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Abstract

Scientists, policy-makers, business leaders, and members of the public care
about what modern artificial intelligence systems are disposed to do. Yet terms
such as capabilities, propensities, skills, values, and abilities are routinely used
interchangeably and conflated with observable performance, with Al evaluation
practices rarely specifying what quantity they purport to measure. We argue
that capabilities and propensities are dispositional properties—stable features of
systems characterised by counterfactual relationships between contextual condi-
tions and behavioural outputs. Measuring a disposition requires (i) hypothesising
which contextual properties are causally relevant, (ii) independently operational-
ising and measuring those properties, and (iii) empirically mapping how variation
in those properties affects the probability of the behaviour. Dominant approaches
to Al evaluation, from benchmark averages to data-driven latent-variable mod-
els such as Item Response Theory, bypass these steps entirely. Building on
ideas from philosophy of science, measurement theory, and cognitive science, we
develop a principled account of AT capabilities and propensities as dispositions,
show why prevailing evaluation practices fail to measure them, and outline what
disposition-respecting, scientifically defensible Al evaluation would require.
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1 Introduction

Technical reports on contemporary artificial intelligence systems are laden with claims
about capabilities and propensities [1-3]. Developers and journalists celebrate the
capability of large language models to code, write, and reason, while safety researchers
warn about their propensity to deceive users, orchestrate cyberattacks, or develop
biological or chemical weaponry. Yet despite their centrality to technical, regulatory,
and public discourse, these terms remain nebulous. They are used interchangeably
with skill, ability, competence, or trait, and are routinely conflated with observed
performance on benchmark datasets.

This conceptual looseness has practical consequences. A standard capability eval-
uation might report a single accuracy score on a curated mathematics benchmark
and treat it as a measurement of mathematical ability. But such a number does not
tell us why the Al system fails: that is, whether errors arise from numerical com-
plexity, multi-step reasoning, abstraction, representational limitations, or something
else. Aggregate performance collapses heterogeneous sources of difficulty into a single
statistic, obscuring the structure of the underlying property it is meant to capture.

We argue that this reflects a deeper mismatch between what is being measured and
how measurement is conducted. Capabilities and propensities are not performances;
they are dispositional properties—intrinsic features of systems that dispose them to
behave in certain ways under certain conditions [4-6]. An Al system’s mathematical
capability concerns what it would do if presented with problems of varying difficulty;
its propensity for harmful behaviour concerns what it would do if given the incentive to
cause harm. Performance on a dataset or a safety breach in a red teaming test are mere
manifestations of such dispositions in a narrow range of contexts. Inferences about
capabilities are driven almost exclusively by performance data with little underlying
theory connecting dispositions to observable behaviour.

Dispositions are characterised not by average success rates, but by relationships
between a system’s properties and its context. Fragility, a canonical case of a dispo-
sition, is measured by identifying the force at which an object breaks. Analogously,
mathematical capability should be measured by identifying how performance changes
as task demands increase, and a power-seeking propensity should be measured by
identifying how unsafe behaviour changes as incentives or situational cues vary.

Despite this, Al evaluation overwhelmingly relies on benchmarking and elicita-
tion: Al systems are tested on fixed datasets or adversarial prompts, and aggregate
or worst-case outcomes are interpreted as measurements of underlying properties.
Even more sophisticated extensions, such as latent-variable models, typically remain
data-driven and atheoretical, inferring quantities from patterns of performance rather
than from independently characterised causal relationships. The result is a prolif-
eration of numbers that resemble measurements but lack the theoretical grounding
required to represent genuine dispositional properties.

The stakes are high. Regulatory frameworks increasingly require assessments of
AT capabilities and propensities [3, 7], and scientific progress depends on reliable
measurement. Yet current methods struggle precisely where they matter most: pro-
ducing measurements that go beyond the human level or generalise to safety-critical
domains where testing is dangerous or prohibited. Without conceptual clarity about



what is being measured—and without methods that can extrapolate beyond observed
performance—AI evaluation remains a collection of conventions rather than a true
measurement science.

This paper aims to provide the conceptual foundations for such a science. We
develop a principled account of capabilities and propensities as dispositional proper-
ties, diagnose why prevailing evaluation practices fail to measure them, and outline
what measuring dispositions requires.

Our contributions are threefold:

1. We define capabilities and propensities as dispositional properties.
Capabilities concern how behaviour varies with contextual demands; propensities
concern how behaviour varies with contextual incentives. Both are grounded in
causal relationships between system properties and features of the context.

2. We show why prevailing evaluation methods fail to measure these
dispositions. Benchmarking, red-teaming, and data-driven latent-variable mod-
els summarise performance or safety without identifying causal bases, conflating
sampled behaviour with the system’s underlying properties.

3. We outline a disposition-respecting measurement framework. Scientific
measurement requires explicit hypotheses about causal structure, independent
operationalisation of contextual variables, systematic variation, and an empirical
mapping of context—behaviour relationships.

The remainder of this paper proceeds as follows. Section 2 develops the disposi-
tional account of capabilities and propensities. Section 3 characterises the dominant
evaluation practice of benchmarking and argues for why it fails as a measurement
methodology. Section 4 critiques more sophisticated measurement methods, such as
Item Response Theory. Section 5 outlines the requirements for a disposition-respecting
measurement science, including an illustration of measuring the arithmetic capability
and propensity for honesty of language models.

2 What Are We Measuring? Capabilities and
Propensities as Dispositions

Current approaches to Al evaluation tend to proceed without explicit claims about
their measurement targets. When we claim that an Al system has good mathemati-
cal capabilities or a propensity for sycophancy, we are attributing properties to that
system—but what kind of properties are they? These properties are clearly distinguish-
able from properties like the number of parameters of the Al system or details about
its architecture. Here, we propose that capabilities and propensities are a distinct type
of property: dispositions—claims about how an Al system would behave under certain
counterfactual conditions. To pre-empt the following discussion, we define capabili-
ties as dispositions that co-vary with the demands or difficulty of the problem, while
propensities are dispositions that co-vary with the incentive-relevant features of that
problem.

Understanding the nature of dispositions is not philosophical pedantry, it deter-
mines what counts as a legitimate measurement. Without clear definitions, we cannot



judge whether a measurement method actually measures what it purports to mea-
sure. Benchmarking, for example, treats the sampled performance on a series of maths
questions as equivalent to the underlying disposition of the system to answer any
possible maths question—Dbut this equivalence only holds if the underlying property
really is the exact and fixed distribution of questions represented by the benchmark,
an assumption which is rarely defended.

This section develops our dispositional account in two steps. First, we explain
what dispositions are and why capabilities and propensities fit this category. Second,
we show how we can measure dispositions in the case of Al evaluation. Finally, we
distinguish between capabilities and propensities.

2.1 Dispositions: Properties Defined by Counterfactuals

A dispositional property is a stable, intrinsic feature of a system characterised by a
counterfactual, i.e., what would happen in a certain context [8-11]. A canonical exam-
ple is fragility. A wine glass is fragile not because it is currently breaking, but because
if it were struck with sufficient force, it would break (with high probability). The fact
that dispositions are defined by virtue of a counterfactual is what distinguishes them
from so-called categorical properties like colour and shape. We can observe that an
apple is red right now, but we cannot observe fragility in the same way, we instead
consider what would happen under conditions that may never actually occur.

Capabilities and propensities have exactly this structure. An Al system has a high
mathematical capability because, if it were asked difficult mathematical questions,
it would answer correctly with some high probability that depends systematically
on measurable properties of the question. When we say that an AI system has a
low propensity to disclose information about explosives, we mean that, if it were
placed in contexts with strong incentives to give instructions to build a bomb,
it would give unsafe instructions with low probability, contingent on the properties of
those contexts. In both cases, we are attributing a disposition—a potentiality that
may never be fully actualised but nonetheless characterises the system [13-15].

This dispositional view aligns with how capabilities are conceptualised across cog-
nitive science, where terms like ability, trait, competence, and skill similarly denote
counterfactual potential rather than factual performances [16, 17]. It also clarifies the
relationship between capability and performance: performance is the manifestation of
a capability in specific contexts, but the capability itself is the underlying disposition
that explains patterns of performance across contexts. Similarly, it clarifies the differ-
ence between the observed incidence rate of a system doing harm (e.g., after sustained
red teaming) [18], and the incentive structures that make such harmful behaviour
more likely.

Philosophers emphasise three minimal commitments for any serious account of
dispositions [19]:

1. Causal basis: There must be properties of the system which, paired with prop-
erties of the context, jointly cause the observed behaviour. For fragility, material

1One can, of course, contrive counterfactual glosses of categorical properties. For instance, the apple is
red in the case that if a human eye were to see it, its red cones would fire more [12]. The difference between
colour and fragility is that the latter can only be defined counterfactually.
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composition paired with impact force causes observable breakage. For mathemati-
cal capability, model parameters and architecture pair with the problem to cause
the Al system to produce the correct or incorrect answer.

2. Gradedness: Dispositions come in degrees. Different materials can be more or
less fragile; Al systems can have stronger or weaker mathematical capabilities. The
probability of the outcome varies continuously with the disposition and/or the
causal features of the context.

3. Comparability: Systems can be compared with respect to their dispositions. One
glass may be more fragile than another; one Al system may have greater mathe-
matical capability than another. These comparisons are meaningful even when the
systems have never been tested in identical contexts.

Fundamental to this account is the causal basis requirement. A disposition is not
a statistical regularity but a specification of some causal structure. Scientifically mea-
suring these dispositions requires taking a stand on what that causal structure looks
like, such as that some degree of force combined with some properties of a wine glass
causes it to shatter. We do not need to understand the mechanism that explains this
causal relationship, we need only find evidence that this causal relationship exists.
This amounts to holding the properties of the wine glass constant and systematically
varying the properties of the context, empirically mapping it to the probability of
the observed behaviour. For Al evaluation, this means that disposition measurement
is logically independent from so-called mechanistic interpretability [20-24]—we can
find the difficulty level at which a language model, for instance, fails to answer novel
maths problems correctly without coming up with a reason why it fails (in terms of
the system’s own properties). This means that we can have explanatory and predictive
power about the behaviour of Al systems using dispositions [25], without mechanistic
interpretability, provided we can measure dispositions accurately.

2.2 Measuring Dispositions

Any proper measurement starts with a theory, which tells us which properties to hold
constant and which to vary. In the case of dispositions, we hold the system fixed and
systematically vary the contextual properties hypothesised to causally influence the
behaviour of interest. Let m denote this space of contextual properties. For famil-
iar physical dispositions, the relevant components of 7 are well-understood: fragility
depends principally on impact force, while solubility depends on solvent temperature,
exposure time, and solute surface area. In each case, the disposition is assessed by
measuring how the probability of the target behaviour changes as 7w varies. The ideal
case is to produce a continuous measurement of that probability, written in terms of
the units of 7, although some measurement scenarios may only call for discretised
versions of this measurement scale.

Because these causal relationships are typically probabilistic, we quantify disposi-
tions in terms of conditional probabilities. For any target behaviour v, we infer the
function

p(v|m,0)



where 6 denotes latent, system-specific properties that interact with 7 to determine
outcomes. Measurement consists of varying 7, inferring changes in p(v | , ).

The same logic applies when evaluating the dispositions of an AT system. We must
first hypothesise which components of m matter for the behaviour in question, vary
those components systematically, and observe how behaviour changes. For a capability
such as mathematical reasoning, the relevant contextual features in 7 might include
the number of digits in an arithmetic operation, the number of computational steps
required, or the symbolic depth of the task [26]. For a capability such as generat-
ing a cyber attack, relevant components of 7 might include exploit-chain complexity,
vulnerability novelty, or the level of specialised domain knowledge required.

Dispositions, however, also include propensities: tendencies to engage in some
behaviour when given certain extrinsic incentives. For propensities, the relevant com-
ponents of 7 are those that shape the system’s inclination to produce the behaviour
rather than its difficulty in executing it. For instance, a system’s propensity to carry
out a harmful action may depend on whether the prompt frames the behaviour as
justified or benevolent, whether the user appears malicious or vulnerable, whether the
system believes refusing would disappoint or frustrate the user, or whether oversight
cues suggest monitoring. Variation in these components of 7 modulates not what is
required for success, but what the system is disposed to attempt. Formally the structure
is the same, p(v | 7, 6), but the interpretation of 7 differs.

We posit that this leads to an important conceptual distinction between two
broad families of contextual properties that structure different kinds of dispositions.
Some components of 7, call them task-demand components, change the conditions
under which the behaviour is more or less difficult. Others, call them incentive
components, change the conditions under which the behaviour is incentivised. Capa-
bilities are dispositions whose manifestation probability varies systematically with
demand-relevant components of 7. Propensities are dispositions whose manifestation
probability varies with incentive-relevant components of w. These two families of
disposition are conceptually independent.

A practical challenge arises because an Al system may never manifest the tar-
get behaviour under any ethically permissible variation of w. This is common, and
desirable, for many safety-sensitive behaviours. A system may be internally capable of
producing a harmful chemical synthesis route, yet never reveal this capability because
no safe contextual configuration elicits it. In such cases, we must infer the underlying
disposition indirectly. One strategy is to vary m across benign tasks that share struc-
tural properties with the dangerous ones, measure how p(v | m,0) behaves in these
controlled regimes, and extrapolate to unobserved or prohibited regions of 7. This mir-
rors how engineers estimate the tensile strength of materials without pushing them to
catastrophic failure: behaviour in safe ranges is used to infer the underlying disposi-
tion. Of course, defining 7 such that it is shared between both benign and dangerous
tasks is the primary scientific challenge.

If a well-developed theory identified exactly which components of m were causally
relevant for each disposition, and how they influenced behaviour, measurement would
be straightforward. We would vary m, observe how the probability of the target
behaviour, p(v | 7, 0), changes, and interpret the resulting function as a measure of



the disposition. Such measurements would be expressed in terms of external, theory-
grounded variables, would generalise beyond the tested range, and would support
principled comparison across systems, for example, by identifying the value of 7 at
which p(v | 7,0) falls below a critical threshold, or by comparing entire conditional
response surfaces.

Unlike physical dispositions such as fragility or elasticity, however, Al dispositions
lack mature scientific theories specifying which contextual properties matter. We do
not yet know which structural features of mathematical problems drive difficulty for
language models, which characteristics of cybersecurity tasks shape performance, or
which contextual cues most strongly elicit intentional behaviours such as deception.
This lack of theory is not a defect in the dispositional framework, it is its central
scientific challenge. Progress in Al evaluation consists precisely in proposing, testing,
and refining hypotheses about which components of 7 matter and how they inter-
act with 0. Just as early thermometry required discovering which physical quantities
reliably tracked heat [27], building a measurement science for Al evaluation requires
identifying and validating the contextual properties that structure Al dispositions.

Finally, while distinguishing between task demands and incentives captures two
major mechanisms by which context shapes behaviour, it may not be the only princi-
pled way to partition 7. The contextual space may vary along many dimensions: input
modality (text versus code), time available for deliberation, prompt ambiguity, tool
availability, or uncertainty in the environment. Each may define distinct dispositional
kinds. The point is not that there are exactly two categories, but that dispositions are
defined relative to whichever components of 7 causally drive behaviour. Identifying
and validating these dimensions is part of building a mature measurement theory for
AT systems.

3 Standard Practices in Measurement in Al

Having clarified that capabilities and propensities are dispositional properties, we now
turn to how they are currently evaluated.

In practice, Al evaluation comprises two dominant traditions. For capabilities, the
standard approach is benchmarking: evaluating an Al system on a curated dataset
and reporting aggregate accuracy. For propensities, especially those involving harmful
or undesirable behaviour, the standard approach is elicitation (such as red teaming or
uplift studies): crafting prompts intended to provoke the system into revealing risky
tendencies [28-30]. Both practices are deeply entrenched in academic, industrial, and
regulatory settings, and both are typically treated as though they reveal the underlying
properties of interest. We argue that neither practice succeeds. Benchmarking and
elicitation fail as measurements of dispositions for four reasons: we do not know what
they measure, whom they measure, to what extent they are valid, or how they could
generalise to systems that exceed human competence.

Benchmarking dominates capability evaluation because it is simple, cheap, and
produces a single number that appears comparable across Al systems. Datasets such
as MATH [31], HumanEval [32], and many other usually multiple-choice benchmarks
provide ready-made leaderboards and a long history of tracking progress [33]. This



convenience, combined with strong social incentives for standardisation and compe-
tition, has solidified benchmarking as the default, even though it was never designed
as a scientific measurement method.? Benchmark results (usually in the form of an
average-case aggregate) were created to rank systems on their ability to complete cer-
tain tasks, not to measure dispositions defined over counterfactual contexts. Despite
this, benchmark accuracy is routinely interpreted as if it reflects a stable underlying
capability.

Elicitation dominates propensity evaluation for similarly pragmatic reasons. It is
straightforward to instruct annotators or automated adversaries to probe for harm-
ful, deceptive, or biased behaviour, and the results provide vivid, compelling examples
of risk (usually in the form of a worst-case situation). These exercises satisfy opera-
tional needs: They reveal possible failures and provide qualitative evidence of danger,
but they do not measure propensities. They sample behaviour in a tiny, adversarially
selected region of contextual space and cannot distinguish between behaviours that
the system would produce only under contrived provocation and behaviours it would
reliably manifest across relevant counterfactual contexts. As with benchmarks, elicita-
tion provides snapshots or anecdotes of behaviour, not measurements of dispositional
structure.

These practices miss the target for four reasons. First, we do not know what they
measure. Benchmark accuracy reflects behaviour on a narrow, convenience-sampled
subset of tasks, conflating difficulty, incentives, annotation biases, and dataset quirks.
Similarly, elicitation reflects a handful of adversarial contexts selected by human
imagination, not systematic variation of the contextual properties that give rise to
a propensity. Because neither approach specifies which components of 7© determine
behaviour, they cannot be interpreted as measurements of any dispositional property.

Consider a representative example. The MATH dataset [31] contains 12,500 com-
petition maths problems from a range of subdisciplines. A large language model is
tested on these problems and researchers report that they score, say, 62.5%. This
score is interpreted as a measurement of mathematical capability and is used to
rank Al systems and track progress towards more performant Al systems. But what
does 62.5% actually mean? In the best case—with an unbiased, representative sam-
ple of mathematical problems—this number converges on the expected proportion of
correct answers across independent and identically distributed samples of maths prob-
lems. But this tells us nothing about the disposition of the AI system to solve maths
problems with different properties.

To see the fallacy involved here, let’s return to the familiar case of temperature
measurement, but imagine we lack any theory of thermal expansion. We would like to
measure the temperature of a cup of tea, so we gather various potential temperature
indicators: several glass tubes filled with unknown liquids, each with a single mark on
it; a piece of chocolate, your hand, my hand. We dip each indicator in the tea in quick
succession and record binary outcomes: Did the liquid pass the mark? Did the choco-
late melt? Did you flinch? Did I flinch? We aggregate those binary outcomes, finding
that 5 out of 8 (62.5%) gave positive responses. We have thus ascertained that the

2Historically, many benchmarks arose as engineering tests or challenge problems rather than theoretically
grounded measurement instruments [34, 35].



tea has a temperature of 62.5%. This number correlates with actual temperature, in
terms of thermal energy, since hotter tea does cause more positive responses, but it
does not measure the temperature of the tea in any scientific sense. We have not iden-
tified which properties of the tea vary with thermal energy, we have not calibrated our
indicators against that property, and we have no basis for extending our measurement
to temperatures outside our tested range, not to mention that our measurements dif-
fer wildly depending on the collection of indicators we have to hand. This collection
is biased by convenience and our own assumptions [36].

Second, we do not know whom they measure. Benchmarks and elicitation traces
typically conflate the base Al model, system prompts, safety filters, tool-augmented
pipelines, and even the behaviour of human evaluators. A single benchmark score
often mixes these layers without distinguishing the properties of the underlying model
from those of the surrounding system. Dispositions must belong to a clearly defined
subject, but benchmark and red-teaming scores do not specify what that subject is.

For instance, in human uplift tests, a group of people is assisted by an Al system to
perform something dangerous, such as hacking a computer system. The outcome will
depend on the characteristics of the group of people even more than the Al system we
are trying to evaluate. It is not enough to distinguish between groups of people of low,
medium and high skills in cybersecurity, because the size of the team, their personality
traits, their knowledge about jailbreaks, their motivations, and many other factors all
influence the result. It is therefore unclear whether the result represents a propensity
of the Al system or the ability of the human team.

Third, these practices lack validity in the sense required for scientific measurement.
A measurement is valid when it actually measures the property it purports to mea-
sure according to some theory or hypothesis—known as construct validity [37]. For
a benchmark or elicitation protocol to validly measure a disposition, it must test a
defensible theoretical link between the tasks administered and the dispositional prop-
erty of interest: the tasks must operationalise the right contextual features, sample
representatively from the relevant space of conditions, and control for confounds that
could inflate or deflate scores for reasons unrelated to the target disposition. In prac-
tice, these requirements are rarely met. A systematic review of 445 LLM benchmarks
found that nearly half of them target phenomena with contested or undefined defini-
tions, over a quarter rely on convenience sampling of task items, and fewer than one
in six employ any statistical testing to support their comparisons [38]. Benchmark
scores are sensitive to prompt phrasing, response format, and incidental task demands
such as instruction-following or output parsing—confounds that modulate measured
performance without reflecting the underlying capability or propensity. Similarly, the
extent to which a model has encountered training data similar to the test items skews
comparisons and threatens the validity of model rankings, since a worse model may
simply have been better prepared for the specific test [39]. Without independent evi-
dence that the tasks in a benchmark track the contextual properties that causally
structure the disposition—rather than artefacts of item selection, formatting, or data
contamination—there is no principled basis for interpreting the resulting score as a
measurement of anything beyond performance on that particular collection of items.



Finally, these practices cannot generalise beyond either the frontier of human
capabilities or the limit for safe testing. Benchmarks require known answers and
human-authored items; elicitation requires humans to judge success and failure. As
systems approach or exceed human-level performance, these tools collapse: they cannot
evaluate behaviour in contexts that no human can solve, assess, or even conceptualise.
But even before reaching superhuman regimes, there are whole classes of high-stakes
contexts that we cannot ethically test at all. We cannot ask an Al system to design
a viable biological virus, assemble a nuclear device, or plan an effective cyberattack
on critical infrastructure simply to observe what it would do. Yet dispositions are
defined over precisely these counterfactual, unobservable contexts. Any measurement
approach tied to direct human evaluation is therefore doubly inadequate: it cannot
assess dispositions that exceed human competence, and it cannot assess dispositions in
dangerous regimes where empirical testing is prohibited. Scientific measurement must
be able to extrapolate reliably beyond both frontiers, and couching measurement in
terms of dispositions and causality allows us to do that.

In sum, the status quo, benchmarking for capabilities and elicitation for propensi-
ties, produces performance summaries that are useful for narrow engineering purposes
but cannot serve as scientific measurements of dispositions. They do not identify the
contextual properties that matter, do not fix the subject of measurement, do not sat-
isfy basic validity requirements, and cannot scale to the systems we most urgently need
to evaluate. In addition, it precludes a meaningful combination of two very different
practices: if a system scores low in a social capabilities test and a red team succeeds
in showing ‘scheming’ in a contrived situation [40], how can we reconcile these two
findings? We would like to integrate capabilities and propensities to anticipate both
performance and safety. If capabilities and propensities are dispositional properties,
as argued in Section 2, then their measurement requires a fundamentally different,
theory-driven approach: one that identifies, operationalises, and systematically varies
the contextual causes of behaviour rather than tallying outcomes.

4 More Sophisticated Methods and Their
Fundamental Flaws

Recognising the limitations of simple benchmarking, many researchers have turned to
more sophisticated statistical approaches, most prominently Item Response Theory
(IRT) and related latent-variable models [26, 41-44]. These methods appear to offer a
principled alternative to crude accuracy scores. Unlike benchmark averages, IRT mod-
els explicitly represent variation across both items and systems, estimating separate
parameters for “item difficulty” and “system ability”. Such models are mathematically
elegant, predictive, and well established in psychometrics, where they have long been
used to measure human traits and cognitive abilities [45]. It is therefore natural that
the Al evaluation community has adopted them as a more refined tool for capability
assessment.

Our critique, however, targets data-driven applications of IRT in Al evaluation.
When used without independently grounded theories of task structure or contextual
demand, IRT models patterns of performance without identifying the causal bases
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of the dispositions we seek to measure. In this setting, IRT provides a statistical
decomposition of observed outcomes, not a measurement of the underlying properties
that dispose systems to behave in certain ways. This limitation reflects a mismatch
between what IRT estimates and what dispositional measurement requires.

To see why, consider the simplest IRT model, the one-parameter logistic (1PL) or
Rasch model [46]. The model assumes that the probability that system j succeeds on
item ¢ is determined by two latent variables: an ability parameter 6; and a difficulty
parameter b;, ( )

exp 0]' — bi
P = 1000 = (@, — b
Both parameters are inferred jointly from a matrix of observed successes and failures.
The interpretative promise is appealing: ability increases the log-odds of success, while
difficulty decreases it. Accordingly, many Al evaluation studies treat 6 as a measure
of capability and b as a measure of contextual demand.

However, this interpretation goes beyond what the model itself licenses. In
data-driven IRT, latent variables are defined solely by the covariance structure of the
performance data [47]. A high value of b; indicates only that many systems failed item
1; a low value of 0; indicates only that system j failed items that other systems tended
to solve. Without an independently specified account of which contextual properties
matter and how they are causally related to behaviour, these latent variables cannot
be interpreted as dispositions. They summarise patterns of performance rather than
the causal relations that generate those patterns.

This limitation becomes clearer when we consider what data-driven IRT does not
provide. It does not identify which properties of a task make it difficult, and therefore
offers no theory of the contextual demands that modulate capability. Two items with
identical difficulty parameters may rely on entirely different skills, reasoning strate-
gies, or representational resources. Because difficulty is inferred only from aggregate
performance, the model cannot distinguish these cases. Nor does IRT specify how to
construct new items of a given difficulty level, since difficulty is not tied to indepen-
dently measurable task features. Similarly, the ability parameter 8 does not identify
which properties of a system make it capable; it is simply the value that best fits
the observed data. Absent an external interpretation, 6 cannot be understood as a
dispositional property [47].

The dependence of IRT on the measurement population introduces a further prob-
lem. Item difficulty and system ability are estimated relative to the set of systems
included in the analysis. As this population changes, when stronger AI systems are
added or weaker ones removed, the measurements shift. But a system’s capability
cannot depend on which other systems happened to be evaluated alongside it, a par-
ticular risk in Al evaluation, where populations are small and individuals are highly
correlated. Dispositions are properties of systems themselves, not artefacts of a com-
parison class. Data-driven IRT therefore violates a trivial requirement of dispositional
measurement: that the measurement of one system’s disposition must be independent
from the measurement of another’s.

These limitations are not inherent to IRT as such. In psychometrics, measurement
models, or latent-variable models more generally, are often used in conjunction with
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psychological theories. For example, in working memory research, serial recall difficulty
in a complex span task, in which the presentation of memoranda is interleaved with
the presentation of distractors to be processed, can be predicted from theory: when
the distractors are identical to the memory items, but presented in a different order,
difficulty is expected to be higher than when the distractors are presented in the
same order as the memory items. Moreover, the reason for the increased difficulty
can be mapped to specific cognitive mechanisms, represented by parameters of the
measurement model [48]. In this setting, difficulty is tied to a causal, theoretical basis,
and the measurement model serves to sharpen and produce measurements rather than
to define it.

In AT evaluation, however, most applications of IRT lack such theoretical ground-
ing. Difficulty is inferred entirely from system performance [36, 43, 44], rendering the
latent variables circular: difficulty is whatever items the system fails on, and ability is
whatever predicts success. This inversion of explanation and measurement is incom-
patible with a dispositional account, on which capabilities are defined by how the
probability of behaviour changes as causally relevant components of context vary.

Finally, data-driven IRT inherits benchmarking’s inability to generalise beyond
the human competence frontier or into ethically prohibited domains.? Because diffi-
culty is anchored to observed correctness, tasks must be human-solvable and verifiable.
Once systems exceed human performance, or when tasks cannot be administered
for safety reasons, difficulty becomes unidentifiable. Without independently charac-
terised contextual variables, IRT cannot extrapolate into precisely the regimes where
measurement is most urgent.

In sum, while IRT offers mathematical sophistication absent from simple bench-
marks, data-driven latent-variable models do not bridge the gap between performance
and disposition. Without independently grounded contextual variables and a causal
account of how they influence behaviour, such models produce quantities that fit the
data but do not measure the properties we intend to assess. They are, in this sense, sta-
tistical transformations of performance—useful for comparison, but not measurements
of capabilities or propensities.

5 Toward Disposition-Respecting Measurement

We have argued that capabilities and propensities are dispositional properties
grounded in causal relationships between system characteristics and contextual condi-
tions, and that prevailing evaluation practices in Al fail to measure these properties.
Benchmarks, red-teaming exercises, and latent-variable methods all aggregate or
isolate cases of performance without identifying the contextual determinants of
behaviour. They treat dispositional properties as if they were directly observable or
could be reified from the variance of a population, even though dispositions are defined
by counterfactual structure and must be inferred from systematic variation in context.
The natural question is therefore: what would a scientifically defensible measurement
of AT dispositions require?

3 Although note that some extensions of IRT, such as the Linear Logistic Test Model, do permit such
generalisation [49].
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The approach we outline here is not a finished methodology but a scaffold for
a measurement science that will require sustained interdisciplinary effort. At min-
imum, it involves four steps: defining the subject of measurement, hypothesising
the causal basis of the disposition, operationalising and measuring contextual prop-
erties, and empirically mapping how those properties influence the probability of
behavioural manifestation. These steps parallel the development of measurement the-
ory in the physical and behavioural sciences: they are the conceptual prerequisites for
constructing reliable, interpretable measurement instruments.

5.1 Define the Subject of Measurement

The first step is deceptively simple: specify what system the measurement is intended
to characterise. Modern Al systems complicate this question. A “model” may refer to
the raw parameterised function (the base model); the model in deployment with system
prompts, sampling strategies, and safety filters; the model embedded in an interactive
loop with users; or the full product stack including content filters, retrieval tools, and
fact-checkers [50]. Each of these is a different system with different dispositions.

A base model might have the capability to generate harmful content, but a deployed
system wrapped in filtering layers will not manifest that behaviour—not because the
disposition has disappeared, but because the subject of measurement has changed.
Likewise, an AT model with external tool access or retrieval augmentation has different
capabilities than the same AI model in isolation. This parallels physical systems: a
fragile glass remains fragile, even if placed inside a protective box; and we have to be
wary of measuring the fragility of the glass rather than the glass-box pair.

There is no universally correct choice of subject. While all evaluations should focus
on the user-facing system, safety evaluations may need to assess the base model more
thoroughly. A fragile glass in a protective box can still break under a strong shake or
vibration. Understanding what makes the glass breakable and what the box attenuates
allows for measurements of both situations to inform each other. What matters is that
the subject is explicitly defined so that measurements can be interpreted consistently
and inappropriate comparisons avoided. Dispositional properties must be attributed
to an explicit and well-specified entity [50].

5.2 Hypothesise the Causal Basis

Dispositional measurement requires hypotheses about which contextual properties
causally influence behaviour. For capabilities, this means specifying which features of
tasks determine difficulty (symbolic complexity, number of transformations, novelty,
compression requirements, reasoning depth). For propensities, this means specifying
which features of the situation shape incentives (extrinsic and intrinsic rewards, user
identity, oversight cues, role-based framing, moral justification). These hypotheses
give structure to the contextual space 7, allowing us to distinguish components that
modulate competence from those that modulate willingness.

These hypotheses will inevitably be partial or wrong at first. Early thermometry
relied on incorrect theories of heat—phlogiston rather than kinetic energy—and yet
meaningful progress was possible because researchers made their assumptions explicit,
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allowing them to be refined over time [27]. AI evaluation is at a similar stage. We
do not yet know with certainty what makes problems difficult for language models or
which contextual cues elicit deceptive behaviour; developing and testing such theories
is part of the scientific task [27, 51, 52].

Fortunately, many fields offer conceptual starting points [53]. Cognitive psychology
offers theories of working memory and reasoning complexity [54, 55]. Psychophysics
relates controllable physical properties to behavioural thresholds [56]. Personality psy-
chology and behavioural economics offer theories of incentives, social context, and
intentional behaviour [57, 58]. Theoretical computer science provides measures of com-
putational and informational complexity relevant to general intelligence [59]. These
frameworks can serve as initial hypotheses about the causal basis of Al dispositions,
subject to empirical refinement.

5.3 Operationalise Contextual Properties

Once the relevant contextual features of m have been hypothesised, they must be
operationalised into measurable variables before the Al system is evaluated. For capa-
bilities, this might mean quantifying difficulty by counting reasoning steps, measuring
symbolic depth, or rating tasks using expert judgement. For propensities, operationali-
sation may involve quantifying incentive strength or normativity. Crucially, contextual
properties must be defined a priori and independently of system performance; other-
wise, there is a risk of circularity, in which we define difficulty purely in terms of what
the system we want to measure appears uncapable of doing.

The operationalisation of 7w produces a scale. Just as thermometers required a
consensus about the units and levels of temperature, contextual features must be
placed on ordinal, interval, or ratio scales depending on their interpretation [27]. Once
scales are specified, tasks can be positioned within these scales prior to evaluation,
ensuring that contextual variation is a property of the items themselves [25], not a by-
product of system behaviour. This step transforms task collections from convenience
samples into structured measurement instruments.

5.4 Map Context to Probability of Behaviour

With contextual properties operationalised, the final step is to systematically vary
them and observe how the probability of the target behaviour changes. This requires
dense and controlled sampling across the relevant range of 7, repeated measurement to
account for stochasticity, and the isolation of contextual effects from irrelevant sources
of variation.

The goal is to estimate p(v | m,0): a mapping from contextual conditions to
behavioural probabilities. This curve—or surface, if 7 is multidimensional—is the
empirical signature of a disposition. It reveals thresholds, monotonicities, plateaus,
optima, and other structural features that define how dispositions manifest across
contexts. It also enables extrapolation beyond observed data, which is essential for
evaluating systems that exceed human competence or cannot be safely tested.
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A range of statistical methods can support this mapping, from simple binomial
regressions to Bayesian hierarchical models that account for item-level variation, sys-
tem stochasticity, and uncertainty in the contextual variables themselves [25, 60].
The choice of method matters less than the conceptual commitment: dispositions are
functions of contextual properties, and measurement must recover those functions.

5.5 Building a Measurement Science

Taken together, these steps outline a framework for disposition-respecting measure-
ment. They shift evaluation away from convenience sampling and statistical artefacts
toward the principled, theory-guided measurement of underlying causal properties.
This is not a quick fix: it requires interdisciplinary research, theoretical development,
and an iterative process of hypothesis formation and revision. But it offers the only
path toward evaluation practices capable of measuring what we actually care about:
not how Al systems behaved on a dataset, but how they would behave across the full
range of contexts that matter—including contexts we cannot currently test.
Scientific measurement in physics, chemistry, and psychology developed through
similar transitions. AI evaluation now faces the same challenge. If capabilities and
propensities are dispositions, then measuring them requires identifying the contextual
properties that matter, defining scales for those properties, and mapping their effects
on behaviour. Anything less produces numbers that may be useful for engineering or
benchmarking, but cannot support scientific understanding or safe deployment.

5.6 A Toy Illustration: Measuring a Capability and a
Propensity

To make the dispositional framework more concrete, we briefly illustrate how it applies
to one capability and one propensity. These examples are deliberately simple. They are
not intended as complete evaluation protocols, but as minimal demonstrations of how
disposition-respecting measurement differs in kind from benchmarking, elicitation, and
data-driven latent-variable modelling.

Consider first the case of an Al system’s arithmetic capability. Let the target
behaviour v be the production of a correct final numerical answer on a multi-step
symbolic arithmetic problem. Unlike broad mathematics benchmarks, we do not treat
performance on a fixed set of problems as the object of measurement. Instead, we
hypothesise that success on such tasks is causally structured by specific contextual
properties of the problem. In particular, we might posit that performance depends
on the number of required arithmetic steps, the digit length of operands, and the
complexity of carry operations. These properties are externally definable and inde-
pendently measurable features of the task, its demands, not quantities inferred from
system performance.

Measuring consists in holding the system fixed and systematically varying these
contextual properties, observing how the probability of correct behaviour changes.
Formally, we estimate a response function of the form p(v | m,0), where m ranges
over a vector of step count, digit length, and carry complexity. The resulting function
constitutes the empirical signature of the capability: it may exhibit sharp thresholds
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in reasoning depth, smooth degradation with operand size, or non-linear interactions
between task features. Or 6 can also be expressed as a vector of very specific capa-
bilities, each of them associated with each demand. A meaningful measurement of a
capability is not a single accuracy score, but this structured relationship itself, or an
indicator derived from it, such as the highest number of steps at which the AI system
maintains high success probability.

This approach contrasts sharply with benchmarking and data-driven IRT. Bench-
marks collapse heterogeneous task demands into a single aggregate outcome, obscuring
which contextual properties drive failure. Data-driven IRT infers item difficulty from
failure rates, rather than from independently characterised task features, and there-
fore cannot distinguish problems that are difficult for fundamentally different reasons.
By grounding difficulty in hypothesised causal properties of tasks, the dispositional
approach yields measurements that are interpretable, population-independent, and
can be extrapolated beyond the tested range.

A parallel structure applies to propensities. Consider the propensity of an Al sys-
tem for giving honest answers when placed under social or instrumental pressure. Here
the relevant behaviour, v, is whether the system provides disallowed procedural advice
under particular contextual conditions. We hypothesise that this behaviour is modu-
lated not by task demands, but by incentive-like features of the interaction: the degree
to which the user morally justifies the request, the apparent urgency or vulnerabil-
ity of the user, and the presence or absence of oversight cues signalling monitoring or
accountability. These contextual properties do not affect the system’s competence to
generate the content; they affect its inclination to do so.

Measuring this propensity again involves estimating a response function p(v | 7, 6),
but now with 7 spanning variations in justificatory framing, perceived user need, and
oversight signals, all of which require concrete theory in order to be adequately defined.
Systematically varying these features within ethically permissible bounds allows us
to map how the probability of disallowed behaviour changes across contexts. The
resulting function characterises the system’s propensity even if the behaviour never
occurs in deployment, and even if some regions of the contextual space cannot be
directly probed. As in engineering practice, behaviour in safe regimes can be used
to infer the underlying disposition in unobserved ones. This example also shows that
propensities may be bidirectional, being too honest can be unsafe for some tasks in
the same way as being too dishonest. Incentives can also affect in either way. This
suggests that the shape of p(v|m, ) for many propensities may be different from the
sigmoidal (monotonic) view for capabilities.

This differs fundamentally from red-teaming and elicitation. Adversarial prompt-
ing samples a small, human-selected region of contextual space and yields anecdotes
of failure rather than measurements of inclination. It cannot distinguish between
behaviours that arise only under contrived provocation and behaviours that would
robustly manifest across relevant counterfactual contexts. A dispositional measure-
ment, by contrast, characterises how close a system is to producing the behaviour, how
sharply its behaviour changes with incentives, and how it compares to other systems
under matched contextual conditions.
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Taken together, these toy examples illustrate the core claim of this paper. Capa-
bilities and propensities are not properties revealed by aggregate performance or
isolated failures. They are dispositional properties defined by relationships between a
system’s properties and its context. Measuring them requires identifying which con-
textual variables matter, operationalising them independently of performance, and
mapping their effects on behaviour. While real-world evaluations will be far more com-
plex than these illustrations, the underlying logic remains the same. Without such
disposition-respecting measurement, Al evaluation cannot support cumulative scien-
tific understanding, principled comparison, or reliable extrapolation into the regimes
that matter most.

6 Conclusion

Developing rigorous, theoretically grounded measures of Al capabilities and propen-
sities is a substantial scientific undertaking. It requires interdisciplinary collaboration
across Al, cognitive science, philosophy of science, psychometrics, statistics, and the
broader behavioural sciences. The task is not merely to devise better datasets or to
refine existing scoring procedures, but to articulate the causal bases that underwrite
the behaviours we care about, operationalise the contextual variables that modu-
late them, and construct measurement instruments that respect the dispositional
nature of these properties. This represents a cultural shift for the field: away from
convenience-driven benchmarking and towards principled, theory-led measurement.

The contrast is similar to the shift from pre-scientific temperature judgements—
touching an object to feel whether it is warm—to the invention of calibrated
thermometers. Benchmarks and data-driven latent-variable models are fast, easy, and
socially entrenched, but they do not measure the properties they purport to measure.
Scientific progress often requires trading convenience for conceptual defensibility, and
evaluation is no exception. Dispositional measurement is harder than simple summary
indicators based on average-case or worst-case analysis, but it is also the only route
to meaningful, interpretable, and policy-relevant evaluation.

Fortunately, the research programme is tractable. It requires importing well-
established principles of measurement science into the study of AI systems. This
involves identifying the contextual determinants of behaviour, defining scales and units
for those determinants, and mapping how the probability of behavioural outcomes
varies as those determinants change. These demands are familiar in every mature
measurement discipline, from physics to psychophysics to educational testing. They
are unfamiliar only because Al evaluation has not yet become a mature measurement
discipline.

This paper has attempted to lay groundwork for such a discipline. We clarified that
capabilities and propensities are dispositional properties characterised by causal bases;
we showed why current practices—benchmarking, elicitation, and data-driven latent-
variable modelling—fail to measure these properties; and we outlined what disposition-
respecting measurement requires: theoretical hypotheses about contextual structure,
the independent operationalisation of contextual variables, systematic variation, an
empirical mapping of response functions, and the explicit definition of the subject of
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measurement. Much remains to be done, but the path forward is clear. If we aim to
evaluate systems whose behaviours matter for science, industry, and public safety, we
must build a genuine measurement science for Al—one grounded not in convenience,
but in causality.
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