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Abstract

The original version of the de Broglie-Bohm pilot-wave theory, also called Bohmian mechan-
ics, attempted to treat the wave function or pilot wave as a part of the physical ontology of
nature. More recent versions of the de Broglie-Bohm theory appearing in the last few decades
have tried to regard the pilot wave instead as an aspect of the theory’s nomology, or dynamical
laws. This paper argues that neither of these views is correct, and that the de Broglie-Bohm
pilot wave is best understood as a collection of latent variables in the sense of a hidden Markov
model, a construct that was not available when de Broglie and Bohm originally formulated
what became their pilot-wave theory. This paper also discusses several other challenges for
the ontological view of the pilot wave. One such challenge is due to Foldy-Wouthuysen gauge
transformations, which connect up with the Deotto-Ghirardi ambiguity in the de Broglie-Bohm
theory. Another challenge arises from the freedom to carry out canonical transformations in the
wave function’s own notion of phase space, as defined by Strocchi and Heslot.

1 Introduction

1.1 The Interpretation of the Quantum State

The quantum state is often taken to be the starring protagonist of quantum theory. The earli-
est version of the quantum state, introduced by Erwin Schrödinger in 1926, took the form of a
wave function defined in the abstract space of a system’s kinematically possible configurations,
and evolved in time according to a specific partial differential equation—the famous Schrödinger
equation (Schrödinger 1926a–d). Later versions of the quantum state, introduced by Paul Dirac
and John von Neumann, were represented either by state vectors in abstract Hilbert spaces, or by
statistical operators or density operators on Hilbert spaces (Dirac 1930, von Neumann 1932). By
the 1940s, quantum states had been abstracted further to positive, normalized linear functionals in
the dual spaces to C*-algebras (Segal 1947a,b).
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Understandably, much of the discourse surrounding the interpretation of quantum theory over
the past century has centered on the meaning and metaphysical status of the quantum state. Con-
temporary postures toward the quantum state typically lean toward one of the following views:

1. (Statistical) The quantum state is an instrumentalist statement about statistical distributions
of possible measurement outcomes, as on the orthodox or ‘textbook’ interpretation of quantum
theory. (See, for example, Shankar 1994; Sakurai, Napolitano 2010; Griffiths, Schroeter 2018.)

2. (Epistemic-over-measurements) The quantum state is a representation of the epistemology or
knowledge of external observers about possible measurement results, as on the Copenhagen
interpretation (Heisenberg 1955, 1958; Howard 2004) and on QBism (Fuchs 2010).

3. (Epistemic-over-ontology) The quantum state is a representation of the epistemology or knowl-
edge of external observers about objective arrangements of physical or ontological entities, as
on various “ψ-epistemic” accounts (Harrigan, Spekkens 2010).

4. (Ontological-monistic) The quantum state is the sole ontology of the universe, as on the
Everett ‘many worlds’ interpretation (Everett 1956, 1957a; Everett, DeWitt, Graham 1973)
and on certain interpretations of dynamical-collapse theories (Gisin 1984; Ghirardi, Rimini,
Weber 1986).1

5. (Ontological-pluralistic) The quantum state is a part of the physical reality or ontology of the
universe, as on some versions of the de Broglie-Bohm pilot-wave theory (de Broglie 1930; Bohm
1952a,b) and on more recent formulations of dynamical-collapse theories (Allori, Goldstein,
Tumolka, Zanghì 2008; Goldstein, Tumulka, Zanghì 2012).

6. (Nomological) The quantum state is nomological, meaning a feature of a system’s dynamical
laws, as on other versions of the de Broglie-Bohm pilot-wave theory (Dürr, Goldstein, Zanghì
1996).

Arguably none of these views capture the full and proper meaning of the quantum state. All of
them seem at least somewhat ill-fitting.

The first two views in the list above—the statistical and epistemic-over-measurement views—leave
the measurement problem essentially unanswered (Maudlin 1995), and remain quiet over whether
there is any ontology in the world beyond macroscopic measuring devices and external observers.
The epistemic-over-ontology view does not seem to capture the functional relationship that quantum
states have with the behavior of systems and the outcomes of measurements, and runs into diffi-
culties in accommodating various no-go theorems, like the PBR theorem (Pusey, Barrett, Rudolph
2012). As for the fourth and fifth ontological views, quantum states are associated with abstract

1At least according to Bell’s account of the original GRW theory (Bell 1987), the theory did not propose any
ontology above and beyond the wave function. The “quantum jumps” of the GRW theory were, in Bell’s words,
“part of the wavefunction, not something else.” In the same paper, Bell also wrote that “The GRW theory does not
add variables.” In later work, Bell wrote that “The GRW-type theories have nothing in their kinematics but the
wavefunction” (Bell 1990).
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spaces, like configuration spaces or Hilbert spaces, and have many other exotic properties that seem
quite different from the sorts of entities traditionally assigned a physical or ontological meaning, as
this paper will explain in detail, and as explored from a historical perspective in other work (Baran-
des 2026b). Finally, looking at the nomological view, quantum states have seemingly contingent,
possibly complicated initial conditions of their own, and also typically feature highly complicated
forms of time-dependence, as well as nontrivial behavior under time-reversal transformations, all of
which make them awkward as dynamical laws.

1.2 Markovian Theories and Hidden Markov Models

With sufficient effort, one can mitigate most of the problems listed above to varying degrees, but
the very need for that effort also motivates seeking out a more natural interpretation of quantum
states. To that end, this paper will argue that quantum states are best understood through the lens
of hidden Markov models, with quantum states playing the role of their latent variables—sometimes
called ‘hidden variables,’ although that term should not be confused with the conventional notion
of hidden variables in quantum theory.

In brief, for a physical theory to be called Markovian—or, perhaps more precisely, dynamically
Markovian—is just to say that its dynamical laws feature a rather nice property: the dynamical
laws, combined with the present-moment state of affairs, determine the state of affairs at the (pos-
sibly infinitesimally) next moment in time, with no dependence on the past except for whatever
is mediated through the present-moment state of affairs. In somewhat more detail, given only the
present-moment configuration or state of a system described by a Markovian theory, the dynamical
laws fix either the unique configuration or state at the next moment in time, if the laws are deter-
ministic, or fix a probability distribution over configurations or states at the next moment in time,
if the laws are stochastic. A physical theory that fails to have this Markov property is said to be
non-Markovian.

If a non-Markovian physical theory can be re-expressed as a Markovian theory by formally
augmenting its configurations or states with a suitable collection of unobservable variables, then the
resulting theory is called a hidden Markov model. The unobservable variables added to make the
theory look Markovian are said to be latent or hidden variables, and they commonly have most of
the following seven (and conceivably more) hallmark characteristics:

1. (Abstraction) They tend to be conceptually abstract.

2. (Non-uniqueness) They are highly non-unique, in the sense of admitting a diverse set of
mathematical redefinitions.

3. (Unobservability) They are typically unobservable in principle.

4. (Non-spatiality) They have no notion of location in physical space.

5. (Absence of backreaction) They are not backreacted upon by the physical configurations or
states of the system, meaning that they change in time on their own in a manner that is
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completely insensitive to the goings-on of the physical configurations or states of the system.

6. (Multivariateness) They often encompass many degrees of freedom, depending on how difficult
it is to turn the non-Markovian theory into a hidden Markov model.

7. (Contingency) They feature contingent patterns of time evolution depending on correspond-
ingly contingent initial conditions.

Hidden Markov models first appeared in the research literature in the 1960s. They were originally
called “probabilistic functions of Markov chains” (Baum, Petrie 1966; Baum, Eagon 1967; Baum,
Petrie, Soules, Weiss 1970; Baum 1972). They only got their more modern name, “hidden Markov
models,” in 1970 in a set of unpublished lectures by Lee Neuwirth (Neuwirth 1970; Neuwirth, Cave
1980; Poritz 1988), and were quickly put to use in statistically modeling speech and language.2

More modern examples include ϵ-machines, which have found widespread use in statistical physics
and in the theory of complex systems (Crutchfield, Young 1989; Travers, Crutchfield 2011).

Given that these developments all took place long after quantum theory and its prominent
interpretations had become firmly established in physics and philosophy, it is hardly surprising that
no one thought to revisit the metaphysical status of quantum states from the standpoint of hidden
Markov models until now.

1.3 Outline of this Paper

To narrow this paper’s scope to a manageable degree, the primary focus will be on pilot-wave theories
of fixed numbers of finitely many non-relativistic particles, like the original de Broglie-Bohm theory,
also known as Bohmian mechanics, which will be reviewed in Section 2. On these theories, the
quantum state generally takes the form of a complex-valued wave function Ψ(q, t) evolving with
the time t according to the Schrödinger equation in the system’s configuration space, each of whose
points q denotes a kinematically allowed ‘classical’ configuration of the system. This wave function,
also called a pilot wave in the context of the de Broglie-Bohm theory, then guides or pilots the
system’s particles along their trajectories through three-dimensional physical space according to a
precise guiding equation.

Section 3 will argue that this pilot-wave theory can be understood—and is perhaps best under-
stood—as a new kind of hidden Markov model, with the pilot wave making up the model’s latent
or hidden variables. Indeed, as that section of the paper will show, the pilot wave exhibits all seven
smoking-gun characteristics of latent variables listed above in Subsection 1.2.

Section 4 will present additional challenges both to the ontological view of the wave function,
and also to the de Broglie-Bohm pilot-wave theory itself. These challenges will come from three

2Much of the research on hidden Markov models was classified at the time, and took place as part of the Institute
for Defense Analyses, where Neuwirth was the deputy director of its Communications Research Division, despite
Neuwirth’s strongly anti-war political leanings (Neuwirth 2009). The fact that this research was classified may have
further delayed its diffusion into other research communities, including those working in quantum foundations. As
an interesting historical aside, one of Lee Neuwirth’s children is the actress and singer Bebe Neuwirth, famous for,
among other major roles, playing the character Lillith Sternin on the television sitcoms Cheers and Frasier.

4



primary directions: from thinking about interference effects, from a little-known class of gauge
transformations first introduced by Foldy and Wouthuysen (1950), and from probing a notion of
phase space for the wave function itself that was defined independently by Strocchi (1966) and
Heslot (1985).

1.4 Some Terminological Disambiguation

Unfortunately, there are a significant number of terminological collisions between the theory of
stochastic processes, the theory of causal modeling, and quantum theory. Before continuing on to
the rest of this paper, it will be important to disambiguate some of this terminology.

In particular, the terms ‘model,’ ‘Markov,’ and ‘latent variable’ show up both in the theory of
stochastic processes and in the theory of causal modeling. Both theories also use similar-looking
graphical depictions, called directed graphs. Meanwhile, the terms ‘Markov’ and ‘hidden variables’
show up both in the theory of stochastic processes and in quantum theory.

For the theory of stochastic processes, a ‘model’ refers to a dynamical process in which one
or more random variables and their probability distributions change with time. In that sense, a
stochastic process generalizes a time series, which consists of a sequence of numerical values of a
particular quantity indexed by time. By contrast, for the theory of causal modeling, a ‘model’ refers
to a network of events or random variables connected to each other with directed causal links.

For the theory of stochastic processes, ‘Markov’ should be understood to mean ‘dynamical
Markovianity,’ referring to the condition that future configurations or states of the system, or
probability distributions over future configurations or states of the system, are always entirely fixed
by just the (possibly infinitesimally) previous-moment configuration or state of the system (Milz,
Modi 2021). By contrast, for the theory of causal modeling, ‘Markov’ usually refers to the ‘causal
Markov condition,’ which is the condition that if the probability distribution of a random variable
in a causal model is conditioned on specific values of all its immediate causal predecessors, or
‘parents,’ then that random variable has no correlations with any other random variables except for
any of its causally descendant random variables. That is, for a causal model satisfying the causal
Markov condition, the parents of a given random variable always screen off all the random variable’s
correlations except possibly for correlations with the random variable’s causal descendants. (See,
for example, Theorem 1.4.1 in Pearl 2009.)

It is possible for a stochastic process to be related to a causal model for which the stochastic
process fails to be dynamically Markovian while the causal model satisfies the causal Markov con-
dition, and vice versa. To see why, note that if the configuration of a stochastic process at some
time depends on, say, its predecessors at two previous times, so that the stochastic process is not
dynamically Markovian, then it may still be possible to construct a causal model in which those two
previous moments in time, treated as parents, screen off all other correlations, so that the causal
model satisfies the causal Markov condition. Going in the other direction, a dynamically Markovian
process may feature correlations between variables at a single moment in time that, when written
as a causal model, fail to feature the screening that is required by the causal Markov condition.
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To make matters even more confusing, the term ‘Markov’ has a subtly different meaning in much
of the contemporary research literature on quantum theory. Conventionally speaking, a quantum
system is said to be Markovian if its present-moment quantum state fully determines its next
quantum state (Milz, Modi 2021), as is the case for closed quantum systems evolving according
to unitary dynamics or for open quantum systems evolving according to the Lindblad or GKLS
equation (Gorin, Kossakowski, Sudarshan 1976; Lindblad 1976). Otherwise the quantum system is
said to be non-Markovian.

The term ‘latent’ also merits careful untangling. For the theory of stochastic processes, a
hidden Markov model is a stochastic process that formally satisfies dynamical Markovianity due
to the augmentation of the system’s configurations by additional, ‘latent’ variables, where those
latent variables are often entirely unphysical and abstract. By contrast, for a causal model, ‘latent
structures’ refer to unobservable components that are needed to ensure the validity of the causal
Markov condition. A causal model that fails to satisfy the causal Markov condition, due to a missing
latent structure, is usually considered to be an incomplete causal model. Indeed, one major purpose
of causal modeling is to find latent structures, which are usually regarded as physical. (See, for
example, Pearl 2009, Subsection 2.9.1, “On Minimality, Markov, and Stability.”)

For a hidden Markov model, latent variables are sometimes called ‘hidden variables,’ which
should be distinguished from the notion of hidden variables in quantum theory. In quantum theory,
hidden variables usually refer to any variables other than the quantum state or wave function
that some interpretations regard as representing necessary ontological components for providing
a complete description of physical reality. For instance, the particles of a pilot-wave theory are
paradigmatic examples of hidden variables according to the quantum-theoretic meaning of the term.
One of the purposes of the present work will be to argue that the true ‘hidden variables’ of quantum
theory, at least in the case of pilot-wave interpretations, are wave functions, in the sense of being
best understood as latent variables of a hidden Markov model.

2 Pilot-Wave Theories

2.1 Relevant History

Before proceeding to the main arguments of this paper, it will be helpful to begin with some relevant
history, which is covered in more detail in other work (Barandes 2026b). The purpose of this history
will be to make clear the following four points about the idea of an ontological wave function or pilot
wave defined in an abstract configuration space rather than in three-dimensional physical space:

• The idea was not a new contribution of David Bohm, Hugh Everett III, or John Bell, but
appeared in Erwin Schrödinger’s 1926 papers originally introducing his wave function.

• The idea was thoroughly studied and carefully considered in the late 1920s by the major
figures responsible for wave-particle duality (Albert Einstein and Louis de Broglie), the wave
function itself (Schrödinger), and the original pilot-wave theory (de Broglie).
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• To a person, all of them resoundingly, repeatedly, and vociferously rejected the idea of treating
the wave function as ontological, as did the people responsible for what later became known as
the ‘Copenhagen interpretation’ (Niels Bohr, Werner Heisenberg, Max Born, Wolfgang Pauli,
and Paul Dirac). Remarkably, denying the physical reality of the configuration-space wave
function was one of the few things that all the prominent founders of quantum theory agreed
on.

• More favorable attitudes toward the physical or ontological reality of the wave function showed
up starting in the 1950s, and were largely due to Bohm and Everett, though Schrödinger
himself apparently began warming to the idea around this time as well.

In a famous paper in 1905, Albert Einstein proposed that electromagnetic waves transported
their energy in discrete quanta (Einstein 1905). Partly inspired by this idea, Louis de Broglie, writing
in 1923, suggested that every material particle had an associated ‘phase wave’ that propagated
in three-dimensional physical space, maintained phase harmony with any hypothetical periodic
processes internal to the particle, and, in the geometrical-optics limit of short wavelength, guided
or piloted the particle’s trajectory along its rays (de Broglie 1923a–c).

In de Broglie’s 1924 doctoral thesis, which would eventually win him the 1929 Nobel Prize in
physics, he wrote down an early version of a guiding equation in the form

Oi =
1

h
Ji, (1)

where, in de Broglie’s notation, i was a Lorentz index. Here Ji was defined to be

Ji = m0cui + eφi, (2)

where m0 was the particle’s proper or rest mass, c was the speed of light, e was its electric charge, φi

were the electromagnetic gauge potentials (not to be confused with the notation for the wave’s phase
function, to be introduced momentarily), and ui = dxi/ds was the particle’s dimensionless four-
velocity, with incremental parameter ds =

√
c2dt2 − dx2 − dy2 − dz2. Meanwhile, Oi was given in

terms of the phase function φ(x, y, z, t) of the associated wave according to the differential identity

dφ = 2π
∑
i

Oidx
i, (3)

so that Oi itself, from a more modern standpoint, can be identified as the wave’s four-dimensional
wave vector. The spatial parts O = (Ox, Oy, Oz) of Oi are then the gradient of the phase function
φ(x, y, z, t), up to a reciprocal factor of 2π:

O =
1

2π
∇φ. (4)

Hence, in the non-relativistic limit, for which cu ≈ v, where v is the particle’s ordinary velocity,
and assuming vanishing electromagnetic gauge potentials, φi = 0, the primitive guiding equation
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(1) reduces to

v =
1

m0

(
h

2π

)
∇φ. (5)

Today, the factor in parentheses would be called the reduced Planck constant ℏ (‘h-bar’), as originally
introduced in 1928 by Paul Dirac (Dirac 1928):

ℏ =
h

2π
. (6)

Partly inspired by de Broglie’s phase-wave theory, and partly by Hamilton-Jacobi theory, Erwin
Schrödinger introduced his theory of “undulatory mechanics” or “wave mechanics” in a series of four
foundational papers in 1926 (Schrödinger 1926a–d). On this new theory, every quantum system as
a whole had a complex-valued wave function ψ(q, t) depending on points q in the system’s abstract
configuration space and on the time t, and satisfying what is now known as the Schrödinger equation,
originally written as eq. (4′′) in Schrödinger fourth paper (Schrödinger 1926d):

∆ψ − 8π2

h2
V ψ ∓ 4πi

h

∂ψ

∂t
= 0. (7)

Here ∆ was a second-order differential operator acting on the system’s configuration space that
implicitly involved the masses of the various particles comprising the system, and V was a potential
function defined on the system’s configuration space. The ambiguous ∓ sign appearing in the
equation reflected the freedom to work with either ψ or its complex-conjugate ψ̄. Choosing the
positive sign convention, rearranging, and using the definition of the reduced Planck constant ℏ =

h/2π from (6), the Schrödinger equation takes its more modern-looking form:

iℏ
∂ψ

∂t
= −ℏ2

2
∆ψ + V ψ. (8)

As Schrödinger pointed out in the first of these four foundational papers on undulatory me-
chanics (Schrödinger 1926a), his wave function ψ(q, t) was defined not in three-dimensional physical
space, like de Broglie’s phase waves, but in the system’s abstract, generically many-dimensional
configuration space. As a consequence, Schrödinger spent a great deal of effort grappling with the
physical meaning of the wave function in these four papers, in personal correspondence with col-
leagues, and in a series of four lectures that he delivered at the Royal Institution in London in 1928
(Schrödinger 1928).

By the late spring of 1926, Schrödinger had settled on the tentative idea that the wave function
was a physical object of some kind, and that it manifested itself through its modulus-square ψψ̄ =

|ψ|2, which, in turn, indirectly determined the distribution of electric charge in three-dimensional
physical space. Schrödinger described this view in the fourth of his foundational 1926 papers, where
he also expressed the speculative idea that the wave function ψ represented the system being in all
its kinematical configurations simultaneously, though in some configurations “more strongly” than in
others, as a decades-early prefiguring of Hugh Everett’s ‘many worlds’ interpretation (Schrödinger
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1926d).3

During the period from 1926 to 1927, Hendrik Lorentz and Albert Einstein expressed their mis-
givings with the notion of physical waves propagating in many-dimensional configuration spaces.
Einstein, in particular, wrote several letters during that period to Lorentz, Max Born, Paul Ehren-
fest, and Arnold Sommerfeld criticizing the idea. Indeed, in Einstein’s famous letter to Born on
December 4, 1926, in which Einstein argued that “God does not play dice,” Einstein also included
a complaint about Schrödinger’s waves in “3n-dimensional space.”4

According to Born’s statistical hypothesis, presented in a paper by Born in the summer of
1926, the modulus-square |ψ(q, t)|2 of the wave function represented the probability density for a
measurement of the system’s configuration at the time t to yield the value q (Born 1926). The Born
rule planted seeds of doubt in Schrödinger’s mind about the physicality of his wave function. At
the end of his four lectures on wave mechanics in 1928, Schrödinger said that he had abandoned
his earlier view that the wave function was a physical object, although he moved back toward that
view again later in his life (Schrödinger 1950, 1952a,b).

In 1927, de Broglie gave a presentation at the fifth Solvay Conference laying out a more detailed
pilot-wave theory on which the waves associated with particles guided or piloted them. In a paper
that year, he laid out a version of the theory, now known as his double-solution theory, that featured
two conceptually distinct waves, both satisfying the same wave equation (de Broglie 1927). One
wave was intended to feature a solitonic singularity that represented a material particle, and the
other wave embodied Born’s statistical probability for the particle’s location. That 1927 paper was
the first to feature the guiding equation in its more modern-looking form, as de Broglie’s eq. (26′),

−→vM =
1

m0

−−−−→
gradφ1, (9)

where −→vM was the particle’s velocity, m0 was its inertial mass, and φ1 was the phase function of the
particle’s singularity-bearing wave.

Unable to work through the complicated mathematics of his double-solution theory, de Broglie
began working on a second, conceptually distinct pilot-wave theory in 1928, eventually publishing
a detailed description of this second pilot-wave theory in a 1930 book (de Broglie 1930). This
alternative pilot-wave theory featured waves and particles as separate forms of ontology, with the
waves again guiding or piloting the particles along their trajectories in physical space. De Broglie
barely mentioned his double-solution theory in that 1930 book.

However, de Broglie ran into the same conceptual challenges as Schrödinger in trying to make
sense of his theory in the case of multi-particle systems, for which the associated waves propagated
not in three-dimensional physical space, but in the system’s many-dimensional configuration space,
which de Broglie called “abstract” and “fictitious.” Toward the end of the book, he explained that
he had decided to abandon this second pilot-wave theory as well.

3As Everett made clear in his unpublished long-form dissertation in 1956, Schrödinger’s later views on the ontology
of the wave function provided inspiration for Everett’s own interpretation of quantum theory (Everett 1956).

4This complaint was mistranslated in the canonical English translations of the Born-Einstein letters (1971). The
crucial “n” in “3n-dimensional” was missing (Howard 1990, Barandes 2026b).
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David Bohm independently discovered de Broglie’s second pilot-wave theory in 1951, eventually
publishing his telling of the theory in a pair of 1952 papers submitted for publication simultaneously
(Bohm 1952a,b). In the second of these two papers, Bohm used his newly formulated theory
of decoherence, as laid out in the final chapters of his 1951 textbook (Bohm 1951, Chapter 22,
“Quantum Theory of the Measurement Process”), to clarify how the pilot-wave theory provided a
means of resolving the measurement problem.

In his pair of 1952 papers, Bohm referred to the wave function or pilot wave as a “ψ-field.”
He also described it in analogy with the electromagnetic field. However, he said little in these
papers about the ψ-field’s physical interpretation for multi-particle systems, although he did briefly
acknowledge that the ψ-field would then have to propagate in a many-dimensional space.

In private letters to Wolfgang Pauli in 1951, Bohm explicitly acknowledged that he had redis-
covered de Broglie’s second pilot-wave interpretation, but argued that de Broglie had not taken his
theory far enough, and that Bohm’s approach to measurement had resolved several outstanding
limitations of de Broglie’s theory. In those letters to Pauli, Bohm also made an assertive case for
regarding the pilot wave as a physical object, despite its “polydimensional” nature (Pauli 1996).

Einstein and Pauli suggested that Bohm should communicate with de Broglie. De Broglie im-
mediately wrote a critical paper about the pilot-wave theory in 1951, emphasizing once again his
problem with the idea of waves propagating in abstract configuration spaces (de Broglie 1951). How-
ever, Bohm’s work rekindled de Broglie’s interest in pilot-wave theories, and de Broglie eventually
returned to working on his earlier double-solution theory from 1927.

Bohm’s version of the pilot-wave theory, now known as the de Broglie-Bohm theory, or Bohmian
mechanics, generated new debates over the physicality of the wave function. Just a few years later,
in his unpublished 1956 long-form thesis, Hugh Everett III explicitly cited Bohm’s interpretation,
and argued that a system’s wave function—regarded now as a vector in a Hilbert space, rather than
as a function defined in a configuration space—was not only ontological, but was the sole form of
ontology in the universe (Everett 1956, 1957a). In John Bell’s retelling of the de Broglie-Bohm
theory, Bell emphasized the physicality of the pilot wave as well (Bell 1980, 1982), even going so far
as to write, in italics:

No one can understand this theory until he is willing to think of ψ as a real objective
field rather than just a ‘probability amplitude’. Even though it propagates not in 3-space
but in 3N -space. [Bell 1981, emphasis in the original]

The view that the wave function or pilot wave is physically real or ontological, despite being defined
in a system’s configuration space rather than in physical space, has come to be called ‘wave-function
realism,’ and continues to generate controversy to this day (Albert 1996; Lewis 2004; Ney, Albert
2013; Myrvold 2015; Chen 2019; Wallace 2020; Ney 2021; Ney 2023).

Pushing back on wave-function realism, Dürr, Goldstein, and Zanghì have argued that the pilot
wave should be understood not as a physical or ontological object, but as a form of nomology,
meaning a feature of a quantum system’s dynamical laws. (See, for example, Dürr, Goldstein,
Zanghì 1996.) More will be said about this nomological view later.
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2.2 General Formulation

It will be useful to lay out the general structure of the de Broglie-Bohm pilot-wave theory, again
also known today as Bohmian mechanics. Let Ψ(q, t) denote the complex-valued configuration-
space wave function or pilot wave for a quantum system with n = 3N degrees of freedom and
whose configurations are labeled by q = (q1, . . . , qn), with t denoting the time. Suppose that
the configuration-space wave function satisfies the following schematic version of the Schrödinger
equation (8):

iℏ ∂tΨ = −ℏ2

2
∆Ψ+ VΨ. (10)

Here V is a potential function defined on the system’s configuration space, ∂t = ∂/∂t is the partial
derivative with respect to the time t, and ∆ is a second-order differential operator acting on the
system’s configuration space and having the general form

∆ =
n∑

i,j=1

∂i(µij∂j), (11)

where µij = µji is a symmetric array of real-valued functions of the coordinates (assumed for
simplicity to have unit determinant), ∂i = ∂/∂qi and ∂j = ∂/∂qj are the partial derivatives with
respect to the respective coordinates qi and qj , and ∆ is understood to act on test functions f(q, t)
as

∑
i,j ∂i(µij∂jf). Writing the wave function in polar form in terms of a real-valued radial function

R(q, t) and a real-valued phase function S(q, t)/ℏ,

Ψ(q, t) = R(q, t)eiS(q,t)/ℏ, (12)

the Schrödinger equation (10) breaks up into a pair of coupled, real-valued equations involving R and
S. One then imposes a guiding equation on the velocities Q̇i(t) based on the values of the gradients
∂jS of the phase function evaluated on the system’s actual trajectory Q(t) = (Q1(t), . . . , Qn(t)),

Q̇i(t) =
n∑

j=1

µij∂jS
∣∣∣
Q(t)

, (13)

where dots denote time derivatives. It follows that the modulus-square of the wave function, as
given by

ρ = ΨΨ = |Ψ|2 = R2, (14)

satisfies the following continuity equation,

∂tρ = −
n∑

i=1

∂iJi, (15)

where the probability current densities Ji(q, t) are given by
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Ji =
n∑

j=1

ℏµijIm Ψ̄∂jΨ = ρ
n∑

j=1

µij∂jS, (16)

as one can show with a short calculation.5 One can then write the guiding equation (13) in the
equivalent form

Q̇i(t) =
Ji
ρ

∣∣∣∣
Q(t)

=
Ji(Q(t), t)

ρ(Q(t), t)
. (17)

These equations guarantee a crucial property called ‘equivariance,’ which ensures that if the
system’s initial probability density is ρ(q, t0) = |Ψ(q, t0)|2 at an initial time t0, a condition called
the ‘quantum equilibrium hypothesis,’ then the system’s probability density at all later times t will
continue to coincide with ρ(q, t) = |Ψ(q, t)|2, in keeping with the Born rule.

Notice that the final version (17) of the guiding equation does not lead to divide-by-zero errors,
because, by construction, the system has zero probability of ever having an actual configuration
Q(t) at any time t such that ρ(Q(t), t) = 0. If the system approaches regions of its configuration
space for which the probability density ρ(q, t) gets very small, then the system’s velocities Q̇i(t)

become highly unstable, typically driving the system away from those regions of its configuration
space.

3 Hidden Markov Models

3.1 The Shoemaker Universe

It will be useful now to explain what hidden Markov models are, before establishing their relationship
with the de Broglie-Bohm pilot-wave theory. A good starting place will be a simple but profound
thought experiment.

In a 1969 paper, Sydney Shoemaker presented an argument intended to establish the conceiv-
ability of durations of time without physical change (Shoemaker 1969). Following Shoemaker, one
imagines a hypothetical universe that is entirely static and empty except for three civilizations A,
B, and C that live in three separate solar systems far apart in space, but still close enough together

5Here is that calculation:

∂tρ = ∂t

(
ΨΨ̄

)
= (∂tΨ)Ψ̄ + Ψ

(
∂tΨ̄

)
=

(
− ℏ
2i
∆Ψ+

�
�
�1

iℏ
VΨ

)
Ψ̄ + Ψ

(
ℏ
2i
∆Ψ̄−

�
�
�1

iℏ
V Ψ̄

)
= −

n∑
i=1

∂iJi,

where

Ji =

n∑
j=1

ℏ
2i
µij

(
Ψ̄∂jΨ−Ψ∂jΨ̄

)
=

n∑
j=1

ℏµijIm Ψ̄∂jΨ

=

n∑
j=1

ℏµijImRe−iS/ℏ∂j

(
ReiS/ℏ

)
= ρ

n∑
j=1

µij∂jS.
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that sentient beings in each solar system can see the other civilizations through telescopes. Each civ-
ilization uses the same notions of days and years, with 365 days making up one year. Furthermore,
the Shoemaker universe features some rather unusual behavior:

• Every three years, civilizations B and C see civilization A suddenly pause completely for one
full year, after which civilization A unpauses and then proceeds normally, with the inhabitants
of civilization A having no awareness of the paused year.

• Every four years, civilizations A and C similarly see civilization B pause for one full year
before unpausing again.

• Every five years, civilizations A and B see civilization C pause for one full year before un-
pausing again.

The inhabitants of the Shoemaker universe would seem to be quite reasonable if they claimed that
every 3 × 4 × 5 = 60 years, their entire universe paused for a full year, even though no physical
changes would have occurred during that paused year, and the inhabitants would not be able to
obtain any direct empirical evidence that such a year-long pause had happened.

Accepting this view for the sake of argument, what could the dynamical laws of the Shoemaker
universe be like? The laws would seem to be manifestly non-Markovian, because the state of the
Shoemaker universe at the end of Day 1 of the 60th year looks just like the state of the Shoemaker
universe at the end of Day 365 of the 60th year, and yet the state at the beginning of Day 2 is still
paused, whereas the state at the beginning of Day 366 looks like a physical change has taken place.
It is as though, according to the dynamical laws of the Shoemaker universe, the state of the universe
at the beginning of Day 366 has somehow been determined by the state of the universe a year in
the past. Indeed, Shoemaker said that this universe exhibited “action at a temporal distance.”

If one is uncomfortable with non-Markovian laws of nature like these, then there is a simple
solution that is always available. One can turn the Shoemaker universe into a hidden Markov model
by positing the existence of a latent variable Q(t) that grows steadily with time, perhaps according
to the simple differential equation

dQ(t)

dt
= 1. (18)

Then the dynamical laws of the Shoemaker universe can check on the value of Q(t) along with
the state of the universe at the present-time t in order to determine the state of the universe
at the infinitesimally next moment in time t + dt. If the latent variable Q(t) has reached a value
corresponding to the end of Day 365 of a year that is a multiple of 60, then the laws should prescribe
that the next moment should exhibit ordinary physical change in the three civilizations.

The latent variable Q(t) features six of the seven telltale characteristics listed earlier, in Sub-
section 1.2

1. It is a conceptually abstract variable.

2. It is non-unique and can be deformed by various mathematical transformations and redefini-
tions. Indeed, even its differential equation (18) could easily be altered.
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3. It is unobservable in principle.

4. It has no location in physical space.

5. It is not backreacted upon by the physical material in the Shoemaker universe.

6. It is very simple, in violation of the generically complicated nature of latent variables.

7. It has contingent time evolution depending on correspondingly contingent initial conditions,
in the sense that its 60-year ‘internal clock’ conceivably could have started with various initial
values.

Suppose that one is committed to interpreting Q(t) as more than just a formal latent variable.
Then one could, in principle, either take Q(t) to be an exotic part of the ontology of the Shoemaker
universe, or one could choose to regard Q(t) as part of the nomology or dynamical laws themselves.
However, there does not seem to be any knock-down argument for favoring the ontological view
over the nomological view, or vice versa.

More to the point, there does not appear to be a good argument that confronting this ontological-
nomological fork is obligatory. Indeed, there is a perfectly reasonable alternative way to understood
Q(t): treat it as a latent variable in a hidden Markov model for a fundamentally non-Markovian
universe. This alternative view only becomes available when one is aware of the concept of a hidden
Markov model, which Shoemaker almost certainly could not have known about in 1969.

3.2 Continuous Stochastic Processes

As a more complicated but also much more relevant example, one can consider a continuous stochas-
tic process of a very general form. To be precise, suppose that a given system with configurations
labeled smoothly by q = (q1, . . . , qn) has a time-dependent probability density ρ(q, t) that is a
smooth function of the coordinates q1, . . . , qn and the time t, where the total number n of degrees
of freedom is assumed to be finite. This stochastic process will generically be non-Markovian.

Introduce a ‘field’ r(q, t) on the system’s configuration space according to the differential equation

∂
(
r2(q, t)

)
∂t

=
∂ρ(q, t)

∂t
, (19)

and define a corresponding set of probability current densities Ji(q, t) according to6

Ji(q1, . . . , qi, . . . , qn, t) = −ci
∂

∂t

∫ qi

ai

dq′i r
2
(
q1, . . . , q

′
i, . . . , qn, t

)
, (20)

where ai are arbitrary constants and where ci are constants satisfying the summation identity

n∑
i=1

ci = 1. (21)

6The time derivative here needs to be a partial derivative because the integration yields a function of n + 1
variables.
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It follows that if the following guiding equation is imposed on the velocities Q̇i(t) of the system’s
actual trajectory Q(t) = (Q1(t), . . . , Qn(t)),

Q̇i(t) =
Ji
r2

∣∣∣∣
Q(t)

=
Ji(Q(t), t)

r2(Q(t), t)
, (22)

then the system will obey equivariance, in the sense that the identification

ρ(q, t) = r2(q, t) (23)

will consistently hold at future times if it holds at any initial time, in accordance with the continuity
equation

∂ρ

∂t
= −

n∑
i=1

∂Ji
∂qi

, (24)

which is ensured by the formula (20) for the probability current densities.
The result is then a deterministic hidden Markov model for the continuous stochastic process

that is also, furthermore, a pilot-wave theory. The values of the ‘field’ r(q, t) at all points q in
the system’s configuration space play the role of both the latent or hidden variables for the hidden
Markov model, and r(q, t) as a whole is also a pilot wave.

Notice that r(q, t), again regarded as an infinite distribution of variables at all points q in the
system’s configuration space, exhibits all seven of the smoking-gun characteristics of latent variables
listed in Subsection 1.2:

1. It is an abstract function defined over the system’s abstract configuration space.

2. It is non-unique in a variety of ways. For example, one can multiply it by an arbitrary
constant without affecting the guiding equation (22) or the equivariance property (23). One
can also modify the definition of the current densities (20) and therefore the guiding equation
by changing the constants ci or by adding terms with vanishing divergence. (See, for example,
Deotto, Ghirardi 1998, which will come up again later.)

3. It is unobservable in principle, because the only given configurations are those of the original
system.

4. It has no notion of location in physical space.

5. It is not backreacted upon by the system’s configuration.

6. It encompasses an infinite number of its own degrees of freedom, one at each point q in the
system’s configuration space, even if the original system has only a finite number n of degrees
of freedom.

7. It has its own initial conditions, which should satisfy r2(q, t0) = ρ(q, t0) at the initial time t0.
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Notice that the infinite collection of variables that make up r(q, t) therefore constitute an even
better example of latent variables than the latent variable Q(t) for the Shoemaker universe from
Subsection 3.1 because Q(t), by contrast, did not properly exhibit the sixth listed characteristic
(multivariateness).

Looking back at the de Broglie-Bohm pilot-wave theory from Subsection 2.2, one sees a remark-
able and telling resemblance. Indeed, it is evident that the de Broglie-Bohm pilot-wave Ψ(q, t)

exhibits all seven of these hallmark characteristics of latent variables as well. The lack of backre-
action, or “back action,” in particular, is a widely acknowledged property of the de Broglie-Bohm
pilot wave (Dürr, Goldstein, Zanghì 1996).7

One should therefore take seriously the idea that the de Broglie-Bohm pilot-wave theory is
nothing more or less than a deterministic hidden Markov model of the same general kind as the one
constructed here, with the pilot wave comprising just another class of latent variables. Indeed, the
very facts that the construction laid out in this subsection was so simple, so general, so non-unique,
and so inaccessible to empirical falsification, suggest that it is essentially just a parlor trick—an
example of a collapse into triviality—and not a fundamental statement about physics.

This new deterministic hidden Markov model even gets the measurement process to work out
correctly, and in a manner very similar to how the de Broglie-Bohm pilot-wave theory handles
measurements (Bohm 1952b). Suppose that the system’s overall configuration encompasses a mea-
suring device containing a ‘macroscopically large’ number of its own degrees of freedom, and suppose
that the measuring device has, say, two distinct possible outcomes, each of which corresponds to a
macroscopically distinct rearrangement of its pre-measurement degrees of freedom. It follows that
if the stochastic process is capable of accommodating measurements in the first place, and if the
overall system goes through a measurement process, then the final probability density should take
the form ρ(q, t) = ρ1(q, t) + ρ2(q, t), where the two terms correspond to the two macroscopically
distinct measurement outcomes and therefore have non-overlapping support on the overall system’s
configuration space. The system’s actual configuration Q(t) at the time t will belong to just one of
these two regions of support, and so ρ(Q(t), t) will reduce to just one of the two terms ρi(Q(t), t),
meaning that only that term ρi(Q(t), t) will show up in the guiding equation (22). By continuity,
only that term ρi(Q(t), t) will make a difference to the system’s actual trajectory Q(t) for at least
some period of future time. (Beyond that time, there can, in principle, be ‘interference effects,’ but
the same is also possible for the de Broglie-Bohm theory in the case of re-coherence.)

As was the case for the latent variable Q(t) for the Shoemaker universe, one is free to claim that
the ‘field’ r(q, t) is ontological, or even nomological (meaning a time-dependent part of the system’s
dynamical laws), provided that one is willing to grapple with making sense of ontological objects in a
many-dimensional configuration space, or nomological ingredients with arbitrarily complicated time
dependence and contingent initial conditions. However, given the arguably more fitting option of
understanding r(q, t) as a collection of latent variables that are part of a hidden Markov model, one
is no longer obligated—nor perhaps even well-advised—to insist on interpreting r(q, t) as ontological

7One can, of course, introduce backreactions on the de Broglie-Bohm pilot wave if one wishes, but the point is
that putting in backreactions by hand is unnecessary.
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or nomological.
Crucially, the same option is arguably available for the wave function or pilot wave Ψ(q, t) for

the de Broglie-Bohm theory. Why not interpret the wave function as a collection of latent variables
in a hidden Markov model, given its close resemblance to r(q, t) and the fact that it features all
seven smoking-gun characteristics of a latent variable? If it walks like a duck, and quacks like a
duck, and satisfies five additional characteristics of a duck, then what should one conclude?

4 Further Challenges to the Ontological View

4.1 Interference Effects

Beyond the discussion presented so far, there are still other challenges to the ontological view of the
wave function or pilot wave. One place to start is with questions surrounding the famous interference
effects of quantum theory.

Actually, far from being seen as undermining the thesis that the wave function is ontological,
the appearance of interference effects in various experiments is often held up as evidence in favor of
the ontological thesis. It is therefore worth taking a moment to explain how interference shows up in
these sorts of experiments, and why they are not definitive evidence for an ontological interpretation
of the wave function. A key example is the well-known double-slit experiment. (See, for example,
Feynman, Leighton, Sands 1965, Volume 3, Chapter 1; or Heisenberg 1958, Chapter III. Note that
the actual experiment was not performed with electrons until the work of Jönsson in 1961.)

In the double-slit experiment, particles are sent, one at a time, toward a wall with two small
slits or holes in it. The slits are close together, but are still significantly farther apart than their
individual widths. Far away, on the other side of the wall, is a detection screen that identifies the
precise landing site of each particle that arrives there. The idea is to collect detailed statistics on
the individual landing sites so that one can construct an overall histogram.

Crucially, on each successful run of the experiment, there is always only a single landing site on
the detection screen. Obtaining any statistical patterns among the landing sites therefore requires
running the experiment many times.

If the particles are classical objects, like small stones, then, after many runs of the experiment,
the histogram consists of a blend of two normal or Gaussian distributions of dots, where each
Gaussian distribution is lined up with one of the two slits.

By contrast, if the experiment is carried out with electrons, then, again after many runs of the
experiment, the histogram appears to show peaks and valleys of dots, in a manner that looks just
like the pattern of constructive and destructive interference of waves propagating through the two
slits. To be clear, no wavelike interference pattern is seen on any one run of the experiment—it is
only after many runs of the experiment that the histogram of landing sites shows such a pattern of
dots.

The textbook explanation for this interference-like pattern of dots is that each electron is—or
is guided by—a wave propagating in three-dimensional physical space, just as de Broglie originally
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imagined in his 1923 papers. However, the moment one considers doing the experiment with multi-
electron systems on each run, even if electrical repulsive effects can be ignored, this intuitive picture
breaks down, because then it becomes salient that the wave function or pilot wave propagates
not in three-dimensional physical space, but in the system’s many-dimensional configuration space.
That is, one encounters precisely the sort of confusing picture that led all the founders of quantum
theory to abandon the ontological view of the wave function, as outlined in Subsection 2.1 and
described more extensively in other work (Barandes 2026b). Rather than evidence in favor of the
ontological view of the wave function, interference, at least when involving multiple particles at a
time, undermines that view.

Ultimately the wave function is not observable, and is not visualized in these experiments. What
is visualized is the set of landing sites of the electrons, and whatever one’s interpretation of the wave
function, all empirically adequate formulations of quantum theory agree on those landing sites. On
traditional versions of the de Broglie-Bohm pilot-wave theory, those landing sites are explained by
an ontological wave function interfering with itself and physically guiding the particles preferentially
to regions of the detection screen where the wave function exhibits constructive interference. On
nomological versions of the pilot-wave theory, the particles are simply obeying complicated dynam-
ical laws, where those laws have contingent initial conditions and intricate time dependence of their
own.

Alternatively, on the view that the wave function is merely a latent variable of a hidden Markov
model, as argued in this paper, the underlying physical story is non-Markovian, and the landing
sites are the indirect result of those non-Markovian laws.

An analogy due to Hugh Everett III may be apt here. In a private letter to Bryce DeWitt, dated
May 31, 1957, Everett wrote:

A crucial point in deciding on a theory is that one does not accept or reject the
theory on the basis of whether the basic world picture it presents is compatible with
everyday experience. Rather, one accepts or rejects on the basis of whether or not the
experience which is predicted by the theory is in accord with actual experience.

Let me clarify this point. One of the basic criticisms leveled against the Copernican
theory was that the “mobility of the earth as a real physical fact is incompatible with the
common sense interpretation of nature.” In other words, as any fool can plainly see[,] the
earth doesn’t really move[,] because we don’t experience any motion. However, a theory
which involves the motion of the earth is not difficult to swallow if it is a complete enough
theory that one can also deduce that no motion will be felt by the earth’s inhabitants
(as was possible with Newtonian physics). Thus, in order to decide whether or not a
theory contradicts our experience, it is necessary to see what the theory itself predicts
our experience will be. [Everett 1957b, emphasis and parenthetical in the original]

Everett included similar comments in the shorter, published version of his doctoral thesis (Everett
1957a). Those comments appeared in a footnote added during the proofing stage. In that footnote,
he criticized arguments against his own theory, writing that such arguments
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[...] are like the criticism of the Copernican theory that the mobility of the earth
as a real physical fact is incompatible with the common sense interpretation of nature
because we feel no such motion. In both cases the argument fails when it is shown that
the theory itself predicts that our experience will be what it in fact is. (In the Copernican
case the addition of Newtonian physics was required to be able to show that the earth’s
inhabitants would be unaware of any motion of the earth.) [Ibid., parenthetical in the
original]8

Everett’s words here echo a famous statement made by Einstein, as quoted in Heisenberg’s memoir
Physics and Beyond (Heisenberg 1971): “It is the theory which decides what we can observe.”

The planets in the night sky might provide an even better analogy.
Over many nights, some of the planets appear to follow trajectories that take them on retrograde-

prograde ‘loops.’ From a modern perspective, one accounts for this strange apparent motion by
appealing to Newton’s complicated theory of mechanics, which features planets qua orbs, inertial
masses, forces, accelerations, equations of motion that are slightly non-Markovian because they
feature second-order time derivatives, and relative perspectives between the orbs.

However, the resulting trajectories in the sky end up being nearly periodic over sufficiently large
stretches of time, so Fourier’s theorem guarantees that each such planet’s observed trajectory in
the sky can be expressed in terms of a discrete Fourier series. One can organize the modes in that
Fourier series into a collection of unobservable ‘epicycles upon epicycles upon epicycles,’ in much
the same sense that Ptolemy originally imagined his epicycles, where each epicycle is a perfect circle
of fixed radius rotating at a constant rate. These Fourier epicycles are just formal visualizations of
the modes in a discrete Fourier series, of course, so they are unobservable in principle. Indeed, they
satisfy most of the characteristics of latent variables from Subsection 1.2, except that they have
spatial locations and are unique, again by Fourier’s theorem.

One can also add, of course, that the Newtonian model is slightly non-Markovian, because its
equations of motion are second-order in time derivatives. The Fourier-epicycle model is therefore,
in a literal sense, a hidden Markov model for the Newtonian model, although admittedly not a
unique way to embed Newtonian mechanics into a Markovian framework. Indeed, the Hamiltonian
phase-space framework provides a conceptually distinct such approach (Barandes 2026a).

In simple cases, the Fourier epicycles give a much more intuitive and direct explanation of the
retrograde-prograde loops that some of the planets make in the night sky. With Fourier’s theorem in
hand, it follows that all of observational planetary astronomy could, in principle, be reduced to the
marvelously parsimonious axiom that planetary motion in the sky is nearly periodic, so that the only
task of scientific astronomy would be to calculate the Fourier amplitudes to any desired precision
based on empirical observation. Planets on perfect circles that rotate at constant rates—what
could be conceptually simpler than that? Why prefer Newton’s much more complicated theory that

8This Copernican analogy has become a repeated anecdote in the literature on the Everett interpretation of
quantum theory, where it is usually retold in terms of an encounter between Elizabeth Anscombe and Ludwig
Wittgenstein that Anscombe reported in an introduction to the Tractatus (Anscombe 1959). See, for instance,
Coleman (1994), Wallace (2012), and Carroll (2019).
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removes the unobservable Fourier epicycles? Why not just reify the Fourier epicycles and treat them
as ontological? Why treat the retrograde-prograde loops in the sky as red herrings, rather than as
clear signals that Fourier epicycles should be taken seriously as part of the ontology of nature?

One good reason to be suspicious of regarding the Fourier epicycles as ontological is that they
have too much in common with latent variables in a hidden Markov model, which should make them
immediately suspect as aspects of the ontology of nature. Moreover, beyond the simplest cases,
the Fourier epicycles become so ornate and complicated that they do not give an intuitive or easily
visualizable explanation of the retrograde-prograde loops anymore. Finally, the motion of the planets
is not exactly periodic, and the solar system features many other objects, like the moons of the
various planets, and comets on non-periodic hyperbolic orbits, that cannot be accommodated into a
discrete system of Fourier epicycles. This discussion, of course, puts aside additional complications
from relativity.

One should note the resemblances of these problems to some of the outstanding challenges of
the de Broglie-Bohm theory, which features a pilot wave satisfying all the characteristics of a latent
variable in a hidden Markov model, and has run into well-known difficulties in being generalized
beyond the case of systems consisting of fixed numbers of finitely many non-relativistic particles.
One might then be within one’s rights to arrive at the following conclusion: wave functions are the
epicycles of the modern age.

4.2 Foldy-Wouthuysen Gauge Transformations

One of the seven characteristics of a latent variable in a hidden Markov model, as listed in Sub-
section 1.2, is non-uniqueness. As this next part of the present work will show, the degree of
non-uniqueness of the quantum state—whether treated as a configuration-space wave function or as
a state vector in a Hilbert space—turns out to be even more substantial than for the ‘field’ r(q, t)
of the generic hidden Markov model constructed in Subsection 3.2. That is, a quantum state is
even more like a set of latent variables than r(q, t), despite the fact that r(q, t) was intended by
construction to comprise a set of latent variables.

The starting place is a remarkable feature of general quantum systems that is not widely known.
Given a quantum system described in terms of a Hilbert-space formulation with state vector |Ψ(t)⟩,
observables A(t), and a Hamiltonian H(t), there exists a highly general family of gauge transforma-
tions that leave all empirical quantities invariant. These gauge transformations were first identified
in 1950 by Foldy and Wouthuysen in the specific context of relativistic spin-half particles (Foldy,
Wouthuysen 1950). Brown later wrote them in a more general form in a paper concerned with
questions of objectivity for quantum systems (Brown 1999).

To begin, consider an arbitrary quantum system in its Hilbert-space formulation. Letting V (t) be
an arbitrary time-dependent unitary operator (not to be confused with the notation for a potential

20



function), a Foldy-Wouthuysen gauge transformation is defined by

|Ψ(t)⟩ 7→ |Ψ′(t)⟩ = V (t)|Ψ(t)⟩,

A(t) 7→ A′(t) = V (t)A(t)V †(t),

H(t) 7→ H ′(t) = V (t)H(t)V †(t)− iℏV (t)∂tV
†(t).

 (25)

The time-dependence of the unitary operator V (t) here is significant. The gauge transformations
defined above are not the ordinary kinds of constant unitary transformations that are familiar from
most textbooks on quantum theory.

Foldy-Wouthuysen gauge transformations preserve all expectation values ⟨A(t)⟩ = ⟨Ψ(t)|A(t)|Ψ(t)⟩,
so they leave all the empirical predictions of quantum theory exactly unchanged. Note that Foldy-
Wouthuysen gauge transformations do not produce a new quantum system or theory, but merely
yield a new ‘gauge’ for the same quantum system or theory.

Notice also that the Hamiltonian H(t) does not transform like an observable.9 Instead, the
transformation law for the Hamiltonian H(t) has precisely the same form as the transformation law
for a non-Abelian gauge connection. (For a pedagogical treatment of non-Abelian gauge theories,
see, for example, Peskin, Schroeder 1999; Weinberg 1996). Indeed, if one regards a time-evolving
quantum system as a bundle of identical Hilbert spaces fibered over a one-dimensional manifold
representing the time t, then a Foldy-Wouthuysen gauge transformation can be understood as an
independent unitary rotation by V (t) of the Hilbert-space fiber at each time t, with the Hamiltonian
H(t) serving as the gauge connection. Indeed, one can re-express the Hilbert-space Schrödinger
equation

iℏ
∂|Ψ(t)⟩
∂t

= H(t)|Ψ(t)⟩ (26)

in the manifestly gauge-covariant form

Dt|Ψ(t)⟩ = 0, (27)

where the Foldy-Wouthuysen gauge-covariant derivative Dt is defined to be

Dt ≡
∂

∂t
+
i

ℏ
H(t), (28)

in much the same way as for a non-Abelian gauge theory.

The existence of Foldy-Wouthuysen gauge transformations should raise doubts about the via-
bility of any ‘ontological-monistic’ interpretation of quantum theory (in the terminology of Subsec-
tion 1.1) that asserts that the ontology of nature is exhausted entirely by abstract state vectors in
Hilbert spaces, which are manifestly not gauge invariant. These doubts ought to be of particular

9It may come as a surprise to learn that the Hamiltonian is not an observable. Is it not the case that for a
single non-relativistic particle of mass m, position q, momentum p, and potential V (q), the Hamiltonian H is given
by p2/2m + V (q)? The reply is that although the arithmetic combination of observables p2/2m + V (q) is indeed
gauge-invariant, the Hamiltonian H will not remain equal to that specific combination of observables under Foldy-
Wouthuysen gauge transformations.
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concern for some versions of the Everett interpretation, including Everett’s own version of his in-
terpretation, which Everett explicitly took to consist only of the wave function of the universe as
its fundamental ontology (Everett 1956, 1957a; Barandes 2026b).

The de Broglie-Bohm pilot-wave theory does not fall into the category of such interpretations, as
the theory explicitly posits additional ontology beyond the wave function, in the form of particles.
However, the existence of Foldy-Wouthuysen gauge transformations also has potential implications
for the de Broglie-Bohm theory, and these implications will turn out to put serious pressure not
only on the ontological view of the pilot wave, but on the view that the de Broglie-Bohm theory is
well-defined in the first place.

Working in configuration space, consider a quantum system consisting of N non-relativistic
particles with configurations q labeled by n = 3N degrees of freedom q1, . . . , qn (usually assumed
to be position coordinates) and Hamiltonian

H(q, t) = −ℏ2

2
∆ + V (q, t). (29)

Here the potential function V (q, t) should not be confused with the Foldy-Wouthuysen unitary
operator V (t), and ∆ is the second-order differential operator on the system’s configuration space
originally defined in (11):

∆ =
n∑

i,j=1

∂i(µij∂j).

Now consider the subclass of Foldy-Wouthuysen gauge transformations (25) that commute with
all the coordinate operators of the system. In that case, the time-dependent unitary operator V (t),
when expressed in the q-representation, reduces to a simple phase factor,

eiλ(q,t)/ℏ, (30)

where λ(q, t) is a smooth but otherwise arbitrary function of the configuration q = (q1, . . . , qn) and
the time t. The wave function Ψ(q, t) and the Hamiltonian H(q, t) then transform respectively as

Ψ 7→ Ψ′ = eiλ/ℏΨ,

H 7→ H ′ = eiλ/ℏHe−iλ/ℏ − ∂tλ,

}
(31)

where the first term in H ′ should be understood as acting on arbitrary test functions f(q, t) as
eiλ/ℏH

(
e−iλ/ℏf

)
.

Under this subclass of Foldy-Wouthuysen gauge transformations, the Born-rule probability den-
sity ρ(q, t) = |Ψ(q, t)|2 in (14) is manifestly gauge invariant:

ρ = |Ψ|2 7→ ρ′ = ρ. (32)

Meanwhile, the radial function R(q, t) and the phase function S(q, t) appearing in the polar decom-
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position (12) of the wave function transform respectively as

R 7→ R′ = R, (33)

S 7→ S′ = S + λ. (34)

Because the phase function S(q, t) is not gauge invariant, the probability current densities Ji(q, t)
defined in (16) are also not gauge invariant. Instead, they transform nontrivially under Foldy-
Wouthuysen gauge transformations according to

Ji = ρ
n∑

j=1

µij∂jS 7→ J ′
i = Ji + ρ

n∑
j=1

µij∂jλ. (35)

Unsurprisingly, with the additional structure that turns textbook quantum mechanics into the de
Broglie-Bohm pilot-wave theory, not all of the Foldy-Wouthuysen gauge invariance of textbook
quantum mechanics is preserved.

Importantly, however, if one restricts further to the smaller subclass of Foldy-Wouthuysen gauge
transformations for which the inhomogeneous additive term appearing in the transformation formula
(35) for Ji has vanishing generalized divergence, in the precise sense that

n∑
i=1

∂i

ρ n∑
j=1

µij∂jλ

 = 0, (36)

then the continuity equation (15) still holds, as before:

∂tρ = −
n∑

i=1

∂iJi. (37)

That is, although some of the Foldy-Wouthuysen gauge invariance is broken by moving from text-
book quantum mechanics to the de Broglie-Bohm theory, there can still be some lingering Foldy-
Wouthuysen gauge invariance that leaves the de Broglie-Bohm theory’s self-consistency intact.

To be clear, these Foldy-Wouthuysen gauge transformations do not change the de Broglie-Bohm
pilot-wave theory into some other theory. They are a family of gauge transformations inherent to
the de Broglie-Bohm theory itself, akin to the electromagnetic gauge transformations of the Maxwell
theory. These Foldy-Wouthuysen gauge transformations also do not replace the de Broglie-Bohm
particles with some other qualitatively distinct form of ontology.

Nevertheless, the fact that the current densities (35) are not gauge invariant means that the
velocities Q̇i(t) of the de Broglie-Bohm particles, as given by the guiding equation in either the
forms (13) or (17), likewise fail to be gauge invariant, but transform nontrivially according to

Q̇(t) 7→ Q̇′(t) = Q̇(t) +

n∑
j=1

µij∂jλ. (38)
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It follows that the resulting trajectories of the de Broglie-Bohm particles fail to be gauge invariant
as well. Nor is there any preferred or canonical gauge choice of velocities and trajectories from
among all the gauge choices related by (38). These distinct gauge choices are all indistinguishable
at the level of the empirical output of the de Broglie-Bohm theory.

The ambiguity (38) in the velocities and trajectories of the de Broglie-Bohm particles first ap-
peared in a paper by Deotto and Ghirardi (1998), who showed that the guiding equation—and
thus the trajectories of the de Broglie-Bohm particles—were empirically underdetermined in a very
explicit sense: one could add an arbitrary divergence-free term to the current densities without
changing the empirical predictions of the de Broglie-Bohm theory. A new result of the present work
is thus to connect this Deotto-Ghirardi ambiguity with Foldy-Wouthuysen gauge transformations.
More precisely, the present work shows that the Deotto-Ghirardi ambiguity does not refer to an
ad hoc modification of the de Broglie-Bohm theory, but is an expression of the fact that the ve-
locities and trajectories of the de Broglie-Bohm theory, along with the pilot wave itself and the
probability current densities, all fail to be gauge-invariant notions under Foldy-Wouthuysen gauge
transformations.

In other physical theories, structures that fail to be invariant under a relevant notion of gauge
transformations, such as the gauge potentials of Maxwellian electromagnetism or the metric tensor of
general relativity, tend not to be assigned a physical or ontological meaning. Physical or ontological
meaning is instead usually reserved for gauge-invariant structures. The de Broglie-Bohm theory has
a continuously infinite collection of suitably restricted Foldy-Wouthuysen gauge transformations
that leave the theory internally consistent (in the sense of preserving the continuity equation) while
not leaving invariant the pilot wave, the probability current densities, the particle velocities, or
the particle trajectories. This fact is potentially a significant problem for trying to take the pilot
wave and the particle trajectories of the de Broglie-Bohm theory seriously as part of the ontology
of nature.

4.3 Strocchi-Heslot Phase Spaces

To get a better handle on the meaning of the Foldy-Wouthuysen gauge transformations described
in Subsection 4.2, it may be illuminating to examine the mathematical structures underlying the
pilot wave or wave function in more detail. In particular, it will be worthwhile to spend a moment
thinking about phase spaces. The key point is that by involving both particles and a wave function
Ψ(q, t), the de Broglie-Bohm theory features two distinct notions of phase space.

On the one hand, if the de Broglie-Bohm particles are distinguishable and are finite in number,
then they have a finite-dimensional phase space in essentially the familiar classical sense. Specifically,
the ith particle has canonical coordinates (qix, qiy, qiz) = (xi, yi, zi) given by the particle’s position,
and canonical momenta (pix, piy, piz) = (miẋi,miẏi,miżi) given by the components of the particle’s
physical momentum, where mi is the mass of the ith particle and where dots denote time derivatives.
(These particular formulas for the canonical momenta can be modified if there are electromagnetic
fields present.)
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On the other hand, the wave function Ψ(q, t) itself, as a complex-valued function defined in
the space of configurations q of the particles and depending on the time t, consists of a pair of
real-valued functions X(q, t) and Y (q, t) that form their own, infinite-dimensional notion of phase
space, and that satisfy a linear system of first-order, classical-looking Hamilton’s equations of motion
that descend from the linear Schrödinger equation. This additional notion of phase space was first
identified by Strocchi (1966) and then independently by Heslot (1985), and so will be called the
Strocchi-Heslot phase space in the present work.10

One can then understand general Foldy-Wouthuysen gauge transformations (25) as linear, time-
dependent canonical transformations on the Strocchi-Heslot phase space of the wave function, rather
than as canonical transformations of any kind on the phase space of the de Broglie-Bohm particles.

It is important to keep in mind that these are canonical transformations on the Strocchi-Heslot
phase space of the wave function. In particular, they should not be confused with canonical trans-
formations on the phase space of the de Broglie-Bohm particles, which were examined by Stone
(1994). In particular, Stone’s paper explored how the de Broglie-Bohm pilot wave could be referred
to different choices of canonical coordinates for the particles—even by replacing, say, the positions
of the particles with their momenta. The present work, by contrast, leaves the canonical coordinates
for the particles equal to their positions, so that the pilot wave always refers to those positions.

A classical phase space is a manifold coordinatized by pairs of variables called canonical coor-
dinates qi and canonical momenta pi, together with a Poisson bracket { , } defined for arbitrary
functions f(q, p, t) and g(q, p, t) on phase space by

{f, g} =
∑
i

(
∂f

∂qi

∂g

∂pi
− ∂g

∂qi

∂f

∂pi

)
. (39)

Once one has specified a Hamiltonian H(q, p, t), there is then an associated flow expressible as a
system of differential equations, called Hamilton’s equations of motion, that are first-order in time
derivatives:

q̇i =
∂H

∂pi
,

ṗi = −∂H
∂qi

,

(40)

A change of phase-space variables
q′i = q′i(q, p, t),

p′i = p′i(q, p, t),
(41)

is said to be a canonical transformation if all the various Poisson brackets, when expressed in terms
of the new phase-space variables, maintain their structure, and if the new phase-space variables
satisfy Hamilton’s equations for a potentially modified Hamiltonian H ′(q′, p′, t).

Each canonical transformation therefore defines an alternative choice of phase-space variables,
10Technically speaking, Strocchi and Heslot identified this additional notion of phase space only for finite-

dimensional quantum systems. Ashtekar and Schilling later generalized Strocchi-Heslot phase spaces to quantum
systems with infinite-dimensional Hilbert spaces (Ashtekar, Schilling 1999). For more on Strocchi-Heslot phase
spaces, see Barandes (2026a).
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and each such choice is called a canonical frame. An obvious question, then, is whether some
canonical frames are more physical, or more transparently revealing of the system’s ontology, than
other canonical frames.

For example, if one is given only that a specific system has a Hamiltonian formulation with one
canonical coordinate q, one canonical momentum p, and Hamiltonian H = (1/2m)p2+(1/2)kq2 for
positive constants m, k > 0, then the system could be a simple harmonic oscillator with position q,
momentum p, mass m, and spring constant k, or the system could instead be a simple harmonic
oscillator with position p, momentum −q, mass 1/k, and spring constant 1/m, as follows from a
straightforward calculation of the corresponding canonical transformation. (The minus sign turns
out to be needed for self-consistency.)

It is easy to come up with much more exotic examples in which different choices of canonical
frame can lead to much more radical differences in a system’s apparent ontology. A pure Hamiltonian
formulation of a classical system turns out to contain very little definite ontological structure on its
own (Curiel 2014).

In practice, how does one resolve this ambiguity over the correct canonical frame? The stan-
dard approach is to identify the system’s observable features, along with their physical meanings.
Recalling the simple harmonic oscillator described earlier, if just observing the system reveals that
q identifies its location in physical space, and p identifies its momentum in the form mq̇, then those
observations single out a canonical frame, at least up to less ontological questions like one’s choice
of coordinate system for physical space or one’s choice of measurement units.

As explained above, the wave function has its own notion of phase space, as first identified by
Strocchi and Heslot. However, a wave function, unlike a particle, or even the local value of an
electric field, is not observable. As a consequence, there are no observables definable from within
a Strocchi-Heslot phase space to single out an ontological canonical frame for the wave function
itself. The subclass of Foldy-Wouthuysen gauge transformations defined in (31) and satisfying the
subsidiary condition (36) represent just one kind of canonical transformation on the Strocchi-Heslot
phase space. There are infinitely many other canonical transformations, leading to infinitely many
other canonical frames, each of which describes a different-looking ontology for the wave function,
without any principled way to single out any one of them. It is not enough to try to identify the pilot
wave with ‘all these canonical frames’ in some broad collective or equivalence-class sense, because
that strategy would not even succeed for the elementary case of the simple harmonic oscillator
described above.

5 Conclusion

This paper has argued that the de Broglie-Bohm pilot-wave theory is best understood as a hidden
Markov model, and that the configuration-space wave function, which serves as the pilot wave for
the theory, is optimally interpreted as consisting of a set of latent variables for that hidden Markov
model. On this view, the latent-variable reading is a better conceptual fit for the wave function
than ontological, nomological, or epistemological readings.
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This paper has argued, moreover, that the de Broglie-Bohm theory suffers from a potentially
catastrophic ill-definiteness under a class of gauge transformations that do not preserve the pilot
wave or the trajectories of the de Broglie-Bohm particles. For reasons why the invocation of ‘weak
measurements’ and ‘weak values’ do not provide true empirical evidence of these trajectories, see
Barandes (2026c,d). As was also mentioned in the present work, similar problems of gauge-invariance
may present a problem for some versions of the Everett interpretation as well.

Hidden Markov models are ultimately just formal ways of representing processes whose dynamics
are non-Markovian. One might then naturally wonder whether quantum theory more broadly should
be interpreted as describing non-Markovian physical systems, beyond the simple cases of non-
relativistic systems of particles or the de Broglie-Bohm theory. In other words, perhaps when one
takes physically fundamental non-Markovian processes and tries to shoehorn them into a Markovian
paradigm, the result is quantum theory, with all its seemingly exotic features. For arguments along
these lines, see Barandes (2025, 2026a).
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