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Abstract: The fundamental principle of large language models (LLMs) is next-word 

prediction based on a modelling architecture that is—in comparison to the achievements of 

LLMs—strikingly simple consisting of just a vast number of vector and matrix operations. 

For predictions, large language models rely on induction inferring generalized relationships 

from an enormous number of particulars without any hypothetical assumptions concerning 

the modeled subject matter itself, i.e. language. Regarding the specific type of induction, I 

argue that LLMs employ a difference-making logic (or variational induction). I show that 

central aspects of such variational induction are realized by LLMs. In particular, the training 

of large language models requires variation in evidence drawing on as much text data from as 

wide a range of contexts as possible. If sufficient data is available, difference and indifference 

makers among the input token sequence are identified during training. The resulting large 

language models essentially consist of aggregations of vast numbers of probabilistic laws, 

where each law relates Boolean combinations of ordered input tokens with output probability 

vectors. Linguistic meaning can be extracted, because variational induction allows for 

distinguishing between spurious and necessary relationships. The hierarchical layer structure 

of LLMs can be interpreted as a continuous probabilistic generalization of the deterministic 

binary Boolean logic of conventional variational induction. Specific features of LLMs that go 

beyond a simple neural network architecture such as token embeddings or self-attention are 

discussed to determine their role in the context of variational induction. Token embeddings 

transform the input sequence into a compressed representation capturing semantic 

relationships so that difference and indifference makers can be found more efficiently. Self-

attention allows for analysing long-range difference making dependencies in token 

sequences, which are prevalent in natural language. In the history of science, the difference 

making logic employed by large language models has been widely used. Maybe most 

importantly, it underlies the experimental method, where causal relations are derived by 

systematically varying individual circumstances to determine their influence on a 

phenomenon. 
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1. Introduction 

One of the most remarkable scientific discoveries and one of the most impressive engineering 

achievements of our time is that multilayered neural networks with hundreds of billions of 

parameters are capable of replicating human language and reasoning (Wolfram 2023, 55). 

These large language models (LLMs) like ChatGPT do not just recombine the information 

they are given, but they infer generalized laws. Based on these laws, LLMs generate 

meaningful word sequences that are nowhere in the text corpora with which these models 

have been trained. In other words, large language models reason inductively from known to 

unknown word sequences, and they do so successfully.1  

The present article examines which type of inferences—in particular, which type of 

induction—contemporary large language models employ in order to predict answers to 

queries posed by a human user interacting with the model. I have argued elsewhere that many 

machine learning algorithms and in particular neural networks implement variational or 

variative induction, a type of induction based on a difference-making logic. Variational 

induction infers general relationships by systematically varying the circumstances of a 

phenomenon while observing the resulting impact on the phenomenon. The main method of 

this type of induction is the method of difference (Pietsch 2021, 2022).2 Variational induction 

has a long and venerable history in expositions of scientific method, dating back at least to 

medieval scholars like Roger Bacon, Duns Scotus, and William of Ockham (cp. Losee 2001, 

Ch. 5) and advocated by some of the most influential methodologists since, including Francis 

Bacon (1620/1994), John Herschel (1851) and John Stuart Mill (1886).  

 
1 In his pioneering book on “Artificial Intelligence and Scientific Method” (1996), Donald Gillies early on 

acknowledged that machine learning rehabilitates inductive methods, which had been disregarded for much of 

the 20th century. Gillies and his son Marco, a computer scientist, have revisited the theses of his book in light of 

recent advancements in neural networks (2022). In 2001, Kevin Korb organized a workshop on “Machine 

Learning as Experimental Philosophy of Science.” Another interesting early discussion about inductive and 

hypothetical elements in machine learning is the article by David Corfield with two influential figures from AI, 

Bernhard Schölkopf and Vladimir Vapnik (2009). Also in the 2000s, the epistemologist Jon Williamson has 

argued that “advances in automated scientific discovery have lent plausibility to inductivist philosophy of 

science“ (2010, 88; see also 2004). More recently, Hykel Hosni and Jürgen Landes, in their edited collection on 

logics for the methodology of data-driven research, have stressed that “data-intensive and AI-driven science call 

for a new methodology of formalized inductive reasoning” (2025, v). Nico Formanek (2025) analyses inductive 

assumptions in machine learning algorithms. 
2 Federica Russo has argued that a rationale of variation, rather than a rationale of regularity is central to causal 

analyses in the sciences. She develops her view through a detailed study of scientific practices in various fields 

(2007, 2009). Stefano Canali and Emanuele Ratti discuss applications of machine learning exhibiting a 

variational approach (2024). To my knowledge, L. Jonathan Cohen first used the term “variative” or “variational 

induction” for inductive inferences drawing on variation in the relevant evidence, including Mill’s methods 

(e.g.1989).    



Because large language models essentially are multilayered neural networks specialized for 

the task of modeling human language, it is plausible to assume that these models employ 

variational induction as well. The present article is a long and detailed argument for this 

thesis. Determining which kind of induction contemporary large language models utilize for 

making predictions can help us understand the inner workings of those models. It can shed 

light on why these models work at all, what they may be capable of and where principal 

boundaries lie. Ultimately, understanding the logical underpinnings of LLMs might even 

provide guidance on how to further improve these models. 

 

2. Basics of Large Language Models 

2.1 Next-Token Prediction 

The core idea of large language models like ChatGPT is astonishingly simple: next-word or, 

more precisely, next-token prediction.3,4 Based on the query asked and the answer to the 

query generated so far, the subsequent token continuing the answer is predicted. These tokens 

in many cases are just words, but they can also be, for example, parts of words or punctuation 

marks. The process is repeated until a stop is predicted signifying that the answer is complete. 

For example, given the query “What is the connection between machine learning and 

epistemology?” and a token sequence produced so far “Machine learning (ML) and 

epistemology are connected in several key ways, primarily through their shared focus on the 

process of knowledge”, the model predicts the following continuation of the sequence token 

by token: “acquisition” “,” “justification” “,” “and” “understanding”. 

The prediction of each token is based on an enormous neural network model5 which has been 

trained on billions of words contained in vast corpora taken from electronic book collections, 

encyclopedias, and the largest text source of our time, the internet. Correspondingly, 

contemporary LLMs have billions of parameters that must be optimized in the training 

process. For example, GPT-3, a predecessor to the models used in ChatGPT, possesses 175 

billion parameters (Brown et al. 2020). It is crucial that the training data includes sufficient 

 
3 I developed my understanding of large language models primarily from three sources: Raschka (2025), 

Wolfram (2023) and with some help of LLMs themselves. 
4 I use the technical term ‘token’ throughout the article, which could be replaced by ‘word’ without altering the 

essence of what is said. 
5 Useful overviews of various philosophical aspects of machine learning are provided in Leonelli (2020/2025), 

Boge, Grünke & Hillerbrand (2022), Desai et al. (2022), Duran & Pozzi (2025), Trudel et al. (forthcoming). 

Millière & Buckner (2024) address LLMs specifically. 



variation to cover all relevant aspects of the modeled language, while at the same time the 

model has enough parameters to be able to represent these aspects. 

Remarkably, the performance of large language models for next-token prediction, which is 

measured in terms of a loss function, depends in an almost law-like manner on the number of 

parameters N of the model, on the size D of the dataset used to train the model, and on the 

computational resources Cmin employed for training. Over several orders of magnitude, the 

relationships almost exactly follow power laws, i.e. the test loss L is proportional to D-x, N-y, 

and Cmin
-z, with different exponents x, y, z.6 These findings underpin the continued belief 

among computer scientists that scaling up models improves performance, even at costs 

amounting to many billions of dollars.  

In essence, LLMs are deep neural networks with a large number of layers. An input layer 

receives the values of the input variables, i.e. numbers representing the query token sequence 

plus the answer sequence generated so far. An output layer of the LLM yields output 

variables representing probabilities for different tokens that could continue the given token 

sequence. Each layer of a neural network consists of numerous nodes or neurons, which are 

connected to nodes in adjacent layers by weighted links. For each link, the strength of the 

connection is given by a weight parameter w, which is adapted during training of the 

network. Certain non-linear functions, which take the weight parameters w into account, e.g. 

the ReLU-function7 f(x) = max(0, w1*x1 + w2* x2 +… + b), determine how information flows 

through the neural network from the input to the output layer (cp. Fig. 1). 

 

Fig. 1: determination of a value f(x) of a node in a subsequent layer given values x1, …, xn of 

nodes in the previous layer  

 
6 “These relations hold across eight orders of magnitude in Cmin, six orders of magnitude in N, and over two 

orders of magnitude in D. They depend very weakly on model shape and other Transformer hyperparameters 

(depth, width, number of self-attention heads) […].” (Kaplan et al. 2020, 5; cf. Sec. 4.1 below) 
7 The max operator selects the largest value from the set of numbers in brackets separated by commas. In LLMs, 

other non-linear activation functions like GeLu or SwiGLU with certain technical advantages are often 

employed (Raschka 2025, 105). 
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In a simplified reconstruction of a large language model, the input and output take the form 

of high-dimensional vectors each representing specific tokens in a sequence (see Fig. 2 

below). Every vector has the dimension of the vocabulary size corresponding to the number 

of unique tokens. For example, a language model restricted to simple English has a 

vocabulary size of approximately 10,000 distinct tokens, GPT-2 of 50,257 (Radford et al. 

2019, Sec. 2.2). Some contemporary state-of-the-art models use vocabularies exceeding 

200,000 tokens. In the simplified reconstruction, input vectors are so-called ‘one-hot’ 

encodings, where a single vector entry assigned to the represented token is set to one, while 

all other entries are zero (left side of Fig. 2).8 The output vector contains multiple non-zero 

entries representing a probability distribution over the entire vocabulary. According to this 

probability distribution, the token continuing the input token sequence is predicted (right side 

of Fig. 2). Notably, the most interesting and most human-like texts result when the model 

does not always choose the most probable token, but occasionally selects less probable ones 

(see Sec. 4.3 below). 

 

Fig. 2: on the left, a typical ‘one-hot’ input vector representing a token with ID number x (e.g. 

token ID for the word “induction” is 14355 using the GPT-2 tokenizer); on the right, a typical 

output vector representing a probability distribution over the entire vocabulary 

While large language models are essentially deep neural networks, some characteristics are 

tailored towards their principal aim: the processing of long sequences of tokens and 

sequential text generation. The decisive breakthrough in neural network architecture that 

paved the way for today’s successful LLMs came with the introduction of the Transformer 

model—the capital ‘T’ in ChatGPT. This model is based on the attention mechanism as 

introduced in the seminal paper “Attention Is All You Need” by researchers at Google 

(Vaswani et al. 2017). The crucial advantage of the attention mechanism is its ability to 

 
8 To avoid a computationally costly matrix multiplication with a one-hot vector, LLMs employ an ‘embedding 

layer’, which uses a token’s ID number—as determined by the non-zero entry in the one-hot encoding—to look 

up the token’s embedding vector (see Section 4.2 below). 



handle long-range dependencies in token sequences, which are prevalent in natural language 

(cf. Sec. 4.3 for a detailed analysis).  

2.2 Pre-Training by Blinding Words 

The ‘P’ in ChatGPT9 stands for pre-trained describing the initial phase of a training 

procedure, during which the model learns from massive datasets before being fine-tuned for 

specific tasks like translation or summarization. In contemporary practice, the fine-tuning has 

become less important. Modern LLMs are increasingly general-purpose and can handle a 

wide variety of tasks through prompt engineering, for instance by providing specific 

examples within the prompt. 

LLMs are pre-trained in a semi-supervised (or self-supervised) manner. The particulars, with 

which the model is trained, are ordered token sequences provided in text corpora. Specific 

tokens within the sequences are blinded (or masked). During the training process, the model 

must predict these missing tokens. The blinding is key, as it allows the model to be trained on 

massive datasets without human-labeled data, i.e. without manually curating and classifying 

training data. Any discrepancy between the token predicted by the model and the actual 

blinded token is used to update the model parameters through an optimization procedure such 

as gradient descent. This process seeks to minimize a loss function which quantifies the 

difference between the model’s predictions and the training data. 

For the loss function, LLMs typically employ cross-entropy loss, which calculates the 

difference between two probability functions: the probability distribution predicted by the 

model and the actual distribution of tokens in the training set. For a single sample, i.e. a 

single training instance, cross-entropy loss is calculated as follows: 𝐿 =  − ∑ 𝑝(𝑖) log 𝑞(𝑖)𝑖 , 

where q(i) is the predicted distribution for all tokens i of the entire vocabulary and p(i) is the 

true or actual distribution of the training instance. The latter is a one-hot distribution, where 

the probability is one or a hundred percent for the actual blinded token and zero for all other 

tokens (cf. Section 2.1). The higher the predicted probability for the actual token, the smaller 

the loss. When the loss function is plotted against the model parameters, including in 

particular the weights connecting the model’s nodes, a high-dimensional loss landscape 

results (cf. Fig. 3).  

 
9 ‘G’ stands for generative meaning that the model can generate novel content. 



 

Fig. 3: typical trajectory of a gradient descent to a local minimum in a multidimensional 

landscape 

The current configuration of the model, which is determined by the values of the model 

parameters at a certain time during training, corresponds to a single point in this loss 

landscape. Gradient descent, as an optimization procedure, aims to move the configuration 

towards the landscape’s minima, where the loss is lowest and, thus, the deviation of the 

model’s predictions from the training data is minimized. To reach these minima, the slope of 

the loss landscape is calculated by differentiating the loss function with respect to the model 

parameters. The parameters are then updated by moving the configuration a predetermined 

step along the direction of steepest descent. The step size is defined by the learning rate 𝛼. In 

LLM training, stochastic optimization procedures such as AdamW with adaptive step sizes 

are primarily used (Raschka 2025, 148). A typical trajectory is depicted in Figure 3 above. 

Further training data can be used to evaluate how well the model generalizes, guarding 

against overfitting and thus ensuring that the model captures meaningful—i.e. in the context 

of language semantic—patterns rather than coincidental relationships. 

 

3. Difference / Indifference Making in Large Language Models 

3.1 Induction in Large Language Models 

In a typical inferential process, the large language model is used to predict a phenomenon 

based on certain circumstances (or conditions) of the phenomenon. The circumstances are an 

ordered sequence of tokens consisting of the query and the part of the answer to the query 

 

 

 

 

 

 

 

 

 

 

 

  
  

  
  

 



generated thus far. The predicted phenomenon is the subsequent token following the known 

sequence.10  

In the example of Section 2.1, the circumstances consist of the following ordered token 

sequence: “What is the connection between machine learning and epistemology? - Machine 

learning (ML) and epistemology are connected in several key ways, primarily through their 

shared focus on the process of knowledge”. This token sequence can be regarded as a single 

circumstance or, equivalently, as a plurality of circumstances, where each circumstance 

consists of a token and its relative position: (What, 1), (is, 2), …, (process, n-2), (of, n-1), 

(knowledge, n). The predicted phenomenon is the next token: (acquisition, n+1). The 

predicted token, i.e. “acquisition”, is then added to the ordered token sequence to form a new 

circumstance for the subsequent prediction and so on. 

 

Fig. 4: schema of next-token inferences in LLMs  

Two principal paradigms are commonly distinguished in scientific methodology: (i) 

inductivism, which infers general relationships or models from particulars, and (ii) 

hypothetico-deductivism, which posits general relationships or models and tests whether 

observed particulars are compatible with them. The crucial difference between these 

paradigms is that hypothetico-deductivism relies on substantial hypothetical assumptions 

about the modeled subject matter, whereas inductivism does not require such assumptions, 

deriving its models in an almost mechanical manner from the particulars (for an overview, cf. 

e.g. Pietsch 2021, Ch. 3.2).  

 
10 Alexander Mussgnug (2022) analyses and problematizes, how machine learning tends to convert various 

kinds of scientific tasks into prediction problems. 



Large language modeling clearly belongs to the inductivist paradigm. As outlined in Section 

2.2, LLMs are derived from concrete instances or particulars in the training data using 

gradient descent. For this procedure, only a small number of assumptions regarding the 

overall architecture of the model must be presupposed, for example regarding the number of 

layers in the model or the number of nodes in the different layers (cf. Sec. 4.1 below for more 

details). Importantly, these assumptions do not concern the modeled subject matter, i.e. 

human language, but rather they frame the inferential process itself.11 

Thus, large language models are inductively inferred from the training instances. 

Accordingly, predictions based on LLMs also constitute inductive inferences. A given token 

sequence is fed into the model and the subsequent token is determined based on the 

probability distribution output by the model.12 Essentially, the token is predicted by 

comparing the given token sequence with an abstract learned representation of the enormous 

number of ordered token sequences contained in the training corpora. LLMs rely on induction 

both for training and for inferences.  

Buchholz and Raidl (2025) have argued that artificial neural networks implement a 

hypothetico-deductive or falsificationist approach, essentially because hypotheses are 

allegedly refuted during learning and new hypotheses are selected based on some notion of 

simplicity. However, the optimization procedure of gradient descent is not compatible with 

the hypothetico-deductivist requirement that scientists (or artificial agents) must rely on their 

creativity and intuition to choose bold and simple hypotheses which are exposed as much as 

possible to potential falsifications. Instead, gradient descent implements an incremental 

learning process, during which the models are only slightly altered in response to bits of new 

data, instead of being outright discarded. 

In summary, large language models implement an inductive approach drawing on a vast 

number of particulars given by the training corpora and resulting in an equally vast number of 

generalized ‘laws’ relating truncated token sequences with continuing tokens. In other words, 

large language models can be interpreted as an aggregation of a massive number of 

probabilistic laws relating model input with model output, i.e. given token sequences with 

 
11 For the closely related topic of theory-ladenness of big data practices and machine learning algorithms, see 

Anderson (2008), Napoletani et al. (2011), Leonelli (2014, 2016), Pietsch (2015), Northcott (2020), Andrews 

(2025), Termine et al. (2025). A very useful overview and argument in favour of a role for expert knowledge is 

given in Hansen and Quinon (2023).  
12 Deriving the probability distribution for the subsequent token from the input sequence and the given model is 

strictly speaking a deductive step. However, the whole process of making predictions based on training 

sequences is inductive. 



probability distributions for the subsequent token. Of course, these laws are very complex 

and strongly context-specific, which distinguishes them from, say, the laws of physics, which 

are supposed to be simple and to generalize over a large range of contexts.13,14 

3.2 Difference Making and Variational Induction  

Having established that large language models employ an inductive approach raises the 

question what kind of induction they implement? Several types of inductive inferences are 

known from debates on scientific method and everyday reasoning: e.g. enumerative induction 

or eliminative induction.15 Elsewhere I have argued that, from an epistemological point of 

view, the most successful machine learning methods—including neural networks—rely on a 

difference making logic or variational induction16 (2021, Ch. 4.2; see also Pietsch 2022, Ch. 

4). In the following, I will show that this type of induction also underlies the inferential 

approach used in large language modeling. 

Variational induction has a distinguished history in analyses of scientific methodology. Core 

methods like the method of difference or the method of agreement can be traced back to 

Francis Bacon’s tables of discovery (1621) and even further to medieval predecessors like 

Roger Bacon, Duns Scotus, and William of Ockham (cp. Losee 2001, Ch. 5). The best-

known—if somewhat flawed—account is due to John Stuart Mill (1886). Other notable 

proponents include Bernard Bolzano (1837/1972; see also Cohen 1990), John Herschel 

(1851), John Maynard Keynes (1921), Georg von Wright (1951), John L. Mackie (1967), 

Brian Skyrms (1966), and Baumgartner and Graßhoff (2004). The approaches of these 

authors differ substantially. To make my argument regarding the role of variational induction 

in LLMs, I will in the following rely on the framework developed in Pietsch (2016b; 2022, 

chs. 5, 6; 2026b).17  

 
13 Due to the enormous complexity and the resulting opacity of machine-learning models, I am sympathetic to 

Vladimir Vapnik’s view that the inferential process can be interpreted as a more or less direct inference from 

training particulars to test particulars—a process he calls transduction: “When solving a problem of interest, do 

not solve a more general problem as an intermediate step. Try to get the answer that you really need but not a 

more general one.” (Vapnik 2006, 477) 
14 Kuhlmann (2011) introduces a useful distinction between compositional and dynamic complexity. The 

compositional complexity of many phenomena modelled through machine learning lies at the origin of ongoing 

debates regarding explanation and understanding provided by AI models (Knüsel & Baumberger 2020; Beisbart 

& Räz 2022; Sullivan 2022; Meskhidze 2023; Tamir & Shech 2023; Räz & Beisbart 2024; Beisbart 2025; Greif 

2025). We are still in the process of finding out to what extent machine learning and data-intensive approaches 

can help us predict and interact with a complex, dappled and fragile world (Cartwright 1999, Northcott 2025).  
15 For an overview, see for example Pietsch (2021, Ch. 4.1). 
16 According to the terminology of this article, variational induction includes any account of induction that 

implements a difference making logic. 
17 A valuable critical assessment is given in Galli (2023), to which I reply in Pietsch (2026a).  



To make inferences, variational induction draws on evidence that concerns systematic 

variation of circumstances and the impact this variation has on a phenomenon. The 

fundamental idea of variational induction is that an inductive inference is more reliable the 

more varied the relevant evidence is. In other words, confirmation of a generalization 

increases with the variety of observed instances. By contrast, enumerative induction—which 

is widely held to be the quintessential, if fallible inductive method—focuses on regularity or 

repetition rather than variation. Essentially, in enumerative induction, confirmation is thought 

to increase with the number of observed instances. 

The principal method of variational induction is the method of difference, by which the 

(causal) relevance of a circumstance to the phenomenon under investigation can be 

determined. Following Mill, the method of difference and related methods like the method of 

agreement or the method of concomitant variation are often referred to as eliminative 

induction. However, this terminology is unfortunate, since, at least in modern literature, 

eliminative induction also refers to another inferential approach, in which hypotheses are 

eliminated from an exhaustive set until only the correct hypothesis remains. For inferential 

methods based on a difference-making logic, I therefore prefer the term ‘variational 

induction’ to differentiate it from the mentioned type of eliminative induction and also 

because methods such as the method of difference are not inherently eliminative in nature. 

In a typical reconstruction of the method of difference, two instances are compared that differ 

only in a single, potentially relevant circumstance. If the circumstance and the examined 

phenomenon are both present in one of the instances, but both absent in the other instance, 

then the circumstance has causal relevance to the phenomenon (e.g. Mill 1886, 256; Herschel 

1851, 154-155).  

As an example, consider a set of light switches, which constitute the circumstances, and a set 

of ceiling lights, which constitute the examined phenomena. By individually operating the 

switches and observing whether the lights are on or off, causal relationships between the 

switches and the respective lights can be established. Here, causal relationships are 

essentially those relationships, which allow for successful manipulation of the phenomenon. 

In a simple case, it can be determined that a certain switch controls a specific light. 

A counterpart to the method of difference, a variant of the method of agreement which I call 

the strict method of agreement, can be used to infer the (causal) irrelevance of a circumstance 

to the examined phenomenon: If a change in a circumstance between two instances has no 



impact on the examined phenomenon, then, under certain premises, that circumstance is 

causally irrelevant to the phenomenon. For example, by this method one can determine that a 

certain switch is irrelevant to a given ceiling light by comparing two instances for which the 

state of the switch changes, but the state of the light does not, i.e. the light stays on or off. 

A crucial premise for both methods is the homogeneity condition, which essentially requires 

that the considered instances agree in all potentially relevant circumstances except for those 

circumstances whose impact on the phenomenon under investigation is explicitly examined.18 

Indeed, in order to find out which switch turns on which light, one must take great care to flip 

only one switch at a time while leaving the states of all other switches—constituting the other 

potentially relevant circumstances—unchanged. Fortunately, we usually have robust 

intuitions as to which circumstances are potentially relevant and which are irrelevant. Thus, 

when applying the method of difference or the strict method of agreement, the set of 

potentially relevant circumstances has often been narrowed down to a manageable number of 

accessible and manipulable variables. 

While homogeneity requires that potentially relevant circumstances whose impact is not 

explicitly considered remain constant, circumstances that are known to be irrelevant to the 

examined phenomenon may vary from instance to instance. In the above example, an oven 

switch or a refrigerator switch are irrelevant circumstances that need not be held constant, 

since such switches are known to be unrelated to the ceiling lights. As a result, any inferred 

causal relationship holds only relative to a homogeneous background, which is defined by 

potentially relevant circumstances that are held fixed and by irrelevant circumstances that are 

allowed to vary (Pietsch 2016b, sec. 2; 2022, sec. 5.2, 2026b). 

Unfortunately, in the limited space available, it is not possible to introduce a refined account 

of variational induction that can address all the problems and seeming contradictions arising 

from the foregoing sketch. While the methods discussed play a crucial role in inductive 

reasoning, the challenge is to precisely state the premises under which such inferences are 

warranted. For attempts in this direction, see, for example, Herschel (1851), Mill (1886), 

Mackie (1967, appendix), Skyrms (1966), Baumgartner & Graßhoff (2004), and Pietsch 

(2016b; 2022).  

 
18 For attempts at a precise formulation of the homogeneity condition, see Baumgartner & Graßhoff 2004, sec. 

X; Pietsch 2016b, sec. 2a; 2022, sec. 5.2.1. 



Clearly, the method of difference for determining causal relevance and its twin method for 

determining causal irrelevance are successfully applied across the sciences as well as in 

everyday life. Large parts of so-called exploratory experimentation—i.e. experiments that are 

conducted without having substantial theoretical preconceptions—rely on these methods.19 In 

experimental contexts with little knowledge about the phenomena of interest, variables are 

generally varied one at a time, while all other variables are held constant, and the impact of 

the variation is examined. The example of the light switches illustrates such an exploratory 

approach. How else would one determine how to reliably turn on the lights in an unfamiliar 

living room without theoretical knowledge of the cables in the walls or an empirically 

grounded hypothesis about which switches are linked with which lights?  

Randomized controlled trials, which constitute the evidential gold standard in many sciences 

dealing with complex phenomena, implement a statistical variant of the method of difference. 

For example, in a typical medical setup, one group of patients is given a medicine, while 

another comparable group receives a placebo. If, on average, the first group fares better than 

the second, this proves that the medicine had an effect. Of course, one has to be very careful 

that the impact of any further potentially relevant circumstance is either constant for all 

patients or at least equal for both groups. In other words, homogeneity has to be ensured. 

In the following, I will argue that the training procedure of LLMs can be mapped on 

variational induction. This result is reassuring since it shows that LLMs rely on the—at least 

in my view—only inductive method that in the past has consistently proven effective across 

the sciences. Nothing new happens under the sun. 

3.3 Variational Induction in LLMs 

In order to substantiate the argument that large language models rely on variational induction, 

I will now list core features, which are characteristic of this inferential method and which 

distinguish it from other types of induction. For each feature, I will briefly indicate how it is 

implemented in large language models.   

(1) Boolean Combinations of Circumstances 

The basic framing of a problem of variational induction is that evidence is given in terms of 

individual instances. In each instance, the state of a phenomenon of interest is paired with a 

 
19 Exploratory experimentation is prevalent in the engineering sciences, where theoretical knowledge is often 

scarce (Kuhn 2023, sec. 2.2.2). 



Boolean expression of its associated circumstances.20 Such a Boolean expression combines 

the states of various circumstances of the phenomenon using the logical operators AND, OR, 

and NOT. For example, the phenomenon could be a specific ceiling light, while the 

circumstances include certain wall switches. An instance then consists in an observation of 

whether the ceiling light is on or off together with the corresponding states of the wall 

switches. 

In large language modeling, instances are given in terms of truncated token sequences and 

corresponding tokens continuing these sequences. Every truncated sequence is split into 

single tokens and every token together with its position in the sequence can be considered a 

separate circumstance. The phenomenon of interest corresponds to the subsequent token 

continuing the sequence (cp. Section 3.1). If different token sequences result in the same 

predicted token, this can be expressed by using the operators AND, OR, and NOT combining 

the individual tokens of the sequences. Clearly, the evidence used for training LLMs has 

exactly the form required for variational induction.  

(2) Variational Rationale21 

Both the method of difference and its counterpart, the strict method of agreement, require 

instances, where the circumstances and the phenomenon of interest are systematically varied. 

The more variation, the better, since in this way, the relevance or irrelevance of many 

individual circumstances to different phenomena can be mapped. The method of difference 

requires positive instances, where the phenomenon of interest is present, as well as negative 

instances, where it is absent. In the context of LLMs, negative instances are those, where 

tokens other than a specific token of interest follow.  

When looking at the type of evidence, with which the most powerful LLMs are trained, 

variety of evidence rather than multiplicity and repetition is crucial for successful model 

building. This is well illustrated, for example, by the following quote from an article by 

OpenAI scientists introducing the GPT-2 model: “Most prior work trained language models 

on a single domain of text, such as [news articles, Wikipedia, or fiction books]. Our approach 

motivates building as large and diverse a dataset as possible in order to collect natural 

 
20 The simplest version of the method of difference requires binary variables. However, the framework can be 

generalized in a straightforward manner to discrete variables having more than two values and even to 

continuous variables (Pietsch 2016b, Sec. 3d; 2022, Sec. 5.3.4). 
21 Federica Russo has argued that a variational rationale underlies many methodological approaches in the 

sciences (e.g. 2007, 2009), a viewpoint that is further corroborated by the present analysis of LLMs.  



language demonstrations of tasks in as varied of domains and contexts as possible.” (Radford 

et al. 2019, Sec. 2.1; emphases added) GPT-2 was trained on 40 GB of text (ibid.). The 

successor model GPT-3 was already trained on a 570 GB corpus roughly equivalent to 400 

billion tokens (Brown et al. 2020, Sec. 2.2)—corresponding to about 400,000 books the size 

of the Bible.22  

During pre-training (cf. Sec. 2.2), large language models process the training data in batches, 

each consisting of multiple fixed-length token sequences. The massive text corpora used for 

training are typically shuffled at a very large scale. This ensures that a single batch doesn’t 

contain only “Wikipedia articles” or only “Python code,” but rather a representative mix of 

the entire dataset preventing the model from forgetting one type of data while learning 

another. Thus, variation is key on all levels, with respect to the training data as a whole, but 

also regarding the batches, i.e. the chunks of data which the model is fed during training for 

updating the model parameters (e.g. Devlin et al. 2018, Sec. A.2). 

In a standard procedure called deduplication, repetitions of the same sentences are generally 

deleted from the training set, which according to Google researcher Katherine Lee et al. 

(2022) increases the speed of model convergence and the overall quality of the resulting 

models. Apparently, an enumerative approach focusing on multiplicity and repetition of 

evidence is incompatible with typical procedures of preparing evidence used for training 

LLMs. Sometimes high-quality data is used several times for training to give it more weight, 

but this measure is certainly compatible with the variational stance.  

Of course, the variation required in the training data is always relative to the complexity of 

the modeled phenomena. More precisely, for variational induction, the instances with which 

the model is trained should cover all or most relevant combinations of circumstances and 

phenomena (Pietsch 2015). Certainly, there are many more admissible token sequences, i.e. a 

lot more meaningful texts exist, than can be found in the training corpora. However, since 

LLMs analyze on a semantical rather than a syntactical level, not all these admissible token 

sequences are necessary for model building (see Sec. 4.2 below on the concept of 

embeddings). In the end, whether sufficient data was available for training can only be 

evaluated in hindsight by evaluating whether the model provides adequate predictions, i.e. 

 
22 Big data or data-intensive practices and machine learning are closely interrelated topics, since to analyse the 

former the latter is often required (for philosophical perspectives on big data, see for example Leonelli 2014, 

2016, 2020/2025, Canali 2016, Norvig 2017, Haig 2020, Pietsch 2021, Hübner, Frisch & Feest 2021). 



answers correctly to user queries. Conversely, hallucinations, where the model invents 

content, occur when the data on a given topic was insufficient. 

(3) Relevance and Irrelevance of Circumstances to a Phenomenon 

Variational induction can determine—by means of the methods of difference and 

agreement—whether changing certain circumstances has an effect on the examined 

phenomenon—i.e. whether these circumstances are relevant or irrelevant to the phenomenon. 

In this way, variational induction can identify necessary relationships between circumstances 

and phenomena. The necessity can result, for example, from a causal or a definitional 

connection.  

When large language models are used for inference, the input consists of a token sequence 

comprising the user query and the answer generated thus far. The input token sequence is 

then mapped to a corresponding sequence of embedding vectors—each having a dimension 

significantly smaller than the vocabulary size (cf. Secs. 2.1, 4.2). The entries of these 

embedding vectors constitute the nodes or neurons of an initial layer of the LLM. Starting 

from the initial layer, the model processes the sequence of embedding vectors through 

successive layers, wherein weights for the connections between layers have been trained to 

capture complex linguistic and empirical relationships. Finally, the model outputs a vector of 

the same dimension as the vocabulary size, where each entry of the output vector gives the 

probability that a token associated with this entry continues the input sequence (cp. Fig. 2). 

Most of these probabilities will be near zero with only a small number of tokens having 

probabilities significantly larger than zero. 

Thus, when text is inferred by an LLM, the relevance or irrelevance of certain 

circumstances—i.e. of specific tokens in the input sequence—to the prediction of a 

subsequent token is modeled by the weights determining the strengths of the connections 

between the nodes in different layers. By sending the input token sequence through the 

different layers of the LLM, the weights together with respective activation functions 

determine which tokens are taken into account for the prediction. Broadly speaking, 

irrelevance can be modelled by weights ‘zero’ or ‘near-zero’ and relevance by weights that 

differ substantially from ‘zero’ (cp. Fig. 1).  

Before training the LLM, the weights of the connections between subsequent layers are 

typically initialized to small random values. Initializing to zero would cause a symmetry 

problem, where the nodes in the network cannot be distinguished during learning. The 



initialization to small, similar weights shows that the training of LLMs starts from the 

assumption that the tokens in given input sequences are all of similar relevance for the 

subsequent token. Thus, the distinction between relevant and irrelevant tokens has to be 

learned from instances during model training.  

Relevance and irrelevance relations derived by variational induction typically concern 

Boolean combinations of circumstances involving the operators AND, OR, and NOT. For 

example, in the sentence “the English word ‘dog’ translates to the German ‘Hund’”, both the 

tokens “dog” AND “German” are relevant to “Hund.” These Boolean operators can be 

modeled by multilayered networks employing non-linear activation functions such as the 

widely used function ReLu f(x) = max(0, w1*x1 + w2* x2 +… + b) (cp. Section 2.1).  

For example, let f(x1, x2) = max(0, w1x1 + w2x2 +b) be the activation function with weights 

w1, w2 and bias b; x1 = 1 represents the presence of a first token X1 in the input sequence, x1 = 

0 its absence; x2 = 1 represents the presence of a second token X2, x2 = 0 its absence. Then, 

X1 AND X2 can be mapped by choosing appropriate parameters, e.g. b = -1, w1 = w2 = 1, 

which yields: f = 1 only for x1 = x2 = 1 and f = 0 otherwise.  

X1 OR X2 can be mapped using b = 0 and w1 = w2 = 1 resulting in: f = 0 for x1 = x2 = 0; f = 1 

for x1 = 1, x2 = 0 and for x1 = 0, x2 = 1; and f = 2 for x1 = x2 = 1. By subtracting X1 AND X2, 

e.g. in a further network layer, X1 OR X2 can be represented: f* = 0 for x1 = x2 = 0; and f* = 1 

otherwise. By twice subtracting X1 AND X2 in the further network layer, X1 XOR X2 can be 

mapped: f* = 1 for x1 = 1, x2 = 0 and for x1 = 0, x2 = 1; and f* = 0 otherwise.  

Given the activation function f (x1) = max(0, w1x1 + b), the expression NOT X1 can for 

example be mapped by w1 = -1 and b = 1 yielding: f = 1 for x1 = 0; and f = 0 for x1 = 0. 

Some operators can be represented only by using hidden layers between the input layer and 

the output layer. Hidden layers can also be used to construe complex functions consisting in 

Boolean combinations of a large number of circumstances. 

Of course, these brief derivations only prove that modeling Boolean operators in terms of 

non-linear activation functions and hidden layers is feasible. The real weights and biases in 

actual LLMs almost always differ from whole numbers like zero or plus/minus one. Because 

Boolean operators are a special case, the architecture of neural networks can be considered as 

a generalization of the deterministic binary Boolean logic of conventional variational 

induction to continuous probability distributions over concepts represented by the nodes in 



the different layers of a neural network. For example, such probability distributions are 

derivable by the softmax function introduced in Sec. 4.3.  

Due to the input-output structure, every large language model in principle corresponds to an 

aggregation of a vast number of probabilistic laws, where each law relates Boolean 

combinations of ordered input tokens with output probability vectors. These laws encode 

information about which input tokens at their respective positions are relevant or irrelevant to 

which predicted token. Such probabilistic laws correspond exactly to the type of 

relevance/irrelevance relations that are derivable through variational induction. 

(4) Hierachies of Laws and Concepts 

Relevance and irrelevance can be analyzed by means of variational induction at different 

levels of resolution with regards to higher-level and lower-level concepts and laws (Pietsch 

2016b, sec. 3; 2025, sec. 5.3). In conventional variational induction, these hierarchies are 

expressed in terms of Boolean combinations of circumstances. For example, if a higher-level 

concept X = (X1 AND X2) OR X3 is causally relevant, then the lower-level individual 

circumstances X1, X2, X3 will also have causal relevance under certain premises. 

In large language models—as in other neural networks—hierarchies are encoded in terms of 

different layers of a neural network with the nodes in the intermediate layers representing 

hidden concepts. The influence of nodes in a previous layer is weighted to determine the 

values of nodes in the subsequent layer (cf. Fig. 1). As discussed under the previous item (3), 

these weighted links between nodes in subsequent layers rarely represent simple Boolean 

operations. Instead, the weighted connections and the continuous numbers assigned to nodes 

or neurons can be interpreted as a probabilistic generalization of the Boolean hierarchies of 

conventional variational induction.23 

In contrast to other applications of neural networks, e.g. image recognition, where the input 

consists of individual pixels of an image and the output of high-level concepts represented by 

the image, the input and output of LLMs are on the same hierarchical level—both concern 

individual tokens. However, different hierarchies of representation are still realized in the 

hidden layers of LLMs, e.g. regarding grammatical, definitional, or empirical relationships at 

 
23 As discussed in Section 4.1, according to the Transformer architecture of LLMs, each layer consists of a self-

attention module combined with a feed-forward module. Thus, the connections between subsequent layers are 

more complex than simple weighted links. However, this does not change the overall assessment that these 

layers can realize hierarchical modelling.  



various levels of abstraction and generalization. By relating these different levels to each 

other, deductive inferences can be represented by LLMs.24  

(5) Logic of Difference / Indifference Making 

Variational induction as introduced in Section 3.2 identifies difference and indifference 

makers among the circumstances of a phenomenon. Obviously, large language models do not 

directly apply the method of difference and the strict method of agreement. However, as will 

be shown in the following, procedures like gradient descent, which optimize the parameters 

of the LLM should be understood in terms of gradual learning of difference and indifference 

makers among the circumstances. This is because, given sufficient variation in the evidence, 

a model that correctly identifies difference makers and indifference makers will have a 

smaller loss function than a model that gets the classification wrong.  

A simple argument explains why gradient descent will eventually determine difference 

makers. If the evidence encompasses sufficient variation, it will include both positive and 

negative instances, i.e. instances where the difference making circumstance or circumstances 

and thus also the examined phenomenon are present and instances where this or these 

circumstances are absent and, consequently, the examined phenomenon is absent as well. 

Ideally, the evidence should furthermore include instances, where all other circumstances 

apart from the difference making circumstance(s) vary as much as possible. Now, only if the 

difference maker is identified by the model, both negative and positive instances will be 

correctly classified—resulting in an overall smaller loss function. Therefore, a model 

optimized by gradient descent, if it reaches some measure of success, should get at least some 

of the difference makers in the modeled language right.  

A similar argument can be made with regards to indifference making. For example, if an 

indifference maker is falsely identified as a difference maker, either a corresponding positive 

or negative instance of the phenomenon will be misclassified—resulting in a larger loss 

function. Of course, this argument again presupposes that such instances are included in the 

training set. 

 
24 To achieve the real rigor of elaborate mathematical or logical proofs, it appears that LLMs need external help 

from a proof assistant (Hubert et al. 2025). 



Finally, if the background or context, with respect to which difference making or indifference 

making holds, is not precisely identified by the LLM, this will also result in a larger loss 

function due to misclassification of training instances having this background. 

For example, consider the following four sentences in a training set as basis for an inductive 

inference: “the English word ‘dog’ translates to the German ‘Hund’”; “the English token 

‘dog’ translates to the German ‘Hund’”; “the English word ‘dog’ translates to the French 

‘chien’”; “the English word ‘cat’ translates to the German ‘Katze’”. For training purposes, the 

last word in each of these sentences shall be blinded. A model that does not recognize that 

replacing “German” by “French” or “dog” by “cat” is relevant to whether “Hund” is 

predicted or not, classifies at least one of the instances wrong and will therefore have a larger 

loss function. Equally, a model that does not recognize that replacing “word” by “token” has 

no impact on whether “Hund” is predicted, also results in a larger loss function. 

This is not to say that neural networks will always identify the correct difference and 

indifference makers. Rather, there are all kinds of ways in which optimization algorithms like 

gradient descent might err. For example, it may not find the overall minimum yielding the 

best classification but may get stuck in a local minimum. Also, there may not be sufficient 

variation in the training data to distinguish between alternative relevance-irrelevance 

relations. 

A further difficulty for representing difference and indifference making with LLMs is that 

these models are probabilistic in the sense that the output vector provides probabilities for 

various tokens which could all continue the input token sequence. Therefore, difference and 

indifference making need to be understood in a way that changing certain circumstances does 

or does not have an impact on the probability distribution for the subsequent token. These 

probabilities can be interpreted as limiting relative frequencies given relevant circumstances, 

i.e. given certain values for the difference making tokens in the input sequence. Space is too 

limited here to address any additional conceptual issues arising from this probabilistic nature 

(for a brief discussion, cf. Pietsch 2016b, sec. 5b; 2022, sec. 6.2). 

Remarkably, using cross-entropy loss,25 as opposed to many other choices of loss function, 

ensures that the predicted probability distribution converges towards the corresponding 

relative frequencies in the training data set. Let y be the probability of a given token and 1–y 

 
25 cf. Sec. 2.2 



the probability of an exhaustive set of alternative tokens, both determined by relative 

frequencies in the training set. Let x be the probability of this token and 1–x the probability of 

the set of alternative tokens as predicted by the model. Calculating cross-entropy loss for all 

N instances of the training set, in which either the given token or the alternative set of tokens 

is present together with the determining circumstances, yields: – N y ln x – N (1–y) ln (1–x) 

(cp. Sec. 2.2). To find a minimum or maximum of this function, we differentiate with respect 

to the variable x and set equal to zero: 0 = – y / x + (1–y) / (1–x). A little arithmetic shows 

that the equation holds, i.e. the loss function is extremal—and, indeed, minimal—only for y = 

x, i.e. when the probability predicted by the model is equal to the relative frequency in the 

training data. As an example, a well-trained model will use a word more often than its 

synonym, if the word is more frequently used in the training data.26 Generally speaking, 

during the training process, the probabilities predicted by the model will approximate the 

relative frequencies in the training data and, by correctly representing the probability 

distributions, the model allows for a probabilistic analysis of difference and indifference 

making. Due to the above result, a well-trained LLM maps how probability distributions over 

predicted tokens vary when difference or indifference makers in the input sequence are 

changed.  

In summary, the difference making logic underlying the training process guards against 

incorporating spurious or accidental relationships in the large language model as long as there 

are sufficient training instances. Learning difference and indifference makers rather than 

merely interpolating ensures that the model generalizes well to yet unknown instances. Of 

course, this can always be verified by means of a validation set of data that was not used for 

training or by means of novel queries posed by human users, who find the responses of an 

LLM helpful. Also, in the (pre-)training of LLMs, novel instances are constantly introduced 

(cp. item (2) above). Thus, the model is continuously validated, which guards against 

overfitting during the model building process. 

(6) Simplicity and Underdetermination 

Serena Galli (2023) has rightly stressed that models inferred by variational induction exhibit 

underdetermination, although, as argued in Pietsch (2026a), this underdetermination 

importantly does not concern relationships of manipulability. A simple example of such 

 
26 When employing the LLM for inference, this relationship can be modified by means of a temperature 

parameter (cf. Sec. 4.3). 



underdetermination is when, in the training data, two or more tokens always co-occur in the 

same ordering. As long as there are no instances, in which this structure is further resolved, 

then relevance can always be attributed to either one or both of the tokens. 

For instance, given only the following two token sequences: “the English word ‘dog’ 

translates to the German ‘Hund’”; “the English token ‘cat’ translates to the French ‘chat’”, 

there is insufficient information for determining the difference-making circumstances for the 

change from “Hund” to “chat”—because it can be due to the variation of any of the following 

three variables or a combination of them: “word” to “token”, “dog” to “cat”, “German” to 

“French”. A model might even assume that different combinations of circumstances are 

relevant in different contexts. However, such arbitrarily complex models, postulating 

structure for which there is no evidence, often generalize poorly. To address this issue, some 

mechanism is required that selects a simple model, while preserving all relevant information. 

Neural networks have architectural features, which force simplicity in modeling. Most 

importantly, when the number of nodes or neurons in an intermediate layer is smaller than in 

previous layers, LLMs are forced to compress information (this mechanism underlies the 

concept of embedding discussed in Sec. 4.2 below). The model must choose a simple 

alternative, which in the example above could be the one, where the three words together are 

considered as a single expression to which relevance is attributed. Of course, the ratio 

between the numbers of nodes in subsequent layers must be diligently chosen so that no 

relevant information is lost.  

Simplicity in model building is sometimes held to be an indicator for a hypothetico-deductive 

approach (Buchholz & Raidl 2025). However, an algorithmic criterion for choosing simple 

laws and models, such as the change in number of nodes per layer described above, is 

certainly compatible with inductive methods (cf. Sterkenburg 2025). Such mechanisms are 

well suited to resolve the underdetermination present in variational induction. 

(7) Homogeneity 

Necessary relationships between circumstances and a phenomenon can be inferred by 

variational induction only when the homogeneity condition is met. This condition essentially 

requires that only irrelevant circumstances are allowed to vary between instances which are 

compared by the methods of difference and agreement—except, of course, for those 

circumstances whose impact is explicitly examined (cp. Section 3.2). Inferring necessary 

relationships is essential for determining the meaning of texts.  



In large language modeling, homogeneity in inference and homogeneity in model training 

must be distinguished. During inference, the same subsequent token (or a probability 

distribution over tokens) is predicted as is present at the same position in training sequences 

which differ only in irrelevant circumstances, wherein these training sequences are encoded 

in the LLM on which the prediction is based.27 The homogeneity condition then comes down 

to the assumption that token sequences combining a user query with the answer thus far 

provided by the model determine the subsequent token (or determine at least a somewhat 

stable probability distribution over a set of possible subsequent tokens). In other words, no 

further circumstances besides the given token sequences should be required for inference, i.e. 

for predicting the continuation of a token sequence. All other circumstances, e.g. regarding 

the context in which language is spoken or written, are either irrelevant or their impact is 

already reflected in the explicitly examined circumstances, i.e. in the tokens of the given 

sequence. Of course, this assumption is fallible and in certain situations does fail, e.g. when a 

user input is not concisely formulated. But overall, it seems reasonable to assume that 

subsequent content is at least probabilistically determined by a well-posed user query and the 

previous course of conversation between user and LLM.  

Similar to the case of inference, homogeneity in model building requires that the training 

sequences are long enough to at least probabilistically determine subsequent tokens. In other 

words, the circumstances taken into account must be sufficient to reliably identify difference / 

indifference makers by comparing token sequences in the training set. This seems plausible 

given that LLMs are trained in terms of blinded token sequences that typically have the 

context length of the respective model, which is much longer than most user queries (cf. Sec. 

4.1).  Ultimately, the inferential success of large language models retrospectively justifies 

both these homogeneity assumptions. 

(8) Necessity and Meaning 

Methods of variational induction like the method of difference are capable of differentiating 

necessary from spurious or accidental relationships. These methods are usually understood to 

result in causal laws. For example, Mill’s influential formulation of the method of difference 

explicitly uses causal terminology (1843, 455).28 But variational induction in fact works 

 
27 Deriving a prediction from a given model is strictly speaking a deductive step. By contrast, the complete 

reasoning from the training instances to the prediction can be considered as an inductive inference. 
28 A considerable body of literature exists on whether machine learning algorithms using big data can infer 

causal relationships (Canali 2016, Pietsch 2013, 2016a, Galli 2023, Bujsman 2023, Canali & Ratti 2024, 



independently of the type of necessity linking circumstances with a phenomenon, e.g. 

whether the necessity is causal or definitional (Pietsch 2022, sec. 7.1). 

For the relationship between words in word sequences, various kinds of necessity play a role: 

concerning grammar, the definition of concepts, or factual content regarding e.g. causal 

relations in the empirical world. As explained, they can all be analyzed in terms of variational 

induction. With respect to language modeling, this can be seen as a virtue since, for example, 

empirical and definitional content can often be shifted in the interpretation of natural 

language without changing the word sequences (cf. debates on the analytic-synthetic 

distinction in the philosophical literature, e.g. Rey 2023). 

All these kinds of necessity ensure that meaningful text is produced. Only if the correct 

difference and indifference makers are identified, does the model generalize reliably to 

unknown token sequences, i.e. is the model extendable in the sense that unknown token 

sequences can be meaningfully continued. Learning difference and indifference makers—and 

thereby identifying necessary relationships—to a certain extent allows for determining the 

meaning of words and sentences.29 

In summary, it was shown in Section 3 that the training of large language models as well as 

predictions based on these models fit the overall structure of variational induction, i.e. an 

inductive logic identifying difference and indifference makers among the circumstances of a 

phenomenon. In the next Section 4, I will proceed to argue that certain aspects of large 

language models not shared by other neural networks address problems specific to the 

implementation of variational induction for natural language processing. 

 

4. Specific Aspects of Large Language Models 

As we have seen, large language models have a generic neural network architecture with 

specific features tailored for human language processing and generation.30 In the following, I 

 
Wunsch et al. 2024). Other work addresses to what extent machine learning algorithms can identify concepts 

(Boge 2024, Boge & de Regt 2026, Pietsch 2022, Ch. 7).  
29 In a similar vein, Holger Lyre argues: “A strong argument for [their semantic] grounding is that LLMs form 

world models, and the evidence for this is that the representational geometry of these models follows semantic 

similarities.” (2024, 14) LLMs have also been successfully used to predict human behaviour indicating that they 

can identify causal relationships in the world (Kieval & Buckner 2025). 
30 Stephen Wolfram notes that many aspects of neural network training “have been discovered by trial and error, 

adding ideas and tricks that have progressively built a significant lore about how to work with neural nets” 

(Wolfram 2023, 31). 



argue that these features fit well with variational induction because they address certain 

problems arising in the application of a difference making logic to large language modelling. 

For example, almost always only sparse data is available for training LLMs, since even the 

largest text corpora do not cover all possible utterings in a language. Another crucial issue 

concerns long-range dependencies between tokens in a sequence, which are prevalent in 

natural language, but cannot be modelled by conventional neural network architectures.  

4.1 Transformer Architecture 

In the following, an overview of the most important building blocks of large language models 

is provided. While the building and training of LLMs requires substantial specialized 

engineering know-how, their underlying architecture is surprisingly simple. LLMs just 

transform a given input through a series of vector and matrix operations to generate a 

prediction. This architectural simplicity is particularly striking given that these models are 

capable of representing human language with impressive sophistication. 

 

Fig. 6 exemplary architecture of an LLM, here the GPT-2 model (taken from Raschka 2025, 

163, 189) 



I use OpenAI’s GPT-2 model for illustration, as it is the last model architecture that OpenAI 

fully disclosed, before the success of Chat-GPT led many AI companies to become more 

secretive (Raschka, Sec. 5.5). The overall architecture of this model is illustrated in Figure 6 

below (Raschka 2025, Figs. 4.15, 5.17; Radford et al. 2018, Sec. 3 & Fig. 1; Radford et al. 

2019, Sec. 2.3) 

First, the text input is tokenized, i.e. converted into numbers. Token and positional 

embedding layers follow, which change the representation so that the meaning of the text 

input is more adequately reflected. This concept of embedding will be explained in detail in 

Section 4.2 below.  

The subsequent transformer block, as originally proposed in Vaswani et al. (2017), is repeated 

N times. It comprises a multi-head attention module as discussed in Section 4.4 and a rather 

conventional feed-forward neural network module. When passing through the transformer 

block, “the output is a context vector that encapsulates information from the entire input 

sequence” (Raschka 2025, 116). 

The multi-head attention module analyzes relationships between tokens regardless of their 

distance in the input sequence (Raschka 2025, 113). The feed-forward network consists of 

two linear transformations with a non-linear activation in between, temporarily expanding the 

hidden dimension before projecting it back to the original size. The expanded dimension 

allows for a richer representation space which enhances the model’s abilities to learn complex 

relationships (Raschka 2025, Sec. 4.3, Fig. 4.9). 

The final linear layer of the model projects the output sequence of the last transformer block 

onto a sequence of vectors, each having the dimension of the vocabulary size. These vectors 

are transformed into probability distributions by applying the so-called softmax function 

(Raschka 2025, 123). The softmax function, and thus the resulting probabilities, can be 

adjusted using a temperature parameter as discussed in Section 4.3. During model training, all 

output vectors are utilized to calculate the loss across the entire sequence. In contrast, for 

inference, only the vector representing the predicted next token is used to extend the given 

input sequence. 

The further elements depicted in Figure 6—dropout, shortcut connections, and 

normalization—are all standard operations in neural network modeling. They speed up 

convergence, stabilize the training process and serve as a countermeasure against overfitting 

(Raschka 2025, Secs. 3.5.2, 4.2, 4.4). 



LLM architectures are characterized by several meta- or hyperparameters (cf. Raschka 2025, 

95) including: the vocabulary size used for tokenization (50257 for the largest GPT-2 model); 

the embedding dimension, i.e. the dimension of the vectors into which the individual input 

tokens are transformed (1600 for the largest GPT-2 model, 12288 for the largest GPT-3 

model31); the context length denoting the maximum number of input tokens which a model 

can handle (1024 for GPT-2, 2048 for GPT-332); the number of transformer blocks in the 

model (48 for the largest GPT-2 model, 96 for the largest GPT-3 model); the number of heads 

in multi-head attention (25 for the largest GPT2-model, 96 for the largest GPT-3 model). As a 

result of these architectural changes, the number of trainable parameters is, for example, 

1.558 billion for the largest GPT-2 model and 175 billion for the largest GPT-3 model (cf. 

Raschka 2025, 163). 

In summary, LLMs employ a neural network architecture that does not rely on any 

assumptions regarding syntax or semantics of the modeled language. Instead, syntax and 

semantics are encoded completely in the trainable weights learned from data. Remarkably, 

across successive generations of GPT models, the underlying architecture has barely changed 

(Raschka 2025, 94). Instead, the above-mentioned parameters were systematically scaled up, 

leading to substantial improvements in performance. This reflects OpenAI’s big and 

ultimately successful bet that the necessary structural elements were already there in the early 

models and primarily needed to be scaled. 

4.2 Token Embeddings and Semantics 

In order to process human language on a computer, it must first be converted into numbers 

that can be fed into a neural network as numerical input. As already mentioned, for practical 

reasons and for greater flexibility, e.g. to handle new word creations, these numbers are 

assigned to so-called tokens, which can be whole words, but often are smaller units such as 

word fragments or punctuation marks. As Stephen Wolfram notes, various approaches to 

language modeling like word2vec, GloVe, BERT or GPT are all based on a different neural 

net approach, but “ultimately all of them take words and characterize them by lists of 

hundreds to thousands of numbers” (2023, 45). 

 
31 The numbers for the GPT-2 and GPT-3 models are taken from Wolfram (2023, 47-54), Radford et al. (2019) 

and Brown et al. (2020), see also Raschka (2025, 90). 
32 More recent GPT models have much larger context lengths of 100,000 tokens and more (see 

openai.com/index/new-models-and-developer-products-announced-at-devday/ accessed on 5.1.2026) 



A simple way to turn a word or, more precisely, a token into numbers is by means of a one-

hot encoding given by a vector, which contains a value of ‘1’ at the position corresponding to 

the represented token and ‘0’ elsewhere (cf. Sec. 2.1). Obviously, the dimension of these 

vectors must equal the size of the vocabulary, i.e., the number of possible tokens. The 

primary drawbacks of the primitive one-hot representation are twofold: first, it does not 

encode semantic information, i.e. semantic relatedness is not reflected in geometric proximity 

between vectors, and second, the number of dimensions—and therefore the computational 

cost—is unnecessarily high.33 

These issues can be addressed by training a neural network to transform the one-hot encoding 

of tokens into a more compact representation: an embedding. Embeddings capture semantic 

relationships, for example, by positioning synonyms close to each other in vector space and 

by mapping analogies through similar geometrical relations. In practice, the one-hot encoding 

is typically represented by an index or ID number that identifies the position of the non-zero 

entry in the corresponding one-hot vector (see Fig. 2). Similarity relationships between 

tokens are then represented by a trainable embedding matrix, which corresponds to a simple 

look-up table that maps each token index to an embedding vector. Accordingly, the dimension 

of this look-up matrix is vocabulary size times embedding dimension.  

The embedding dimension is much smaller than the vocabulary size, which is crucial for 

information reduction (cf. item (6) in Sec. 3.3). The effectiveness of this compression reflects 

the fact that many different syntactical instantiations, which constitute the input to an LLM, 

can express the same underlying semantics, as there are always many largely equivalent ways 

to convey the same idea in words. Embeddings encode abstract linguistic regularities that are 

shared across contexts and even across languages. This abstraction is a key reason why such 

models also perform well at tasks like translation between natural languages or between 

programming languages.  

In natural language processing by LLMs, sequences of tokens in the text corpora used for 

training are the only type of information, from which semantic relationships are inferred (cf. 

Sec. 2.2). While this assumption could be criticized as being overly reductionist, and it is not 

initially plausible that semantic content can be reduced to the relationship between a word 

and its neighbors in sequences of words, the success of large language models in hindsight 

 
33 https://developers.google.com/machine-learning/crash-course/embeddings/embedding-space (accessed on 

10.10.2025) 



justifies this underlying approach. For example, that the words ‘purchase’ and ‘buy’ are 

synonyms can be concluded from the fact that these words can be replaced by each other in 

token sequences. Accordingly, there are examples in the training corpora, where these 

synonyms are combined with the same or similar neighboring tokens. For example, a corpus 

might include the phrases: “my mom purchased a car” and “his aunt bought a VW Passat”.  

However, the token vectors of the embedding layer lack information about the positions of 

the tokens in the original input sequence. Also, the self-attention mechanism to be discussed 

in Section 4.4 does not distinguish token positions. Therefore, positional information is 

typically injected into the network by adding positional vectors to the embedding vectors. 

These positional vectors have the same dimension as the embedding vectors and are unique to 

each position in the input sequence, ensuring the model can account for word order (Raschka 

2025, Sec. 2.8). 

From the perspective of variational induction, embeddings play an important role in 

addressing the problem of sparse data. No matter how large the training corpora are, they 

will almost never include examples that are syntactically similar enough to a previously 

unknown token sequence for which the next token is to be predicted. Therefore, changing to a 

more compressed semantic representation is essential. Based on an embedding and the 

semantic similarity-relations encoded in the embedding, an LLM can effectively search the 

training corpora for word sequences most similar in meaning and base the prediction on these 

related word sequences. In a way, embeddings reparametrize the high-dimensional landscape, 

in which optimization procedures like gradient descent operate, so that model parameters 

representing semantically similar concepts are geometrically related to each other, e.g. 

spatially close or in spatially analogous vectorial relationships. The success of LLMs in 

generating meaningful content shows that the training corpora contain sufficient information 

for the model to reliably identify difference and indifference makers in the compressed 

embedding representation. 

4.3 Temperature Parameter and Determinism 

In conventional model building, statistical models are usually employed when training data is 

insufficient to derive a deterministic model. Given the complexity and context-dependency of 

language, it is unrealistic to expect deterministic models, which predict the subsequent token 

with certainty. As explained in Section 2.1, LLMs are statistical in that they yield as outcome 

a probability vector with a dimension equal to the vocabulary size (see Fig. 2). This vector 



assigns a probability to each token j in the vocabulary that this token continues the given 

token sequence. These probabilities are obtained by applying the softmax function to the 

output layer of the LLM: softmax(𝑧𝑖, 𝑇) =
𝑒𝑧𝑖 𝑇⁄

∑ 𝑒
𝑧𝑗 𝑇⁄𝐾

𝑗=1

. The result is a normalized vector with 

entries between zero and one that sum to one. Here, the zj denote the values—so-called 

logits—of the individual tokens j in the output layer and K is the vocabulary size. 

The probabilities can be tuned using the parameter T—called “temperature” due to a formal 

analogy with statistical mechanics. This temperature parameter is typically used for inference, 

but not during training. Lower temperatures result in a sharper distribution with either one or 

a few highly probable tokens and higher temperatures in a more uniform distribution. It turns 

out that token sequences generated by LLMs are more interesting, more diverse, and more 

similar to actual human language, if not always the most probable token or token with the 

highest rank is selected (Raschka 2025, Sec. 5.3.1; Wolfram 2023, p. 2-6). Conversely, 

restricting probabilistic sampling to a smaller number of the most probable tokens excludes 

those with very low probability that may lead to nonsensical continuations (Raschka 2025, 

Sec. 5.3.2). 

Although the basic framework of variational induction is deterministic, it can be generalized 

to cover probabilistic inferences. As explained under item (5) of Section 3.3, difference and 

indifference making then regards probability distributions over several phenomena rather 

than a single phenomenon. Such a statistical generalization of variational induction is useful, 

either when a phenomenon is not fully determined by its circumstances—as is presumably 

the case in quantum mechanics—or when some relevant circumstances are not taken into 

account for the prediction of a phenomenon. In the case of LLMs, it is plausible that there are 

relevant circumstances not covered by the token sequence given by query and answer 

provided so far: e.g. circumstances regarding the psychology of a speaker or regarding the 

real-world context, in which language is uttered. Furthermore, the probabilistic nature may to 

some extent account for creative aspects of language. Thus, the perspective of variational 

induction corroborates that the output of an LLM should be a probability distribution of 

tokens, rather than a single token. 

4.4 Attention Mechanism and Long-Range Dependencies 

In the past, recurrent neural networks (RNNs) were widely used for modeling sequential data 

such as human language. In RNNs, information must be propagated successively through a 



chain of hidden states so that the number of processing steps between two tokens grows with 

their distance (e.g. Vaswani et al. 2017, sec. 2; Raschka 2025, 52-54). Therefore, these 

architectures were poorly suited for capturing long-range dependencies in token sequences. 

However, such dependencies are quite common in natural language, where meaningful 

relationships often span long stretches of text—for example, when earlier content is 

referenced much later.  

A major breakthrough in the development of large language models came with the 

introduction of a fundamentally different modelling approach that addressed the problem of 

long-range dependencies. This new architecture was proposed in the seminal paper 

“Attention Is All You Need” (2017) by Google researchers Vaswani et al., who argued that 

language models could be based entirely on the so-called attention mechanism, dispensing 

with recurrent components altogether. A particular neural network architecture based on the 

attention mechanism is known as the transformer, the ‘T’ in GPT: “In the Transformer [the 

number of operations required to relate signals from two arbitrary input or output position] is 

reduced to a constant number of operations, albeit at the cost of reduced effective resolution 

due to averaging attention-weighted positions, an effect we counteract with Multi-Head 

Attention.” (Vaswani et al. 2017, Sec. 2) 

The central concept is self-attention, which provides a measure of how strongly a certain 

token relates to all other tokens in a sequence. This relatedness is determined by multiplying 

the embedding vectors of the tokens in the input sequence with three different weight 

matrices, known as query, key and value matrix. The terminology reflects the fact that the 

attention mechanism was originally conceived by comparison with a simple database query, 

although in hindsight the analogy seems limited (Raschka 2025, 70). The three matrices are 

learned during training, i.e. the entries of the matrices are updated as part of the model 

optimization process. This is crucial for enabling large language models to learn how to 

adequately capture contextual information for the individual tokens in a sequence. The 

relationship between a token and other tokens in a sequence is encoded in context vectors 

discussed in the following (Raschka 2025, 65).  

Multiplication with the matrices yields three distinct vectors for each embedding vector of a 

token: a query vector, a key vector, and a value vector. For each token i in the input sequence, 

the dot product, i.e. element-wise multiplication and subsequent summation, of its query 

vector with the key vectors of all tokens j in the sequence is calculated—including the dot-



product with the key vector of token i itself. The resulting numbers are scaled, normalized by 

applying the softmax function, and then multiplied with the respective value vector. The 

resulting vectors for all tokens j are summed to yield the context vector for token i. The 

procedure is repeated for every token i in the input sequence (Raschka 2025, 65-70). The 

approach is called ‘self-attention’ because the relationships between tokens in the same 

sequence are examined rather than the relationships between two different sequences as for 

example in a translation task. 

Let me briefly point out two further aspects in connection with the attention mechanism: 

multi-head attention and the stacking of multiple transformer blocks (see Fig. 6). In a multi-

head attention setup, several attention mechanisms are executed in parallel, each with its own 

weight matrices that are updated independently of each other during training. The resulting 

context vectors from the individual heads are concatenated to form a context matrix. This 

approach allows the model to simultaneously encode diverse aspects of context—such as 

definitions, grammatical dependencies, or empirical facts.  

In addition, several transformer blocks each comprising a multi-head attention module and a 

feed-forward module are stacked sequentially. By analogy with other neural network 

architectures, this hierarchy of subsequent transformer blocks likely allows the model to 

resolve linguistic features at various levels of abstraction and detail. The nodes in hidden 

layers of the LLM presumably represent intermediate conceptualizations (Raschka 2025, 82; 

cf. also item (4) in Sec. 3.3 above). 

From the perspective of variational induction, the transformer architecture with its attention 

mechanism allows for identifying difference and indifference making relationships even at 

long distances between tokens. Also, various kinds of difference making, concerning for 

example grammatical, definitional or empirical aspects, can be analysed at different levels of 

resolution. In conventional variational induction, such hierarchical structures are usually 

represented in terms of Boolean combinations of circumstances (Pietsch 2022, Sec. 5.3.3; 

2026b). Large language models generalize the Boolean approach by employing a multi-layer 

architecture determined by trainable continuous parameters, which is well-suited to model 

gradual dependencies and allows for probabilistic predictions. 

 



5. Conclusion 

Natural language is highly complex and almost certainly irreducible to a simple model. 

However, large language models with billions of trainable parameters and trained with vast 

digitized text corpora seem capable of representing this complexity, while the underlying 

maths is surprisingly simple consisting of only a large number of vector and matrix 

operations.  

Importantly, large language models do not merely interpolate between data but rather they 

learn difference- and indifference-making relationships between tokens in a sequence. These 

relationships generalize well to unknown token sequences, which is why large language 

models generate meaningful word sequences on the level of human written and spoken 

language. As shown, the difference- and indifference-making relationships are learned in 

terms of variational induction, essentially through the methods of difference and agreement, 

which are implemented when the model is improved during training.  

The overall result is not surprising, since, in the history of scientific method, variational 

induction has in various disguises been the only inductive method that under the right 

premises reliably works. Examples are: the experimental method itself, where circumstances 

of a phenomenon are systematically varied to examine their impact on a phenomenon; 

randomized control trials, where control and study groups are statistically defined to be 

compared in terms of difference making; or, more recently, decision trees in machine 

learning, which proceed by iteratively determining the most important difference makers 

amongst a number of circumstances. Thus, the logic behind LLMs is not new, it is essentially 

a variant of the experimental method; however, it is applied in novel ways using the 

enormous computational resources that have become available. 
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