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The laws of physics were not handed down from above. Neither are they rules somehow built into the structure of the universe. They are ingredients of the models that physicists invent to describe observations. Rather than being restrictions on the behavior of matter, the laws of physics are restrictions on the behavior of physicists. If the models of physics are to describe observations based on an objective reality, then those models cannot depend on the point of view of the observer. This suggests a principle of point-of-view invariance that is equivalent to the principle of covariance when applied to space-time. As Noether showed, space-time symmetries lead to the principles of energy, linear momentum, and angular momentum conservation--essentially all of classical mechanics. It also leads to Lorentz invariance and special relativity. When generalized to the abstract space of functions such as the quantum state vector, point-of-view invariance is identified with gauge invariance. Quantum mechanics is then just the mathematics of gauge transformations with no additional assumptions needed to obtain its rules, including the superposition and uncertainty principles. The conservation and quantization of electric charge follow from global gauge invariance. The electromagnetic force is introduced to preserve local gauge invariance. Although not discussed here, the other forces in the standard model of elementary particles are also fields introduced to preserve local gauge invariance. Gravity can also be viewed as such a field. Thus practically all of fundamental physics as we know it follows directly from the single principle of point-of-view invariance.


In 1918, mathematician Emmy Noether proved that the generators of continuous space-time transformations are conserved when those transformations leave the system unchanged.
 These generators are identified with energy, linear momentum, and angular momentum. That is, in any space-time model possessing space and time-translation invariance and space rotation invariance energy, linear momentum, and angular momentum must be conserved.


The Lorentz transformation operator can be written
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where cos = , sin = i,  = (1 - 2)1/2, and c is the speed of one reference frame with respect to one another along their respective z-axes.  We see that the Lorentz transformation is equivalent to a rotation by an angle  in the (x, y)-plane. 

Thus we can generalize Noether’s theorem even further: Any model possessing space-time-rotation symmetry will be Lorentz invariant.


The assertion of space-time symmetries is usually referred to as the principle of covariance. Historically it is a generalization of the Copernican principle that no point in space is special. Here I would like to give this notion a more descriptive name: the principle of point-of-view invariance (POVI). The models of physics cannot depend on the point of view of a particular observer. This implies that they should not single out any particular position or direction in space-time. Any such model, then, will necessarily contain conservation of energy, linear, and angular momentum and be Lorentz invariant. Thus these principles are not restrictions on the behavior of matter; they are restrictions on the behavior of physicists.
 
Let us generalize POVI further so that it also applies in the abstract space that contains our mathematical functions. We can define a vector  in that space as a set of functions of the observables of the system,  = {(q), (q), q), . . .}. We call this -space. The state vectors of quantum mechanics are familiar examples of such abstract space vectors residing in Hilbert space; but, in general,  can represent any set of functions of observables that appears in the equations of physics.


The functions (q), (q), q), . . .  represent the projections of  on the coordinate axes in space. We assume that the following principle holds: the models of physics cannot depend on the choice of coordinate system in -space. This principle is called gauge invariance, but we see it is another application of POVI. Another way to think of this is that the vector is invariant under the transformation of coordinate systems, so that
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where the first set of (unprimed) functions represents, say, the mathematical functions one theorist uses to describe the system, while the second set of (primed) functions are those of another theorist.


Let (q) be a complex function. Let us perform a unitary gauge transformation on :
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where † = . When  is a constant we have a global gauge transformation. When is a function of position and time, it is called a local gauge transformation. 


Let us write
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where  is an infinitesimal number and where G† = G is hermitian. G is called the generator of the transformation. Then,
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Suppose we have a transformation that translates the -axis by an amount . That is, the new coordinate q' =  –. Then, to first order in 
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It follows that the generator can be written
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Define
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 where ( is an arbitrary constant introduced only if you want the units of P to be different from the reciprocal of the units of . When q1 = x, the x-coordinate of a particle, then we recognize (5.6)

 as the quantum mechanical operator for the x-component of momentum. When qo = ict, where c is, like (, another arbitrary conversion factor, then we can define
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which we recognize as the quantum mechanical Hamiltonian (energy) operator. Note that these familiar results were not assumed but derived from gauge transformations. No connection with the physical quantities momentum and energy has yet been made. These just happen to be the forms of the generators of space and time translations.


Suppose we have a complex function (x, y, z, t) that describes, in some still unspecified way, the state of a system. Let us make a gauge transformation of the time axis t´= t - dt
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Then,
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This is the time-dependent Schrödinger equation of quantum mechanics, where  is interpreted as the wave function.



At this point, then, we have the makings of quantum mechanics. That is, we have a mathematical model that looks like quantum mechanics, although we have not yet identified the operators H and P with the physical quantities energy and momentum. We have just noted that these are generators of time and space translations, respectively, which are themselves gauge transformations. We also have not yet specified the nature of the vector (q) except to say that it must be gauge invariant if it is to display point-of-view invariance. 


Let us do a gauge transformation on an operator A(t).
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 So, the time rate of change of an operator is
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Next, let us move to gauge transformations involving the non-temporal variables of a system. Consider the case where A = Pj. Then,
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Let qk´ = qk – k, which corresponds to translating the qk-axis by an infinitesimal amount (k. Then
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and
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and
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From the differential form of the operators Pk ,
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and so
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Recall (6.5)
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The summed terms are all zero, so 



[image: image21.wmf]
 MACROBUTTON MTPlaceRef \* MERGEFORMAT (6.12)

We can also think of qk as an operator, so
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or,
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For example,
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the familiar quantum mechanical commutation relation.


Now we can also write
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Thus, 
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which is the operator version of one of Hamilton's classical equations of motion and another way of writing Newton's second law of motion. Here we see that we have developed another profound concept from gauge invariance alone. When the Hamiltonian of a system does not depend on a particular variable, then the observable corresponding to the generator of the gauge transformation of that variable is conserved. This is a generalized version of Noether's theorem for dimensions other than space and time. Note that by including the space-time coordinates as part of our set of abstract coordinates we unite all the conservation principles under the umbrella of gauge symmetry.

7. 
In this section we will use the Dirac bra and ket notation for state vectors. The linearity postulate in conventional quantum mechanics asserts that any state vector 
[image: image27.wmf] can be written as the superposition
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where the symbol 
[image: image29.wmf] can be viewed as an operator that projects 
[image: image30.wmf] onto the 
[image: image31.wmf] axis. This is also called the superposition principle and is responsible for much of the difference between quantum and classical mechanics, in particular, interference effects and so-called entangled states. However, in our view the superposition principle is not an independent postulate. Rather it is a requirement of POVI. If we could not represent 
[image: image32.wmf] as a linear combination of eigenvectors it would depend on the coordinate system. Once again we find that a postulate of quantum mechanics that is generally considered an independent assumption is a requirement of POVI.


As we found above, certain pairs of operators do not mutually commute. Consider two such operators, where
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Let
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where 
[image: image35.wmf] is the mean value of a set of measurements of A. The dispersion (or variance) of A is defined as
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with a similar definition for 
[image: image37.wmf]. In advanced quantum mechanics textbooks you will find derivations of the Schwarz inequality:
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from which it can be shown that
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which is the generalized Heisenberg uncertainty principle. For example, as we saw from (6.15)

 above,
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from which it follows that 
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The variables (q1, q2, q3) can be identified with the coordinates (x, y, z) of a particle, and the corresponding momentum components are the generators of translations of these coordinates. In this formulation, nothing prevents other particles from being included with their space-time variables associated with other sets of four q's; note that by having each particle carry its own time coordinate we can maintain a fully relativistic scheme. These coordinates may also be angular variables and their conjugate momenta may be the corresponding angular momenta. These angular momenta will be conserved when the Hamiltonian is invariant to the gauge transformations that correspond to rotations by the corresponding angles about the spatial axes. For example, if we take (q1, q2, q3) = (x, y, z), wherex is the angle of rotation about the x-axis, and so on, then the generators of the rotations about these axes will be the angular momentum components (Lx, Ly, Lz). Rotational invariance about any of these axes will lead to conservation of angular momentum about that axis.


Let us look at rotations in familiar 3-dimensional space. Suppose we have a vector V = (Vx, Vy) in the x-y plane. Let is rotate it counterclockwise about the z-axis by an angle . We can write the transformation as a matrix equation
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Specifically, let us consider an infinitesimal rotation of the position vector r = (x, y) by d about the z-axis. From above, 
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And so,
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and



[image: image45.wmf]
 MACROBUTTON MTPlaceRef \* MERGEFORMAT (9.4)

For any function f (x, y),
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to first order. Or, we can write (reusing the function symbol f )
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from which we determine that the generator of a rotation about z is
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which is also the angular momentum about z. Similarly,
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and
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This result can be generalized as follows. If you have a function that depends on a spatial position vector r = (x, y, z), and you rotate that position vector by an angle  about an arbitrary axis, then that function transforms as
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where the direction of the axial vector  is the direction of the axis of rotation. Once again this has the form of a gauge transformation, or phase transformation of f, where the transformation operator is
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From the previous commutation rules it follows that the generators Lx, Ly, and Lz do not mutually commute. Rather,
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and cyclic permutations of x, y, and z. Thus the order of successive rotations is important. Note that, from  (8.5)

,
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Most quantum mechanics textbooks contain the proof of the following result, although it is not always stated so generally: Any vector operator J whose components obey the angular momentum commutation rules,
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and cyclic permutations will have the following eigenvalue equations
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where 
[image: image57.wmf] is the square of the magnitude of J, and
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where m goes from -j to + j in steps of one: m = -j, -j+1, . . . , j-1, j. Furthermore, 2j is an integer. This implies that j is an integer (including zero) or a half-integer. In particular, note that the half-integer nature of the spins of fermions is a consequence of angular momentum being the generator of rotations.


We have seen that the generators of space-time translation form a 4-component set:
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where we recall that c is just a unit-conversion constant. Let us write the corresponding eigenvalues of this set of operators
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Thus we can connect the operator Pk with the operationally defined momentum pk and the operator H with the operationally defined energy E. The squared length of the 4-vector 
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is invariant to Lorentz transformations given by (2.1)

. The invariant quantity m is called the mass of the particle. 


Suppose we have a particle of mass m. In the reference frame in which the particle is at rest th magnitude of its 3-momentum, |p'| = 0. Then its energy in that reference frame is
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which is the rest energy. 


Let us look at the particle in another reference frame in which the particle is moving along the z-axis at a constant speed v. Then, from the Lorentz transformation, the 3-momentum of the particle in that reference frame will be
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We can write this in vector form as
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We note that p (mv when v << c. So, we have (finally) derived the well-known relationship between momentum and velocity. Nowhere previously was it assumed that p = mv.


The energy of the particle in the same reference frame is
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Note that, in general, the velocity of a particle is
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when v << c since, in that case, E = mc2. We can also show that, for all v,
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This is a "free particle" since
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More generally we can write
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where mc2 is the rest energy. The quantity
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is the kinetic energy, or energy of motion, where



[image: image71.wmf]
 MACROBUTTON MTPlaceRef \* MERGEFORMAT (10.13)

when v << c . V(r) is the potential energy. The force on the particle is then
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We are now in a position to interpret the meaning of c, which was introduced originally as a simple conversion factor. Suppose we have a particle of zero mass and 3-momentum of magnitude |p|. Then, the energy of that particle will be
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and the speed will be
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Thus c is the speed of a zero-mass particle, sometimes called "the speed of light." Since c is the same constant in all references frames, the invariance of the speed of light, one of the axioms of special relativity, is thus seen to follow from 4-space rotational symmetry.


So we have now shown that the generators of translations along the four axes of space-time are the components of the 4-momentum, which includes energy in the zeroth component and 3-momentum in the other components. These have their familiar connections with the quantities of classical physics. Mass is introduced as a Lorentz-invariant quantity that is proportional to the length of the 4-momentum vector. The conversion factor c is shown to be, as expected, the Lorentz-invariant speed of light in a vacuum.


We have seen that ( and c are arbitrary conversion factors, so let is now work in units where ( = c = 1. Also. let us use the convention 
[image: image75.wmf]. Then the 4-momentum eigenvalue equation is
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Let us make the gauge transformation,
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The eigenvalue equation is unchanged, provided that  is independent of the space-time position x. This is called global gauge invariance. The generator of the transformation, , is conserved. 


Now suppose that  depends on the space-time position x. In this case, we do a local gauge transformation so that
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That is, the eigenvalue equation is not invariant to this operation. Let us define a new operator, the covariant derivative


[image: image79.wmf]
 MACROBUTTON MTPlaceRef \* MERGEFORMAT (11.4)

where q is a constant and A transforms as
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where
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Then,
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Recall that the operator P associated with the relativistic 4-momentum is
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Let us define, analogously,
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Writing
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we see that this operator P is precisely the canonical 4-momentum in classical mechanics for a particle of charge q interacting with an electromagnetic field described by the 4-vector potential A = (Ao, A), where Ao  = V/c in terms of the scalar potential V and A is the 3-vector potential. We will justify this connection further below. Since (x) = -q(x), q is conserved when (x) is a constant. Also, note that for neutral particles, q = 0 and no new fields need to be introduced to preserve gauge invariance in that case.


Also note that q is the generator of a rotation in a two-dimensional space, which is mathematically an angular momentum. Thus global gauge invariance in this space will result in q being quantized. That is, charge quantization is yet another consequence of point-of-view invariance.

In quantum field theory, the basic quantity from which calculations proceed is the Lagrangian density, L. Just as we can obtain the equation of motion of a particle from the Lagrangian by using Lagrange’s equation, we can obtain the equation of motion of a field from the Lagrangian density and Lagrange’s density equation
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A spin-1 particle of mass mA is described by the Proca Lagrangian density
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where
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The first term in L is gauge invariant while the second term is not unless we set mA = 0. This leads to the deeply important result that particles with spin = 1 whose Lagrangians are locally gauge invariant are necessarily massless. The photon is one such particle. The gluon is another. However, other spin-1 fundamental particles exist with nonzero masses. In the standard model these masses result from spontaneous broken symmetry.


In any case, the existence of a vector field A associated with a massless spin-1 particle is implied by the assumption of local gauge invariance. It is a field introduced to maintain local gauge invariance. That field can be identified with the classical electromagnetic fields E and B, and the particle with the photon. That is, the photon is the quantum of the field A, which itself is associated with the classical 4-vector electromagnetic potential.

12. Conclusions

When physicists formulate mathematical models they must do so in such a way that those models are independent of the point of view of the observer. That is, they must be point-of-view invariant. Otherwise they cannot expect the models to describe an objective reality. Noether showed that any model that does not depend on a specific moment in time, position in space, and direction in space will automatically conserve energy, linear momentum, and angular momentum. Classical mechanics is thus derived from point-of-view invariance. When rotational invariance is extended to space-time, Lorentz invariance and special relativity follow.


Gauge invariance is another name for the invariance under transformations of the coordinate system in the abstract space of mathematical functions such as the quantum mechanical state vector. Quantum mechanics itself can be seen as the mathematics of gauge transformations in which the generators of transformations correspond to various physical observables. By a generalization of Noether’s theorem, global gauge invariance leads to conservation of electric charge and the electric and magnetic fields are introduced to preserve local gauge invariance.


Although not discussed here, Gauge principles also lead to the standard model of particle and fields, with the weak and strong forces also introduced in order to preserve local gauge invariance. The broken gauge symmetry of the electroweak force can be viewed as an attempt to describe events from a special point-of-view--that of current “low energy” experiments. The underlying theory, applicable at high energies such as those in the early universe, remains gauge symmetric.


While gravity remains well described by general relativity, and that theory is also based on point-of-view invariance, additional assumptions are made in its derivation. However, a complete theory of gravity based on gauge principles alone has been proposed.


This paper is based on the author’s 2006 book, The Comprehensible Cosmos.
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