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Abstract
This paper challenges the usual approach of emergence in terms of properties of wholes “emerging” upon properties of parts (“combinatorial approach”). I show that this approach mostly fails to face the requirement of non triviality, since it makes a whole bunch of ordinary properties emergent. As most of authors recognize, this meaning of emergence is mostly epistemological. On the contrary, by defining emergence as the incompressibility of a simulation process, we come up with an objective meaning of emergence since I argue that the difference between the processes satisfying the incompressibility criterion and the others do not depend upon our cognitive abilities. Then I show that this definition may fulfil the non triviality requirement and the scientific adequacy requirement better than the computational approach, provided that we think emergence as a predicate of processes rather than properties, and that we make use of the descriptive language of computational mechanics (Crutchfield and Hanson). Finally, I answer an objection by Epstein, concerning agent-based models, that pretends to show that in this context emergence is either impossible or trivial.
Introduction


Defining emergence in philosophy of science has to fulfil two requisites: first, the concept has to match a great deal of the scientific practice (let’s call it “the scientific adequacy requirement”), and cover some of the uses of the term; second, the concept has to be such that not too many things will fall under it (the “non triviality requirement”). The latter requisite is all the more meaningful since, if “emergent” has to mean anything, and ultimately concerns ontological issues about the levels of reality etc., it should not be something so trivial. Especially, one of the connotations of emergence is “novelty”, so that if emergence is everywhere, this connotation will be contradicted since not everything can be novel.

Now, if we address the emergence literature, one obvious fact is that emergence is often addressed trough the question of emergence of properties (O’Connor 1994, Silberstein 2002, Crane 2006, Newman 1996, Chalmers 2006…). One of the other options is often the emergence of laws. To the extent that laws are conceived of as theoretical constructs accounting for regularities observed, this makes emergence epistemological as opposed to ontological. But as Klee (1984) emphasises, law itself is such a problem that it’s not a good strategy to address emergence though a notion quite as hard as emergence to construe.
Another trend in approaches of emergence is the focus on whole-parts relationships. Emergence is often considered as the problem of understanding properties of wholes that are irreducible to properties of the part, which I could call combinatorial emergence.
In this paper I would like to challenge the property approach, and the dominant combinatorial understanding of emergence, by focusing on the computational definition of emergence I wish to show that this approach faces the two challenges cited in the beginning better than the combinatorial / property approach; and the main reason for that is that considering this view of emergence one should first focus on what is an emergent process, rather than on the emergence of properties.

1. The whole-parts approach of emergence and its flaws.

Traffic jams, fads, temperature, chromosome at the time of meiosis exhibit a behaviour that is not understandable by adding the considerations of the behaviour of their parts. Hence one has considered them as emergent behaviours, and this emergence is thought as something proper to the whole and irreducible to the parts. Philosophers such as Silberstein (2002), O’Connor (1994), Bechtel and Richardson (1992) addressed the issue of emergence through this scheme of wholes and parts. Phan and Desalles (2005) see emergence as a drop of complexity, Jessica Wilson (2005) as a decrease in the degrees of freedom: those two approaches consider emerging properties of a whole as different from the simple product of the properties of the parts (where there would be additivity of degrees of complexity/degrees of freedom). Atay and Jost (2004) note: “The individual degrees of freedom are drastically reduced, or, in a more formal terminology, the factual state space of the system is much smaller than the product of the state spaces of the individual elements. (…)The reduction of the individual possibilities opens new possibilities at a higher level. » (18)
There is an immediate problem with this approach: most cases of what we would like to call emergent are not exactly composed according to a part-whole structure. Take Schelling‘s model of segregation (1969, 1971): according to their colour, agents will range under some homogenous clusters. The behaviour “join the cluster” is not given in the rules of behaviours of the agents, surely; but the clusters are not exactly composed of the agents, since they remain themselves even if some agents are added and some escape the cluster. There is a robustness of the cluster itself relatively to its parts, which is precisely required if we want to talk of emergence, as argued Gilbert (1992), who improves Schelling models by considering reproducing agents with finite lifetimes. So since the parts are transient relatively to the whole, a simple view of emergence as irreducibility of properties of the whole to properties of the parts is misguided.
In his classical paper, Wimsatt (1997) defined emergence as the failure of aggregativity; the point is thereby to provide some criteria of aggregativity, which is an interesting way to address the emergence problem the other way round. Wimsatt’s criteria of failure of aggregativity are a proper and more sophisticated formalisation of what is the case when we say that we can’t reduce properties of the parts to properties of the whole. These criteria are: invariance through intersubstitution of parts; qualitative similarity under addition/withdrawal of parts; invariance regarding decomposition/reaggregation of parts; no cooperative/inhibitory interactions. They are criteria of invariance; hence they take into account the case of alternating and changing parts within a whole. However, it appears that except mass, quite nothing is really aggregative, i.e. satisfies all the criteria, for example of invariance regarding permutation of parts, etc. This surely is a problem if one wants to capture the meaning of emergence by this perspective  - emergence should surely apply to less properties than “everything but the mass”. Wimsatt would not say that mere failure of aggregativity is sufficient to have emergence, yet emergence would then need a supplementary criterion that is not provided in this analysis. Hence we are just left with the idea that emergence comes in degrees
. However in this view the meaning of emergence is quite superfluous, we could talk only of degrees of aggregativity – it would make sense only if we already have this criterion that determines how emergence is more than some lack of aggeragtitivity, but precisely, our combinatorial analysis will not provide it. 

Of course we could follow Bechtel and Richardson (1992, 1992b), and consider a continuum from mechanistic-reductionist, which is plainly aggregative, to purely emergent explanations – and at each step we would lose one criterion of aggregativity. But this makes once again the emergence talk superfluous, since all this is about can be captured by considering explanatory features concerning aggregativity (hence mechanistic explanations in their sense), and weakening degrees of those epistemological properties. 
More generally, and quite trivially, each time there is a process some elements do interact and the outcome of the interaction is not included in what would be the outcome of one element by itself, hence this will look like failure of aggregativity. For example, a phenotype is surely the product of environment acting on genes. However, the genes by themselves would not be able to produce a specific result, this result is function of the environment, and reciprocally, so the final phenotype is not the aggregation of the outcomes of the genes on the one hand, and the outcome of the environment on the other hand. This is a case of failure of aggregativity, and since the combinatorial analysis à la Wimsatt wouldn’t yield the additional criterion for emergence, all those cases are likely to be emergent, or more precisely they stand on a par with cases like patterns of regulations in ecosystems (Levin 1998), that sounds to be genuinely emergent. Nevertheless, it could seem absurd to talk of phenotypes as emergent regarding to genotypes. 



Actually, emergence is supposed to cover several features: unpredictability, novelty, irreducibility (Klee (1984), Silberstein (2002), O’Connor (1994), Crane (2006), Chalmers (2006), Seager, Humphreys (1997) largely agree on those features). Irreducibility construed as irreducibility of the properties of wholes regarding properties of parts appears now quite trivial, and too frequent to yield something as “emergence”. “In a sense, any dependency between components of a system leads to the description of the whole being different from the description of the components, because the description of the components does not capture that dependency.” (Bar Yam 2004)

Concerning novelty, the concern here is that since properties of the wholes are quite always novel regarding the properties of the parts– think of colour, or mass, or volume – so the problem is to choose which novelty should count as emergent. We are left here with no objective criterion. Novel means most of the time what is so far not included in our views, what has no name in our language. As Epstein (1999) noticed, this is quite insignificant either, since every theory of a domain of elements has no names for the combinations of elements that are outside its field. So this inevitably seems to lead to a conclusion shared by numerous authors: if emergence means something, it is restricted to epistemological emergence  in the sense of emergence relatively to a set of theories and of cognitive abilities - apart from may be the case of phenomenal or qualia consciousness, which would be a very strong and exceptional emergence (Chalmers 2006, Crane 2006, Seager forth, Silberstein and Mc Geever 1995, O’Connor 1994, for example).

At this point, enters the computational approach of emergence.

II. The incompressibility criterion and emergent processes.
 In the framework of computer simulations one has been able to define what Mark Bedau (1997) called “weak emergence”. According to this criterion, endorsed by Jacques Dubucs and Paul Humphreys (this symposium), a state of a computation process is weakly emergent iff there is no shorthand to get to it except by running the simulation. Let’s call it the incompressibility criterion of emergence.

This approach to emergence avoids the subjectivity problem proper to the novelty issue in the previous approach. Indeed, whether some computations are compressible or not is not a subjective matter, it is not even related to our conceptual schemes or available theories. Hence we have a major clue about an emergence that would be, if not ontological, at least objective in the same way than conceptual truths in mathematics are objective, independent of our cognitive abilities or epistemic choices. Of course, at this point one could object that our incompressibility criterion is only provisory, since we cannot assert that in a distant future, with enlarged computational abilities and stronger mathematical theories, we will still be unable to find analytical shortcut to get to a final state faster than by simulation. Yet there is indeed some evidence that this objection fails.
Indeed, an argument for the objectivity of computational criteria is given in a paper by Buss et al. (1992). The basic idea is to construe a set of automata whose values change according to a global rule R. Each automaton transforms the value of its cell according to an input, 0 or 1. The application of the global rule R is itself dependent of the numbers of each value (q1, q2…) in the set of automata at step n; the input function that will determine the input to all automata at step n+ 1 is determined by the global rule. Hence the system is perfectly deterministic.
Input function : If Zi= 0, F (i+1) = g (F (i))

              If Zi = 1, F (i+1) = g’ (F (i))


Functions g and g’ take their values in  {q1…….qj…….qn}.

Global rule R: Zi takes its values in {0,1}.

Zi = M (Ni (q1)…….. Ni (qj)……. Ni (qn)) where Ni (qj) is the number of times value qj is taken at step i. 
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Some global rules are constant free, meaning that they can be enunciated with no reference to some of the actual values qi… of the constants, and others are not. “There is as much qi than qj, for each values of i and j” would be an example of a constant free rule. Buss et al. (1992) show that if the global rule is non constant free, then the problem of predicting the state of the system at time T is PSPACE complete, hence the problem can’t be solved in polynomial time (since we assume that no P=NP
 and NP problems are included in PSPACE problems, so that being PSPACE complete entails being such that all NP problems can be translated into that problem, which makes it at least harder than NP complete)). The detail of the proof relies on the fact that constant free global rules are preserved through permutation of the qi, which makes a major difference concerning the pattern of computation of the prediction.

This result perfectly illustrates the fact that some computational devices are objectively incompressible. As the authors write : “if the prediction problem is pSPACE complete, this would mean essentially that the system is not easily predictable, and that there seems to be no better prediction method other than simulation.” (2) 

Another result – apart from the objective character of computational emergence - is that weak emergence defined as inaccessibility except by simulation is not something trivial since, in this framework, all global rules that are constant free are computable in polynomial time, so that we have a clear delimitation between some weakly emergent cases and some other cases. Yet there is another problem: some rules explicitly integrating constants are equivalent to constant free rules, and Buss et al. then show that it’s an undecidable question to verify whether the global rule followed by a given set of automata is indeed constant-free:  eventually the class of constant-free rules driven automata is undecidable. 

Now, if we talk in those terms of computational emergence, what precisely is emergent? Paul Humphreys (2004, 2007) talks about emerging patterns in cellular automata (CA); the robust pattern, not computable except by simulation, is then an emergent property in a CA. Let’s notice here that the very idea of pattern is ambiguous. For Dennett (1991), by example, a pattern is an array of traits that can be easily distinguished from others and recognized; hence it should have a high level of redundancy. A pattern (D-pattern) in this sense is easily deducible from one of its parts (contrary to Humphreys (H-patterns)). So defined, D-patterns seem rather mind-dependent, since he addresses patterns through their recognition, while recognition is linked to our cognitive abilities. This is surely legitimate in the perspective of his paper, vindicating the intentional stance, but for our purposes we can specify those patterns by some purely internal properties, like redundancy, symmetry, or any case of invariance through homeomorphisms. What a mind perceives as redundancy hence is a subclass of what is invariant by some permutation, translation, rotation etc. This renders D-patterns mind-independent.

Here, it seems that there will be no way to understand through the computational approach some of the instances of “emergent D-patterns” identified by combinatorial approaches. Basically, if someone draw a D-pattern on an n*n grid, there will be some symmetries etc., so it will need less than n² informations to be described. This is a kind of drop of complexity; the whole is not the aggregation of the parts. But precisely, in this case the final pattern seems to contradict the incompressibility criterion, because the symmetries provide shorthands to figure out the total pattern.

What this case tells us is that most generally there are two poles included in the vernacular idea of emergent patterns: order (mostly instantiated by D-patterns) and unpredictability. Segregation clusters, traffic jams, fads (Gilbert (1992), Tassier (2004), Nagel and Rasmussen (1994)) reveal some order instead of the pure heterogeneity that we should have expected. They exhibit a clear drop of complexity (e.g. a segregation cluster can be defined in n zones rather than p>>>n points). This order aspect easily raises the objection that it is subjective, as Phan and Dessales (2005) recognized: emergent orders always depend on our epistemic abilities since they are relative to an “expected” complexity. Anyway this aspect is mostly grasped by the combinatorial approach. 

On the other hand, the “unpredictability” aspect is captured by the incompressibility criterion. There is indeed a similarity between Chaitin’s definition of randomness of a random sequence of numbers, and the incompressibility criterion of weak emergence. If we want to unpack this similarity, this would mean the following thing:
In a random sequence, the n-th digit and its precursors don’t give any information regarding the n+1th digit, x, and this is of course the intuitive idea of randomness, e.g. there is no reason for x to be something rather than something else. Chaitin’s idea of the lack of an algorithm that would save us from this step-by-step examination of the sequence formally captures this naïve understanding. Hence x is unpredictable relatively to the previous sequence: so if you want to know x you have to read all the n+1 first digits. On the other hand, the incompressibility criterion of emergence formulates the unpredictability of a given state from the knowledge of the rule and initial state – but of course, not of step n+1 relatively to step n, since this is perfectly deterministic and determined. Briefly said, Kolmogorv/Chaitin randomness requires that there not be a program whose length is significantly shorter than the length of the sequence of states. But there can be a short program – the rules of the CA - that produces an incompressible sequence of states.

At this point, conceiving emergence faces a simple problem: the order and the unpredictability aspects seem to contradict one another, precisely because we implicitly oppose here order and randomness. However given the aforementioned crucial difference between random incompressibility criterion and emergence incompressibility criterion, there is not a genuine opposition between the unpredictability proper to computational emergence, and order. I am arguing that the computational approach is better focused than the whole-parts approach, my arguments mostly relying on the higher capacity of this approach to meet the two demands formulated in the beginning; once I will have established this point, the task left will be to reintegrate the “order” aspect in a synthetic concept of emergence
.

The two approaches – emergence through order in a combinatorial perspective, and computational emergence - radically diverge on some simple cases. Here is an example. Take the CA defined by Co = 1,0,1,0etc., 0,and the rule: “if at least one neighbour is 1, turn 0 and reciprocally”. The outcome will clearly be the blinking pattern b :


[image: image1]
Fig. 2. Blinking pattern b.

Here, we have a kind of pattern that is not included in each of the cells, but that can only be given through their relations. No descriptions of the parts (black, white etc.) include the figure of the whole. But there is absolutely no incompressibility. Indeed, if I want to know the state of the CA at step n, I just need to check whether n is odd or even. Thus the incompressibility criterion excludes from emergence numerous patterns that, like this one, would be considered as failure of aggregativity and (according to the traditional whole-parts account) count as emergent and – because they are hugely frequent - then trivialize the concept of emergence.
More precisely, what is excluded by the computational notion of emergence is not this pattern as such, it’s only the cellular automaton (rule+initial state) so described. Yet, in some cases we could consider that this precise pattern emerges. In Burke et al. (2006) study about local norms, we are shown that with simple rules of imitation and fitness enhancement, in an agent-based model local norms will emerge in some settings, following some specific patterns of distribution. The blinking pattern b’ eventually appears as a final stable state in several configurations when some parameters concerning the initial distribution of signals and the choosing dispositions of the agents.
[image: image2.emf]
“An alternative simulation in the zero noise case leads to a mixed state:

Each graph shows the average fraction of A’s in the two regions (where the average is across 50 repetitions of the simulation). There is clear evidence that a conforming segregation of choices by region occurs. A is used at a very high proportion of the 200 locations in the East, and a low proportion of locations in theWest. Despite the fact that A and B are theoretically possible when ε = 0, they never occur. In the zero noise case mixed states, as in Figure 4 and 6, often occur; this is what explains the departure from full segregation in the top left graph. There also appears to be a tendency for the blinking regions to increase with time.”
Fig. 3. Blinking pattern b’ in simulating the emrgence of local norms according to Burke et al. (2006).
Conditions for emergence of the blinking pattern are severely restricted: “The stability of a blinking segment requires that it spans across a region. When regions are large, it is unlikely for such a pattern (or one leading to it) to arise purely by chance when the random assignment of

initial choices is made.” Yet we can assume that simply adding the rules of behaviour of all the agents won’t analytically yield as an outcome this blinking pattern b’, hence this is a true case of computational emergence.
Thus, according to the computational view it is not the pattern as itself which is emergent (since as patterns b and b’ are identical), but emergence is a feature of the whole agent-based simulation process or CA process – else there would be no difference between blinking patterns b and b’. This specificity accounts for its ability to prevent too many ordered patterns to count as emergent. As Paul Humphreys (2007) points out, emergent patterns are always token patterns (and not types) since other tokens of the same types, for example a photo of our blinking pattern b’, would not be emergent. Here, it is clear that what individualizes the pattern token as a token is the CA process in which it is a part. This reference to the process distinguishes the computational account of emergence and provides a way to distinguish between all the putative patterns.

But at this point, it is the turn of our perspective to face the challenge of the two initial requisites on emergence: there is no guarantee that the computational view will match, or even overlap with the usual uses of emergence; and the mathematical property yielding incompressibility might be so pervasive that eventually emergence would still be trivialised. I will address those two worries now.
III. The randomness exclusion issue.
a. Suppose that we have the following pattern appearing in an incompressible way in a 2X2 CA:
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Can we call  it “emergent” ? Yes, according to the previous analysis. Now suppose that at step n+1 it becomes :
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And at step n+3: 
[image: image5.png]so e o




And then it just comes back through the blinking pattern at n+12 and then is transformed again. Shall we say it is emergent? I guess no, because emergence supposes that the emergent item is somehow robust. So there should be an additional robustness requirement in order to make sense of emergence in the computational approach (see also Gilbert 1992). This requirement is even stronger since we would want that a slight perturbation, like inverting two cells, should not entail a big long lasting change of the pattern. This is not my concern here, it is addressed elsewhere
; I jump to another issue.

b. If X is incompressibly resulting from a initial state Xo in a CA, nothing prevents it to be a random number. In effect: suppose that X=  (i=0, ..) Xi10 –i is a random number. Since class IV CA are universal Turing machines
, there must exist a CA with a given rule R and an initial state Xo whose final state is X. So given that there are so many CAs whose outcome is random, there may be plenty of “emergent states” according to the incompressibility criterion that are random sequences; this criterion may indiscriminately include lots of random sequences among emergent states. Basically there is no way to warrant that random patterns are precluded as such to be counted as emergent patterns, since nothing in the computationnal definition of emergence distinguishes between random and non random patterns. This might be called the “randomness exclusion problem”.

Moreover, it’s possible that any random number is the emergent outcome of some CA. The argument would go roughly like this:

Lets call H (Xo, R) a CA with initial state Xo and rule R such that X is its final state; n is the Chaitin complexity of X. mH is the number of steps to get to X in H. Suppose that X is not emergent. Then there exists an algorithm f such that f (Xo) = X, and the  computation size of f is m (f) < mH.
Now take the step m’= mH. – n. Note X’ the state of H at m’. Let’s H’ be the CA with rule R and initial state X’. X is the final state of H’, and it takes obviously n steps to get to X.
Suppose it exists f’ an algorithm such that f’ (X’) = X. If X in H is not emergent, then m (f’) < (number of simulation steps to get to X=) n. But since X is random, there is no algorithm with computation size smaller than m to get X.
So X is emergent in H’.


Now, what is at stake here is the very reason to define emergence through incompressibility: in effect, if this definition allows all those random numbers to count as emergent, we will lose the connection between this definition and the usual meaning of “emergence”, which seems too high a cost to pay. In this case we should keep with calling those patterns “incompressible” and don’t mess up with emergence any more.

Even worse, we can construct some fishy properties that will count as emergent according to the incompressibility criterion. The “randomnesss exclusion problem” entails that we can always construct some properties gruesome enough that it will count as an emergent property. For instance let’s call P the property of “being in the state X or Y or Z”, where X, Y, Z, are three random numbers. Clearly, if we want to check whether H’ (defined earlier) satisfies property P there is no shorter way than running the simulation, so P is an emergent property. By extension, any disjunction of random numbers is an emergent property of some C. This not only departs from the usual meaning of “emergence” but totally trivializes computational emergence. It means that if we define emergence by the class of properties satisfying the incompressibility criterion, we will not be able to fulfill the “non triviality requisite” with this definition.

In this case there is however a remedy, here, which consists in emphasizing the process aspect of computational emergence. “Emergent” will be a predicate of processes, rather than of properties. Thus, since P as such can not be state in a CA process, if we restrict the meaning of emergence to characterize some class of processes – those that fulfil the incompressibility criterion – we prevent properties like P to be emergent properties. To this extent, we get rid of a lot of fishy properties. My proposition, here, is to talk of emergence of properties only secondarily, in so far as those properties are internal states of some emergent process. Properties that emerge will be a subset of the class of internal states of computer simulations processes – precisely, the subset of internal states of processes that fulfil the incompressibility criterion.

However, even if thinking in terms of emergent processes avoids the trivialisation of emergent properties, we are still left with the randomness exclusion issue. Remember that we don’t want to get all the random numbers as emergent properties; yet it does not suffice to edict a supplementary clause to exclude every random numbers and patterns from the class of emergent properties, since nothing guarantees that some random patterns would not be seen as emergent in the scientific practice. For example, according to the previously cited study on local norms (Burke et al. 2006) in some configurations of a population of signals receiving-emitting agents (initial distributions, signal probability) – the patterns of norms that are stable and emergent (according to the incompressibility criterion) are mathematically random. (Fig.4) 
“Let θ = 0.5. At each location the probability of arrival of signal α is chosen from {p, q}, with each choice being given equal probability. We then run a simulation, starting from a random initial configuration of choices. (…). Quite surprisingly, large regions with uniform behavior patterns form, coexisting with large regions where the blinking cycle is present.”

Fig.4. Emergent random pattern of local norms (after Burke et al. 2006)
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Now, there might be a way out of this problem; given that emergence is a predicate of processes rather than of properties, we will individualize the emergent items through the processes, therefore we can distinguish classes of incompressible processes, so that we will be in position to sort out classes of genuinely emergent processes (satisfying the non triviality- and the adequacy requirements) from other classes. If there are varieties of incompressibility, and if we can devise a classification of those types, it will be provided by a distinction of various classes of processes. So if there exists descriptions of processes that allow us to distinguish types of processes, there is a chance that this will enable us to distinguish, in the set of processes fulfilling the incompressibility criterion, the non-interesting random patterns from other ones that better match the usual, intuitive, vernacular, meaning of emergence - be they random or not.

My hope is that this program is available through the computational mechanics description language initiated by Hanson and Crutchfield (1993, 1997). The basic idea of those descriptions is that we can filter out any CA in such a way that domains, particles and frontiers will naturally appear.
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Fig. 5 An example of domains that an appropriate filtering makes apparent in a CA (after Hordijk, Crutchfield et al. 1996)
 Processes in the CA can then be described as interactions between particles, openings and collisions of domains, etc. As write the authors : “The early empirical categorization of space-time patterns into four “classes” [reference to Wolfram]—loosely based on an analogy with those found in continuous state dynamical systems—has resisted numerous attempts at formalization. In many CA, it is immediately evident that the system self-organizes into some type of emergent pattern. In other CA, the structure or even existence of an emergent pattern is less clear. The question that naturally arises therefore is how to characterize the spatio-temporal patterns that emerge during the CA’s evolution. If such a characterization is possible, it can be used as a basis for numerical and analytical tools that discover, analyze, and filter patterns that emerge in CA.”
[image: image7.emf]
Fig. 6 . After filtering, the types of particles (greek letters) and their interactions appear in a CA, whose final pattern seems to result from those “mechanics” (after Crutchfield Hanson 1993).
Now, we might think that such a view is just a helpful description of what is a CA; do we consider that those particles and domains are genuinely doing the causal work which yields the final state of the CA as an outcome? My position would be that there is a kind of causation involved here, even if those terms does only refer to descriptive artefacts, since each pattern of particles and domains counterfactually depends on another one – yet this surely is a very weak sense of causation, the only one available here. But let’s stay neutral in this debate. In any case, we can define some sets of particles and domains, and those sets will be proper to a  CA. “Computational mechanics attempts to discover and characterize the typical patterns occurring in a given CA”, wrote Crutchfield and Hanson (1993) (my emphasis). Computational mechanics isolates elementary “patterns” in a CA, and the CA turns out to be organised into several patterns. For example, concerning ECA 54, they note : “The question computational mechanics poses is this: Is there some pattern or collection of patterns into which ECA 54 self-organizes? In particular, does ECA 54 have a regular domain?” (Crutchfield Hanson 1997) It appears that one of the patterns is pattern c :
[image: image8.emf]
 “We can easily express this domain pattern as a finite automaton.”  (ibid). At this point, the finite automaton is represented fig. 7 with its description.
___
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Fig. 7.
“Each component consists of four states, represented by circles, and four labelled edges. All states have inscribed circles and squares, indicating start and accept states, respectively. Each state is a distinct spatio-temporal phase of the domain and has been assigned a label in {a, ………., h} 4for comparison with other machines below. The spatial periodicity of configurations in is evident in the fact that each component consists of a single loop of edges without branching. The temporal periodicity of the patterns is schematically indicated by the dotted lines showing the effect of the CA ensemble evolution operator” (After Crutchfield Hanson 1997)
However – and this will make my point here – delimitating the domain patterns that several CAs use as “building blocks” like pattern c, and expressing them as finite automata, amounts to a possible typology of CAs. Hence we will get types of elementary processes, which will allow us to define classes of emergent processes. Thereby this projects of designing a “method for identifying coherent structures” (Shalizi et al. 2006) amounts to a sort of characterization or classification that provides us with a way of overcoming the randomness exclusion problem.

Indeed, the authors notice: “For any spatially periodic domain in any CA, the space-time dynamics of the domain filter output is governed by a deterministic equation of motion.” (1997) This implies that as soon as there is a periodic domain we are ensured that it will display some regularities, and this prevents pure randomness; the range of periodic patterns (“building blocks”) and their types of entanglement in CAs can thereby be the basis of a characterisation and typology of emergent processes that is guaranteed to exclude from the beginning a large class of purely random patterns.
Computational mechanics provides a set of tools – filters – that may help us to answer both the robustness problem and the randomness exclusion problem. Shalizi et al. (2006) defines two measures, local sensitivity and local complexity, and filters that automatically detect those parameters in CAs. “Local sensitivity calculates the degree to which local perturbations alter the system, and picks out autonomous features. Local statistical complexity calculates the amount of historical information required for optimal prediction and identifies the most highly organized features.” Interestingly, whereas elementary CAs behave quite in the same way regarding those two measures, we come to an interesting difference when we deal with cyclic cellular automata. The fact that filters are automatically done improves the generality with respect to the Hanson Crutchfield transducers. The main improvement is the extension to bidimensionnal CAs. Local sensitivity and complexity are there orthogonal because “sensitivity looks for regions that are unstable to perturbation; because of this instability, prediction requires very precise discriminations among histories. Moreover, localized unstable regions are presumably rare, and the corresponding states uncommon. (…). On the other hand, uncommon, complex structures need not be unstable.” This difference between complexity and sensitivity is instantiated in cyclic CAs by the difference between walls and domain walls: “Domain walls, for instance, are comparatively rare, and require considerable historical information for their prediction, essentially because they are regions where the  evolution of the phase is hard to determine; this in turns means that their causal states need more bits to specify. They are, however, very stable, because they have considerable spatial extent, and to destroy or move a wall implies changing the domains on either side. The domains themselves, while only minimally complex, are more sensitive than the domain walls, because perturbations there can create localized defects.” (11) Those two approaches therefore provide a way to characterize processes with no domains and walls, hence purely chaotic and then whose outcomes are random (example of rule 22 from random configuration is given p.6; the local sensitivity filter makes no pattern appearant; see fig. 8).
a. [image: image10.emf]
b. [image: image11.emf]
Fig. 8. A CA (Rule 22, random initial configuration) (a) and its sensitivity filtered (b); it shows no real domains and hereby appears chaotic. (After Shalizi et al. 2006)
To summarize, computational incompressibility should surely characterise a large class of particle-domains patterns. However since among them “interesting” patterns, satisfying the randomness exclusion criterion, are displaying some non chaotic generative patterns that a computational-mechanics analysis is able to unveil, and since those patterns imply a kind of drop of complexity, which is often a symptom of what we ordinarily call emergence according to the usual combinatorial approach, it is reasonable to hold that those subclasses of incompressible processes more or less map onto the vernacular meaning of emergence, so that they become the really “interesting” emergent processes.


Finally we have this delimitation of emergence:

Class: Computational incompressibility

 Emergence of properties

Kind  : A. Fishy properties (disjunctive etc.)    B.        Emergent processes

Species:




      B.1 Random patterns / B.2. “Interesting” patterns



(specific subclasses characterised by proper particles-domains geography, measurable in complexity)

In the right column B2 we get an objective, non epistemological meaning of emergence that fulfils the non triviality requirement (in the form of the randomness exclusion principle), and that is able to confront correctly the usual meaning of “emergence”.

IV. Agent-based models and the triviality issue.
Finally, an objection would be that an approach to emergence that confines to cellular automata is too restricted, except if we subscribe to Wolfram’s thesis on nature as a universal CA… 


However, in the last paragraph we just intended to show that the computational approach with some specific clauses and restrictions can answer the two requirements of non triviality and scientific adequacy, and more precisely, that considering at first emergence as characterizing processes allows us to satisfactorily answer the randomness exclusion problem, thanks to some insights from computational mechanics.

In this last section I would like to widen the scope of computational emergence by considering other simulations than CAs, namely agent-based models. Note that I focused on CAs only to address the randomness exclusion problem, but the prior general plea for emergent processes was encompassing any computer simulation, and did mention examples in agent-based modelling.  


Now, does the talk of emergent processes sketched below remains valid for agent-based modelling? In fact, in this case we face in a specific manner the triviality problem, and the resources used just below to deal with the randomness exclusion problem (and thereby, more generally, with the scientific adequacy requirement) will be of no use here. This issue is crucial since lots of our instances of “emergent” phenomena, for example fads and fashions cycles (Tassier, 2006), local norms (Burke et al. 2006), risk aversion (Szpiro 1997), segregation clusters (Schelling 1969, Gilbert 1992), cultural norms (Axelrod 2002), are generated through agent-based models. My concern here proceeds from the thoughtful survey, by J. Epstein, of agent-based modelling in social sciences (1999). Epstein concludes his investigation by a critique of the popular use of “emergence” in the discourse of people doing social simulations. 

Epstein’s argument basically would hold against a naïve version of the part-whole approach of emergence. Concerning social agent-based model, the dilemma he formulates goes against any formulation of weak emergence. It’s interesting for us because he sees the whole field of agent-based model as reductionist in a way that it leaves no room for emergence in any sense. “Indeed, by attempting to generate these very phenomena on computers or in mathematical models, we are denying that they are unexplainable or undeducible in principle—we’re trying to explain them precisely by figuring out micro rules that will generate them.” The generative dimension of agent-based model is conceived of as a way to “deduce” complex phenomena. “If x is generable, then it is deducible. But, (according to) Broad, if x is emergent, it is not deducible. But it then follows that if x is generable, then it cannot be emergent!“ There might be no hope there to understand emergence, then. Epstein then formulates a comparison with the bee/beehive structure. “Typical of classical emergentism would be the claim: No description of the individual bee can ever explain the emergent phenomenon of the hive. How would one know that? (…) The mischievous piece of the formulation is the phrase “description of the individual bee.” What is that? Does “the bee’s” description not include its rules for interacting with other bees? (…). My “rules of social interaction” are, in part, what make me me. And, likewise, the bee’s interaction rules are what make it a bee—and not a lump. When (as a designer of agent objects) you get these rules right—when you get “the individual bee” right—you get the hive, too. (…)  Unless the theoretical (model) bees generate the hive when you put a bunch of them together, you haven’t described “the bee” adequately. Thus, contrary to the opening emergentist claim, it is precisely the adequate description of “the individual bee” that explains the hive “ 
Notice that this agrees with Shoemaker’s conception of emergent properties as “microlatent” properties (2002) – describing the whole system with connections etc. makes those latent properties manifest : the “beehive-building-trend” of the bee is just latent in the bee, manifest in the beehive, and agent-based modelling is the scientific tool able to explicit this engendering or making-manifest process. (Epstein “generative” processes are precisely what Shoemaker calls “engendering emergent properties”.)

So, reciprocally, if you say that the beehive “emerges” you must say that any outcome of a complete description of a set of entities is emergent. Notice that this reasoning repeats, in the context of agent-based modelling, the argument in section I according to which combinatorial emergence is as widespread as processes and interdependencies in nature since the building block as such don’t entail the interdependencies that occur as son as they are put together (see the quote by Bar-Yam).

Basically, Epstein’s argues that, either
· A. there is no emergence since the outcomes of any agent-based model - although they are obviously not aggregative - are always proceeding from the behaviour of the agents, so there is no novelty in their so-called “emergent” pattern compared to the ensemble of all the behaviours and their consequences (regarding to what this final state could count as novel since there is no other collective outcome expected?)
Or 
· B. everything is emergent, since “to emerge from the initial rules and configurations” in an agent-based model means to be “generated”, which amounts to proceed from the activation of the rules of all the agents, and this is the case of any final state in any agent-based model.

Nevertheless, the difference with the tenants of weak emergence computationally understood is not as huge as Epstein tends to say. The trouble is that both sides mean very different things by “deduction”. To “deduce” the final state of a set of agents, according to Epstein, is only to let all those agents act according to their rules. But “deducibility” in this sense is taken for granted by everybody, since the very definition of a computer simulation implies that all the cells or agents behave accordingly to their rules, so the final state can always be said to be deduced from the initial conditions. Yet, defending an idea of computational emergence that should contrast with deducibility, one will highlight another sense of deduction, namely, the deduction of one final global state of the system from previous global states. In this sense, the incompressibility criterion means precisely that there is no possibility of such a deduction. That is exactly what is shown on the case of finite sets of automata by the results of Buss et al. (1992). Let’s note “deducible*” this second meaning. 
So all states are trivially deducible, and therefore, in agreement with Epstein’s claim A, there is no emergence if emergence means the opposite of deducibility. But emergence computationally understood excludes only deducibility*. So Epstein’s alternative is misguided. In essence, he argues: either emergent= generated=deducible, or emergent is opposed to deducible; since everything is generated in agent-based models, emergence is either impossible or trivial. But since “emergent” is indeed only opposed to “deducible*”, which is a subset of “deducible”, the alternative fails. It is possible that some phenomena might be deduced=generated, but not deducible*, and are thereby emergent; indeed it is the case of many agent-based models encountered up to now – fashions cycles (Tassier 2004), traffic jams (Rasmussen, Nagel 1994), local norms (Burke et al. 2006). Thus emergence in the sense of the incompressibility criterion can be applied in agent-based modelling.
Reciprocally if “emergent” was a trivial category, all that in ABM is deducible would be not-deducible*; but this is false. Here is an example: Suppose that we have an initial blinking distribution, and a rule which is “do the opposite of what does your immediate horizontal neighbours (and in case they have between them opposite behaviours, don’t move).” It is clearly the former case of blinking pattern b (fig.2) – and so there exists a shorthand to compute the state of the system at n, which makes this state deducible*. Then in this case the criterion fails. Thereby emergence, which means deducibility with no deducibility*, is not trivial.
Conclusion

Finally, I tried to show that the computational notion of emergence, embedded in the incompressibility criterion, and naturally focusing on processes rather than properties, meets the two requirement of non triviality and of scientific adequacy better than concepts based on whole-parts schemes (combinatorial emergence). In both fields of agent based modelling and cellular automata, one can formally describe a class of emergent processes that is limited and broadly correspond to our linguistic inclination to talk of emergence in those cases.

Of course, this would be only the first step of a strategy aiming at construing a concept of ontological emergence. Here is a sketch of the whole strategy: solve the robustness issue (by adding a restriction on the class of emergent processes here considered, see Huneman 2007), which will integrate the “order” component into our concept (remember that the incompressibility criterion immediately integrates the complementary randomness-unpredictability dimension); isolate a kind of causation (weak, e.g. counterfactual) proper to emergent processes in simulation – this would imply another perspective on incompressibility (ib.) and will then refer to Crutchfield and Hanson’s computational mechanic; hence, map the emergent processes in simulations onto real phenomena, since the same causal work is done in both. 

Two consequences would then have to be developed: 1. ontologically, the level talk (analysing reality into superposed layers) won’t be assumed when we’re talking about emergence; hence emergence and supervenience are decoupled (pace Crane 2006), to the extent that supervenience relies on a level picture.
2. Correlatively, the downward causation issue is changed. It is replaced by problems about patterns analysed in computational mechanics, and the counterfactual dependence on some cells or agents regarding them. 

But this is another story.
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� As Paul Humphreys suggested (pers. comm.) this may well be the correct way to deal with consciousness, as having degrees, rather than an all or nothing quality.


� Even if this assumption turns out to be false the fact that NP is strictly included in PSPACE implies that being PSPACE complete makes the prediction problem for non constant free rules incommensurably harder for any cognitive ability than the one for constant free rules that is solvable in polynomial time.


� I address at length this second issue in « Emergence and adaptation », Minds and machines, forthcoming, 2007.


� See forthcoming papers  Huneman (2007), Humphreys (2007)


� See Wolfram (1984).
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