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TEN REASONS FOR PURSUING MULTI-COMMUTATIVE QUANTUM THEORIES 

A consistent presentation of the multi-commutativity quantum project (with further references)
can be found in 
arxiv.org/abs/quant-ph/9711004 
http://arxiv.org/PS_cache/quant-ph/pdf/9711/9711004v1.pdf  

Here we focus on the motivation of the project, highlighting how it changes the quantum
language and takes advantage of its newly gained flexibility. We stress its ultimate goal to
overcome the conceptual limitations of the standard quantum theory and any other model that
tends to identify quantum physics with non-commutative formalisms.

Ordered Lie Algebras Replace the Associative Algebras in Describing Dynamical Systems

In 1976, we learned something of primary importance for quantum theory (E. Alfsen, F. Shultz,
Non-Commutative Spectral Theory for Affine Function Spaces on Convex Sets, Memoirs AMS,
Number 172, July 1976): the standard operator (or algebraic) quantum language works because
the cone of the positive quantum variables (observables) exhibits a specific, “spectral” geometry.
We can forget the associative algebraic structures altogether and redefine the variables of a
generic dynamical system as an invariantly ordered real Lie algebra in spectral duality with its
dual space (briefly, C-invariant system, C for “cone”). The classical/quantum case corresponds to
a lattice/anti-lattice geometry of the invariant cone. In the classical vector-lattice case, the
commutative associative algebraic structure is implicitly present. In the general case, the
language of ordered Lie algebras may lead us beyond the known algebraic models, implying that
the standard language is too restrictive. Technical details about this formalism shift are given in
the arxiv.org eprint.

After this language recasting, the transition from classical to quantum systems translates into
dropping the lattice geometry of the positive cone while preserving its invariance, a procedure
resulting in non-Boolean event spaces and non-commutative physical variables. That is what von
Neumann’s achievement looks like half a century later. Now we can ask a question von
Neumann couldn’t ask—what happens if we depart from the classical pattern in the opposite
direction, if we drop the invariance of the cone and preserve its lattice geometry. That is, if we
refuse to sacrifice the Boolean probabilities for purely pragmatic reasons, without clear
theoretical motivation. The new path leads to a family of isomorphic lattice cones (with a
common order unit), giving rise to a family of commutative associative products in the space of
the variables, and a family of (partly overlapping) Boolean algebras as an event space, a structure
referred to as multi-commutativity (or multi-Booleanness). Remember that the lattice order in the
space of the variables, its commutative associative algebraic structure, and the Boolean structure
in the probability event space are (roughly speaking) equivalent properties.

http://arxiv.org/PS_cache/quant-ph/pdf/9711/9711004v1.pdf
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There is a natural way to arrive at multi-commutative entities that have a reasonable chance of
being physically meaningful and we are going to make use of it. We build our physical models as
a combination of two structures: a vector lattice, responsible for all probabilistic concepts, and a
Lie product, introducing Hamiltonian dynamics. The two structures are independent and we have
to secure a sufficiently large group of common Lie and order automorphisms (symmetries of the
physical system). Let’s make it a requirement that the group of the common automorphisms be
maximal: either (C) the group of the order automorphisms contains the group of the Lie
automorphisms or, conversely, (L) the Lie automorphisms form the larger group. Case (C) leads
to the study of invariant lattice cones in Lie algebras and to classical C-invariant systems. The
structures of case (L) can be appropriately called invariant Lie products in vector lattices or,
briefly, L-invariant systems (L for “Lie product”). In the L-invariant systems the Lie
automorphisms do not leave the original lattice cone invariant, and its rotation round the order
unit gives rise to a family of commutative structures. 

The C-invariant systems inherit their defining properties directly from the known classical and
quantum Hamiltonian systems. Unlike that clear case, we do not know if the L-invariant systems
admit interesting physical interpretation at all. In fact, no mathematical results about the invariant
Lie products in vector lattices are known (beyond the basic definitions and simple examples).
Nonetheless, we can assert that a hypothetical L-invariant physical system, with the usual
relationship between variables and states,  possesses a typically quantum behavior. It may be
even “more quantum” than today’s quantum theory. 

Quantum Properties Rediscovered

The first quantum property is the uncertainty relation. It is inherent to the L-invariance since the
set of states lies in the intersection of the bases of all the dual cones of the family. The extreme
points of the “classical” probability measures fail to meet this strong positivity requirement and
are excluded from the set of states, which is all we need to assert the existence of uncertainty
relations. 

Another quantum feature immediately draws our attention. The L-invariant variables depend on
an additional parameter, the choice of the ordering cone or, which is the same thing, the choice of
a global Boolean algebra (among the many) containing the Boolean sub-algebra generated by the
spectral resolution of a given variable. We encounter here a genuinely new phenomenon—the
variables are not completely determined by their physical names or by their probabilistic
characteristics in all states. There emerge classes of physically equivalent but theoretically
distinguishable variables. Can this distinguishability be physically meaningful? It can, if and only
if it makes sense to differentiate between well-defined classes of procedures measuring the same
variable. Such a situation never arises in classical physics but we are now in the quantum world
and some aspects of the measuring processes are expected to be part of the theory. 

In the L-invariant family of lattice cones, it is reasonable to link the dependence of the variables
on the measuring procedures to various sets of jointly measured basic variables (possibly
incompatible), whose transformation law is given by the transformations between the cones. In
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this sense, we can speak of “covariantly ordered” Lie algebras. We seek to put the family of
lattice cones in close relation to the common method of introducing basic variables (together
with their physical names) as generators of a Lie group of symmetries. If that is possible to
achieve, the L-invariant formalism becomes essentially superior to the standard theory. The
standard theory, somewhat paradoxically, represents all conceivable measuring procedures
associated with a given variable by a single mathematical object, exactly as in the classical
theories. That is a conceptual deficiency of the standard quantum theory or, if you like,
incompleteness or, actually, both. 

Thus, the L-invariant multi-commutative structures are tailored to describe quantum systems.
Perhaps an entirely new class of quantum systems? Or they provide a more complete description
of the quantum world known to stand behind the standard non-commutative quantum theory? At
this early stage, both developments are open, the second one being the first on our agenda. There
is no guarantee, however, that the multi-valued multiplication of the variables, implied by the
multi-commutativity, can always be given acceptable physical interpretation. That is Risk
Number 1. Next, we have to find a reasonable bridge from the L-invariant systems back to the
standard theory, or rather to the C-invariant quantum theory, its more economical counterpart. A
blueprint for such a bridge is given below. Its viability is impossible to assess right now and we
have to face Risk Number 2. We are in a position to localize the risk areas in our project and that
leaves us enough space for safe maneuvering. 

The Multi-Commutativity Begets Non-Commutativity 

Seeking to link the L-invariance to the C-invariance, we can follow a natural guideline. The
C-invariant quantum systems share with the L-invariant systems the same basic mathematical
language, but the C-invariant variables do not depend on their measuring procedures. The
appropriate role for them is to serve as a simplified description of the classes of equivalent
L-invariant variables where their inner structure is erased and the class as a whole is treated as a
single variable. Such a factorization will delete the multi-commutativity while retaining the local
statistical properties. 

The main conjecture of the multi-commutativity project postulates the simplest possible
factorization mechanism: the Lie algebra in the L-invariant systems is supposed to admit an
invariant spectral cone (preserving the set of states and necessarily non-lattice) that solves the
factorization problem. That is, it generates a C-invariant system that reproduces the Boolean
algebras and the spectral properties of all basic variables (but destroys the global Boolean
structures). More generally, the C-invariant quantum systems—among them all standard
systems—are assumed to be factorizations of the richer multi-commutative L-invariant systems.
That is our hypothetical bridge connecting C- and L-invariant quantum systems. Of course, we
do not exclude the existence of non-factorizable L-invariant systems. 

The alternating (possibly infinite) chains of invariant Lie-algebraic and order structures (L, C, L
… or C, L, C …) are interesting objects of study, not yet classified and waiting their turn. The
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factorization conjecture breaks the chain L, C, L … after the second term and is, perhaps, the first
step towards more complex and subtle dynamical systems. 

The factorization conjecture repeats, in a sense, von Neumann’s feat—assigning physical
responsibilities to non-commutative structures. However, our position now is much stronger,
because we move in the opposite direction, eliminating not the classical commutativity but the
quantum multi-commutativity. Equally strong is our motivation: deliberate factorization to get a
simplified and handier quantum language. 

In the process, we recapture the standard operator language but with the awareness that it is an
approximation and any formal operations in it with incompatible variables are meaningless. In
particular, in the lattice of the projection operators, only the Boolean sub-lattices are, strictly
speaking, probability event spaces. The widespread attempts to interpret the quantum logic as a
non-Boolean event space are pointless. Instead of non-Booleanness, we should speak of
multi-Booleanness, taking into account the sensitivity of the quantum variables to the choice of
the measuring procedures. We should adopt such a cautious attitude even before the
multi-Boolean extension has proven its feasibility. 

We are now in a position to identify the self-delusion of axiomatic quantum mechanics. The
axiomatics normally begins with the requirement that the variables should be uniquely
determined by their mean values in all states. That’s a dangerous shortcut, a premature
factorization excluding from the theory all traces of the measuring procedures. It must be the
last—not the first—phase in any quantum axiomatics.

It is time to sum up what we can expect from the multi-commutativity adventure. 

Why the L-Invariant Multi-Commutativity Quantum Project Is Worth Pursuing

The multi-commutativity project offers a remarkable set of potential benefits.
! The L-invariant theory removes a conceptual deficiency in the standard theory. The

dependence of the quantum variables on the measuring procedures is tacitly assumed in
the standard theory, but it never materializes, never leaves the gray interpretation area. 

! The L-invariant theory can settle the old controversy over the completeness of the
standard theory. The solution is a real surprise—we detect incompleteness, and eventually
can remedy it, but it is not where one has been looking for it. What the standard theory is
lacking turns out to be quantum-ness.

! The sudden appearance of the standard non-commutativity finds a natural explanation.
The non-commutativity points to a hidden factorization, takes the place of absent
multi-commutativity. This perspective can help break the vicious circle that has been
troubling the axiomatic quantum mechanics for decades, in particular its operational
models.

! The joint measurement of incompatible variables is clearly confirmed. The L-invariant
theory shows that the uncertainty relation and the impossibility of joint measurement are,
as common sense suggests, logically independent properties. Their relationship in the
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standard theory has always been contentious, because of the dubious status of the
non-Boolean probability spaces.

! The L-invariant theory makes visible the origin of the uncertainty relations. They arise
immediately from the positivity of the states. One can hardly imagine a more convincing
restriction on states.

! The L-invariant systems generate (through factorization) C-invariant systems that are
equally complete but mathematically more economical than their standard counterparts.
Less restrictive formalism gives us a chance to expand the collection of quantum systems
in a logically transparent way. 

! We get a new approach to the relationship between classical and quantum physics, all
their differences now encoded in the inclusion relation between two automorphism
groups. The classical and the quantum worlds appear as mirror images of each other, the
standard theory fixed at the middle point, as it reveals two-sided LC-invariance (the two
automorphism groups tend to coincide).

! The language of L- or C-invariance is more flexible than the monolithic standard theory.
It works with two independent structures (Lie product and order relation), their choice
and interrelations being largely under our control. The scheme outlined above rests on
this flexibility without exhausting it.

! Quite apart from the problems of quantum physics, the L-invariant structures can be
regarded as a class of abstract multi-Boolean probabilities, with all sorts of possible
applications.

! The L-invariant project stimulates new mathematical research. The theory of invariant Lie
products in vector lattices can be as rich and elegant as the classification of the invariant
cones in Lie algebras. A question at the highest mathematical level—do we know how to
define the independence of two mathematical structures? There is certainly more than one
reasonable definition.

Let’s recap. The incompleteness and over-completeness coexisting in the standard theory are
both attributable to the historically accidental shortcut commutativity " non-commutativity that
misses a major stage in the more consistent route commutativity " multi-commutativity "
non-commutativity. Our quantum language needs correction and it is time to invest in
multi-commutativity as a new quantum paradigm. The stakes are high enough.

A Case for Science Policy

We have to come to terms with the conclusion that fundamental physical theories can be
informed by historical contingencies. The 20th century offers some key examples, the advent of
quantum mechanics  being the most interesting among them. The lack of synchronization
between mathematics and physics, always a source of headaches, claims our attention today as a
top priority on the physicists’ science policy agenda. 

We need autonomous science policy to help us handle—qualify—our sudden 20th-century
freedom in defining the language of physics. The multi-commutativity quantum project is
predicated by this line of reasoning—it is an attempt to avoid arbitrary definitions, to reduce the
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excessive freedom to relative necessity. It begins with a call for a specific type of mathematical
results—geometric spectral theory in the context of ordered Lie algebras. Most significantly, the
L-invariant quantum project conflicts with the mainstream of axiomatic quantum mechanics.
They both hope to reproduce the standard theory, but they have little in common in their
philosophy and technical tools. Their conflict testifies that we have to venture deep into the huge,
exacting (and exciting) area lying between physics and mathematics. The reliable science policy
is a project of the future.

***
The task of rethinking the non-commutative quantum language arises almost a century after von
Neumann’s breakthrough and should not be delayed much longer. The multi-commutative
L-invariant project relates to significant themes in quantum physics, probability theory and Lie
theory. Its ultimate success or failure depends on results we’ll assemble during decades to come.
In contrast, its embryonic cell, the C-invariant quantum model, involves foolproof premises and
is in itself a legitimate successor to von Neumann’s quantum program. The C-invariant quantum
theory should not wait for the multi-commutative projects to supersede the current standard
theory. There is a direct access to the C-invariant quantum models, independent of their role as
factorizations of a richer quantum theory. 

No doubt, however, the full picture of interacting commutativity, multi-commutativity and
non-commutativity, culminating in the factorizable multi-commutative L-invariant quantum
systems, is the big, inspiring goal where our endeavors should converge.


