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Abstract

It is argued that Weyl’s theory of gravitation and electricity came out of
‘mathematical justice’: out of the equal rights direction and length. Such
mathematical justice was manifestly at work in the context of discovery,
and is enough (together with a couple of simple and natural operations) to
derive all of source-free electromagnetism. Weyl’s repeated references to
coordinates and gauge are taken to express equal treatment of direction and
length.

1 Introduction

It is almost always claimed' that Weyl deliberately unified gravitation and elec-
tricity in the rectification of general relativity he attempted in 1918. In fact the
unification, as Bergia [6] and Ryckman [7] have pointed out and a couple of pas-
sages> show, was the unintended outcome of a priori* prejudice.’ But what

1 Certainly by Folland [1], Trautman [2], Yang [3], Perlick [4], Vizgin [5] and others.
2 [8] pp. 148-9: “Indem man die erwihnte Inkonsequenz beseitigt, kommt eine Geometrie zu-
stande, die iiberraschenderweise, auf die Welt angewendet, nicht nur die Gravitationserscheinun-
gen, sondern auch die des elektromagnetischen Feldes erklirt.” 3 [9]: “Ubrigens miissen Sie
nicht Glauben, daB ich von der Physik her dazu gekommen bin, neben der quadratische noch die
lineare Differentialform in die Geometrie einzufiihren; sondern ich wollte wirklich diese ,,Inkon-
sequenz,” die mir schon immer ein Dorn im Auge gewesen war, endlich einmal beseitigen und
bemerkte dann zu meinem eigenen erstaunen: das sieht so aus, als erklirt es die Elektrizitéit.”
4 As opposed to “experimentally founded” or even “empirically justified” (with respect to the
past; a posteriori justification is of course another matter). A priori considerations can be @s-
thetic or mathematical, for instance. > I say “prejudice”—and not “principle” or “assumption,”
for instance—to emphasize the unexpected, gratuitous, almost unaccountable character of the
considerations.



prejudice?

The evidence as I read it suggests the theory came straight out of Weyl’s sense
of mathematical ‘justice,” which led him to put the direction and length of a vector
on an equal footing. Levi-Civita [10] had discovered that the parallel transport de-
termined by Einstein’s covariant derivative was not integrable—while length, far
from depending on the path taken, remained unaltered. For Weyl this was unfair:
both features deserved the same treatment.® He remedied with a connection that
made congruent transport (of length) just as path-dependent as parallel transport.
This ‘total’ connection restored justice through a length connection it included, an
inexact one-form Weyl couldn’t help identifying with the electromagnetic four-
potential A,” whose four-curl ' = dA, being closed (for dFF = d*>A vanishes
identically), provides Maxwell’s two homogeneous equations. Source-free elec-
tromagnetism (up to Hodge duality at any rate) thus came, quite unexpectedly, out
of Weyl’s surprising sense of mathematical justice.

Admittedly there were also intimations,® from the beginning, announcing a
‘telescepticism’ (3.3) opposed to distant comparisons, which Ryckman has rightly
traced back to Husserl. Other texts® from the same period indicate a rather murky

6 18] p. 148: “[...] und es ist dann von vornherein ebensowenig anzunehmen, dafl das Problem
der Langeniibertragung von einem Punkte zu einem endlich entfernten integrabel ist, wie sich das
Problem der Richtungsiibertragung als integrabel herausgestellt hat.” 7 Writing the geomet-
rical objects of which Weyl often gives no more than the components may seem anachronistic.
But he undeniably sees the geometry behind the components, and sometimes explicitly refers
to the underlying geometrical object, e.g. “Ein (kontravarianter) Vektor ¢ im Punkte P hat mit
Bezug auf jedes Koordinatensystem gewisse n Zahlen &%, die sich beim Ubergang zu einem an-
dern Koordinatensystem [...]” ([8] p. 149), or “[...] die g;x [...] bilden die Komponenten des
Gravitationspotentials. [ ...] einem Viererpotential [...] dessen Komponenten ¢; [...]" (previ-
ous page). So I see no harm in using A to denote the “Viererpotential,” whose components are
A; = (A, 0;) = p;, and g to denote the “Gravitationspotential,” with components g;;, = ¢(0;, 0;);
and so on. % [8] p. 148, for instance: “In der oben charakterisierten Riemannschen Geome-
trie hat sich nun ein letztes ferngeometrisches Element erhalten [...].” Or (same page): “Eine
Wahrhafte Nahe-Geometrie darf jedoch nur ein Prinzip der Ubertragung einer Linge von einem
Punkt zu einem unendlich benachbarten kennen [ ...].” Further adumbrations—such as the title:
“Reine Infinitesimalgeometrie”’—can be found in [11], which came out about half a year after the
communication of [8]. ? [12] p- 125: “Jene ,,0bjektive” Welt, welche die Physik aus der von
uns unmittelbar erlebten Wirklichkeit herauszuschilen bestrebt ist, konnen wir nach ihrem beze-
ichenbaren Gehalt nur durch mathematische Begriffe erfassen. Um aber die Bedeutung, welche
dieses mathematische Begriffssystem fiir die Wirklichkeit besitzt, zu kennzeichnen, miissen wir
irgendwie seinen Zusammenhang mit dem unmittelbar Gegebenen zu beschreiben versuchen, eine
Aufgabe der Erkenntnistheorie, die naturgemif} nicht mit physikalischen Begriffen allein, sondern
nur durch besténdige Berufung auf das in BewuBtsein anschaulich Erlebte geleistet werden kann™;
the introduction to [13]; and [14]. All three were brought to my attention by a referee.



phenomenological background that helps situate such intimations within a devel-
oping ‘infinitesimal’ agenda. But this conceptual framework, as it appears around
1918 at any rate, is logically insufficient on its own to bring together gravitation
and electricity. The later texts quoted in footnotes 27 and 28 can be taken to
provide something approaching logical sufficiency, which could then be ascribed
to the whole agenda a posteriori. My interpretation (3.1) of an insistent contra-
position of coordinates and gauge has led me to stress the role of ‘mathematical
justice’ instead, whose compelling logical sufficiency spares one the ambiguities
and chronological uncertainties of a more ambitious (and ideologically richer)
kind of reconstruction. I have little or nothing to add to Ryckman’s interpreta-
tion, which retains its validity and great interest. But since a viable alternative
can only enrich our understanding of Weyl’s theory, especially of its origins, I
will contend that what was really at work in the spring of 1918, what effectively
gave rise to the theory, was the equal rights of direction and length. As the textual
evidence underdetermines its interpretation, why not explore the available ‘free-
dom’ and offer a new reconstruction consistent with that evidence. The freedom
needn’t be entirely even and uniform, without relief or texture; it could be varied,
with ‘accidents’ of all sorts; regions of it may be favoured by the familiar crite-
ria of simplicity, elegance, economy, convenience and so forth. Needless to say
I claim to have found a distinguished ‘sweet spot’ within the freedom, and that
my interpretation is not only compatible with the evidence, but even suggested by
it—especially by Weyl’s harping on coordinates vs. gauge, the way I read it at any
rate ...

2 Background: Einstein, Levi-Civita

We can begin with aspects of Einstein’s theory of gravitation, since Weyl’s the-
ory grew out of it. What interests us above all is affine structure, given by the
Christoffel symbols I73. Through the geodesic equation

2z dabdxe
) ds? e ds ds 0
(a = 0,...,3) and the wordlines satisfying it, the Christoffel symbols provide a
notion of (parametrised!®) straightness, of inertial, unaccelerated motion, of free

10" For (1) determines an equivalence class [s] of affine parameters, each parameter of which gives
the proper time of a regular clock, with its own zero and unit of time. The parameters belonging
to [s] are related by affine transformations s — wvs + (, where the constants v and ¢ give the unit
and zero. The constant v is typically chosen so that g(9y, 9p) = 1.



fall.

The left-hand side of (1) gives the components (dz®, V) of the covariant
derivative V ;¢ of the vector & with components dz®/ds = (dxz®, ), in the direc-
tion ¢ tangent to the worldline

o:l - M

s — o(s)

with coordinates 0%(s) = x%(o(s)), where I is an appropriate interval and M
the differential manifold representing the universe; a = 0,. .., 3. The Christoffel
symbols are related to V by

Fl;lc = <dl'a7 Vabac>,

where the basis vectors 0, = O,y = 0/0x* are tangent to the coordinate lines of
the system x®.

Einstein only appears to have explored the infinitesimal behaviour of the par-
allel transport determined by his covariant derivative. It was Levi-Civita [10] who
first understood that if Vg vanishes, as in Einstein’s theory, the direction of the
vector V; € T, M transported according to V;V; = 0 depends'! on the path o
taken—whereas the squared length [, = ¢g(Vj, V;) remains constant along o, for

Vg =0=VsVs

means that dl,/ds = Vsl vanishes.

3 The emergence of Weyl’s theory

3.1 The equal rights of direction and length

Weyl felt that as parallel transport depended on the path taken, congruent transport
ought to as well. In fact his generalisation of Einstein’s theory appears to have
been almost entirely determined by the intention of putting direction and length
on an equal footing. The following table!>—parts of which may for the time being

1 110] p. 175: “La direzione parallela in un punto generico P ad una direzione () uscente da
un altro punto qualsiasi P, dipende in generale dal cammino secondo cui si passa da Py a P.
L’indipendenza dal cammino & proprieta esclusiva delle varietd euclidee.”  '?> Parts of it were
inspired by Coleman and Korté [15] pp. 204-5, 211-2.



be more intelligible than others—outlines Weyl’s programme.

[DIRECTION |

coordinates (up to gauge) gauge
gravitation electricity
parallel transport congruent
5 (Levi-Civita) connection A
Ve = —rgxbve 5l = —(a, X) = —A X"
R, (of I2) curvature F=dA
coordinates y* (at P): I)2, =0  geodesic  gauge (at P): A/ =A+d\=0
7 4 IEabic — o equiv. princ. a=—lA—a =0

A few words about “coordinates (up to gauge).” The parallel between coordinates
and gauge, which Weyl draws!3:14:13-16 gver and over, can be seen as a parallel
between direction and length. For surely Weyl does not mean ‘“coordinates in-
cluding gauge—as opposed to gauge,” which would be redundant.!” And up to
gauge, coordinates provide no more than direction: The coordinates z* assign to
each event P € M abasis 0, € TpM, and a dual basis

dx® = gb((?a) =g(0,,-) € TpM

13 18] p. 150: “Zum Zwecke der analytischen Darstellung haben wir 1. ein bestimmtes Koor-
dinatensystem zu wihlen und 2. in jedem Punkte den willkiirlichen Proportionalitétsfaktor, mit
welchem die g;;, behaftet sind, festzulegen. Die auftretenden Formeln miissen dementsprechend
eine doppelte Invarianzeigenschaft besitzen: 1. sie miissen invariant sein gegeniiber beliebigen
stetigen Koordinatentransformationen, 2. sie miissen ungeindert bleiben, wenn man die g;j, durch
Agix ersetzt, wo A eine willkiirliche stetige Ortsfunktion ist. Das Hinzutreten dieser zweiten In-
varianzeigenschaft ist fiir unsere Theorie charakteristisch.” '# [11] p. 396: “Zum Zwecke der
analytischen Darstellung denken wir uns 1. ein bestimmtes Koordinatensystem und 2. den an jeder
Stelle willkiirlich zu wéhlenden Proportionalititsfaktor im skalaren Produkt festgelegt; damit ist
ein ,,Bezugssystem’*® fiir die analytische Darstellung gewonnen.” And footnote 9: “Ich unter-
scheide also zwischen ,,Koordinatensystem™ und ,,.Bezugssystem.*” 5 011] p- 398: “In alle
Groflen oder Beziehungen, welche metrische Verhiltnisse analytisch darstellen, miissen demnach
die Funktionen g;x, ; in solcher Weise eingehen, daf} Invarianz stattfindet 1. gegeniiber einer
beliebigen Koordinatentransformation (,,Koordinaten-Invarianz) und 2. gegeniiber der Ersetzung
von (7) durch (8) (,MaBstab-Invarianz*).” !¢ [16] p. 101: “Um den physikalischen Zustand
der Welt an einer Weltstelle durch Zahlen charakterisieren zu konnen, mufl 1. die Umgebung
dieser Stelle auf Koordinaten bezogen sein und miissen 2. gewisse Mafleinheiten festgelegt wer-
den. Die bisherige Einsteinsche Relativititstheorie bezieht sich nur auf den ersten Punkt, die
Willkiirlichkeit des Koordinatensystems; doch gilt es, eine ebenso prinzipielle Stellungnahme zu
dem zweiten Punkt, der Willkiirlichkeit der MaBeinheit, zu gewinnen.” 7 Cf. [8] p. 149: “Wird
die Mannigfaltigkeit der Raumpunkte durch Koordinaten z; dargestellt, so sind durch die Metrik
im Punkte P die g;; nur ihrem Verhiltnis nach festgelegt.”



giving the components V¢ = (dz® V') of any vector V' € TpM; a = 0,...,3.
The recalibration'® g — e?*¢ induces a transformation V s eV, or V4 — AV,
through

e g(V, V) = g(eV,e*V) = g(e10,,e*0,) VOV = g(0,, 0) e Ve VP,
Direction, given by the ratios
MV AV VM=V Vv Y
remains unaffected.
Weyl clearly distinguishes between a ‘stretch’ (like a stretch of road) and its

numerical length, determined by the gauge chosen. Just as a direction [e*V ]y
is ‘expanded’ with respect to a coordinate system, which provides its numerical

representation (the ratios V° : --. : V3), a stretch gets ‘expanded’ in a gauge,
which likewise gives a numerical representation, the (squared) length
I =ePg(V, V).

The rest of the table should in due course become clearer. Let us now see
how the inexact one-form A, which gives rise to so much of electromagnetism,
emerges from the equal rights of direction and length.

3.2 Electromagnetism from equal rights

Weyl calls a manifold M affinely connected if the tangent space TpM at every
point P € M is connected to all the neighbouring tangent spaces T» M by a

mapping
x :TpM — TpM
Vp— Vp = ExVp
linear both in the ‘main’ argument Vp € TpM and in the (short') directional

argument X = P’ — P, where P’ (being near P) and hence X are viewed as lying
in T’p M. Being linear, =y will be represented by a matrix:

50 = (dr®, Ex0,.) = 52 X°

= (dz*, Zp,0.)(dz", X).

18 The convenient ‘exponential’ recalibration is not used by Weyl.  !° The necessary shortness
of X seems inconsistent with linearity, which would ‘connect” P with the entire tangent space
TpM and not just with the small neighbourhood ‘covering” M. In this context it may be best
to view the linearity in the directional argument as being appropriately restricted (of course the
length of X does not matter in differentiation, in which limits are taken).

6



Weyl specifically refers to the components 6V = (dxz%,, Vp/) — (dx%h, Vp), re-
quiring them to be linear in the components X° and V5 = (dx%, Vp). The bilinear
function

r({X'pAvep) = ove

will be a matrix, represented by I}2; the difference 5V is therefore — I’ X°V®.
With respect to the geodesic coordinates y* which make

re=rgx’
= (dy", VxOuy))

and 0V vanish, leaving the components V' unchanged, = becomes the identity
matrix
(S? = <dya, Exac(y)> e dlag(l, 1, 1, 1)

Physically this has to do with the equivalence principle, according to which a grav-
itational field /7, can always be eliminated or generated at P by an appropriate
choice of coordinates.

With equal rights in mind Weyl turns to length, using the very same scheme.
To clarify his procedure we can take just a single component of the difference
{6V, ..., 8V3}, calling it 61 (this will be the ‘squared-length-difference scalar’).?
The upper index of I, accordingly disappears, leaving?!

5l = [, X°Ve.

If we now take a single component of the main argument {V°, ... V3}, calling it
[ (this will be the squared length), the second index of [}, disappears as well, and
we are left with

6l = I, X",

where I, = (A, 8,) are the components of a one-form,?? denoted A with electric-
ity in mind.

20 Weyl appears to use d and § interchangeably, and d in a way—see footnote 23—that is unusual
not only today, but even then. He does not distinguish between the scalar representing the differ-
ence in squared length, and the corresponding one-form (as we would call it); but the distinction
nonetheless seems useful. 2! We can perhaps think of the hybrid, intermediate connection I, as
being something like (A, V,0.). 2 One may wonder how the tensor A can be the counterpart
of the connection /3, which is not a tensor. The components A, = (A, 0,) = I, only transform
as a tensor with respect to coordinate transformations A, +— A, = A, <dfb, Ou(z))> however; with
respect to recalibration A, — A/, = A, + 9, the components A, do not transform ‘tensorially,
and can be locally cancelled, for instance.



But this is not really Weyl’s argument, which is better rendered as follows.
The object A generating the squared-length-difference scalar §/ has to be linear
in the squared length [ and the direction X. A linear function A(l, X) = ¢l of a
scalar [ and vector X yielding a scalar 5/ will be a one-form:*

ol = —{a, X) = —(a, ) (da’, X) = —a X°
= (A, X))l = —(A, o) (da’, X )| = — A, X",

where « is the squared-length-difference one-form. An exact one-form A = du
would make congruent transfer integrable, removing the dependence of the recal-

ibration
LA b Au
ehd=eld—¢

on the path v : [0,1] — M, where Ay = py — po is the difference between
the values p; = pu(Py) and po = p(Fy) of pat P = (1) and By = ~(0).
Mathematical justice therefore demands that A be inexact; so the curl /' = dA
cannot vanish identically.

Confirmation that A has to be one-form, possibly inexact, is provided by
Weyl’s requirement that the squared-length-difference one-form o« = —I[A be
eliminable at any point P by recalibration.?* As [ is given (and does not vanish),
this amounts to

A+d =0

at P, where the gauge \ is geodesic.?® Since d)\ is a one-form, A must be one too.
Though d\ is exact, Weyl only asks that it cancel A ar P—so A needn’t even be
closed, or locally exact.

With F' = dA and its consequence dF' = 0 before him Weyl could not
help seeing the electromagnetic four-potential A, the Faraday two-form ' = dA
(which vanishes wherever A is closed) and Maxwell’s two homogeneous equa-
tions,?® expressed by dF' = 0—not to mention an electromagnetic ‘equivalence

23 Weyl in fact writes dl = —Idp, whereas I write o = —[ A. The misleading d’s cannot be under-
stood globally—or even locally, in the theory of gravitation and electricity, in which F' = d?¢ will
be the Faraday two-form: where dy is closed, in other words the differential (even only locally)
of a function ¢, there would be no electromagnetism. 2 17] p. 122: “Ein Punkt P hingt also
mit seiner Umgebung metrisch zusammen, wenn von jeder Strecke in P feststeht, welche Strecke
aus ihr durch kongruente Verpflanzung von P nach dem beliebigen zu P unendlich benachbarten
Punkte P’ hervorgeht. Die einzige Forderung, welche wir an diesen Begriff stellen (zugleich die
weitgehendste, die iiberhaupt moglich ist), ist diese: Die Umgebung von P a6t sich so eichen,
daf} die MaBzahl einer jeden Strecke in P durch kongruente Verpflanzung nach den unendlich be-
nachbarten Punkten keine Anderung erleidet.” 2° By analogy one might even call it ‘inertial’ or
‘unaccelerated” 26 Infull, V-B=0and V x E + dB/dt = 0.



principle’?” according to which the squared-length-difference scalar 4/ and one-

form «, as well as the electromagnetic four-potential A, can be eliminated or
produced at a point by an appropriate gauge function \.
In coordinates

0 —-E, —E, —E.
E, 0 B. -B,
E, —B. 0 B, |’
E. B, —-B, 0

Fab = F(aaa ab) = aaAAb - 8bAa =

where F,, I, F, are the components of the electric field and B,, B,, B, those of
the magnetic field. Or F = F;, dax® A da® /2. The vanishing three-form

1
dF = 5de0 A da® A dxt

1
= éf)@FbC dz® A da® A dxt

has components dF'(0,, Oy, 0:) = OuFpe + OpFrg + OcFap.

Maxwell’s other two equations are obtained, in ‘source-free’ form, by setting
d*F' equal to zero, where *F’ is the Hodge dual of the Faraday two-form, with
coordinates

0 B, B, B
-B, 0 E. -—E,
-B, -E. 0 E,
-B. E, —-E, 0

<*F>ab = (*F)<aaaab) =

Electromagnetism thus emerged, altogether unexpectedly, from the equal rights
of direction and length.

3.3 The illegitimacy of distant comparisons

Weyl has another a priori prejudice, rooted, as Ryckman [7] has cogently ar-
gued, in Husserl’s transcendental phenomenology. It is expressed in two similar

27 Lyre [18] speaks of a generalised equivalence principle.



passages,”®?° which roughly say: As the curvature R(P) is subtle and hard to

perceive directly, a “cognizing ego” at the “ego center” P € M takes itself to
be immersed in the ‘psychologically privileged’ tangent space Tp M. The uni-
verse M resembles Tp M in the immediate vicinity Ll of P, where they practically
coincide, and ‘cover’ one another. Beyond il the relation between M and the ‘in-
tuitive’ space 1'p M grows looser, as the universe goes its own way, bending as the
energy-momentum tensor 7' varies.

Ryckman writes (p. 148) that

Weyl restricted the homogeneous space of phenomenological intu-
ition, the locus of phenomenological Evidenz, to what is given at, or
neighboring, the cognizing ego [ ...]. But in any case, by delimiting
what Husserl termed “the sharply illuminated circle of perfect given-
ness,” the domain of “eidetic vision,” to the infinitely small homoge-
neous space of intuition surrounding the “ego-center” [ ... ]

This restriction or delimitation can be understood in two ways: directly, in terms
of the limitations of our senses, and of an accordingly circumscribed domain of
sensory access, of “eidetic vision”; or more mathematically, as follows: The cog-
nizing ego attaches a kind of intuitive ‘certainty’ to all of Tp M, which, being
flat and homogeneous,*® can be captured or ‘understood’ in its entirety once any
little piece is. The universe shares that certainty as long as it resembles Tp M,

28 [19] p. 98: “Erkennt man neben dem physischen einen Anschauungsraum an und behauptet
von ihm, daf} seine MaBstruktur aus Wesensgriinden die euklidischen Gesetze erfiille, so steht
dies mit der Physik nicht in Widerspruch, sofern sie an der euklidischen Beschaffenheit der
unendlichkleinen Umgebung eines Punktes O (in dem sich das Ich momentan befindet)
festhdlt [ ...]. Aber man mufl dann zugeben, dal} die Beziehung des Anschauungsraumes auf den
physischen um so vager wird, je weiter man sich vom Ichzentrum entfernt. Er ist einer Tangen-
tenebene zu vergleichen, die im Punkte O an eine krumme Flédche, den physischen Raum, gelegt
ist: in der unmittelbaren Umgebung von O decken sich beide, aber je weiter man sich von O
entfernt, um so willkiirlicher wird die Fortsetzung dieser Deckbeziehung zu einer eineindeutigen
[sic] Korrespondenz zwischen Ebene und Fliche.” 2 [20] p. 52: “Die Philosophen méogen
recht haben, daf} unser Anschauungsraum, gleichgiiltig, was die physikalische Erfahrung sagt, eu-
klidische Struktur trigt. Nur bestehe ich allerdings dann darauf, da zu diesem Anschauungsraum
das Ich-Zentrum gehort und dal die Koinzidenz, die Beziehung des Anschauungsraumes auf den
physischen um so vager wird, je weiter man sich vom Ich-Zentrum entfernt. In der theoretis-
chen Konstruktion spiegelt sich das wider in dem Verhéltnis zwischen der kriimmen Fldche und
ihrer Tangentenebene im Punkte P: beide decken sich in der unmittelbaren Umgebung des Zen-
trums P, aber je weiter man sich von P entfernt, um so willkiirlicher wird die Fortsetzung dieser
Deckbeziehung zu einer eindeutigen Korrespondenz zwischen Fliche und Ebene.” 3° Curvature
(which vanishes identically) and the metric are constant.
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and hence only in &, outside of which it is subject to all sorts of unforeseeable
variations.

Integrable congruent propagation had to be rejected as allowing the certain
comparison of lengths well beyond 4, indeed at any distance, without the welcome
ambiguities related to the path followed. Returning to Ryckman (p. 149):

Guided by the phenomenological methods of “eidetic insight” and
“eidetic analysis”, the epistemologically privileged purely infinites-
imal comparison relations of parallel transport of a vector, and the
congruent displacement of vector magnitude, will be the foundation
stones of Weyl’s reconstruction. The task of comprehending “the
sense and justification” of the mathematical structures of classical
field theory is accordingly to be addressed through a construction
or constitution of the latter within a world geometry entirely built
up from these basic geometrical relations immediately evident within
a purely infinitesimal space of intuition. A wholly epistemological
project, it nonetheless coincides with the explicitly metaphysical as-
pirations of Leibniz and Riemann to “understand the world from its
behaviour in the infinitesimally small.”

3.4 The two prejudices

Removed from the context of Weyl’s theory, the two prejudices are entirely dis-
tinct. While one is markedly infinitesimal, the other— ‘mathematical justice’—has
nothing (necessarily) infinitesimal about it: in a spirit of equal rights one could re-
quire, for instance, both the directions and lengths of the vectors in some set to
have the same kind of distribution—uniform, say, or Gaussian—around a given
vector. Nothing infinitesimal about that.

An abundant insistence in the early going on the equal rights of direction and
length, together with the absence, back then, of any explicit, articulated expres-
sion of the telescepticism of 3.3, suggests the following account. First there was
mathematical justice, which, far from being at odds with Weyl’s nascent infinites-
imal agenda, supported it, perhaps even suggesting aspects. In due course Weyl’s
‘purely infinitesimal geometry’ acquired more explicit transcendental-phenomen-
ological grounding (footnotes 27 and 28), which can in hindsight make the appar-
ently gratuitous early insistence on equal rights somewhat less surprising.

11



4 Compensating transformations

We have seen how Weyl’s theory, building on general relativity, came out of the
inexact one-form A—whose transformations
(2) A— A =A+du

are counterbalanced in the theory by

3) g—4g =ey,
leaving length unaltered. Such compensation is fundamental enough to be worth
looking at briefly.

Freedom to transform A according to (2) is left by the length curvature ' =
dA, which is indifferent to an exact term dyu, as

F=dA =dA+ d*n = dA.

But (2) does change length. Transporting the vector X, from point F, with
value pg = p(FPp) to point P, with value iy = p(P;), the final squared length
g1(X1, X1) acquires the additional (integrable) factor e, where Ay = 1 — fig.
For p recalibrates, along a curve -y, according to

eh A el A = el At £ el A,
and therefore
91(X1, Xp) = ef”Ago(Xo, Xo) # €f”A,90(Xo,Xo)-
But the conformal transformation (3) compensates, leaving length unchanged:
gi(Xla Xi) =e"gi(Xy, Xq) = €f”A/96<X0, Xo) = €f”A€A“€”OQO(X07 Xo)
The exponents cancel, yielding the original dilation
g1 (X1, X1) = el A go(Xo, Xo).

The metric g is compatible with the covariant derivative V if V¢ vanishes, in
which case the straightest worldlines (satisfying V ;o = 0) will also be stationary,

satisfying
5/\/g(d,d)ds = (5/ds =0

too. The covariant derivative of the recalibrated metric ¢’ only vanishes if y is a
constant (for then du vanishes); otherwise

Vg =du®d,
which combines (2) and (3), to express the weaker Weyl compatibility.
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5 Einstein’s objection

Out of a sense of mathematical justice, then, Weyl made congruent displacement
just as path-dependent as parallel transport. But experience, objected Einstein,
is unfair, showing congruent dispacement to be integrable. In a letter to Weyl
dated April 15th (1918) he argued®' that clocks running at the same rate at one
point will continue to run at the same rate at another, however they get there—
whatever the requirements of mathematical justice. Four days later he reformu-
lated*? the objection in terms of the ‘proper frequencies’ of atoms (rather than
genuine macroscopic clocks) “of the same sort”: if such frequencies depended on
the path followed, and hence on the different (electromagnetic) vicissitudes of the
atoms, the chemical elements they would make up if brought together would not
have the clean spectral lines one sees.

But even if experience shows congruent displacement to be integrable, it would
be wrong to conclude that the equal rights of direction and length led nowhere;
for the structure that came out of Weyl’s surprising sense of mathematical justice
would survive in our standard gauge theories, whose accuracy is less doubtful.

6 Final remarks

There are various levels of ‘experience,” ranging from the most concrete to the
most abstract: from the most obvious experimental level, having to do with the re-
sults of particular experiments, to principles, perhaps even instincts, distilled from

31 «§g schon Ihre Gedanke ist, muss ich doch offen sagen, dass es nach meiner Ansicht aus-
geschlossen ist, dass die Theorie die Natur entspricht. Das ds selbst hat nimlich reale Bedeutung.
Denken Sie sich zwei Uhren, die relativ zueinander ruhend neben einander gleich rasch gehen.
Werden sie voneinander getrennt, in beliebiger Weise bewegt und dann wieder zusammen ge-
bracht, so werden sie wieder gleich (rasch) gehen, d. h. ihr relativer Gang hingt nicht von der
Vorgeschichte ab. Denke ich mir zwei Punkte P; & P» die durch eine Zeitartige Linie verbun-
den werden konnen. Die an P; & P» anliegenden zeitartigen Elemente ds; und ds, konnen dann
durch mehrere zeitartigen Linien verbunden werden, auf denen sie liegen. Auf diesen laufende
Uhren werden ein Verhiltnis ds; : dss liefern, welches von der Wahl der verbindenden Kurven
unabhingig ist.—L&sst man den Zusammenhang des ds mit Massstab- und Uhr-Messungen fallen,
so verliert die Rel. Theorie iiberhaupt ihre empirische Basis.” 32 “[...] wenn die Linge eines
Einheitsmassstabes (bezw. die Gang-Geschwindigkeit einer Einheitsuhr) von der Vorgeschichte
abhingen. Wire dies in der Natur wirklich so, dann konnte es nicht chemische Elemente mit
Spektrallinien von bestimmter Frequenz geben, sondern es miisste die relative Frequenz zweier
(rdumlich benachbarter) Atome der gleichen Art im Allgemeinen verschieden sein. Da dies nicht
der Fall ist, scheint mir die Grundhypothese der Theorie leider nicht annehmbar, deren Tiefe und
Kiihnheit aber jeden Leser mit Bewunderung erfiillen muss.”
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a lifetime of experience. One such principle could be Einstein’s “I am convinced
that God does not play dice,” to which, having—we may conjecture—noticed that
the causal regularities behind apparent randomness eventually tend to emerge, he
may ultimately have been led by experience: by his own direct experience, to-
gether with his general knowledge of science and the world. One would nonethe-
less hesitate to view so general and abstract a principle as being a posteriori,
empirical. It is clearly not a posteriori with respect to any particular experiment;
only, if at all, with respect to a very loose, general and subjective kind of ongoing
experience, capable of being interpreted in very different ways.

An unexpected empirical fertility of apparently a priori and unempirical prej-
udice can sometimes be accounted for in terms of a derivation, however indirect,
from experience: by attributing remote empirical roots to considerations which at
first seem to have nothing at all to do with experience. The world can admittedly
be experienced in very different ways, some much less obvious and straightfor-
ward than others; but here we have a prejudice which—however subtle and devel-
oped one’s faculties for interpreting experience—seems to be completely unem-
pirical. Perhaps the empirical shortcomings of the theory are best blamed, then,
on the totally unempirical nature of the prejudice from which it stemmed.

Or is it so completely unempirical? As mathematical justice is at issue, the
principle of sufficient reason can come to mind: if there is an imbalance, an un-
expected difference, there had better be a reason for it—failing which, balance,
or rather justice should prevail. Even Einstein’s dice may come to mind: If a
situation of apparent balance, such as

1
V2

gives rise to an imbalance (as it must, if a measurement is made), such as the
eigenvalue +1 of the operator A = |a)(«| — |3) (5], there ought to be a reason: a
circumstance unrepresented in (4) which favours |«). For God does not play dice:
symmetry-breaking is never entirely spontaneous. But the ‘balance’ before the
disruption is not always so easily seen; what tells us in general which objects or
entities are to be put on an equal footing, for imbalances to be visible? Judgment,
surely; a judgment somehow founded in experience, which assesses the relevant
peculiarities of the context and determines accordingly. And here Weyl’s judg-
ment and sense of balance accord the same status to direction and length—for he
sees nothing to justify a preference, an injustice.

Can the success of modern gauge theories really be attributed to Weyl’s sense
of mathematical justice? Or is the connection between those theories and the equal

@) [¥) (lo) +16)),
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rights of direction and length too tenuous to be worth speaking of? The lineage
is unmistakable, and can be traced through Yang and Mills [21] and Weyl [22],
back to 1918; the scheme of compensation outlined in Section 4 survives in to-
day’s theories, and is central to their success ... but any attempt to answer these
questions would take us too far from our subject.

Whatever the relationship between mathematical justice and experience, we
have a surprising example of how directly an elaborate theory can emerge from
simple a priori prejudice. The prejudice seems gratuitous in the context of discov-
ery, and only acquires justification and phenomenological grounding years later,
in an explicit, articulated ‘telescepticism’ which provides epistemology and moti-
vation.

I thank Ermenegildo Caccese, Dennis Dieks, John Earman, Rossella Lupacchini,
Antonio Masiello, George Sparling for many fruitful discussions; the Center for
philosophy of science, University of Pittsburgh, where as Visiting Fellow I began
work on Weyl’s theory; and above all Thomas Ryckman, for inspiration, ideas and
useful criticism.
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