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I.

One  of  the  main  difficulties  that  has  beset  philosophical  attempts  to  accommodate 
mathematics  within  a  broadly  naturalistic  perspective  is  that  mathematical  knowledge 
appears  to  be  responsive  to  an  objective  reality  of  mathematical  facts.  Mathematical 
objects,  however,  are  commonly  characterized  as  causally  inert  and  located  outside  of 
space and time. Now, if these objects belong to a non-spatio-temporal, acausal realm, how 
do we know about them? How do creatures located in space and time gather information 
about entities that are not so located? If the latter are causally impotent, and thus cannot 
affect  us  in  any  way,  it  is  certainly  puzzling  how  our  cognitive  apparatus  could  be 
responsive to them. But then, how could we possibly have any knowledge of mathematics? 

The  naive  position  just  sketched—an  ontological  position  broadly  endorsed  by  a 
majority  of  working  mathematicians—is  not  a  standing  metaphysical  dogma,  but 
something that calls for philosophical treatment. As a matter of fact, it has been vigorously 
challenged, and mainly so because of the epistemological puzzles it raises. It is beyond the 
scope of my present paper, however, to discuss the reasons why many philosophers have 
found this position unpalatable or to assess the strength of their  alternative proposals. 
Instead, I will draw on recent cognitive research in order to account for the actual ways an 
individual can come to know specific, apparently objective mathematical truths.

Current approaches to mathematical cognition divide into two major camps. Cognitive 
studies  try  to  render  mathematical  intuition—the  faculty  that  gives  us  immediate  and 
authoritative  knowledge  of  mathematics—respectable  on  scientific  grounds.  Cultural 
studies, on the other hand, regard mathematics as a form of cultural achievement, like 
literature or architecture.  Both positions have their  own shortcomings. While cognitive 
approaches  are  limited  in  scope  and  fail  to  account  for  complex  mathematical 
developments, cultural approaches are short of detailed answers as to what enables us to 
participate in a common mathematical practice. This situation evinces a need to balance a 
cognitive  perspective  on  mathematical  culture  against  a  cultural  perspective  on 
mathematical  cognition.  Whereas  certain  numerical  concepts,  such  as  the  concept  of 
square root, and of real, imaginary or complex numbers, are only ever accessible to a tiny 
proportion of educated human adults in a subset of cultures, other numerical abilities are 
quite widespread—even among nonhuman species. 

According  to  current  behavioral  and  neuropsychological  evidence,  the  complex, 
uniquely human, culture-specific mathematical skills exhibited by human adults rest on a 
set of psychological and neural mechanisms that (a) are shared by other animals, and (b) 
emerge early in human development, continue to function throughout the lifespan, and 
thus are common to infants, children and adults. It has been proposed that these common 
and evolutionary ancient mechanisms account for humans’ basic “number sense” and form 
the building blocks for the development of more sophisticated numerical skills. Indeed, 
infants  leave  animals  far  behind  in  their  numerical  sophistication.  What  boosts  this 
developmental difference? How do human beings acquire mathematical concepts such as 
the  concept  of  natural  number?  First,  I  will  specify  the  representations  that  are  the 
building blocks for the target concepts. Second, I will describe how the target concepts 
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differ  from  these  basic  representations.  And  finally,  I  will  characterize  the  learning 
mechanisms  that  enable  the  construction  of  the  target  concepts  out  of  those  prior 
representations. 

I  will  argue  that  the  power  of  the  resulting  conceptual  system  derives  from  the 
combination and integration of previously distinct representational systems, capitalizing 
on the human capacity for creating and using external symbols: human beings can only 
develop their distinct conceptual abilities due to their original embeddedness in both the 
physical  world  and,  most  importantly,  in  a  rich  milieu of  cultural  resources.  Thus,  an 
important developmental source of number representations, in addition to the preverbal 
systems mentioned above, is the representation of numbers within natural language.

II.

The world is a dangerous, messy, inscrutable and overwhelmingly complex environment 
in which animals try to make a living. Animals are designed to tidy up their immediate 
environments building nests, dens, ambush sites, scent trails, etc. “They do all this to help 
them keep better track of the things that matter—predators and prey, mates, etc. These are 
done by ‘instinct’: automatized routines for improving the environment of action, making a 
better  fit  between  agent  and  world”  (Dennett  2000).  Among  these  routines,  we  may 
include systems for representing number that create simple numerical expectations about 
the immediate environment (in order to keep track of predators, for instance).

In fact, comparative literature of animals and developmental studies of infants provide 
evidence for a shared “number sense”: a set of distinct representational systems that serves 
as the foundational core of human sophisticated numerical abilities. These “core systems” 
have several “signature properties”. First, they are domain-specific, that is, these systems 
are tuned to specific types of numerical information. Second, they are task-specific, hence, 
each system addresses specific questions about the world, like “How many ___ are there?” 
Third, these representational systems are relatively encapsulated, in other words, they are 
relatively  impervious  to  explicitly  held  beliefs  and  goals—though  the  triggering  of  a 
particular numerical response in a given situation may be goal-directed (see below). And, 
finally,  they  are  robust  across  modalities  of  input  (e.g.,  auditory  or  visual  modalities). 
These properties  can be  used to identify  the particular systems responsible for human 
basic nonverbal numerical competence: (1) a small precise number system, and (2) a large 
approximate number system.

The  small  precise  number  system  accounts  for  a  subject’s  ability  to  identify  small 
numbers  of  individual  objects.  Psychologists  have  christened  this  pre-attentive, 
unconscious  process  “subitizing”  (Butterworth  1999;  Hurford  2001).  Subitizing  has 
distinct signature properties brought to light by variations on Wynn’s celebrated ‘1+1=2’ 
task. Subjects represent the number of items in visual arrays and auditory sequences up to 
a set size limit of 3-4. Animals, as well as infants and adults, fail to represent number of 
items  greater  than  3  (for  animals  and  infants,  “failure  to  represent”  is  interpreted  as 
looking  equally  long at  possible  and  impossible  outcomes).  In  addition,  small  number 
discrimination  is  affected  by  variations  in  continuous  variables.  Instead  of  computing 
discrete number, subjects often respond to continuous variables in terms of “amount” of 
motion,  amount  of  sound,  or  amount  of  “stuff”,  depending  on  their  “goals”  (e.g.,  in 
comparative  judgements,  infants  presented with  one large  cracker  versus  two crackers 
totaling half the area of the large one reliably prefer the larger one, while in choices of 1 vs. 
2 equal-sized crackers, infants spontaneously prefer the larger quantity).

The large  approximate  number system yields a  noisy representation of  approximate 
number and has the following signature properties:  large number discrimination varies 
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relative to the ratio between numerosities, that is, discriminability depends on the set size 
ratio; and second, contrary to small number discrimination, large number discrimination 
is robust over variations in continuous variables. Interestingly, numerical discrimination 
increases  in  precision  over  development.  6-month-old  infants  can  discriminate 
numerosities with a 1:2 but not a 2:3 ratio, whereas 10-month-old toddlers also succeed 
with the latter. Adults, on the other hand, can discriminate ratios as small as 7:8.

To sum up, infants’ processing of large versus small numbers exhibit two dissociations. 
First,  large approximate  number discrimination accuracy varies  with the  ratio  between 
numerosities, whereas small number discrimination varies relative to the absolute number 
of  items,  with  a  set  size  limit  of  about  3.  Second,  large  number  discrimination  is 
impervious to variations in continuous variables, whereas small number discrimination is 
often affected by such continuous properties. These dissociations suggest that large and 
small  numerosities are the province of different systems with different functions:  large 
arrays primarily activate a system for representing sets and comparing their approximate 
numerosities (i.e., estimated cardinal value). Small arrays primarily activate a system for 
representing and tracking numerically  distinct  items, which allows for computations of 
either their continuous quantitative properties or of the number of items in the array.

These basic  representational  systems are common across many species.  When given 
similar  tasks  to  those  presented to human infants  and adults,  animals  show the  same 
signature  properties,  indicating  that  such systems depend on mechanisms with  a  long 
evolutionary  history.  Moreover,  recent  neurophysiological  findings  show  how  the 
functional architecture of our “number sense” (composed by those two dissociated core 
systems for numerical representation) gets implemented in our human brains (Dehaene 
and Piazza 2004).

However, there still remain some open questions. For instance, what factors determine 
which  representational  system  is  deployed  in  a  given  situation?  We  may  allow  the 
numerical  representation of  a given situation to be sensitive to  various contextual  and 
“top-down” influences (Chalmers, French and Hofstadter 1995). Recall that small number 
discrimination  is  affected  by  fluctuations  in  continuous  variables.  What  determines 
whether the computation is performed on discrete number or on continuous variables? In 
a given situation, the representation of discrete number or of continuous variables may 
depend on explicitly (and probably also implicitly) held beliefs and goals, that is, be open 
to contextual and top-down influences. (This explains why core systems of representation 
are said to be only relatively encapsulated.)

III.

What we have to figure out now is how human conceptual knowledge differs from these 
basic  representations.  According  to  Marc  Hauser,  some  animals  may  have  evolved  a 
number category, but not a number concept, which is a distinctly human “acquisition”. 

A number category ... is a category by virtue of the fact that it refers to specific things on the 
basis of their properties. In the case of number, the essential property is the countable item, 
action, or event, independent of its physical attributes.  ...  In contrast, a number concept 
represents a symbol that has a particular relationship to other symbols within the number 
domain. ... [N]umber concepts have unique roles by virtue of the arithmetical operations that 
can be performed on them and with them. (2000, p. 50; emphasis mine)

Hank Davis phrases this distinction in slightly different terms (Butterworth 1999). He 
refers to a number concept as an “absolute numerosity”, which is—according to him—a 
“distinctly  human  invention”.  “No  nonhuman  animal  needs  this  form  of  numerical 
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competence in  order  to  lead to  a  successful,  totally  normal  life”  (p.  159).  Animals  use 
“relative  numerosity”  (a  number  category)  to  compare  different  collections  of  objects: 
“they do not need to understand that each time they see a collection of three things, it has 
the same numerosity, only that in the course of comparing it with other collections, they 
can tell which has more, i.e. it has more than 2 and less than 4 things” (ibid.; my italics). 
Thus, a number category is relative to the collection of objects it refers to “in the course of 
comparing  it  with  other  collections”  (e.g.  three  rivals vs.  three  defenders),  whereas  a 
number concept is “absolute” in so far as it bears a particular relationship to other number 
concepts independently of its particular instantiations (e.g. three equals three “come what 
may”). 

Notice that we have taken a crucial step: from what might be regarded as a numerical 
representation “in use” (in the course of “counting” and “comparing”), a representation 
that exists for a particular collection of objects, to a deliberate numerical representation. 

How  do  these  basic  representations  in  the  organism—embedded  in  procedures  for 
interacting with the environment—become available to the organism? In other words, how 
do these basic representations get re-described (to borrow Karmiloff-Smith’s term) into 
more sophisticated systems of representation up to properly called conceptual systems that 
are  inferentially  articulated?  Our  major  challenge  is  to  specify  the  bootstrapping 
mechanisms that result in representational systems with more expressive power than the 
hemi-semi-demi-numerical systems antecedently available. 

The progressivist and continuist ... is ... embarrassed by the fact that one cannot even begin to 
see how the capacity to count up to infinity could arise little by little in a finite evolutionary 
time (chimps can, at best, count up to four or five. A ‘favorable’ mutant could have arisen, 
mastering numbers up to ten, then another mutant up to twenty... Could we believe that this 
is the story?). Our unique, species specific and unprecedented capacity to deal with numbers 
is (just like language itself) the epitome of evolutionary gratuity and discontinuity. (Piatelli-
Palmarini 1989, p. 35, footnote 12)

We don’t want to believe that story either! Besides, has anybody ever literally  counted 
up to infinity? The closest we’ve come is to create systems of representation that contain 
generative principles for yielding (potentially) infinite lists (cf. Boolos 1998). The concept 
of infinity “is the fruit of a slow process of invention over thousands of years” rather than 
the “epitome of evolutionary gratuity and discontinuity”. For example, the Oksapmin of 
Papua New Guinea have a counting system using body parts that only goes up to 27 and 
has no base structure. This system is adequate for the simple numerical tasks of traditional 
life.  However,  without  a  base  structure,  counting  beyond  27  or  performing  simple 
computations  becomes  very  messy,  and  ultimately  unfeasible.  With  the  advent  of  the 
money economy, the Oksapmin began to transform their “body parts”  counting system 
toward a base system.  And this  socially  and culturally  mediated bootstrapping process 
may, in turn, pave the way for further refinements and extensions of their basic “number 
sense”. (The case is reported in Karmiloff-Smith 1992, as well as the entry ‘Numeracy and 
culture’ in Wilson and Keil 1999). 

However,  as  Susan  Carey  notes,  the  choice  of  metaphor  may  seem  puzzling:  it  is  
impossible to pull oneself up by one’s own bootstrap. Have we just been sent off on a wild 
goose chase?

Well, let’s sort things out. We develop concepts, also mathematical concepts, in order to 
“navigate” (or articulate our experience of) the world. Hence, concepts are individuated on 
the basis of two kinds of considerations:  (a)  their  reference to the world and (b)  their 
relation to each other in a system of inferential relations. Our ongoing concern is how to 
best characterize the learning mechanisms that enable the construction of properly called 
number concepts out of prior basic numerical representations. 
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IV.

The best way to tackle the question is examining the cognitive abilities that are involved 
in “counting”. When we see a small collection of objects, we often determine their number 
instantaneously.  This is  not  counting.  This  process,  which  permits  ‘rapid  numerical 
quantification’, is called  subitization: a fundamental, unconscious system for recognizing 
patterns  that  we  share  with  other  animals  (monkeys  or  chimpanzees,  for  instance). 
Subitization is limited; if the collection has more than three or four objects, we must count 
(Hurford 2001). This might explain why rhesus monkeys fail to “understand” 2+2=4 in 
Wynn’s classical ‘1+1=2’ task. We have already met subitization before, so we don’t need to 
dwell on it now.

Following Gallistel and Gelman (1978), we can distinguish five ‘core principles’ that are 
entailed  in  counting.  First,  there  has  to  be  a  one-to-one  correspondence between  the 
objects to be counted and the labels or symbols we apply to them. Second, the principle of 
ordinality requires a stable count sequence: the labels have to be applied in order. Third, 
there is no restriction on the sorts of things one can count (objects, actions or events): this 
is  the  principle  of  property  indifference.  Fourth,  the  principle  of  order  indifference 
establishes that we can count the objects in any order. Finally, the last label applied in the 
count sequence represents the total number of objects, the cardinality of the set.

The count list (‘one’, ‘two’, ‘three’, and so on) is a system of representation that has the 
power to represent the positive integers,  so long as it  contains a generative system for 
creating an infinite list. When deployed in counting, it provides a representation of exact 
integer values based on the successor function. That is, when applied in order, in one-one 
correspondence with the objects in a set, the ordinal position of the last number word in 
the count provides a representation of the cardinal value of the set—of how many items it 
contains. 

As suggested above, the symbolic, count list representation of number transcends the 
representational  power  of  the  core  systems  of  numerical  representation  available  to 
preverbal infants. Now we need to explain how we arrive at this representational summit.

The  sort  of  learning  we  human  beings  can  achieve  just  by  contemplating  symbolic 
representations of knowledge depends not on our merely, in some sense, perceiving them, 
but also understanding them, and my [Dennett’s] rather curious suggestion is that in order to 
arrive  at  this  marvelous  summit,  we  must  climb  steps  in  which  we  perceive  but  don’t  
understand our own representations. (Dennett 1993)

Indeed, Dennett’s rather curious suggestion has been confirmed to some extent. Cross-
cultural developmental studies (see Carey 2004 for a recent review) show that children go 
through different stages in generating an ordered list of integers and then working out the 
meanings of number words in the count list. Two-year-olds learn to recite the count list 
and even engage in pretend “counting” routines, but need another year and a half to figure 
out how counting represents number. As the child lays down more associations between 
the  auditory  and  articulatory  processes  of  reciting  a  seemingly  meaningless  serially 
ordered list  of  scribble  on the one hand (say “eeny,  meeny,  miney,  mo,...”  or,  for  that 
matter, “one, two, three, four,...”), and other patterns of concurrent activity on the other 
(for instance, touching objects in a set one by one as they recite the list), number words 
gradually become more and more familiar, even without being readily understood. It is 
these “anchors of familiarity” (Dennett’s expression) that give a word, a “label”, saliency 
within a representational  system and pave the way for genuine understanding.  At that 
point,  “the  mere contemplation  of a representation is sufficient to call  to  mind all  the 
appropriate  lessons;  we  have  become  understanders of  the  objects  we  have 
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created” (Dennett 1993).
Now, let me zoom in on the actual developmental steps that children must take in order 

to  work  out  how  counting  represents  number.  First,  we  may  allow  the  child  the 
prenumerical capacity for representing serial order—to engage in an initially meaningless 
mouthing of  serially  ordered lists  of  gibberish.  Eventually,  children learn  to  recite  the 
sequence  of  number  words  “one,  two,  three,  etc.”  but  do  not  have  a  clue  about  their 
meaning yet.  Then,  children become “one-knowers”  (the  term is  borrowed from Carey 
2004), taking ‘one’ to contrast with all the other words in the list, meaning “more than 
one” or “some”.  Two-year-olds will  give you one object if  you ask for ‘one’,  but grab a 
bunch (always greater than one) if you ask for ‘two’, ‘three’, ‘four’, or ‘nine’. Oddly enough, 
they do not create a larger set for ‘two’ than for ‘nine’. Six to nine months later, children 
learn what “two” means and hence become “two-knowers”. After some months being two-
knowers, children become “three-knowers”. And, some months later, they finally induce 
how counting works. The crucial inductive step has the following form (IF): if number word 
x refers to a set with cardinal value n, then the next number word in the list refers to a set 
with cardinal value n+1.

This  whole  bootstrapping  process  draws  on  both  the  small  precise  and  the  large 
approximate systems for numerical representation, in addition to a prenumerical system 
for “voiced” representation of serial order, in order to generate the count list and work out 
the meanings of the number words in the list. The small precise number system supports 
this process from “below” (see how nicely “one”, “two” and “three”-knowers match up with 
its signature limit), the large approximate system sustains it from “above”, while verbal 
representation  of  serial  order  molds  the  representations  of  the  former  systems  into  a 
counting list. The original representations yielded by these basic representational systems 
are re-described into “knowing” representations through a mapping process that connects 
patterns of concurrent action (e.g. touching and reciting) into a new system of “salient” or 
“visible” representations. Finally, the inferential structure of the resulting representational 
system articulates the meanings of the number words according to the general form (IF): 
for instance, ‘five’ meaning “one more than ‘four’, which is one more than ‘three’, which 
is...”

V.

By way of conclusion, I want to anticipate and address two objections that might be 
raised to the present account.  The claim is that children acquire the concept of number 
“bootstrapping” their way through the count sequence. Again, let me summarize the actual 
developmental  steps  that  children  take  in  order  to  work  out  how  counting  represents 
number.  First,  children have a mapping between the first few number words and their 
respective  quantities,  but  do  not—at  least  not  at  this  early  stage—have  any  further 
understanding  of  the  number  system  nor  of  its  formal  (i.e.  arithmetical)  properties. 
Second, children realize that the last label in the count sequence denotes the numerical 
quantity, the total number of items, of the collection being counted. Finally, children notice 
that each successive count term picks out a numerical quantity that is precisely one more 
than the term that precedes it and so induce how counting works: (IF) if number word x 
refers to a set with cardinal value n, then the next number in the list refers to a set with 
cardinal value n+1.

Now, one might argue that the second step in my account of children’s gradual mastery 
of the count sequence is too strong and hence potentially misleading. Once children realize 
that the final word in a count refers to the number of items in a collection, they come to 
know everything there is to know about counting. Hence, no need for a further inductive 
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step (IF). 
At first glance, the objection seems compelling: figuring out how counting works (third 

step) amounts to the realization that counting is a way of enumerating a collection of items 
(second step). However, I believe that each step reflects a different degree of numerical 
understanding. Children may notice  that counting  works—that the final label in a count 
sequence corresponds to the number of items in a collection—without thereby having to 
understand  how (or even  why) it  works. (IF),  that every word in the count picks out a 
quantity with a numerical value of precisely one more than its predecessor, is something 
that children only grasp at a later stage, in which they come to understand subsequent 
count terms and the inferential  relations that hold between the corresponding number 
concepts that they encode.

On the  other  hand,  one  might  make  quite  a  different  objection  and  argue  that  my 
account is to  weak to grant children’s proper understanding of number. What prevents 
children,  say  “four-knowers”,  from  applying  the  same  count  term,  take  “five”,  to  any 
arbitrarily large collection of more than four objects, thus labeling any set larger than four 
“five”?  This  challenge allows for the possibility  that  children’s  application of  the count 
terms systematically differs from the norm in cases outside the test range. So how do we 
know, in general, whether children are interpreting a count term correctly? 

Counting is naturally grounded on children’s “number sense”, the ability to selectively 
respond  to  different  numerosities,  drawing  on both  the  small  precise  and  the  large 
approximate systems for numerical representation.  The bootstrapping process—by which 
children work out the meanings of the number concepts—is supported by the small precise 
number system from “below”, while the large approximate number system sustains it from 
“above”. 

Notice, however, that these systems do not constrain children’s interpretation of a count 
term—any count term—so as to rule out the skeptic’s possible scenario. For one thing, the 
large  approximate  number  system  only  yields  a  noisy  representation  of  approximate 
number. And, although numerical discrimination increases in precision over development, 
many instances will fall outside our discriminability threshold. 

In order to circumvent such difficulties, I allowed for a prenumerical system for “voiced” 
(or “written” or, for that matter, any other stable format of your choice) representation of 
serial  order.  The  idea  being  that  verbal  representation  of  serial  order  molds  the 
representations yielded by these basic nonverbal representational systems into a counting 
list.  In  addition,  recall  that  I  distinguished  five  ‘counting  principles’  to  work  out  the 
meanings of the number words in the list: the point is that the skeptical scenario violates 
the  so-called  “correspondence  principle”,  the  one-to-one  correspondence  between  the 
items to be counted and the labels or symbols we apply to them, which prevents a count 
term to be applied more than once in a count. 

VI.

Bootstrapping processes are not only present during ontogenetic time, archeologists and 
anthropologists have described processes of cultural construction over thousands of years 
of  historical  time  (Ascher  1998,  2002).  This  raises  an  important  question:  Is  the 
developmental process that has just been described already pre-specified in infants’ innate 
dispositions,  or do the resulting capacities  rather depend to an important degree (how 
important?) on the cultural resources (e.g., pre-designed inferential structures) that the 
child acquires as they are moved from the child’s surrounding culture into its brain? This is 
another  instance  of  the  old  nature/nurture  debate,  where  a  cognitive  perspective  on 
mathematical culture needs to be balanced against a cultural perspective on mathematical 



8

cognition. And, as with other chicken and egg problems, it’s far from clear how to go about 
gaging it. 

Nevertheless,  so much is clear:  without some innately specified attention biases and 
principles,  numerical  competence  cannot  develop.  On  the  other  hand,  without  an 
appropriate cultural  environment, number competence cannot develop  either!  Consider 
the case of the Pirahâ, an isolated Amazonian tribe in Brazil (Karmiloff-Smith 1992; Carey 
2004). The Pirahâ people are literally “two-knowers”, they only posses a 1/2/many system 
for representing number, and have no representations of large exact numerical values at 
all.  This  indicates  that  whatever  numerical  abilities  develop subsequently  they are  not 
“already  there”.  Rather  the  capacity  to  develop  such  abilities  is  there.  Development 
transforms this capacity, sometimes in fundamental ways.
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