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1 Introduction

The question of how Deep Neural Networks (DNNs) work is pressing. In
the philosophical literature it is often pointed out that they appear to be
black boxes. This so-called “opacity” makes it difficult to understand their
obvious and storied successes. [9, 23] 24] [7, 5] One way machine learners
and others have attempted to precisify this question is to ask how DNNs
can possibly generalize as well as they do. Why, that is, when appropriately
trained on a given set of data, do they perform so well on new, unseen, test
data? There seems to be little consensus in the literature—either in computer
science or elsewhere—about about how to answer this question. Much of the
current discussion centers around why DNNs do not owverfit, as conventional
statistical learning theory (SLT) apparently suggests they should, in a way
that would impede their ability to generalize. The overfitting problem arises
because DNNs have enormous numbers of tunable parameters (often many
more than the data points upon which they are trained).

Classic SLT considers the general problem of finding bounds on the ex-
pected error on the test set (the structural risk) for functions selected on
the basis of a training set. In particular, consider a function f(x) =y where
x = x; are the input pixelated images and y = y; are category labels assigned
to the images (cats, dogs, chairs ...). The DNN is given information about
the correct labels for images in the training set and we are interested in the
expected error that the DNN will make in assigning labels to images in the
test set, given its performance on the training set and other assumptions
described below. Error/risk is measured by a loss function that captures
the seriousness of mistakes—a simple possibility is just the mean squared
error. It is assumed that both the training and test data are drawn i.i.d
from the same unknown joint probability distribution P governing x and
y. Importantly, there are no additional restrictions on P—it can be arbi-
trarily complex. It is further assumed that there is a class of functions F
from which the fitting function f is drawn. When a DNN has a very large
number of parameters, it is generally thought, on both theoretical and em-
pirical grounds, that the class of functions F that it can use to fit the data is
very large—large enough so that the DNN can ezactly fit the training data.
Slightly more technically, to say that F’s capacity is very large is to express
how flexible F is, in the sense that it contains some function that will fit the
data regardless of what that data is. When this is the case, the standard
analysis in terms of SLT yields bounds on the risk, given the test data that



are very large or perhaps ill-defined. Here this is understood to mean that
generalizability to the test data is likely to be poor. As it is often put, on
this analysis the DNN is likely to “overfit” the training data, fitting features
that are noise or idiosyncratic to that particular (training) dataset and that
do not support successful generalization to the test set.

However, in many cases this is not what happens. DNNs generalize suc-
cessfully to the test set and often do not overfit. In fact, as noted in more
detail below, although overfitting is sometimes observed, adding more pa-
rameters to a neural network (well beyond the point in which there are more
parameters than data points) can improve performance on the training set.
In recent years, there have been a large number of papers discussing this
apparent paradox with various proposals on how it might be resolved and on
what underlies the ability of DNNs to generalize successfully. [311 [30} 16}, 3]

SLT takes the capacity of the function class to be the feature which
controls the expected error associated with generalization. The behavior of
DNNs strongly suggests that something is wrong with this assumption or at
least that it is incomplete in some way. Put very abstractly, our analysis
argues that what goes wrong has to do with assumptions (or rather a lack
of assumptions) SLT makes about the data. In particular, as noted above,
SLT assumes that the data from which learning occurs can conform to any
arbitrary probability function—there are no restrictions on P. Furthermore,
the SLT analysis is a worst case analysis in the sense that it provides expected
error bounds that allow for the possibility that P may be highly pathological
and unfriendly to learning.

The present essay considers the question of generalization primarily in
the context of image classification—correctly identifying previously unseen
handwritten digits from the MNIST dataset or sorting images from CIFAR
(and other datasets) into appropriate classes, such as dogs, cats, trucks ....
We argue that the real world images on which DNNs successfully generalize,
conform to very specific, non-arbitrary probability distributions. In other
words, rather than trying to locate the basis for successful generalization
(solely) in restrictions on the function class the DNN is able to implement,
we suggest that the structure of the data is crucial. Images are structured in
particular ways that are friendly to learning by DNNs (and by humans too,
of course). Furthermore, we hold that any account of how successful gen-
eralization is possible must take account of that structure.E] Specifically, we

!For example, in their discussion of double descent, Belkin et al. [3] suggest that fit



show that the actual datasets used for training possess complex, higher or-
der non-Gaussian correlationsﬂ (e.g., between pixels). We argue that learning
these higher order correlations is necessary for successful classification and
generalization.

Taken most generally, our suggestion that the data matters may seem
completely obvious. But our proposal is much more specific than this. First,
we point to very specific features of the data that matter for image classi-
fication. Second, our view contrasts, importantly, with analyses associated
with SLT: SLT assumes that any restrictions required to prevent overfitting
and poor generalizability are restrictions on the function class. That is, the
capacity of class F must be restricted in some way. SLT does not, how-
ever, place restrictions on the probability distributions P. We propose that
the probability distributions characterizing real datasets (like images) are re-
stricted or special in various shared ways, and that this is why the apparent
pessimistic implications of SLT are not seen.

Finally, consider the role of bias in DNN learning. A variety of “no free
lunch” theorems show that learning without some form of bias is impossible.
[29] But an important question remains about the form such biases take. One
possibility is that the bias is “hard” and incorporated in restrictions on the
function class F—certain functions are not in this class and hence, cannot be
learned. Another possibility is a “softer” form of bias—the possible functions
that might be learned are ordered in such a way that some are “penalized”
more than others. [27] Functions with a higher penalty are used only when
this is required to adequately fit the data. This allows the data to control
(to some extent) the functions that are employed. For instance, it represents
another (nontrivial) way of thinking about how the data matters. A simple

improves beyond the interpolation threshold because increasing the number of parameters
allows for approximation with increasingly lower norm functions and these improve fit.
[B, p. 15850]. This strikes us as plausible as does the common suggestion that Stochastic
Gradient Descent implicitly implements a preference for low norm functions (regulariza-
tion). However, this does not explain why a preference for low norm functions “works”
in the sense of selecting functions that generalize well. We think that the answer to this
question has to do with the nature of the data that characterize images and other clas-
sificatory tasks on which DNNs succeed. Specifically, as explained in section [6] images
themselves satisfy smoothness constraints—pixel luminance typically changes slowly with
distance—and this makes smoothness in (the sense of low norm functions) appropriate for
characterizing their structure.

2These are correlations beyond the mean and variance of the data probability distri-
butions.



possibility is that the DNN may simply disregard weak connections, setting
them to zero (“weight decay”). The data seen by the DNNs determines which
connections are weak.

The paper examines the nature and genesis of the correlational structure
in the actual datasets upon which DNNs are trained. In doing this it makes
connections with a widespread methodology in condensed matter physics and
materials science that aims to determine bulk behaviors of many-body sys-
tems (like fluids and gases) by focusing on mesoscale correlation structures
that live in between fundamental, molecular or atomic scales, and contin-
uum everyday scales. We hope to motivate that idea that DNNs (at least
in image recognition, but likely more generally) can best be understood as
implementing something akin to this multi-scale methodology. In particular,
we suggest that DNNs must be discovering high order (> 2)-point correlation
functions.

In the next section we report on some pioneering work on image statis-
tics from the 1990s that explicitly takes a correlation function approach to
understanding robust statistical features in datasets. Humans, in fact, use
these statistical features in learning to segment visual scenes into distinct ob-
jects. We suggest that DNNs likely do the same thing. Object segmentation
is different than object classification (determining that a particular image is
of a specific kind (dog vs. cat). We provide further evidence (section [5)) that
classification tasks require appeal to higher order correlations. This use of
statistics in data segmentation is further evidence of our general theme that
worldly facts about the data structures matter—in this case, the empirical
fact that pixels similar in their luminance are likely to belong to the same
object.

In section |3| we briefly elaborate on the correlation function methodology
just mentioned. This is followed in section 4| by a more detailed discussion
of the correlational statistics found in the actual datasets used in training
and testing and the connection between those statistics and the evolution
of the statistics of the layer weights in real DNN as they are trained on
those datasets. In section |5| we address two important questions: (1) Are
higher order correlation functions sufficient to distinguish members of one
class (say, cats) from another (say, dogs) in the same dataset? We provide
evidence that this is indeed the case. (2) Given a positive answer to the first
question, are DNNs actually finding such higher order correlation functions?
Here we discuss some recent work that suggests that this questions should,
as well, receive a positive answer. The discussion here makes connections



with certain perturbative calculations in quantum field theory that enable
the calculation of N-point correlation functions (Green’s functions). In so
doing it further supports our contention that DNNs are implementing the
multi-scale methodology discussed in section

2 Natural Images: Objects and Scaling

Ruderman and Bialek [22] took series of photographs at Hacklebarney State
Park in New Jersey. The photos were primarily of trees, rocks, and a stream.
An example is displayed in figure [I] The images measured 256 by 256 pixels
and corresponded to 15 degrees in visual angle. The data they collected were
the logarithm of each pixel’s luminance. [2I, p. 3386]. The data showed
scaling “in the power spectrum of the form:

A
S(k) = e, (1)
with k£ being the spatial frequency, A is a constant representing the overall
contrast power in the images ....” For their data the “anomalous” exponent

7 had a value of 0.19.

Figure 1: Stream, Trees, Rocks

This scaling result means, essentially, that if one forms block pixels (in
analogy with block spins in a real-space renormalization scheme [14], we
would see the same statistical structure in the pixel-blocked images after
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Figure 2: Blocking and averaging to yield a new (coarse-grained) effective
system [14], p. 172]

appropriate renormalization. See figure 2] Ruderman and Bialek actually
do this pixel blocking. They plot (Figure the contrast, ¢, of the im-
ages (normalized to unit variance) averaged over N? pixel blocks for (N =
1,2,4,...,32). Each such plot superposes on the same (non-Gaussian) dis-
tribution. This result is remarkably robust:

That the process of geological formation of hillsides and valleys, or
the structure of forests due to the succession of flora, can exhibit
scaling through their images is perhaps not altogether surprising.

.. It is striking, however, that the natural image datasets in
which scaling was found are all quite different. No two sets of
pictures were even from the same environment. [2I, pp. 3385-

3386]

Another indication of the robustness of the statistical structure in the
natural images is shown by implementing a rather radical recalibration of the
data. Ruderman describes a simple experiment in which all of the gray scale
images in the data set were converted to black and whitef| This produced

3If the logarithm of a pixel’s luminance was greater than zero it becomes white, other-
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Figure 3: Scaling of Contrast Distribution[22]

a new data set, yet the statistics were virtually unchanged. The exponent n
“changed slightly from n = 0.19 to ' = 0.20. Given the drastic nature of the
recalibration procedure, this change is surprisingly small.” [21], p. 3389]

This example is meant to demonstrate the robustness of scaling in natural
images by pushing an extreme limit of recalibration. Of course it cannot be
expected that entirely arbitrary recalibrations (e.g., a random reassignment
of pixel values) would preserve the correlational structure of the images.
More reasonably, it probably holds as long as nearby pixel values generally
remain nearby under recalibration. [21, p. 3389

The scaling result is a function of the spatial frequency k. As Rud-
erman notes, analyzing images in the frequency domain is not the best way
to understand which properties of natural images are responsible for scaling.
This is simply because we actually observe images in the spatial domain:
“Objects, after all, are generally spatially cohesive. In the Fourier domain,

wise it becomes black. [2I] p. 3389]



though, they spread and superpose over many frequency bands.” [21, p.
3387]. So Ruderman reformulates the results in the spatial domain, intro-
ducing correlation functions that allow him to “define” objects statistically.

He introduces a correlation function that gives the expected product of
the data at two pixels separated by a distances x:

Clx) = ((((%0)9(x0 +X))0)xo ) - (2)

¢(x) is the image valud at position x and the expectations (from the outside
in) are taken over all the images ¢ , all initial positions xg , and all displace-
ment vectors x of length z parameterized by the angle 6. [21, p. 3387]
Ruderman next introduces a “difference function” which is linearly related

to C(x):
D(x) = (16(0) — o(2)[*), (3)

where the bold angle brackets stand for the three expectations as in )E|
This allows one to easily define objects in images in terms of probability
distributions: There will be a probability Ps, that a given pair of pixels a
distance x apart belong to the same object.

Now consider a model of image generation that puts “randomly chosen
objects in the world at random locations” allowing objects to occlude one
another. [2I], p. 3389] One illuminates the world and takes a picture. Given
this model, since objects are chosen at random, pixels in the images that
correspond to the same object will have greater statistical dependence on
each other than those from different objects, in part because “of the likelihood
of them originating from the same material and receiving similar lighting.”
[21, p. 3389] Choose two pixels at random and calculate the value of D(z)
for degree of visual angle z. “[T]his probability depends on the actual spatial
sizes of objects, their distribution of distances from the observer [at = 0],
and their shapes.” [21], p. 3389]

For two pixels belonging to the same object separated by x, there will be a
corresponding difference function Dg,\. Likewise for those pixels belonging
to different objects, there is a difference function Dypr. We can then express
the distance function as follows:

D($) = PSAME<I>DSAME<I> + [1 - PSAME(I>DD1FF(«T)]- (4>

4Again, this is the logarithm of the luminance.
5The difference function is a kind of expected variance. If its value is small, it is likely
that the pixels belong to the same object.




By examining the images in the ensemble, making reasonable assumptions
about what counts as an object in an image by appealing to “gross semantic
boundaries,” Ruderman is able to determine values for Dg,ye and DDIFFH

We mentioned, above, Ruderman’s model of image generation. It is
worthwhile going into some more detail about it. It is introduced as fol-
lows:

Imagine walking on an infinite image plane. At a random location
you blindly select from a number of choices an infinitesimally thin
cardboard “cut-out” of some shape. You paint it a gray tone
chosen from a distribution, and then drop it on the ground. This
done, you continue to another random location and repeat the
process. [21, p. 3392]

Such a model involves statistically independent objects that can occlude one
another. “The true ‘independent components’ are the objects themselves,
which have random size, location, and intensity.” [21, p. 3392]

Ruderman establishes two sufficient conditions for the scaling of correla-
tions within the images. The first is that the probability distribution of “not
crossing an object border scale in distance.” The second is that “objects
have nearly uniform correlation within their borders [and zero correlation]
between different objects.”[| [2I, p. 3392]. This second sufficient condition is
guaranteed in the model by the fact that the cardboard objects are randomly
painted before being placed.

This model has a correlation function C'(x) defined as follows:

C(x> - COPSAME(x); (5)

where Cj “is the constant correlation within objects, and the term for dif-
ferent objects is absent since they have zero correlation.” [2I, p. 3392]. Tt
remains to determine the value of Pyyyg(x). If this has power law scaling
then so does the correlation function C(z). Ruderman demonstrates that
Psaue(z) is indeed a power law.

6“For example, [the image shown in the paper] was divided into regions corresponding
to the stream, the rocks, the riverbank, the log on the river, etc. ...leaves on trees were
considered integral parts instead of objects in their own right .... Suffice it to say there
there is no entirely objective way of doing this.” [21] p. 3389]

"There is a typographical error in the paper that omits something like the bracketed
phrase in this sentence.
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Without going into the details of the calculations, it is instructive (for
the discussion to come) to get a qualitative understanding of the reasoning
involved. First he shows that one can rewrite the formula for Py,ys(x) as
follows: (2)

p2(T
Poel®) = )ty o
where p;(z) and py(z) are determined by examining figure [4]

Given configuration (b) in figure[d] p;(z) is the probability that for a pair
of pixels separated by length = exactly one of them lies in a given region.
Given configuration (c), pa(x) is the probability that for a pair of pixels
separated by length z both lie in a given region. Finally, configuration (a)
yields the probability that neither pixel separated by length z lies in a given
regionﬁ

Ruderman concludes that

... the scaling of inter-object probability follows directly from the
scaling of apparent object sizes. In images of the real world this
apparent size (in degrees) depends on an object’s actual size as
well as its distance from the observer. The overall distribution
of apparent object size is thus a function of the distributions of
object sizes and that of their distances. [21, p. 3393]

Scaling in natural images has been attributed to their apparent composi-
tion by “luminance edges, each of which has a 1/k?* spectrum.” [21, p. 3394]
Ruderman’s argument shows this to be mistaken. “The important feature is
not the characteristic form of object transitions (i.e., sharp edges), but rather
the distribution of their occurrence as given by Psaue(x).” [21, p. 3394] This
may be taken to be an indication that image recognition in DNNs that focus
on edge detecting algorithms may be missing what is really important for
object recognition. Instead, as noted, it is the probability of the edges be-
longing to the same object. Once, this is recognized and one treats objects
in images statistically, one can determine the proper anomalous exponent 7,
in (1) yielding the observed 1/k?~" spectrum.

In this section, we have gone into quite some detail about how to de-
scribe and explain scaling in natural images. The main reason for this is to

81t is an interesting historical fact that Ruderman’s 2-point correlation function calcu-
lation was already performed by Debeye, et al. [8]. See also, [6] for an even earlier related
calculation.
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Figure 4: Throwing Line Segments on the Plane. [10, p. 3393] (a) yields
po(z); (b) yields pi(z); (c) yields po(z) .

suggest that the effectiveness of DNNs depends crucially upon there being
correlational structure in the datasets input to the DNNs. This is to say
that what can be called “worldly structure” in the data is an important, nec-
essary ingredient for understanding many of the successes of deep learning.
Focusing exclusively on the inner workings of DNNs as a means to reduce
their “opacity,” misses the essential explanatory role played by the structure
in the datasets upon which the DNNs are trained. Whatever the utility of
this approach, we will still need an account that shows how DNNs are able
to exploit the presence of certain statistics in the data. In fact, we believe
that one can gain insight into why DNNs succeed without having to provide
a detailed account of their inner workings.

The next section situates Ruderman’s appeals to correlational structure,
both as means for statistically defining image objects and for determining
power law scaling exponents, within a broader scientific methodology that
privileges mesoscale structures as the right or natural focus for understanding

12



bulk (that is, continuum scale) behaviors of many-body systems. In the
context of images, the many-body analogs of individual atoms or molecules
are the individual image pixels; and, the many-body analogs of bulk behaviors
are the facts that the image is of a dog, of a cat, of a car ....

3 A Correlation Function Methodology

Ruderman’s scheme for determining the two-point correlation functions be-
tween image pixels is an instance of a widely applicable multi-scale method-
ology for understanding the behaviors of many-body systems in condensed
matter physics and in materials science. This methodology was promoted
by Leo Kadanoff and Paul Martinf] It is sometimes referred to as a set of
hydrodynamic or correlation function methods[l]

In order to characterize upper-scale/bulk behavior of such many-body
systems, the most important continuum scale quantities are so-called “ma-
terial parameters” and “order parameters.” Examples of these, respectively,
include the viscosity of a fluid and the net magnetization of a ferromagnet.
For instance, using the Navier-Stokes equations to describe, predict, and ex-
plain the behavior of a particular fluid, requires that one determine the val-
ues for the density and viscosity parameters that appear in those equations.
While in most instances, one finds these values by laboratory experiments, [2]
argues that such parameters are actually coding for correlational structures
at mesoscales in between the so-called “fundamental” atomic or molecular
scales, and continuum scales. Such correlational structures are hidden at
atomic scales and only become wvisible at mesoscales.

For illustrative purposes, let us consider the heat equation which describes
how heat diffuses through a material:

; (7)

%—a 82u+82u+82u
ot or?  0o0y? 022

where u(z,y, z,t) is the temperature of the material at spatial point (z,y, 2)
at time ¢, and « is a parameter known as the thermal diffusivity of the

9Tt has its roots in Einstein’s work on Brownian Motion. See [2] for a discussion of this
connection as well as a detailed discussion of the multi-scale methodology.

10Gee [15] for the original paper and [10] for an extended discussion. See also [2] for a
philosophical discussion of the importance of this methodology and its relation to various
philosophical issues concerning the relations between theories at different scales.
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Figure 5: Conductor/Insulator Composite. Dark bands are the Insulators.

material. This equation is an “effective” equation that describes the behavior
of a continuum field—the heat field. As a continuum equation it posits
no structure at scales below the macroscopic. In order to actually employ
equation we need to know the diffusivity of the material, o, a real-valued
material parameter.

Now consider a material that is a composite of a heat conductor and an
insulator with a sandwich-like structure as in figure 5} At the macroscopic,
or continuum, scale this sandwich structure is not discernible. At that scale,
the material appears to be completely homogeneous. We would like to deter-
mine the effective diffusivity, a., as a function of the diffusivities of the two
materials. Suppose that the dark material is the insulator with @ = a; and
the light material is the conductor with o = a¢, where ac > ay. It is clear
that if we heat up the left side of the material, then after some time At the
temperature on the right side will be considerably more than the tempera-
ture would be at the top, had we instead heated the bottom with the same
heat source and measured the temperature after the same elapsed time.

In fact, the effective value of a for the entire composite in the lefthand
configuration is

ae = ardr + acde, (8)

where ¢; and ¢¢ are the volume fractions of the insulating material and
the conducting material respectively. This is the arithmetic average.ﬂ It
one believed that this average was the effective value for the diffusivity, one

HUNote that ¢ + ¢c = 1.
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would grossly overestimate the heat conductivity of this example material at
continuum scales. This is because the effective value, a., in the righthand
configuration (where the heat source is at the bottom) is best represented by

the harmonic average:
or , dc\
e = (—f + —C) . (9)
ar Qg

If one, likewise, believed that this (harmonic) average was the effective one for
the diffusivity, one would grossly underestimate the heat conductivity of the
material at continuum scales[”] This example shows that geometric structure
at the mesoscale is relevant for the conductive behavior of the material at
the macroscale. Here, a mesoscale, geometric notion of structure is defined
by the geometric and topological arrangement of the conductors and insula-
tors. This determines the macroscopic, continuum scale, material property:
the diffusivity. For materials that are heterogeneous at mesoscales, then, the
effective values of the material parameters appearing in our continuum equa-
tions are essentially dependent upon geometric structure at scales in between
the atomic and the continuum. The material parameters appearing in our
effective equations are coding for structures at those mesoscales.

In the last section, we saw that Ruderman’s line segments (and the prob-
abilities pg, p1, and py) allow for the determination of two-point correlations
between the pixels’ luminances. This provides some information about the
statistical structure of the image—information that, as we have seen, is suf-
ficient to determine the power law scaling of the images in the dataset. In
the current context however, to determine theoretical values for the contin-
uum scale effective diffusivity of the composite, one needs considerably more
correlational information. As illustrated schematically in figure [0, such in-
formation can be obtained by finding higher order (three-point, four-point,
..., N-point) correlations. With this information one can effectively recon-
struct the continuum scale (field value) for the effective diffusivity, a., of the
material as N — oo. Unfortunately, correlation functions of order greater
than two are extremely difficult to calculate. All sorts of approximations
and simulations have been proposed, very few of which in practice go beyond
order three[®]

In the case of the two “sandwich” composites of figure [f] we know the

12This discussion follows that of [26, pp.10-11].
13For an idea of what is involved see [I].
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Figure 6: Throwing Lines, Triangles ...to Determine N-point Correlation
Functions. [2]

mesoscale structure and that allows us to determine the different diffusivity
values depending on the location of the heat source. In general, as in fig-
ure [6] the actual mesoscale structure maybe complex and unknown[] In
those cases, materials scientists often start with what they believe to be a
statistically representative volume element (RVE). Thus, on the assumption
that figure[0]is an RVE, they will seek to determine N-point correlation func-
tions to determine estimates for continuum scale material parameters such
as the diffusivity above or Young’s modulus for elastic materials.

We have argued that the effectiveness of DNNs in image recognition
(among other tasks) depends on the existence of correlational information
that reflects features of the real world. Below we argue that DNNs must
be finding N-point correlation functions present in the input (pixel) data.
So, rather than starting with a RVE, as is often the case in materials re-
search, we suggest that DNNs can be understood as constructing or finding
representative volume elements (or at least the correlations they code for) for
distinct classes within the various datasets. That is, we propose that DNNs

141n many cases, natural materials and manufactured materials are “randomly hetero-
geneous.” See [26].
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are finding higher order correlation functions that, essentially, characterize
RVEs for classes like dogs, cats, trucks . ...

4 Dataset Statistics

An influential paper by H. Lin, M. Tegtmark, and D. Rolnick entitled “Why
Does Deep and Cheap Learning Work So Well?” [1§], aims to show how the
success of deep learning depends, not only on the mathematics of neural net-
works but also on certain facts about the world. They frame this as follows.
“How can neural networks approximate functions well in practice, when the
set of possible functions is exponentially larger than the set of practically
possible networks?” [I8, p. 1225] The question arises because even networks
with only one hidden layer can be shown, mathematically, to be universal
function approximaters. That is, given a sufficient number of hidden units
any smooth function can be approximated to any accuracy with just a single
hidden layer. Lin et al. give a quick estimate that demonstrates that networks
of “feasible size” however cannot do this. “There are 22" different Boolean
functions of n variables, so a network implementing a generic function in this
class requires at least 2" bits to describe, i.e., more bits than there are atoms
in our universe if n > 260.” [I8, p. 1228] Despite this, neural networks of
“feasible sizd’]’, have been extremely successful.

Lin et al. try to explain this success by noting that scientists who use
neural networks only care about some small fraction of all functions that can
be approximated. They argue that the kind of functions scientists/physicists
typically care about are Hamiltonians of low polynomial order. Often these
functions display certain symmetries and reflect local interactions. [I8, Sec-
tion 2.4] These considerations help to explain why we can get away with
“relatively” small neural networks: The kind of functions we want to ap-
proximate are extremely far from being random. In effect, they argue that
one reason DNNs work well is because the space of functions we actually care
about is extremely small in the space of all functions.

While we find this argument somewhat compelling, we do not think it is
close to the whole story about why DNNs are so successful. By itself, it is not
much of an explanation. Furthermore, our interests can (and should) only
be part of the reason DNNs work so well. That is to say, reducing the size

15Read “actually implementable.”
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of the space of functions is likely a necessary but not sufficient condition for
understanding the apparent “unreasonable” effectiveness of deep learning.

Finally, in the context of image recognition, we believe the real interest
is in how DNNs actually find the functions that work—the functions that
correctly recognize objects at the scale of dogs, given input at the scale of
pixels. These are the functions that we should care about (not simply some
set of functions with low polynomial order, etc.). The explanation for this
must appeal to actual statistical facts about the world. Such facts include,
for instance, the scale invariance Ruderman finds in natural images. We
want to understand how DNNs find functions that detect the correlations
that yield that invariance.

4.1 Scaling in Datasets

So here we need to look to the datasets upon which DNNs are trained. A
partial list of these datasets include:

e MNIST—A large database of handwritten numerals.

e FMNIST—An MNIST-like database of labeled fashion images.

e CIFAR10—A very large database of labeled images from 10 classes
representing airplanes, birds, cars, cats, deer, dogs, frogs, horses, ships,
and trucks.

e IMAGENET—A huge database containing more than 14 million la-
beled images from more than 20,000 classes or categories.

Levi and Oz [17] study such datasets using “tools from statistical physics
and Random Matrix Theory (RMT)E] to reveal their underlying structure.”
[T7, p. 1] They study the eigenvalue spectra of matrices representing samples
from the datasets:

1
Y= MXXT (10)

6Random matrices are matrices whose elements are randomly sampled from a given
probability distribution. RMT focuses primarily on behaviors of such matrices as they
“get big” in analogy to the study of limiting behavior of standard random variables.
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Figure 7: Scree Plots: Scaling Behavior of ), for Various Datasets [I7], p.

where X € R™M where d the dimension of the image vectors, and M is
the number of samples. The matrix ¥, is an empirical covariance (Gram)

matrixﬂ Their empirical investigations show that the

spectrum of Y, for various datasets can be separated into a set
of large eigenvalues (O(10)), a bulk of eigenvalues which decay as
a power law \; ~ ¢~ and a large tail of small eigenvalues which
terminates at some finite index n. ... The bulk of the eigenvalues
... can be understood as representing the correlation structure of
different features amongst themselves ... . [I7, p. 2, Emphasis

added.]

Furthermore, Levi and Oz explicitly refer to Ruderman’s scaling exponent in

I"RMT studies (among other things) the distributions of the eigenvalues of covariance
matrices M. The distribution of these eigenvalues yields information about the correla-
tional structure between the matrix elements. The next section considers situations
where the distribution of these eigenvalues are different depending upon the nature of the

correlational structure encoded in the matrices.
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this context.

Their investigations reveal that despite the fact that the real world image
datasets are quite Variedfﬂ they nevertheless exhibit universal power law
scaling that is quite distinct from data generated by sampling from a normal
distribution—what they call “uncorrelated Gaussian Data (UGD).” [17, p.
2]. As evidenced in figure , this universality is striking.

As noted the eigenvalue bulk exhibits power law decay: \; ~ i~ 1=%. All
of the real world datasets have o < 1/2 where the value of « reflects the
strength of the correlations in the covariance matrices.

The plots in figure [7] are log-log plots where the straight lines of the
same slope correspond to the same power law scaling. By comparison, the
horizontal line for the UGD data gives an indication of just how (statistically)
structured the real world datasets are. As noted, this is a striking result that
surely must figure in an explanation for how and why the DNNs can become
so accomplished at image recognition"”] The work discussed in this section
demonstrates the presence of higher order statistical structure in real world
data. This structure is, of course, available to the DNNs. Whether or not
DNNs actually use this structure and, if so, which structural features they
employ is a further question to which we now turn. The next section
surveys some empirical investigations that help to answer these questions.

4.2 RMT and the Statistics of Layer Weight Matrices
During Training

An extensive empirical evaluation of state of the art DNNs provides com-
pelling evidence that the weight matrices for various layers of the DNNs
undergo changes in statistics during training. This work is described in “Im-
plicit Self-Regularizaiton in Deep Neural Networks: Evidence from Random
Matrix Theory and Implications for Learning.” [19] In fact, Martin and Ma-
honey argue that “the weight matrices ‘learn’ the correlations in the data.”
[19 p. 29]

Martin and Mahoney represent the energy landscape (or optimization
function) of a “typical” DNN having L layers with activation functions (),

18For example, the data include “natural” images as well as images of human made
artifacts.

19This, to our minds, is much more compelling evidence than that suggested by Lin et
al. [I8].
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weight matrices per layer W, and biases b; as:
Epny =ht(Wip X hp s(Wpoy X hpo(---) +br_1) +byr).

They study the weight matrices W, before, during, and after training on
various datasets for a wide range of actual DNNs. Specifically, they “analyze
the distribution of eigenvalues, i.e., the Empirical Spectral Density (ESD),
pn()), of the correlation matrix X = WW associated with the layer weight
matrix W.” [19, p. 5] These are, again, empirical covariance matrices,
though in this case for the layer weights, and not for the samples from the
datasets studied by Levi and Oz as discussed in section [4.1]

Given a dataset D of labeled data {d;, y;} € D the goal of machine learn-
ing is to minimize the loss £ between the Epyy and the labels y;:

%} (Z Epnn(d) — y> . (11)

Typically[ﬂ to avoid overfitting, this requires regularization by explicitly
adding a term that “shrinks the norm(s) of the W matrices” [19, p. 5]

as follows:
%i? ( E Epnn(di) — yi) +a E [Wall. (12)
1,91 i ]

Martin and Mahoney show that large DNNs trained on the image datasets, ef-
fectively implement an implicit self-reqularization that they call Heavy- Tailed
Self-Regularization. [19, p. 6]. They demonstrate that the explicit introduc-
tion (as in SLT) of a regularizing norm (the second term in equation is
not required for large state of the art DNNs to generalize.

Random Matrix Theory provides Law of Large Numbers-like and Central
Limit Theorem-like results for matrices. It yields unique results for both
square and rectangular matrices. As Martin and Mahoney note, in DNNs
square weight matrices are rare. Typically, the number of parameters (V) is
greater than the number of samples (M). Much work in RMT has focused
on a class of matrices that are members of a so-called Universality class of
Gaussian Distributions: Given a matrix W assume that the elements W, ;
are drawn from a Gaussian distribution:

VVZ‘J' NN(O 0'2 )

9 mp

20According to SLT.
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Under these assumptions, RMT shows that the Empirical Spectral DensityP]
(ESD) of the correlation matrix X = W' W:

pv(N) = 5 D60 - ),

i=1

has the Mar¢henko-Pastur (MP) distribution as its limiting form (as N — oo,
with aspect ratio Q = N/M > 1 fixed) [19, p. 14]:

Q_ VOF-NOT) ey N
: D 3 , A e AT AT
Jim py(A) X

(13)
otherwise.
These distributions are shown in figure In effect, these are the RMT

analogs (for matrices) of various Gaussian/normal distributions in ordinary
probability theory.

Marchenko Pastur distributions p(A) Marchenko Pastur distributions p(A)
£ =102= f = 2 =
1o [\ Q=10%=1 al | Q=40*=15
— Q=402=1 | —— Q=40%=1
0.8 Q=10;02=1 3| [ Q=402=05
<06 =z |||
a Qa2 |
0.4
0.2 1
0.0 ~ 0 / = —_
0 1 2 3 a 0 1 2 3 4 5
AE[AT,AY] AE[AT,A7]

Figure 8: Marchenko-Pastur (MP) Distributions [19] p.14]

In their investigation of the statistics of the weight matrices for fully con-
nected layers in trained state-of-the-art DNNs, Martin and Mahoney find
“profound deviations from traditional [MP or Gaussian based] RMT.” And
they find that these DNNs “are reminiscent of strongly-correlated disordered
systems that exhibit Heavy-Tailed behavior.” [19, p. 29] This is illustrated
in figure [0} The figure shows the evolution of the statistics of the ESDs

21 This is the distribution of the eigenvalues of the covariance matrix. See footnote
above.
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Figure 9: Taxonomy of Trained Models. Changing RMT statistics for Weight
Matrix Spectral Densities [19, p.32]

for layer weight matrix W;,. Under training using, Stochastic Gradient De-
scent (SGD), the ESDs evolve from random-like distributions (associated with
random weight initialization at the start of training) with good MP fit, to
Heavy-Tailed distributions that correspond to strong correlations in W, for
layers [ at the end of training. As a result one can model ESDs of trained
DNNs with Heavy-Tailed distributions using RMT.

4.3 Recap

The recognition that the various training datasets are all members of a univer-
sality class exhibiting identical power law scaling suggests that the successes
of DNNs at certain tasks may depend, at least in part, on their abilities
to discover and utilize correlational structures present in real world data.
Furthermore, the empirical investigations by Martin and Mahoney into ac-
tual DNNs being trained on such datasets, provides additional evidence that
DNNSs are exploiting this structure as they are trained using SGD.
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Prior to constructing and exploring the empirical covariance matrices,
equation , Levi and Oz “pre-process” the datasets to center and remove
the “uninformative mean contribution.” [I7, p. 4] In other words, the real
world datasets (MNIST, FMNIST, CIFAR ...) as well as the constructed
datasets of correlated (CGD) and wuncorrelated Gaussian data (UGD) dis-
played in figure , have been adjusted so as to share the same mean (set to
zero). As a result, Levi’s and Oz’s investigations into datasets correlations
focus on the second moment of the distributions in the various datasets.
They focus on the covariance which captures 2-point correlations as we saw
in Section 2] And, again, figure [7] shows the covariance statistic is universal
across the real world and CGD data.

Martin’s and Mahoney’s investigation shows the evolution of the Em-
pirical Spectral Densities (ESDs) of correlation matrices for fully connected
layers in actual DNNs from random/Gaussian initialization. This evolution
is the result of neuron weight updating under training using SGD. The re-
sults they report show that the ESDs evolve to take on the non-Gaussian
correlations responsible for the power law statistics present in the datasets
themselves.

One upshot of these two investigations is that the process of training
of DNNs using SGD on real world datasets with power law scaling, enables
them to “learn” the “correlations in the data.” [19, p. 29]. The investigations
confirm our suggestion in the introduction that the “data matters” and that
the probability distributions characterizing real datasets are structured in
special ways that are completely unspecified by classical SLT. We believe
that the special nature of real world dataset statistics plays an essential
role in explaining how DNNs are able to generalize and provides part of the
explanation for their successes in image classification.

These results about means and variances reflect a “principle” that has
received some attention in the literature on DNNs. This is the so-called
Gaussian FEquivalence Principle which states that “quantities like the test
error of a neural network trained on realistic inputs can be exactly captured
asymptotically by an appropriately chosen Gaussian model for the data.”
[20, p. 6] This principle/theorem asserts a Central Limit Theorem-like result
suggesting, in effect, that real world datasets can be studied asymptotically
by looking at Gaussian distributions with means and variances equivalent to
those of the real world datasets[*

22Gee also [12].
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We think that this equivalence—focusing as it does on the first two mo-
ments of dataset distributions—cannot, by itself, ezplain the abilities of
DNNs generalize on test datasets. Below, we discuss the possibility (pre-
sented in [20]) that after initially learning the means and variances of the
dataset distributions, the DNNs learn higher order statistics that cannot be
modeled by a Gaussian. We argue that such higher order statistics allow the
DNNs to distinguish among classes of images.

In section 3| we described, briefly, a condensed matter/materials science
method for upscaling from mesoscale correlational structures to continuum
scale material parameters. In the next section we provide some evidence that
DNNs are implementing some version of this correlation function method-
ology. That is, DNNs engaged in image classification (and, we believe, in
other tasks as well), are finding higher order correlations—correlations be-
yond the first two moments. We motivate this first by examining 2-point and
3-point correlations in the MNIST dataset in section [5.1] Following this, in
section we discuss the work in [20] that further supports this conjecture.

5 Implementing the Correlation Function Method-
ology

This section reports on some investigations into following the two questions.
First, can N-point correlation functions for (N > 2) distinguish members of
one class (z; € x) of labelled images from those of another such class in the
same dataset?™? Second, given that higher order correlations are sufficient
for distinguishing labelled classes in a dataset, how might the DNNs actually
go about determining or finding those correlation functions?

5.1 N-point Correlation Functions

Work in collaboration with Stephan Wojtowytsch?!| examined the labelled
numerals in the MNIST dataset and shows that 3-point correlation functions
are able to begin to distinguish, say, sevens from fours. Compare the 2-point

plots (figure with the 3-point plots (figure [L1)).

23In the context of MNIST, the dataset discussed here, the classes are x €
{0,1,2,3,4,5,6,7,8,9}.
2nttps://www.mathematics.pitt.edu/people/stephan-wojtowytsch.
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Figure 10: 2-Point Probability Plots

To yield the results displayed in figures and the MNIST data
were changed from grayscale to black and white, with white pixels given the
value 1 and black pixels the value 0. Each image is a square of 282 pixels
labelled by z; ;. We first seek the probability that two pixels values [z; ;] and
i 4shift, » Tj+shift,] are both 1 (white) for some fixed shift = (shift,, shifty)El
This (2-point) probability is given by:

Pr([zi;]) = Pr({z;snift, » Tt shift, )

28 28
! ! (14)
#Images in x g 282 ; ; (%)
where
= 0, otherwise.

For three point correlations we define C;;x (for k = (I,m)—a given shift
from pixel z; ; in the image) as follows:

Cijx = [ ’J] ‘ [ +Sh1ftz,]+shlfty] [ +,j+ ] (16)
= 0, otherwise.

Figure 11| displays the 3-point correlations for each class of numerals with
the shift from pixel z; ;, set to k = (4,8). These, and other plots implement-
ing the same formula (with different shift pixels k), provide evidence that

2 4[.]"= value of pixel [] € {0,1}.
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Three point correlation: lass 5. fixed vector = (4, 8)

Figure 11: 3-Point Probability Plots

higher order correlation functions of the kind discussed briefly in section
are sufficient for distinguishing distinct classes of numerals in the MNIST
dataset. It is reasonable, we believe, to expect similar results from the other
datasets mentioned listed in section However, the second question re-
mains: Can one show that, as a matter of fact, image recognitions DNNs
are indeed finding such higher order correlations. How are these correlation
functions being realized?” The next section provides some evidence that, in
fact, DNNs are finding such correlations and offers a suggestion of how (at
least theoretically) they are able to do so.

5.2 Learning Higher Order Correlations

A recent paper entitled “Neural Networks Trained with SGD Learn Distri-
butions of Increasing Complexity” [20] proposes what they call the Distribu-
tional Simplicity Bias (DSB):

“A parametric model trained on a classification task using SGD
discriminates its inputs using increasingly higher-order input statis-
tics as training progresses.” [20], p. 2]

They motivate this principle by considering a simple/toy model of a single
perceptron that is trained to distinguish between two types of data points
that reside in two distinct rectangles in a plane. See figure The data
x = (x');<p are split into the two equally probable classes and are given
labels y; with ¢ = +1. As one can see, the optimal decision boundary between
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Figure 12: Rectangular Data and Decision Boundaries [20, p. 4]

the two classes is a line (dot-dashed) parallel to the x9-axis that they call the
“oracle.” [20), p. 4]. The perceptron’s output is given by:

j—oX, for A=wa'/VD, (17)

with the weight vector w; and a nonlinear (sigmoid) activation function Uﬂ
The penalty during training is given by the square loss:

(A y) = (o(N) —y)*.

The perceptron is initialized with weights drawn from a Gaussian with vari-
ance 1 and then trained on a test set. They examine how the weight vector
evolves during SGD with the given loss function. That is, they study the
gradient flow:

w; = nE(c(A —y)o' (N, (18)

with fixed learning rate n > 0. Here E is an average over the data distribu-
tion. [20, p. 4]. They do a Taylor expansion of activation function around

A=0: .
a(\) =D BA".
k=0

26Superscripts are indices for inputs and subscripts are indices for weights.
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This gives the derivativem
o' (N B X
k=0

with 3, = kBr = ka® (\)|x=0.
When entered into the gradient equation this yields:

1. < ; .
Ewi = ZE)\kx (’ch - 6k+1y>7 (19>
k=0

with (8, and 4, constants from the Taylor expansion. This allows them to
look at the zeroth order through third order components of the gradient flow
(18) of the perceptron weight as it is trained.@

They show that at zeroth order the “weight converges in direction” as

0 i — i
w; xm' =K, — K.

This is the difference between the means of each class, £, = Eiz’. The
idea here is that under training of this simple model, the decision boundary
between the two classes rotates in the direction of the (curved) arrow in
figure At this zeroth order, the decision boundary moves to a line (yellow)
splitting the means of the two rectangular classes.

At first order, the gradient of w; depends upon the second moments of the
(data) inputs taking into consideration the difference between the “within
class” variances and the variances “between classes.” This further rotates
the decision boundary to the right and yields the classifier wz(l), known in
statistics as “Fisher’s linear discriminant.”@ [20, p. 4] In figure , this is
the green line["

Next, the second order term in the expansion contributes nothing to the
gradient flow as it would involve the third moment which in this case is equal
to zero because of symmetry in the data. As a result, the second order term

2TWe have corrected a typo in this equation.

28This model just focuses on the evolution of the perceptron’s weight w; and ignores the
bias (which is fixed).

29Gee [4, pp. 186-189] for a clear explanation.

30We believe that the text here misidentifies the Fisher discriminant as a “dashed black
line.”
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in the perturbation expansion of the gradient flow does not improve upon
the first order term.

Finally, the third order involves the fourth moments: x¥*. As with
the second moments, they decompose the fourth moment into a “between-
class” fourth moment and a “within-class” fourth moment. Without going
into the details, this allows them to express the fourth moments in terms of
contributions from a “within-class” fourth order cumulant and contributions
from the mean and second moments. At this order the expansion finally
takes into consideration some non-Gaussian correlational information that
is present in the dataset. For the current problem, this information rotates
the decision boundary (now the purple line) even closer to the “oracle.”

The procedure here strongly resembles that employed in the so-called
e-expansion in quantum field theory. There one aims to determine N-point
correlations (Greens functions) via a perturbation expansion around a zeroth
order Gaussian field P In that context the calculations are facilitated by the
use of Feynman diagrams which allow for the (relatively) easy summation of
cumulants of higher orders.

This single perceptron model is an extremely simple toy model. It allows
one to explicitly demonstrate how the consideration of higher order corre-
lations can improve classification. But, of course, this model is not really
learning increasingly complex functions. As Refinetti et al., note “its deci-
sion boundary remains a straight line.” [20] p. 5] Nevertheless, as noted, the
direction of the weight vector w;,

and hence its decision boundary, first only depends on the means
of each class, ..., then on their mean and covariance, ..., and
finally also on higher-order cumulants, ..., yielding increasingly
accurate predictors. [20} p. 5]

As further evidence for their “distribution centric” [20, p. 6] point of
view, these authors train neural networks with different architectures on var-
ious approximate “clones” of the CIFAR dataset. These clones are designed
to have the same mean and covariance as the images in CIFAR, but also
differ by progressively including higher order cumulants. [20, pp. 6-8] The
results, while somewhat preliminary, provide further evidence that the neu-
ral networks are learning distributions of increasing complexity after having
learned the first and second order (Gaussian) correlational statistics.

31See [28, Section 4] and [I1, Chapter 12] for the details.
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Our goal in this section has been to provide some evidence in favor of the
hypothesis that DNNs are successful at certain tasks (specifically, but not
exclusively, image recognition tasks) because they implement something like
the correlation function methodology described in section [3] This evidence
is reflected in arguments for what Refinetti et al. call the “distributional
simplicity bias.” It explicitly appeals to the stochastic gradient descent algo-
rithm (SGD) and aims to show that the algorithm is driven by progressively
examining higher order dataset statistics. As noted, the idea here is similar
to those developed in the context of quantum field theoretic perturbative
calculations of N-point correlation (Green’s) functions. The idea there being
that all of the information about a quantum field is to be found in those func-
tions. In analogy, we believe that being able to determine N-point correlation
functions of image datasets for N > 2, will provide information sufficient for
the successes of DNNs on image recognition tasks. As noted in section |3 one
way to conceptualize this is the following: DNNs, in determining higher or-
der correlation functions, are finding statistical representatives (RVEs) that
uniquely distinguish classes in a given dataset.

6 Conclusion

We would like to stress that understanding the successes of DNNs on vari-
ous tasks requires a focus on facts about the world. These worldly facts are
responsible for robust statistical properties that are present in the datasets
upon which the DNNs are trained. The workings of DNNs will remain ob-
scure and opaque if one only looks “under the hood” and ignores these robust,
universal, features of the datasets. Furthermore, we believe that these statis-
tical features present in the datasets are what drive the dynamics of weight
updating.

In addition, we have argued that DNNs are actually implementing a
well-understood methodology (important for any field that aims to explain
continuum scale behavior of complex systems) that privileges correlational
structures at mesoscales. [2] In the context of image recognition, the lowest
(fundamental) scale corresponds to features of individual pixels such as their
luminance, their weighted color (RGB) values, etc. In analogy with many-
body physical systems, the “continuum” scale behavior of images is their
(correct) label—whether the image is that of a dog, a cat, .... As in the
physical examples, the most important features or quantities for identifying
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the images as members of a given class are functions that represent correla-
tional structures in the images at mesoscales. And, just as in the physical
examples, these correlations are hidden at the smallest pixel scale. The dis-
covery of these correlational features allows for successful identification of an
image as a member of a specific class.

Our focus on correlational structures in datasets also highlights differences
between understanding contemporary deep learning and the theoretical per-
spective of statistical learning theory. As we noted, DNNs can successfully
generalize to test sets upon training, despite commonly employing more pa-
rameters than the data points on which they are trained. This is contrary
suggestions from SLT and, for that matter, conventional informal statistical
wisdom about overfitting. We suggested that part of the reason for this is a
mismatch between the assumptions made in SLT and the empirical features
of the data on which they are trained. SLT provides worst case bounds on
expected performance on a test set without any assumptions concerning the
probability distributions characterizing the data. However, as we have em-
phasized, real world data consisting of images is governed by very specific
kinds of probability distributions. DNNs, we suggest, operate so as to learn
certain features of these probability distributions, particularly those having
to do with higher order correlations. By contrast, for arbitrary probability
distributions, higher order correlation functions may not exist or may be un-
informative. Moreover, in constructing and training DNNs that classify well,
what matters is not worse case behavior but something more like typical or
attainable behavior.

Another way of expressing this point is to note that, although the collec-
tions of images on which DNNs are trained have very high dimensionality,
there is a great deal of evidence that (as one might expect) the effective num-
ber of dimensions that the DNNs employ in classifying data is many orders
of magnitude smaller 7] This reflects the fact that there is a great deal of
redundancy in real life images when these are viewed at the level of indi-
vidual pixels and the task is one of sorting them into rather coarse-grained
categories (“dog” vs. “cat”). The presence of scale invariances and power law
distributions in the characterization of images, detailed above, is one facet of
such redundancy. Note again, that there is nothing a priori about this—one

32This is sometimes described as the submanifold hypothesis, according to which the
high dimensional manifold associated with the raw images contains a much smaller di-
mensional submanifold that contains the information relevant to successful classification.
[13]
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can certainly imagine a collection of pixels that does not have this kind of re-
dundant structure. There, the exact luminance levels of pixels in comparison
with other arbitrarily chosen pixels might be critical for how the collection is
classified. Presumably, however, collections of pixels without such redundant
structure would not be recognizable by us as images of anything—they would
look like noise. As Ruderman’s work shows, images in the sense of scenes
composed of objects recognizable by us, have very different structures. When
we train a DNN to classify in accordance with the classifications we make,
we train it to pay attention to these structures. Another observation: As
noted in section [2] real images have the feature that pixels that are close by
in physical distance are generally similar in luminance. One can think of this
as a kind of smoothness condition—pixel luminances do not generally vary
wildly over short distances.@ This smoothness condition is another “worldly
condition” that characterizes real life images.

It is tempting to make the following connection: As Martin and Mahoney
[19] (and others) have shown, stochastic gradient descent implements “self-
regularization”. That is, it selects functions that have low norm.@ Such
functions are also relatively smooth—they don’t exhibit large changes over
small distances. In this respect they are well matched to the smoothness
condition satisfied by real life images. One may then conjecture that such self-
regularization selects for functions that track these features, thereby helping
to explain why SGD leads to results that “work” for images. If this is correct,
one would expect that DNNs trained with SGD would work less well with
structures that do not satisfy smoothness conditions and this in fact is what
is found. [25]

Summing up, one can contrast two different approaches to understand-
ing the generalizing abilities of DNNs. The first, characteristic of SLT (and
other similar approaches) focuses on the class of functions that are avail-
able to classify images but does not assume that the images themselves have
any particular structure. This approach cannot explain why DNNs success-
fully generalize. The second approach focuses on specific features of the
images themselves, including the presence in them of higher order correla-
tional structures. This approach explains successful generalization in terms
of the ability of DNNs to exploit these structures. This suggests the following

33Recall Ruderman’s “difference function”, equation . Again, one can imagine a
collection of pixels that does not have this feature, but it would not look like an ordinary
image.

34In either the I; or Iy norm, these, roughly, are those with “small” coefficients.
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research program: Look for the features of the images themselves that can
support successful generalization to new cases.
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