self-adjoint operators—the functional role played by the latter member in quantum
physics is similar or analogous to the functional role played by the former member in classical
physics. However, the two members of each pair are based on fundamentally different mathematical

structures.?

3By contrast, if two physical theories each contain a feature that, while perhaps playing different functional roles
in the two theories, turn out to consist of sufficiently similar mathematical structures in both theories, then one
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A different form of pattern matching consists of taking a formula already obtained in the quan-
tum case and then assigning it an interpretation or meaning through an appeal to a similar-looking
classical formula. An example with particular relevance to the ABL paper would be assuming
that the initial and final boundary conditions used in Lagrangian mechanics are analogous to pre-

selections and post-selections in quantum theory, as will be discussed in Subsection 3.2.

These forms of pattern matching, however, are never justified on their own. While pattern
matching can be a useful heuristic or provisional first step, one must ultimately be able to derive
any claimed formula in quantum theory either from the DvN axioms, as reviewed in Subsection 2.1,
or from some rigorously self-consistent modification or replacement of the DvN axioms. Anything
else would lie strictly outside of an axiomatic framework, and so would either need to be based on
a direct appeal to scientific induction or abduction, or would essentially require engaging in a form

of hand-waving.

It will be convenient to give these illicit forms of pattern matching a name:

The Pattern-Matching Fallacy: Declaring the validity of a new mathematical con-
struct in quantum theory by analogy with a known classical mathematical construct,
or assigning an interpretation to an existing mathematical construct in quantum the-

ory by analogy with the interpretation of a known classical mathematical construct.

When even pattern matching is insufficient to vindicate or justify a claimed interpretation of
some physical quantity, another tempting option might be ‘measurementism,’” a pervasive philo-

sophical attitude that this paper will define as the following fallacy:

The Measurementist Fallacy (or Measurementism): If a quantity of ambiguous in-
terpretation can be measured experimentally, then experiments alone can provide
confirmatory support for a favored interpretation of that quantity, or a justification

for theoretical work that led to the consideration of that quantity.

As an immediate application, the mere fact that a specific frequency ratio appearing in the ABL
rule is experimentally measurable—and, indeed, has been measured in the laboratory in specific
cases—does not vindicate many of the strong interpretational claims that have been made about

that frequency ratio or about the ABL rule.

may be justified in learning about the feature of the first theory from the corresponding feature of the other theory.
Importantly, this case arises in the use of ‘analogue models,’ for which one indirectly studies a feature of an empirically
inaccessible lower-level theory, like quantum theory or general relativity, by examining or running measurements that
probe mathematically similar features of an empirically accessible higher-level theory.
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3 The ABL Rule

3.1 A First Look at the ABL Rule

At its core, the ABL paper was concerned with the application of quantum theory to a specific kind
of experimental protocol.

Consider a large ensemble of IV > 1 identical quantum systems with negligible internal time
evolution. Suppose that for each system in the ensemble, an external agent or observer measures
n + 2 possibly distinct observables A, C1, ..., C,, B in succession, while sequentially recording the
associated measurement outcomes. For the purposes of this experimental protocol, assume that each
observable is complete, in the sense that its measurement outcome, together with the DvN collapse
axiom reviewed in Subsection 2.1, yields a single, specific state vector. The observer counts up the
number Ny of members of the ensemble that share a specific pre-selected measurement outcome a
for the first observable A and a specific post-selected measurement outcome b for the last observable

B. Then, from that subensemble labeled by the pair a and b, the observer counts up the number

Nacyenp < Ngp of members that share a specific sequence cy, ..., ¢, of measurement results for the
n respective intermediate observables C1, ..., ). The numerical fraction
Nye, ...
0 < —acimenb o (5)
Nab

defines a specific, experimentally accessible probability—namely, the statistical probability that if
one member of the subensemble labeled by the pair a and b is randomly selected according to a
uniform probability measure, then the selected member will exhibit the specific sequence c1,...,c,
of intermediate measurement outcomes.

As a concrete example, consider an ensemble of N = 10,000 experimental trials involving a
single spin-1/2 degree of freedom that is free from any nontrivial internal dynamics for the duration
of the procedure. In each trial, the system is prepared in the spin-z eigenstate |z+), and then is
subjected to a spin-z measurement, followed by a spin-y measurement, and then finally a spin-z
measurement. If one focuses on trials in which the final spin-z measurement yields |z—), then it
follows from the usual algebraic relationships between the spin-x eigenbasis, the spin-y eigenbasis,
and the spin-z eigenbasis, together with simple arithmetic manipulations, that the number of trials
reduces to approximately N, ., ~ 5,000. It also follows that each of the four possible configurations
of intermediate spin-x and spin-y measurements (x+, y+), (z+,y—), (z—, y+), and (z—, y—) shows
up in approximately 1,250 of those 5,000 trials. One can therefore compute the ratio (5) explicitly
for, say, the intermediate outcome pair (z+,y—), thereby yielding the answer

Netwty—p— 1,250 1

~ — = = 25%. 6
Nop._ 5000 4 0 (6)

Textbook quantum theory, based on the DvN axioms reviewed in Subsection 2.1, gives a general
theoretical expression for predicting the empirical probability (5), called the ‘ABL rule.” Its deriva-
tion originally appeared in the ABL paper, and will be derived in a different way in Subsection 3.3.
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3.2 Boundary Conditions

Newtonian mechanics provides a description of classical objects in physical space, with trajecto-
ries that satisfy dynamical laws consisting of differential equations that are second-order in time.
Because these dynamical laws are second-order in time, obtaining a definite trajectory requires spec-
ifying both the initial positions of all objects in the system and also their initial velocities. Once one
obtains a definite trajectory satisfying the dynamical laws, one can ask and answer a great many

questions about the properties of the system at arbitrary times along that trajectory.

Again because Newton’s dynamical laws are second-order in time, one can instead obtain tra-
jectories by augmenting initial positions with final positions, rather than with initial wvelocities,
and then making use of appropriate variational methods. These variational methods include the

principle of least action of Lagrangian mechanics.

In many cases, one obtains a unique trajectory from such a variational method, when combined
with boundary conditions on the past and the future arrangements of the system. In such a situation,
if one knows both the initial and final arrangements of a system of objects—that is, the past and
future boundary conditions—then one is entitled to make precise inferences about the system at
intermediate times, including inferences about the positions of the system’s constituent objects,
their velocities, their kinetic energies, and so forth.

As explained in Subsection 3.1, the experimental protocol for the ABL rule involves a pre-
selection at an initial time as well as a post-selection at a final time. These two operations might
seem analogous to boundary conditions that specify the initial and final arrangements of objects
in Lagrangian mechanics, but to impose that interpretation would be precisely to engage in a form
of unjustified pattern matching between classical and quantum concepts—that is, to impose that
interpretation would mean committing the pattern-matching fallacy (3).

It is true that pre-selecting a quantum state is very much like specifying the initial arrangement
of a Newtonian system. However, the rules for time evolution given by the DvN axioms in Sub-
section 2.1 are first-order in time. If one knows the quantum state of a given system at an initial
time, then unitary time evolution as well as the Born rule and the collapse axioms provide the
system’s later quantum states. These time-evolution rules are not second-order in time, and cannot
accommodate the specification of final quantum states as additional boundary conditions, unless
one is willing to violate those time-evolution rules.

When post-selection is imposed on an ensemble of quantum systems in the manner in which it
is used for the ABL rule, it is due to an external agent, and represents an abrupt change to the time
evolution of each system that the system has no means of anticipating. The post-selection is not a
boundary condition internal to any particular quantum system in question, or a boundary condition
internal to the ensemble of quantum systems. In particular, the post-selection is not a boundary
condition in the sense of classical Lagrangian mechanics as merely indicating where a system’s
trajectory, on its own, ended up taking the system. As a consequence, although post-selection
might well reveal facts about the past of a particular system or an ensemble of systems, nothing

about each system’s quantum state at times before the post-selection can actually physically depend
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on the later choice of post-selected quantum state, because any such physical dependence would
require some form of clairvoyance on the part of the system. That is, post-selection cannot itself be
responsible for any past features of the system, and to assume otherwise would be to commit the

post-selection fallacy (2).*

3.3 A Derivation of the ABL Rule

Deriving the ABL rule is a straightforward exercise in the application of textbook quantum theory.
The derivation presented below also turns out to be closely related to the derivation of weak values,
to be addressed in other work (Barandes 2026).

Consider three quantum systems: a subject system to be studied, a measuring device, and an
external agent or observer. The appropriate Hilbert space for the total system has the tensor-product
form

Htot =H® Hdev & Hob57 (7)

where H, Hdev, and Hops are the respective Hilbert spaces for the subject system, the measuring
device, and the observer.

Next, suppose that the initial quantum state |Wiot) of the total system assigns a generic state
vector |¥) to the subject system, a ‘ready’ state vector |dev()) to the measuring device, and a

‘ready’ state vector |obs(()) to the observer:
[Wior) = W) @ |dev(()) @ |obs(D)). (8)

Let A,C4,...,Cy, B be a collection of observables belonging to the subject system, with respec-
tive eigenvalues denoted by the variables a,cq,...,c,,b. Assume that each of these observables is
complete, in the sense that a measurement of any of them fixes the quantum state of the subject
system completely.

Suppose, moreover, that the measuring device and observer are arranged in advance so that the
observer measures A, then the measuring device measures the chronological sequence C1,...Cy,
and then the observer measures B. Applying unitary time evolution to the total system, one sees

that the first measurement takes the form

[Wiot) = [¥) @ |dev (D)) @ [obs (D))
= _(al¥)|a) ® |dev(D)) @ [obs(®))

[observer measurement of A| — Z<a|‘1!>\a> ® |dev(0)) ® |obs(a)),

a

4In principle, the sort of clairvoyance described here could be permissible on certain retrocausal interpretations
of quantum theory. Alternatively, on the Everett interpretation (Everett 1956, 1957), one could argue that post-
selection places the observer on a specific branch of the universal wave function, complete with its own particular
branch-history. Hence, in the case of the Everett interpretation, the post-selection does not alter the past, but merely
singles out one past from among many others that also exist. Either of these alternative views, however, would clearly
be interpretation-dependent.
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where obs(a) indicates that the observer has obtained the measurement outcome a for the observable

A. The second measurement takes the form

> _(al¥)]a) @ |dev(®)) @ [obs(a))
=Y (al¥){eila)]er) @ |dev(B)) © [obs(a)) (10)

a ¢

[device measurement of C4] +— Z Z<a|\lf><clla>|cl> ® |dev(er)) ® |obs(a)),

a c1 J

where dev(c;) indicates that the measuring device has obtained the measurement outcome ¢; for

the observable C]. Similarly, after the measuring device carries out its next measurement, one has

YD (a¥){ela)(ezler)lez) @ [dev(er, e2)) @ [obs(a)), (11)

a c1,c2

where dev(cy, ¢2) indicates that the measuring device has obtained the measurement outcome ¢; for
the observable C7 and then the measurement outcome co for the observable Cs, in that chronological
order. Continuing, one ends up finding that the final state vector | ¥}, ) for the total system is given
by

(Wi = D10 @ | Y (bleadlealen—) -~ (cila)(a|¥)|dev(crs. . ea)) | @ [obs(a,b)).  (12)

a,b Cly--+Cn

Here obs(a, b) indicates that the observer has obtained the measurement outcome a for the observ-
able A and b for the observable B, whereas dev(cy,...,c,) indicates that the measuring device has
obtained the chronologically ordered sequence of measurement outcomes c1, ..., ¢, for the respective
observables Cy,...,C,.

It will be convenient to introduce projection operators
P, =|a){a|, P,=|b)b|, P, =lci){cil- (13)

Each of these three sets of projection operators gives a complete and mutually exclusive set, so they

each make up a projection-valued-measure (PVM), in the sense that
PPy =040 Pa, Y Pu=1,
a

PPy =b0wP;, Y Py=1, (14)

b
PCZ'PCQ :5C¢CQPC7;7 ZPQ :]]-7
Ci

where 1 is the identity operator on the subject system’s Hilbert space. (Note that for the third
PVM here, the sum is not over the values of ¢ that distinguish the different observables C1,...,C,,
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but over the full spectrum ¢; of eigenvalues of just the single observable C;.) One can then write

(12) somewhat more compactly as

) Z Z [PyP., - P, Py|W)] @ |dev(cy, . .., cn)) @ |obs(a,b)). (15)

Introducing another projection operator
Pobs(a,b) = |ObS((L, b)> <ObS(a, b)|7 (16)

the overall probability p[obs(a,b)|¥] for the observer to obtain the specific pair of measurement
outcomes (a, b), conditioned on the initial state vector |¥) of the subject system, then follows from

the Born rule:
p[ObS(a, b)’\I’7 (A7 Cla ceey CTM B)] = tr([ﬂ & ]]-dev & Pobs (a,b ] “\I]tot)(qléotu)' (17>

Here 1g4ey is the identity operator on the measuring device’s Hilbert space. The additional con-
ditioning on (A4,C4,...,Cy, B), as an ordered list, is a reminder that the evolution of the total
system’s state vector from |Wiu) to |Pf,,) involved measurements of that specific ordered sequence

of observables. By a straightforward calculation, one finds

plobs(a,b)|¥, (A,Cy,...,Cn,B)] = > tx[PP., -+ Poy PaPyPuPe, -+ P, (18)

Cl,---yCn

where Py is the rank-one density matrix defined by

Py = |0)(0]. (19)

Defining the projection operator
Pacv(er,....en) = ldevier, ..., en))(dev(er, ..., cn)l, (20)

the joint probability for the observer to obtain (a,b) and for the measuring device to obtain the

ordered sequence (c1,...,c,) likewise follows from the Born rule:

p[obs(a, b)7 deV(Ch cee ,cn)|\ll, (A7 Cla cee 7Cn7 B)] = tr([]l & Pdev(q,. n) & Pobs (a,b } U\Ijtot><q/fcot”)'
(21)
The result is

plobs(a,b),dev(cy,...,cn)|¥, (4,Ch,...,Ch, B)] = tr[PyP., -+ - Pey PoPg Py P., - -+ P, ]. (22)

Notice, as expected, that these overall and joint probabilities are manifestly related by marginal-
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ization over the full set of ordered sequences (cy,...,cp):

plobs(a,b)|¥, (A,C1,...,Co, B)l = > plobs(a,b),dev(cy,...,c)|¥, (A,Ch,...,Cp, B)]. (23)

Cl;---5Cn

If one applies the DvN collapse axiom to single out the term in the superposition |¥f,) cor-

responding to the observer’s measurement results (a,b), then the reduced density matrix for the
measuring device alone is obtained from the partial trace over the Hilbert spaces of the subject

system and the observer according to

[]1 ® Lgev ® Pobs(a,b)] ’\I]fcot><\lléot’ []]' ® Lgey ® Pobs(a,b)] ) (24)

v =tr )
Pdev|obs(a,b), ¥ H, Hobs ( tr([1 ® Ldev @ Pops(ap)] [ Phor) (¥hotl)

The result is a rank-one density matrix that can be expressed in terms of a state vector given by

2

(B[Ps, - Py Pa W) dev(er, . )
‘\Pdev|0bs(a,b),‘l/> = \/

11111

(25)

Dol T (Pch;L <+ Py PaPyPaPy - pcgl)

If one were to measure the pointer variables of the measuring device itself, then the Born rule would

imply that the corresponding probability would be

tr(PyPy, - Poy PuPyPoPs, -+ Py,)

o tr(PbP% Py P,PyPyPy - Pa )
(26)

Notice that this conditional probability is related to the joint probability in (22) and the overall

pldev(ci, ... cn)|¥,0bs(a,b), (A, Ch,...,Ch, B)|] =
Zc’

10

probability in (18) according to

plobs(a,b),dev(cy, ..., cn)|V, (A, Ch,...,Cy, B)]

pldev(ecy,...c,)|¥,0bs(a,b), (A, C,...,Ch, B)| = plobs(a. D). (A, Cr.. . CorB)] ,

(27)
which is just a form of Bayes’ theorem:
p(z, y[2)
pxly,2) = ————. 28
(zly, z) 17 (28)
One can simplify the conditional probability (26) by using the identity
PyPy Py = |a){a|¥){¥]a)(a| = [(a|¥)|* P, (29)

in both the numerator and the denominator, thereby leading to a cancellation of a common factor

of |(a|¥)|?, assuming that this factor is nonzero. The conditional probability (26) therefore reduces
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to the formula

tr(P,P, - Py PP, --- P,
pldev(ci, ... cn)lobs(a,b), (A, Ch,. .., Ch, B)] = H(Bp e, 1Tata w) (30)

chl,“.,c;z tI'(PbPC% tee PcllPaPc,l . PC%)

which no longer depends on |¥). The formula (30) is known as the ABL rule.

3.4 Time Symmetry

Due to the cyclic property of the trace, the ABL rule (30) satisfies the following reverse-ordering

symmetry:
pldev(cy, ... cy)lobs(a,b), (A, C4,...,Cy, B)] = p[dev(cy,...c1)lobs(b,a), (B, Cyp,...,C1,A)]. (31)

That is, the conditional probability has the same numerical value if the measurement sequence
A, C4,...,Cy,, Bis carried out in the opposite chronological order. In the notation of Subsection 3.1,
the reverse-ordering symmetry (31) of the ABL rule means that the probability Nu¢,...c.s/Nap ap-
pearing in (5) is equal to the probability Npc, ...c;a/Npa, with the sequence of the n+2 measurements
carried out in the opposite chronological order.

The ABL paper called this property “time symmetry.” Again, the ABL paper’s title was “Time
Symmetry in the Quantum Process of Measurement.”

This notion of time symmetry was incorrect. Carrying out the n + 2 measurements in the
opposite chronological order simply fails to be the true time-reverse of the experimental protocol. A
measurement process is intrinsically time-directed, as noted by Shimony (1996) and acknowledged by
Vaidman (1996b, 1998). It logically follows that the true time-reverse of the experimental protocol
would entail not only reversing the order of n 4+ 2 measurements, but also internally reversing each
individual measurement process itself.

An analogy might be helpful here. If one buys bread from the store, and then later one buys
fruit from the store, then the time-reverse of the overall process would not consist of buying fruit
first and then buying bread second. The time-reverse would instead mean something like selling
fruit and then later selling bread, for the simple reason that the time-reverse of exchanging money
for an item of food would be exchanging an item of food for money. (Presumably, the time-reverse
would also involve walking backward, speaking backward, thinking backward, and so forth.) By the
same reasoning, the time-reverse of one measurement followed by a different measurement would
not consist of the same pair of measurements merely occurring in the opposite chronological order,
but would instead mean the corresponding reverse-time measurements occurring in the opposite
chronological order.

Hence, just as a truly time-symmetric shopping plan would involve buying food during the first
trip and selling food during the second trip, a truly time-symmetric experimental protocol for a
quantum system would involve carrying out a forward-time measurement at the beginning and a

reverse-time measurement at the end.
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After the ABL paper’s publication in 1964, subsequent papers continued to advocate for the
ABL paper’s incorrect notion of time symmetry. For example, a 1990 paper by Aharonov and
Vaidman made that claim, even going as far as calling the pre-selection and post-selection “boundary

conditions,” overlooking the sorts of pattern-matching problems laid out in Subsection 3.2:

However, if our task is a description of a quantum system between two successive mea-
surements, then we know the boundary conditions in the future as well as in the past.
(We assume that both measurements are complete.) Therefore for the intermediate time
interval we have a complete symmetry under time reversal. The contribution to the de-
scription of the quantum system from the result of the initial measurement is the usual
wave function evolving from the past toward the future, from the initial measurement to
the final measurement. Because of the symmetry under time reversal, the contribution
of the final measurement should be similar: the wave function evolving backwards in
time from the final measurement to the initial measurement. [Aharonov, Vaidman 1990,
p. 12

A 1991 paper by Aharonov and Vaidman contained the following statements in its concluding
section: “What we have presented here is a novel approach to standard quantum theory. ... It
has an advantage that it is symmetrical under time reversal.” (Aharonov, Vaidman 1991, p. 2327)
Papers by other authors have made similar statements, such as a 2011 paper by Lloyd et al., which
included the following assertion: “it is a time-symmetrical formulation of quantum mechanics in
which not only the initial state, but also the final state is specified.” (Lloyd et al. 2011, p. 025007-
5)

3.5 The ABL Paper
The ABL paper’s abstract began with a strong claim:

We examine the assertion that the “reduction of the wave packet,” implicit in the
quantum theory of measurement|,| introduces into the foundations of quantum physics
a time-asymmetric element, which in turn leads to irreversibility. We argue that this
time asymmetry is actually related to the manner in which statistical ensembles are
constructed. If we construct an ensemble time symmetrically by using both initial
and final states of the system to delimit the sample, then the resulting probability
distribution turns out to be time symmetric as well. [Aharonov, Bergmann, Lebowitz
1964; p. B1410.]

On their face, these claims seem doubtful. It is difficult to believe that one can obtain a time-
symmetric formulation of quantum theory merely by constructing ensembles differently, for reasons
already explained in Subsection 3.4. The authors of the ABL paper did not suggest that they were
working outside of the framework of the DvN axioms, as reviewed in Subsection 2.1, and for which
the reduction or collapse of the quantum state arises from measurement processes. Again, a generic

measurement process is structured, has a nonzero duration, and, as emphasized by Shimony (1996),
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is time-directed. That is, a measurement process has an intrinsic temporal direction from set-up, to
initiation, to detection, and then to recording. It follows that whenever one invokes a measurement
process, there will be some practical source of time-asymmetry in the overall system, regardless of
how one tries to set up an ensemble.

Even if one were to attempt to treat measurements as axiomatically instantaneous events, one
would still have to contend with the fact that a quantum state’s time evolution, according to the
DvN axioms, is discontinuous to the immediate past of a measurement, but is continuous to the
immediate future of a measurement, and leads to measurement-outcome probabilities only in the
future direction. A measurement-induced form of time-asymmetry in the system is, once again,
unavoidable.

Given the thermodynamic-level difficulty of implementing a realistic measurement process in-
volving macroscopic measuring devices running in reverse, it is hard to imagine how one could
institute a reduction or collapse of the quantum state at both temporal ends of a duration of time
that could lead to a time-symmetric formulation relevant to any practical experimental protocol.
One would need to construct a physical ensemble by imposing a forward-time measurement at the
beginning and an infeasible reverse-time measurement at the end, with no clear way to combine two
such opposite-time measurements into a single probability formula. These basic facts alone present
a fundamental obstruction to the sort of time-symmetric theory that the ABL paper attempted to
formulate. A secondary consequence is that ‘pre-selection’ and ‘post-selection’ are inherently dif-
ferent from each other in a very physical sense, at a level beyond merely the fact that one precedes
the other in time, as acknowledged by Vaidman (1996b, 1998).

It follows from this reasoning that the source of the time asymmetry examined by the ABL paper
would not appear to lie in the construction of ensembles. A corollary is that one should not expect
that one could eliminate that time asymmetry merely by changing how one sets up ensembles.

A couple of paragraphs later in the ABL paper, one finds these statements:

In this paper we propose to examine the nature of the time symmetry in the quantum
theory of measurement. Rather than delve into the measurement process itself, which
involves a specialized interaction between the atomic system and a macroscopic device,
we shall simply accept the standard expressions for probabilities of values furnished by

the conventional theory. [Aharonov, Bergmann, Lebowitz 1964, p. B1411]

It is understandable that one might not wish to get mired in the fine-grained details of measurement
processes, especially given the measurement problem. However, one must still take into account the
fact that a measurement is not an instantaneous, irreducible, structureless event—or, if one were
to choose to treat a measurement as if it were instantaneous, then one should be mindful that
the measurement separates discontinuous evolution to the past of a system’s quantum state from
continuous evolution to the future of the system’s quantum state. Either way, a measurement is a
time-directed process.

The rest of that paragraph went on to say:
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Whereas the conventional theory deals with ensembles of quantum systems that have
been “preselected” on the basis of some initial observation, we shall deduce from it prob-
ability expressions that refer to ensembles that have been selected from combinations
of data favoring neither past nor future. A theory that concerns itself exclusively with
such symmetrically selected ensembles (the “time-symmetric theory”) will contain only
time-symmetric expressions for the probabilities of observations. Logically this time-
symmetric theory is contained in the conventional theory but lacks one of the latter’s
postulates. [Ibid., B1411]|

Notice that the ABL paper here regarded ensembles selected from “data favoring neither past nor
future” as “symmetrically selected,” and suggested that an alternative formulation of quantum the-
ory limited to such ensembles would “contain only time-symmetric expressions for the probabilities
of observations.” However, one cannot get around the need for measurements in pre-selections and
post-selections as long as one is relying on the DvN axioms, or on any other axiomatic framework
for quantum theory that relies on measurements in an essential way. Again, the ABL paper’s inter-
pretation elided the time-directed nature of the measurements inherent to any such pre-selections
or post-selections. This elision led the ABL paper to employ a notion of “time symmetry” that
referred only to changing the sequential ordering of measurements, rather than truly time-reversing
the whole experimental protocol, including each individual, time-directed measurement itself.

The ABL paper assumed that the initial state vector |¥) of the subject system was an ex-
act eigenvector |a) of a given pre-selected observable. The ABL paper’s notation used the labels
dj,...,d, for the intermediate outcomes instead of c1,. .., ¢y, used A in place of F,, used B in place
of Py, used D; in place of P,,, and used a diagonal line / rather than a vertical line | to denote the
‘given’ delimiter. Adjusting the ABL paper’s notation to align it with the notation of the present
work, the ABL paper’s version of the ABL rule (30) took the form

p(c1y ..., cn,bla)
p(bla)
1 (32)

= mtr(PaPcl <P, PyP. - P.) [ABL’s eq. (2.4)],

p(ciy ..., enla,b) =

with H(a,b) playing the role of p(bla) and determined by overall normalization to be
H(a,b) = Z tr<PaPc’1 - Py PyPy - - Pc/1> [ABL’s eq. (2.5)]. (33)
ClyennChy
Immediately below these formulas, the ABL paper included these statements:

This expression is manifestly time symmetric. If we change the sequence of measure-
ments to [B,Cy,...,Cy, A], Egs. (2.4), (2.5) remain unchanged. [Ibid., p. B1412]

The first line of (32) contained the ambiguous-looking notation

p(c1, ..., cn,bla)
p(bla)

p(cla"'vcn’av b) = (34)
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This formula made the ABL paper’s conditional probability, as it appears on the left-hand side of
(34), look like it referred to a logical conjunction of separate propositions ci, ..., ¢,, to be read as
“c1 and ¢o and ... and ¢,,” conditioned on a logical conjunction of separate propositions a, b, to be
read as “a and b.” However, to assign that meaning or interpretation to the ABL paper’s conditional
probability would be to commit the pattern-matching fallacy (3). In particular, one cannot sum on,
say, co to marginalize down to a shorter measurement sequence that skips the measurement carried
out on the intermediate observable C5. The ABL paper’s notation also suppressed the important
role played by time-directed measurements in the overall physical process.

One should compare the ABL paper’s formula (34) with the more precise (if admittedly more
cumbersome) notation (27) from the present work, adapted to the case in which |¥) = |a):

_plobs(a,b),dev(ci, ..., cq)la, (A, C1,...,Cp, B)]
pldev(cy, ... cp)la,obs(a,b), (A,C1,...,Cy, B)] = plobs(a, D). (4, Croorr.Co B .

(35)
This latter version makes clear that dev(ci,...¢,) is an atomic proposition, and not the logical
conjunction of separate propositions ci,...,c,. Similarly, obs(a,b) is an atomic proposition, and

not the logical conjunction of separate propositions a and b. This latter version also makes manifest

the time-directed nature of the measurements in the experimental protocol.

3.6 Vaidman’s Interpretation

A 1996 paper by Vaidman expressly acknowledged the fundamentally different roles played by pre-

selection and post-selection in the ABL rule:

Note the asymmetry between the [pre-selection| measurement at ¢; and the |post-
selection| measurement at to. Given an ensemble of quantum systems, it is always
possible to prepare all of them in a particular state |¥1), but we cannot ensure finding
the system in a particular state |¥s). Indeed, if the pre-selection measurement yielded a
result different from projection on |¥1) we can always change the state to |¥y), but if the
measurement at to did not show |Ws), our only choice is to discard such a system from the
ensemble. Note also the asymmetry of the measurement procedures. The measurement
device has to be prepared before the measurement interaction in the “ready” state and

we cannot ensure finding the “ready” state after the interaction. [Vaidman 1996b, p. 3|

However, shortly thereafter, the paper set aside this concern by asserting that the only relevant

notion of time-symmetry should refer to the intermediate measurements alone:

These asymmetries, however, are not relevant to the problem we consider here. We study
the symmetry relative to the measurements at [the intermediate| time ¢ for a given pre-
and post-selected system, and we do not investigate the time-symmetry of obtaining

such a system. [Ibid., p. 4]

The paper restated this assertion, in a section titled “Time asymmetry prejudice”
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In my approach the pre- and post-selected states are given. Only intermediate mea-
surements are to be discussed. So the frequently posed question about the probability of
the result of the post-selection measurement is irrelevant. It seems to me that the critics
of the time-symmetrized quantum theory use in their arguments the preconception of

an asymmetry. [Ibid., p. 12]

These statements represent a departure from the time-symmetric interpretation obtained from a
plain reading of the ABL paper, and an implicit admission that the time-symmetric interpretation

cannot be sustained.

3.7 The AAD Paper and the Uncertainty Principle

Recalling the spin-1/2 example presented in Subsection 3.1, consider again an ensemble of N =
10,000 experimental trials involving a single spin-1/2 degree of freedom, where, in each trial, the
system is prepared in the spin-z eigenstate |z+). Suppose, however, that the system is then subjected
to a spin-x measurement, followed by a second spin-z measurement, and no further measurements.
If one collects only trials in which the final spin-z measurement yields |z+), then the number
of trials reduces to approximately N, ,+ ~ 5,000. In all these trials, the DvN collapse axiom
trivially implies that the second spin-x measurement has to give the same result as the first spin-x

measurement. Thus, for this ensemble, the ABL ratio (30) trivially yields

Netatat 5,000
Not oy 5,000

1=100% [p(x4|z4,x4) in the original ABL notation]. (36)

Notice here the the middle measurement value appearing in this protocol, showing up as the second
subscript of the numerator N, ;4 .4, corresponds to a spin-z measurement, in between the pre-
selected spin-z value and the post-selected spin-z value.

If one instead considers an ensemble of N = 10,000 trials in which the spin-1/2 degree of freedom
is prepared in the spin-z eigenstate |z+), then is subjected to a second spin-z measurement, followed
by a spin-z measurement, where one keeps only trials with the final result |z+), then the number of
trials is again approximately N, .4 =~ 5,000, for which the DvN collapse axiom ensures that every

second spin-z measurement yields |z+). Hence, for this ensemble, the ABL ratio (30) trivially gives

Ny oot 9,000
Not ot 5,000

=1=100% [p(z4|z4,z4) in the original ABL notation]. (37)

Here the middle measurement value, showing up as the second subscript of the numerator N,y .4 .+,
now corresponds to a spin-z measurement, in between the pre-selected spin-z value and the post-
selected spin-z value.

Is one justified in concluding from (36) and (37) that the spin-z and spin-z observables measured
in the middle step of each of these protocols, despite being represented by noncommuting self-adjoint
operators, both occur with probability 100%, in contravention of the uncertainty principle? The

answer would appear to be negative, because (36) and (37) are ensemble properties that refer to

20



fundamentally different ensembles, so to conclude instead in the affirmative would precisely be to
commit the ensemble fallacy (1).

Nor can one justify claiming that (36) and (37) imply a violation of the uncertainty principle
merely because both ratios are amenable to experimental measurement in the laboratory. To assert
the opposite would be to commit the measurementist fallacy (4).

Moreover, notice the crucial role played by the post-selection of |z+). Without that post-
selection, both the frequency ratios (36) and (37) would instead have been 5,000/10,000 = 50%,
perfectly in keeping with the uncertainty principle. The preceding example makes abundantly clear
the perils of trying to make statistical inferences when post-selection is involved—and, indeed,
when post-selection is invoked on purpose. This illicit invocation of post-selection is an example
of the post-selection fallacy (2), and gives yet another reason to doubt that the preceding example
represents a true exception to the uncertainty principle.

However, a 1985 paper by Albert, Aharonov, and D’Amato (AAD), titled “Curious New Sta-
tistical Prediction of Quantum Mechanics” and appearing in the journal Physical Review Letters,
(Albert, Aharonov, D’Amato 1985), argued that the ABL rule provided a way to violate the uncer-

tainty principle in just this manner:®

Suppose that [a given quantum| system is measured at time ¢; to be in the state |A = a)
(where A represents some complete set of commuting observables of the system, and
a represents some particular set of eigenvalues of those observables), and is measured
at time ty (ty > t;) to be in the state |B = b). What do these results imply about
the results of other experiments that might have been carried out within the interval
(ti <t <ty) between them? It turns out that the probability (which was first written
down by Aharonov, Bergmann, and Lebowitz) that a measurement of some complete
set of observables C' within that interval, if it were carried out, would find that C' = ¢;
is
(A = a|C = ¢;) P[(C = ¢j| B =)

PO = S a=dC=cifiC=cB=pp “APPer W09

and that formula entails, among other things, that P(a) = P(b) = 1. Consequently,
these authors maintain that such a system, within such an interval, must have definite,
dispersion-free values of both A and B, whether or not A and B may happen to commute.
In their view, the proper quantum mechanical descriptions of the past and the future
are essentially different: Our knowledge of the past is not restricted, in the same way
as our ability to predict the future, by the uncertainty relations; indeed, so far as the
past is concerned, the quantal formalism itself requires that those relations be violated.

[Ibid., pp. 5-6, emphasis in the originall

5The quoted passage attributes these claims to the authors of the original ABL paper. However, As Sharp and
Shanks later pointed out, there does not appear to be evidence that these views were expressed in the original 1964
ABL paper: “Actually, Albert et al. attribute these conclusions to Aharonov et al. (1964) but we can find no evidence
of either conclusion in that work.” (Sharp, Shanks 1993, p. 494, footnote 2) The AAD paper may have been referring
to a different paper, published the previous year (Aharonov, Albert 1984).
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The AAD paper acknowledged that claims of dispersion-free values of non-commuting observables,
and violations of the uncertainty principle, might sound surprising, in light of various no-go theo-

rems. The AAD paper nevertheless doubled down:

Is it somehow mistaken, then, or somehow misleading, to suppose that (1) attributes
definite values to A and B? Is it that (1) itself produces some contradiction? How?
Where?

No. It turns out (and this is the subject of the present note) that there is a remarkable
and heretofore unknown property of the quantal statistics whereby quantum mechanical
systems, within the interval between two measurements, fail to satisfy that assumption
(the assumption about the projection operators), and so evade its consequences. [Ibid.,

p. 6, emphasis in the originall

Once again, this erroneous conclusion may have been precipitated by an overly minimalist choice
of notation. In the more expansive and precise notation of (27), the probability (38) in the AAD

paper would have been written instead as

obs(a,b),dev(cj)|a, (A, C, B)]
plobs(a, b)|a, (A, C, B)]

pldev(c;)la, obs(a, b), (A, C, B)] = ol (39)

The operational meaning of the probability (39), as outlined in Subsection 3.1, concerns the frac-
tion of the appropriately constructed ensemble whose members show the intermediate measurement
result ¢; for the complete set of observables represented by C. The choice of C for the intermediate
measurement is central to defining the physical ensemble in question.

To ask instead for the probability that an intermediate measurement of A should yield a would
mean to construct a different experimental protocol producing a different physical ensemble, for
which the ratio yields 1:

plobs(a, b), dev(a)|a, (A, A, B)]
plobs(a, b)|a, (A, A, B)]

p[dev(a) ‘a7 obs(a, b)a (Aa A, B)] = =1 (40)
Similarly, to ask for the probability that an intermediate measurement of B should yield b would
mean to construct yet another experimental protocol producing a distinct physical ensemble of its

own, for which the ratio again yields 1:

plobs(a, b),dev(b)|a, (A, B, B)]
plobs(a, b)|a, (A, B, B)]

p[deV(b)‘CL,ObS(CL, b)7 (A7B7B)] - =L (41)
The three probabilities (39), (40), and (41) here refer to three separate physical ensembles, and so it
would be a mistake to try to draw inferential conclusions about any one of them from either or both
of the other two. As explained earlier, it is also dangerous to jump to conclusions about statistical
inferences when one’s set-up involves post-selection, on pain of committing the post-selection fallacy
(2).

To make completely clear why the AAD authors did not find a loophole in the uncertainty prin-
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ciple, it will be useful to present an operational argument for how one can experimentally verify the
uncertainty principle. One imagines setting up one physical ensemble of identical quantum systems
whose definition consists solely of a preparation or ‘pre-selection’ of each member of the ensemble
in the same initial quantum state p. One then carries out a measurement of some observable C'
for half of the members of the ensemble, and a measurement of some other observable D for the
other half of the members of the ensemble, where C' and D, as self-adjoint operators on the system’s
Hilbert space, may fail to commute, in the sense that CD — DC # 0. That is, one carries out a
controlled experiment by fizing p as the definition of the entire physical ensemble and then inde-
pendently varying just the choice of C or D within that fixed ensemble, without any post-selection.
One finds that the respective spreads or standard deviations AC and AD of measurement-outcome
distributions for C' and D have a product AC' AD that satisfies the inequality

ACAD > %m[(cp — DO, (42)

which is just the uncertainty principle. In some cases, such as for a particle’s position C' = = and
corresponding momentum D = p,, the right-hand side of (42) reduces to /2, and it is impossible

for C' and D both to have vanishing dispersion, regardless of the initial quantum state p.

For the AAD argument, by contrast, one not only explicitly carries out a form of post-selection,
but one must also have two physical ensembles produced according to different experimental pro-
tocols: a first ensemble produced by measuring the chronological sequence A,C, B and keeping
only members of the ensemble for which A = @ and B = b, and a second ensemble produced by
measuring the chronological sequence A, D, B and similarly keeping only members for which A = a
and B = b. Crucially, notice that one cannot include B in the experimental protocols that produce
these two ensembles without also including either C' or D, in contrast with the single ensemble con-
structed for the uncertainty principle in the previous paragraph. For each of these two ensembles,
the physical post-selection process for B implicitly depends on the previous measurement of C' (for
the first ensemble) or on the previous measurement of D (for the second ensemble). Thus, one
cannot imagine replacing C' with D without also changing the physical post-selection process for B
as well. It is true that replacing C' with D does not alter the pre-selection on A, but to make the
same assumption about the post-selection on B would be precisely to assume the erroneous form
of time-symmetry for quantum measurements that the present paper rigorously argued against in
Subsection 3.4.

As a consequence, for the AAD argument, it is not possible to carry out a controlled experiment
by fizing the pre-selection on A and the post-selection on B to produce a single physical ensemble,
and then independently varying the choice of C or D to obtain a violation of the uncertainty
principle. This lack of independence between the choice of intermediate observable C' or D and the
post-selection on B is concealed by the notation P(c;) used in the AAD version of the ABL rule,
(38), as well as in the notation p(ci, ..., cpla, b) used in the original ABL rule (32), but is manifest

in the more precise notation used in this paper’s formula for the ABL rule in (30).

The present discussion highlights another important feature of textbook quantum theory that
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is clear from the review of the DvN axioms in Subsection 2.1: at least in some cases, the textbook
theory can make concrete, reliable predictions for a single quantum system, without the need to
invoke an ensemble. This feature is due, in part, to the fact that the DvN axioms prescribe that
observables are assigned at the single-system level, not at an ensemble level. It therefore makes
sense to talk about measuring observables for a single system, to regard measurement outcomes
as statements about that single system, and to regard measurement probabilities and expectation
values as referring to observables of that single system. (This key feature of textbook quantum
theory also turns out to have important implications for weak values, to be discussed in other
work.)

As an example that is highly relevant to the uncertainty principle, consider a single system with
two noncommuting observables C' and D. If one repeatedly measures C', without giving the system
significant time for internal evolution between the measurements, then the DvIN collapse axiom
will ensure that one reliably obtains the same result each time, within reasonably small error bars.
However, an intervening measurement of the observable D will generically lead to a significant change
in subsequent measurements of C, to a degree controlled in part by the commutator CD — DC.
This experimental noncommutativity between algebraically noncommuting observables C' and D is
perhaps the most universal feature of all quantum systems, and provides a concrete, operational
meaning to the uncertainty principle at the single-system level. In particular, a core part of the
uncertainty principle is precisely that it has this implication for a single system.

The AAD argument, by contrast, always requires (multiple) ensembles, so it refers exclusively to
patterns of behavior in ensembles. As a consequence, the AAD argument has no meaning in principle
for a single system, and therefore inevitably misses a core part of the uncertainty principle. Thus,
a fortiori, one cannot interpret the AAD argument as giving any real insight into the uncertainty
principle for a single system, let alone providing a loophole, without committing the ensemble fallacy
(1).

Over the years since the AAD paper was published, several other papers have pointed out, in
more narrow ways, the failure of the AAD paper to show that the ABL rule supports counterfactual

reasoning. For instance, in a 1986 paper, Bub and Brown wrote:

That [the AAD]| argument is fallacious can be seen by noting that the subensemble
of the preselected [a| ensemble that is post-selected for [b] via an intervening [C| mea-
surement differs from the subensemble that is post-selected for [b| via an intervening |D|
measurement. [Bub, Brown 1986, p. 233§|

Sharp and Shanks made a similar case in a 1993 paper, and came to a conclusion not very different

from the one reached in the present work:

Interpreted correctly, the ABL-Rule makes predictions only as to the outcomes of ac-
tual measurements conducted upon systems subject to both and pre- and post-selection.
So interpreted, the rule is not in conflict with orthodox quantum mechanics, but nei-
ther does it yield fresh insights about the fundamental interpretive issues in quantum
mechanics. [Sharp, Shanks 1993, p. 499]
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One finds similar criticisms over the use of the ABL rule for counterfactuals in papers concerned
with the consistent-histories interpretation of quantum theory (Griffiths 1984, Cohen 1995, Kastner
1999).

4 Conclusion

The present work has reviewed the ABL rule, and raised several challenges to some of the ways
that it has been interpreted in the research literature. In particular, this paper has argued that
the ABL rule does not provide a time-symmetric formulation of quantum theory and does not lead
to true violations of the uncertainty principle. Along the way, this paper has highlighted several
relevant fallacies that are relevant to this critical analysis, including the ensemble fallacy (1), the
post-selection fallacy (2), the pattern-matching fallacy (3), and the measurementist fallacy (4).

Are these challenges worth discussing? Does it really matter if the ABL rule is not really time-
symmetric, or if post-selection can lead to erroneous statistical inferences? The answer to these
questions is yes, not only for reasons of philosophical rigor, but also because physics research since
2000 has made substantial use of these interpretational claims about the ABL rule and post-selection,
and that research merits scrutiny. In particular, other work will investigate the connections between
the ABL rule and weak values (Barandes 2026).

At a broader level, this paper should be taken as an argument against the cavalier use of post-
selection to generate publication-worthy results, and as a call for research journals to insist on more
careful explanations by authors that when they use post-selection, their results are actually produced
by quantum theory itself, and are not merely manifestations of selection bias. It is heartening that
this important form of self-corrective introspection is already happening in the research literature

(see, for example, Wharton, Price 2025).
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