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Andrei Rodin

Did Lobachevsky have a model of his Imaginary geometry? 

1) Introduction

The canonical story about discovery of Non-Euclidean geometries goes like this. Since 

Antiquity people looked at Euclid's Fifth Postulate (P5) with a suspicion because unlike 

other Postulates and Axioms of Euclid's Elements P5 didn't seem self-obvious. For this 

reason people tried to prove P5 as a theorem (on the basis of the rest of Postulates 

and Axioms). Typically they tried to prove P5 by reductio ad absurdum taking the 

negation of P5 as a hypothesis and hoping to infer a contradiction out of it (and the 

rest of the axioms). However the desired contradiction didn't show up. Consequences 

of non-P5 were unusual but not overtly contradictory. At certain point some people 

including Gauss, Bolyai and Lobachevsky guessed that non-P5 opens a door into a vast 

unexplored territory rather then leads to the expected dead end. Lobachevsky was the 

first one who shared this opinion with public and explored some issues of the new 

geometry which he called Imaginary in his IG (Note 0). However the issue remained 

highly speculative until Beltrami  in (1868) found some models of Lobachevsky's 

geometry, which proved that Lobachevsky's geometry is consistent and so can be 

treated on equal footing with Euclidean. Finally Hilbert in his (1899) put things in order 

by modernising Euclidean axiomatic method and clarifying the logical structure of Non-

Euclidean geometries (Note 1).

Obviously the story is oversimplified. However my task now is not to provide it with 

additional details but question a basic assumption, which this simplified version of 

history shares with a number of better elaborated ones.  This assumption concerns 

the very notion of mathematical theory.  The notion of theory, which goes on a par 

with the above story is described in the following quote:   

"[P]rimitive terms, such as "point", "line" and "plane" are undefined and could just as 

well be replaced with other terms without affecting the validity of results. ... Despite 

this change in terms, the proof of all our theorems would still be valid, because 

correct proofs do not depend on diagrams; they depend only on stated axioms and the 

rules of logic. Thus, geometry is a purely formal exercise in deducing certain 

conclusions from certain formal premises.  Mathematics makes statements of the 

form "if ... then"; it doesn't say anything about the meaning or truthfulness of the 

hypotheses." (Greenberg 1974, p.252) 



2

And here is how this modern notion of mathematical theory allegedly relates to the 

discovery of Non-Euclidean geometry:

"The formalist viewpoint just stated is a radical departure from the older notion that 

mathematics asserts "absolute truths", a notion that was destroyed once and for all 

by the discovery of Non-Euclidean geometry. This discovery has had a liberating effect 

on mathematics, who now feel free to invent any set of axioms they wish and deduce 

conclusions from them. In fact this freedom may account for the great increase in the 

scope and generality of modern mathematics. " (ibid.) (Note 2)

The above quote suggests that Lobachevsky was one of those liberators who detached 

geometrical reasoning from intuition and spatial experience, stopped asking whether or 

not usual axioms of geometry are true and came to the notion of mathematics as 

playing with axioms. As we shall shortly see this has nothing to do with the historical 

reality. Before coming to a more detailed discussion let me point to one question, 

which Greenberg's story leaves unanswered.  Why Lobachevsky and others  played with 

P5 but not another postulate or axiom? The obvious reason for it is that on the 

traditional account P5 (unlike other Euclid's axioms and postulates) looked dubious to 

begin with; unlike other postulates and axioms it was not self-evident. This triggered 

the long-term research on the "Problem of parallels", which led to the discovery of 

Non-Euclidean geometry in 19th century. These facts make it possible to refer to the 

discovery of Non-Euclidean geometry as an evidence justifying the traditional view on 

geometry. The argument may go like this: since ancient times the old good geometrical 

intuition showed that P5 is not universally true and finally in19-th century 

Lobachevsky and others proved this fact rigorously. This shows how much one's 

favourite interpretation of history of mathematics depends on one's stance 

concerning the subject-matter of mathematics itself.

As I shall argue the above popular view on the history of geometry of 19th century is 

deeply misleading. However I shall not blame its overtly anachronistic character for it. 

For I don't believe that anachronisms can and should be ruled out from a historical 

study of mathematics on general methodological grounds. As far as a study of history 

of mathematics is supposed to be something else than making a mere chronology one 

needs to rely onto some ideas about mathematics to begin with. Otherwise one cannot 

even say a history of what he or she is going to study, and why certain historical 

sources qualify as mathematical while some other do not. In this very general sense 

every interesting history of mathematics is doomed to be anachronistic. The 

difference between good and bad anachronisms is more subtle.  A historian may 

extract from given sources everything that fits his or her favourite notion of 
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mathematics and ignore the rest as non-essential peculiarities. So one gets a 

teleological history showing how mathematics progresses from its early days toward 

its glorious today's state. I count this method as a bad anachronism even if the fit is 

well justified. Alternatively the historian may take seriously difficulties of application 

of today's schemes to older sources and try to revise these schemes (rather than the 

sources!) aiming at a better fit. This latter method, which I adhere to, has at least two 

advantages. First, it allows not only for tracing the history of mathematics in the 

narrow sense (i.e. history of acquiring of existing mathematical knowledge) but also 

the history of changing notion of mathematics. In other words it allows for a view on 

history of mathematics as a chapter of the history of ideas. Second, the latter 

strategy makes the historical research about mathematics interesting for the 

mathematical research itself. For it eventually helps reviving some old ideas which can 

turn to be interesting for mathematics and its philosophy today and perhaps even 

tomorrow.

The rest of the paper is organised as follows. I start with a more precise description 

of conceptual scheme used in canonical historical reconstructions of geometry of 

19th century. Then I stress difficulties arising when one anachronistically applies this 

scheme to Lobachevsky's work and finally propose a remedy. We shall see that the 

question of whether or not Lobachevsky had a model of his geometry has two answers 

none of which is of yes-or-no kind. The first immediate answer is that the question is 

ill-posed since Lobachevsky didn't have anything like our notion of model in his disposal 

but worked in an older conceptual framework which combined traditional "synthetic" 

geometrical methods with certain analytic devices. I shall show that the popular view 

according to which this traditional approach doesn't work in Non-Euclidean geometry 

cannot be justified. The second answer is subtler and more interesting. There is in 

fact an aspect of Lobachevsky's work relevant to our current notion of model. But 

Lobachevsky's counterpart of this today's notion is nevertheless strikingly different. 

Allowing for the talk of models in Lobachevsky one discovers something surprising: 

Lobachevsky didn't have a model for the geometrical theory known by his name (unless 

one counts as a model some usual intuitions associated with geometrical concepts like 

in Euclidean case) but he built a non-standard model of Euclidean plane in a Non-

Euclidean space (sic).  We shall see that this construction, which from the today's 

viewpoint might look bizarre is crucially important for Lobachevsky's project. I shall 

conclude explaining an approach to building mathematical theories, which makes 

Lobachevsky's construction to look more natural. 
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2) Hilbertian scheme 

Euclidean geometry and Lobachevskian geometry are two different theories. How 

exactly these theories are identified and distinguished one from the other? There is a 

sense in which certain parts of Euclid's Elements also can be also qualified as different 

theories, for example, basic Euclidean Planimetry developed in Books 1-4 and the 

Theory of Proportions of Book 5. But obviously Euclidean and Lobachevskian 

geometries are called different theories in a stronger sense than that. In which 

stronger sense exactly? A standard answer relies upon the notion of theory suggested 

by Hilbert in his (1899) and later elaborated by Veblen, Tarski and others. Here a 

theory is identified with a list of axioms together with all propositions (theorems) 

deducible from these axioms. As far as rules of logic governing the deduction are 

assumed to be the same for the whole of mathematics mathematical theories may be 

distinguished by their (non-logical) axioms alone. Accordingly Euclidean and 

Lobachevskian geometries can be distinguished through (an appropriately reformulated 

version of) P5: Euclidean geometry assumes P5 while Lobachevskian geometry 

assumes non-P5; the rest of their axioms the two theories share in common.  We see 

that unlike different parts of Elements Euclidean and Lobachevskian geometries are 

logically incompatible. But the notion of incompatibility involved here is also not so 

simple as it seems. True, combining the two theories into one immediately brings a 

contradiction. But the method of theory-building applied here and the epistemic 

scheme associated with this method (which I shall call Hilbertian for further 

references) allow for considering the two geometries on equal footing and doesn't 

require ruling one of them out in favour of the other. Allowing for such a peaceful co-

existence of logically incompatible theories Hilbertian scheme makes them 

epistemically compatible. We have already know from the above Greenberg's quote 

about the price of this tolerance: the scheme rules out as senseless questions like 

whether on not P5 is really true or false. (Note 3) In 1899 when Hilbert's Grundlagen 

were first published such pluralism about geometrical axioms was not yet common, but 

on the contrary looked like a strong and very controversial epistemic view about 

Mathematics. 

One may argue that what I call here Hilbertian scheme is commonly known under the 

name Axiomatic method, and so the new suggested name is useless. I disagree 

because I think that the neutral title of Axiomatic method too easily becomes 

misleading, particularly in historical contexts. For it hides essential differences 

between Hilbert's version of this method (and its more modern versions based on 

Hilbert's), on the one hand,  and more traditional versions of Axiomatic method, on the 

other hand. Traditionally axioms are understood as "first" self-evident truths, which 

cannot be possibly proven. Aristotle famously argued that trying to prove everything 
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one gets a risk of loosing the very notion of proof as a way of deriving less obvious 

truths from more obvious ones. Frege was among those who defended this traditional 

understanding of Axiomatic method in Hilbert's time. Remark that this traditional 

version of the method doesn't allow the pluralism about mathematical matters, which 

has been described above. Hilbertian scheme has some very special features, which 

make this pluralism possible. Let me now briefly remind them.     

Propositions (i.e. axioms and theorems), elements of propositions and theories 

(systems of propositions linked by deduction) are viewed within Hilbertian scheme in 

two different ways.  First, they are viewed as syntactic constructions having no 

meaning and truth-value. So conceived theories and propositions are called formal. 

Formal propositions are supposed to be provided with meaning and truth-values 

through a special procedure of interpretation, which assigns to terms of a given 

proposition some particular mathematical objects (Note 4). This procedure makes 

formal propositions into "usual" propositions having meaning and certain truth-values; 

this meaning and these truth-values obviously depend on the aforementioned 

assignment. This is the second way to conceive of a proposition within Hilbertian 

scheme.  An assignment, which makes all provable (deducible) propositions of a given 

theory true is called model of this theory. A given theory may have multiple models 

and multiple "would-be-models", in which some formally provable propositions are true 

but some other turn to be false.  

The role of models in Hilbertian scheme is (at least) twofold. First, models provide an 

intuitive support allowing, for example, for thinking of proposition "given two points 

there exist an unique straight line going through these points" in the usual way. 

(Alternatively one can think of points in the way one usually thinks of straight lines 

and think of straight lines in the way one usually thinks of points. It would make a 

difference in Euclidean geometry in which there exist lines without common points but 

not in Projective geometry in which any two straight lines intersect.) Second, models 

help for proving consistency of theories and independence of some axioms from some 

other axioms. For proving consistency of a given theory T it suffices to find some 

model M of T. A naive reasoning behind this claim is this: if some proposition P of T is 

true in M then proposition non-P is not true in M, and so T contains no contradiction. 

For it is not possible that P and non-P are both true "about" one and the same M (Note 

5). Obviously for establishing that a given M is a model of a given theory T it is 

sufficient to check that axioms of T are true in M . Given that the axioms are true and 

inferences are valid T contains no contradiction. Notice that this argument takes us 

back to the traditional axiomatic method. This is why in the Hilbertian case one needs a 

refined  version of it. The usual refinement goes as follows. Let's first take some 

mathematical theory, say, arithmetic, for granted. This means that we assume both 
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the corresponding formal theory A and some its model MA. We shall call such an 

assumed theory (with its chosen model) a metatheory. Take now another formal 

theory B and build its model MB from elements of MA. Then you are in a position to 

claim that if theory A is consistent then so is B . Instead of consistency tout court one 

gets in this way only a proof of relative consistency. This is less than one might desire 

but still a lot. In particular this method allows for proving the relative consistency of 

Lobachevskian geometry with respect to Euclidean geometry and relative consistency 

of both these theories with respect to arithmetic. This provides a sufficient ground 

for claiming that there is no more reason to expect a contradiction in Lobachevskian 

geometry than in Euclidean. 

I mention here all these well-known details (Note 6) because one should distinguish 

them very clearly before considering how to use Hilbertian scheme for a historical 

reconstruction.  We can now see in which precise sense Greenberg is right claiming 

that the older notion of "absolute truth" was "destroyed" in modern mathematics: 

within the new scheme mathematical truths are no longer "absolute" but are "truths in 

a given model" which may turn into falsities in some other models (or would-be models) 

(Note 7). However, as we shall shortly see, Greenberg goes too far claiming that this 

destruction was due to the discovery of Non-Euclidean geometries. True,  Hilbertian 

scheme wouldn't come about in 1899 without the discovery of Non-Euclidean 

geometries earlier in the same century. But this gives no ground for the claim that in 

works of Lobachevsky and other pioneers of Non-Euclidean geometry Hilbertian 

scheme was already inherently present. Let's now have a look at Lobachevsky's 

writings and see whether there is some trace of Hilbertian scheme there. For the 

following discussion I take Lobachevsky's STP as the principle reference. For 

discussing some epistemological issues I shall also refer to FG and NFG. (Note 8) 

3)Hyperbolic intuition

STP is written in the classical Euclidean "synthetic" style reinforced by analytic 

methods described in the next section. As far as the logical structure of presentation 

is concerned it is apparently not of Lobachevsky's major concern. Lobachevsky 

presents to the reader a list of propositions without specifying which of them are 

definitions, which are assumed as axioms and which are assumed as commonly known 

theorems (independent of P5); among following proved propositions there are 

theorems known to Lobachevsky from his sources as well as theorems first proven by 

Lobachevsky himself. From a historical viewpoint these features of Lobachevsky's 

style are hardly surprising since all of Lobachevsky's predecessors and 

contemporaries working on the "Problem of parallels" also followed the same 

traditional line. I stress these features only in order to confront the widespread 
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philosophical myth according to which the invention of Non-Euclidean geometry 

required an abrupt departure from the "usual" spatial intuition. To see that the myth 

has neither historical nor serious theoretical ground behind it let's reconsider after 

Lobachevsky the issue of parallels in its traditional setting. Instead of P5 I shall use 

after Lobachevsky the following Axiom of Parallels (AP) known to be equivalent to P5 

since Antiquity (Note 9): 

(AP) Given a line and a point outside this line there is unique other line which is parallel 

to the given line and passes through the given point.

Here the term "parallels" stands as usual for straight lines having no common points. 

We'll se shortly how Lobachevsky changes this Euclidean terminology. For a 

terminological convenience I shall call a given straight line secant of another given 

straight line when the two lines intersect (in a single point). Let's now make the 

required construction and listen what our intuition says about it. The whole point of 

the Problem of Parallels traditionally conceived is that the intuition says nothing 

definite as to whether AP is true or not. However it says us few other important 

things:

(i) Parallel lines exist (unlike round squares); moreover through a given point P outside 

a given straight line l passes at least one parallel line m. Such construction can be 

readily made on the basis of Euclid's Postulates without using P5, AP or their 

equivalents. Drop a perpendicular PS from P to l and then produce another 

perpendicular m to PS passing through P . The fact that m  is parallel to l follows from 

the theorem about an external angle of triangle, which is a theorem of "absolute 

geometry", that is, it doesn't depend on P5 or its equivalents.  In other words a line, 

which is lower than a given secant is also a secant. (fig.1, Note 10)

f ig.1
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(ii) Given a straight line and a point outside this line there exist secants of the given 

line passing through the given point.  To construct a secant take any point of the given 

line and connect it to the given point outside this line. 

(iii) Let PS be perpendicular to l and A be a point of l. Consider a straight line PR such 

that angle SPR makes a proper part of angle SPA (and hence is less than angle SPA). 

Given this I shall call line PR lower than line PA (and call PA upper than PR). Notice that 

this definition involves the perpendicular PS, and so depends on the choice of P. Then 

PR intersects l in some point B, i.e. it is a secant (fig.2, Note 11). 

f ig.2

(iv) There exist no upper bound for secants of a given line passing through a given 

point outside this given line. For given some secant PA one can always take a further 

point C such that A will lay between S and C and so secant PC be upper than the given 

secant PA  (fig. 2).

(v) Let m  be parallel to l , which is constructed as in (i). Let n be another parallel to l 

passing through the same point P.  Suppose that n is lower than m (obviously this 

condition doesn't restrict the generality). Then any straight line which is upper than n 

and lower than m  is also parallel to l (fig. 3)
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f ig.3

(vi) Parallels to a given straight line passing through a given point have a lower bound. 

To assure it rigorously one needs some continuity principle like one asserting the 

existence of Dedekind cuts. Then (vi) follows from (iv). Lobachevsky doesn't  states 

such a principle explicitly but endorses (vi) anyway.

(vii) Any straight line PA - a secant or a parallel - passing through point P as shown at 

fig. 2 is wholly characterised by its characteristic angle SPA. In particular this 

concerns the lowest parallel mentioned in (vi). Let the measure of SPA corresponding 

to the case of the lowest parallel be α. Now it is clear that by an appropriate choice of 

l and P one can make  α as close to π/2 as one wishes. For given any angle SPA <  π/2 

it is always possible to drop perpendicular AT on PS (fig.4). Then PA is a secant of AT 

and so by (iii) all parallels to AT including its lowest parallels are upper than PA. Hence 

the value of α corresponding to straight line AT and point P outside this line is between 

SPA and π/2. Since the only variable parameter of the configuration is the distance d 

between the given straight line and the given point outside this line α is wholly 

determined by this distance.    

f ig.4
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(i - vii) provide the intuitive basis for Lobachevsky's Imaginary geometry (see STP, 

propositions 7, 16, 21). He proceeds as follows. First, he makes a terminological 

change: he calls "parallels" (not just non-intersecting straight lines but) the two 

boundary lines which separate secants from non-secants (i.e. parallels in the usual 

terminology) passing through a given point. So in Lobachevsky's terms there exist 

exactly two parallels to a given straight lines passing through a given point, which may 

eventually coincide if AP holds (i.e. in the Euclidean case). For further references I 

shall call these two parallels right and left (remembering that this assignment is purely 

conventional).  From Lobachevsky's new definition of parallels doesn't immediately 

follow that parallels form equivalence classes; moreover the definition involves the 

choice of P. So Lobachevsky must show that the property of being parallel (in his new 

sense) to a given straight line  is independent of this choice (STP, proposition 17), and 

that the relation of being parallel is symmetric and transitive (while reflexivity may be 

granted by the usual convention) (STP, propositions 18, 25). For the obvious reason 

transitivity may work here only for parallels of the same orientation, i.e. separately 

for right and for left parallels. Lobachevsky provides the required proofs making them 

in the traditional synthetic Euclidean-like manner (Note 12). Then Lobachevsky proves 

some further properties of parallels, in particular the fact that the angle α 

characterising a parallel (see vii above) can be made not only however close to π/2 but 

also however close to zero (STP, proposition 23). This immediately implies that if P5 

doesn't hold then given an angle ABC, however small, there always exist a straight line 

l laying wholly inside this angle and intersecting none of its two sides (fig.6).

f ig.6

This is already by far more counterintuitive than (i-vii) but still not counterintuitive 

enough to rule out this construction as absurd and on this ground to claim a proof of 

P5. 
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So far I have presented only basics of Lobachevsky's theory which were mostly known 

before Lobachevsky, noticeably to Sacceri and Lambert (Note 13). Nevertheless we 

are already in a position to make some important epistemological conclusions about 

Lobachevsky's work. First conclusion concerns the popular view according to which 

development of Non-Euclidean geometries required a departure from the spatial 

intuition in favour of a more abstract kind of thinking like one promoted in (Hilbert 

1899) or perhaps some other. This view is typically supported by the claim that the 

common human spatial intuition is inherently Euclidean (Note 14). Lobachevsky's work 

clearly demonstrates that this view and its supporting claim are ungrounded. True, 

giving up P5 one enters into a rather unusual world. It looks unusual in eyes of anyone 

who studied geometry by Euclid's Elements or its later replacements, and particularly 

so if this study didn't involve any discussion of difficulties of Euclid's theory including 

the problem of P5. I claim that the "Euclidean intuition" which allegedly prevents one 

from conceiving of Lobachevsky's geometry intuitively can be nothing but a result of a 

very superficial  study of Elements or its later replacements. Experts new about the 

Problem of Prallels since ancient times and kept their minds open. They didn't need 

anything like Hilbertian scheme to conceive of Lobachevskian geometry. For the 

unusual world of this geometry is intuitive just like Euclidean. True, it takes some time 

and training to feel at home in Lobachevskian spaces. However the required training 

aims at acquiring some new intuitive capacities, not at getting rid of intuition. What 

one should give up in order to conceive of Lobachevskian geometry intuitively is to give 

up P5 having a poor intuitive support. The failure of all the attempts to prove P5 on 

the basis of some intuitively evident statement leaving no room for any reasonable 

doubt, is perhaps the best evidence against the claim that the common spatial 

intuition is inherently Euclidean.  

It is certainly true that after Hilbert one can develop Lobachevskian geometry in an 

abstract or "formal" way. But this is equally true about Euclidean geometry! Thus both 

geometries are neutral with respect to the choice between the traditional intuitive and 

the modern formal treatment.  Although the controversy between the "formal" and 

the "intuitive" approaches to geometry didn't emerge before (Hilbert 1899) a similar 

controversy was already known in 19th century. I mean the controversy between 

"analytic" and "synthetic" ways of doing geometry. Here is what Lobachevsky says 

about it in the Preface to his NFG:   

" In Mathematics people use two methods: analysis and synthesis. A specific 

instrument of analysis are equations, which serve here as the first basis of any 

judgement and which lead to all conclusions. Synthesis or the method of constructions 

involves representations immediately connected in our mind with our basic concepts. 
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<...> Science starts with a pure synthesis; all the rest is produced by jugement which 

derives new data from the first data given by synthesis and thus broadens our 

knowledge unlimitedly into all directions. Without any doubt the first data are always 

acquired in nature through our senses. Mind can and must reduce them to minimum, so 

they could serve as a solid foundation for science." (Note 15)

The fact that Lobachevsky stresses the importance of synthetic approaches in 

science in general and in geometry in particular shows that unlike some of his 

contemporaries he was not at all sympathetic to the idea of replacing intuitive 

geometrical reasoning by some sort of calculus. He rather believed that spatial 

intuition and spatial experience are ultimate sources of geometrical truths (Note 16) 

and that analytic methods serve only for "derivation of new data from first data". This 

shows that Greenberg's claim according to which the discovery of Non-Euclidean 

geometry "had a liberating effect on mathematics, who now feel free to invent any set 

of axioms they wish and deduce conclusions from them" has no historical support 

whatsoever as far as Lobachevsky is concerned.  

A subtler point is this. It may be argued that since one admits that intuition cannot 

either justify or refute P5 (or any equivalent proposition) one cannot any longer count 

on intuition as a source of truthfulness of geometrical axioms (even if it can still 

continue to play some other role). Then, so the argument goes, one is doomed to 

accept some version of Greenberg's "ifthenism" and refuse from any "absolute" notion 

of truth in geometry. 

I cannot see that the argument is valid. The fact that intuition cannot either justify or 

refute P5 can be reasonably understood in the sense that nor P5 neither its negation 

should be considered as plausible axioms. One doesn't need any drastic reconsideration 

of the role of intuition for it. Actually Lobachevsky never aimed at building a new 

geometrical theory, which could be taken with Euclidean geometry on equal footing. 

Like Boliay Lobachevsky aimed at a generalisation of the known geometry, which 

wouldn't assume dubious P5 or any other dubious principle equivalent to P5. This is how 

he describes his principle achievement in the Introduction to his NFG:    

"The principle conclusion, to which I arrived ....  was the possibility of Geometry in a 

broader sense than it has been  [earlier] presented by Founder Euclid. This extended 

notion of this science [=of Geometry] I called Imaginary Geometry; Usual  [=Euclidean] 

Geometry is included in it as a particular case."

To include Euclidean geometry as a special case of Lobachevsky's Imaginary geometry 

it is sufficient to take α in (vii) to be equal to π/2; in this case Lobachevsky's two 



13

parallels to a given straight line coincide. What remains problematic here is the nature 

of variation of  α. (vi) says us nothing about the value of α except that it is positive 

but don't exceed π/2. Does this mean that one can stipulate by fiat  any value of α 

from the given interval ? Geometry traditionally makes a sharp distinction between 

universally valid propositions (axioms and theorems) and particular constructions with 

their stipulated properties. One is free to build constructions with any desired 

properties as far as these constructions are doable with Euclid's Postulates or some 

other assumed constructive principles (Note 17). For example, one is free to produce 

a right angle, an acute angle or an obtuse angle depending on one's personal taste or 

specific purpose. But in this traditional setting one is not free to stipulate axioms and 

constructive principles (postulates) in a similar way. This, of course, provides 

essential constraints on possible choices. One may opt, for example, for constructing 

with Euclid's Postulates (but without P5) a triangle with a right angle. But then one has 

only a limited choice of possible values of the two other angles of the triangle: both of 

them must be acute since otherwise the construction is provably impossible. Let's now 

see how these basic rules of the game apply to the construction shown at fig.4 above. 

 According to (vii) both Lobachevsky's parallels passing through a given point P are 

uniquely determined by distance x = PS. This means that given line l and point P 

outside this line angle APS = α has some definite value and cannot be any longer a 

matter of stipulation. What we can do to learn this value? Since we have no better 

choice we can make some hypothetical  reasoning about it. It can be proven that if  α = 

π/2 (the Euclidean case) then the same holds for any other choice of l and point P 

(compare STP, proposition 20). If  α < π/2 the situation becomes more complicated 

because, as we have already observed in (vii), in this case the value of α depends on 

distance x. Anticipating what follows I give here Lobachevsky's fundamental equation, 

which expresses this dependence: 

tan(α /2) = a exp(-x)    (1)

where a is a positive factor. How to interpret this formula? The factor makes a new 

trouble. On the one hand, it is clear that the unit used for measuring distance x can be 

always chosen in such a way that (1) takes this most convenient form: 

tan(α /2) = e exp(-x)   (1') 

were e is the base of natural logarithms. Then α gets determined by x as expected. 

Lobachevsky makes this move in his STP saying only that it "simplifies calculations". 

But on the other hand, a different choice of unit brings a different value of α in each 
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particular case. So it turns out that the value of α depends of our arbitrary choice of 

unit, which is supposed to be a matter of convention having no theoretical significance 

at all! Turning things the other way round one may also say that the unite of length is 

uniquely determined here by α, that is, that the usual liberty to choose the unit 

arbitrarily cannot be any longer granted. This is the way in which this situation was 

interpreted earlier by Lambert (Note 18). 

We see that the traditional distinction between universally valid propositions, on the 

one hand, and arbitrary stipulations concerning particular constructions, on the other 

hand, in the context of Non-Euclidean geometry is blurred. The old rules of the game 

don't really apply to the new situation. One expects to have a definite value of α in the 

construction shown at fig.4 but can make only some hypothetic reasoning about it. But 

can Greenberg's "ifthenism" making no difference between axioms and mere 

hypotheses be indeed a remedy? Actually the ifthenist approach to the problem was 

known long before Hilbert and even before Lobachevsky.  Sacceri and after him 

Lambert both began with the "absolute" geometry (based on Euclidean Axioms and 

Postulates except P5) and then considered separately the "hypothesis of right angle" 

equivalent to P5, the "hypothesis of acute angle" and  the "hypothesis of obtuse angle" 

(Note 19). They ruled out the third hypothesis without using P5 but could not do the 

same with the second hypothesis. To develop two mutually incompatible systems of 

reasoning one of which grants the first hypothesis while the other grants the second 

hypothesis doesn't look like an interesting solution in this context even if one provides 

it with some supporting epistemological arguments.  Notice that this move anyway 

doesn't help to treat the problem of "absolute unit of length" about which Lambert was 

already aware.  

A solution, which later became standard, was found after Beltrami in his (1968-69) 

identified Lobachevskian spaces as Riemaninan manifolds of constant negative 

curvature; in this Riemannean setting Lambert's "absolute unit" could be then 

identified with the radius of curvature. Lobachevsky didn't have yet this solution in 

hands (Note 20) but he already had a basic idea according to which the smaller are 

distances the closer Imaginary geometry becomes to Euclidean. To see this consider, 

for example, the following diagram taken from a Schumacher's letter to Gauss (see 

Gauss 1981, v.8, p.213) 
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It shows (or at least suggests) that if triangle ABC  is infinitely small then the sum of 

its internal angles becomes infinitely close to two right angles (notice the semicircle). 

This fundamental observation gives a sense in which one and the same space can be 

Euclidean and Non-Euclidean at the same time: it can be Euclidean "in the small" and 

Non-Euclidean "in the large". A logically-minded reader can probably say that this is a 

sheer contradiction anyway. I shall not go here for a general discussion about logical 

aspects of infinitesimals but only remark that this logical difficulty is not specific to 

Non-Euclidean geometry. The aforementioned claim about geometrical spaces is no 

more contradictory than the claim that any smooth curve line is everywhere straight 

in the small. This kind of "smooth thinking" was fundamental for the whole of 

mathematics and physics of 18-19 century. Importantly this view allowed for retaining 

the older notion of intuition as a truth-maker.  The very idea that geometrical 

properties could depend of "absolute" distances (as distinguished from ratios of 

distances) was, of course, unusual but it was certainly not counter-intuitive. It allowed 

for considering the old Euclidean intuition as a "local approximation" of a larger (but 

not "alternative") geometrical intuition. Thus Greenberg's view that the invention of 

Non-Euclidean geometry destroyed the older notion of intuition as a truth-maker and 

left the "inthenism" about mathematical matters as the only available alternative is 

certainly wrong both historically and theoretically. Although some moderate form of 

ifthenism can be indeed attributed to Sacceri, Lambert and perhaps to some other 

geometers it didn't play any significant role in the history of geometry before Hilbert. 

In particular, Lobachevsky never went for it.    

At the same time, it is my impression that Lobachevsky simply didn't have any 

accomplished theory about how Euclidean and Non-Euclidean geometry relate to each 

other. In spite of his official view on Imaginary geometry as generalisation of Euclidean 
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geometry Lobachevsky often informally speaks about the two geometries as if they 

were incompatible. Consider, for example this interesting passage from the 

Introduction to NFG where Lobachevsky puts forward a view according to which 

geometry of physical space is determined by "natural forces":

[T]he assumption according to which some natural forces follow one Geometry while 

some other forces follow some other specific Geometry, which is their proper 

Geometry, cannot bring any contradiction into our mind.  

Thus it is not completely unreasonable, of course, to look at Lobachevsky as a 

predecessor of Hilbert, who unlike Hilbert didn't have yet a clear idea about how 

different geometries can live together. But it is not unreasonable either to say that 

Lobachevsky anticipated another idea of how geometries can live together, namely one 

based on Riemann's ideas. How the two ideas interacted in history is an interesting 

question which I cannot touch upon here. But in the last section of this paper I shall 

provide a sketch of a today's approach to building geometrical theories, which develops 

the older Riemannean way of reasoning up to the point where it becomes compeatable 

with Hilbertean scheme.    

Taking into consideration what has been told so far about Lobachevsky's work one may 

come to conclusion that the question "Did Lobachevsky have a model of his geometry?" 

has no more sense than the question whether or not Euclid has a model of his 

geometry. Hilbert's scheme described in the beginning of this paper seems to have no 

more relevance to Lobachevsky than to Euclid. We shall now see that in fact the 

question allows for a more specific and more interesting answer.

 

4) Hyperbolic calculus

To see that the notion of model is not totally irrelevant to Lobachevsky's work 

consider the following quote from FG:

"The geometry on the limiting sphere is exactly the same as on the plane. Limiting 

circles stand for straight lines while angles between planes of these circles stand for 

angles between straight lines."

Even without knowing the exact sense of Lobachevsky's terms (which I shall shortly 

explain) one can see here a basic element of Hilbertean scheme, namely the notion 

that usual geometrical terms like "straight line" and "angle between straight lines" can 

stand for something else than they usually stand for without producing any essential 
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change in the corresponding theory (in this case - Euclidean geometry). Speaking in 

today's terms Lobachevsky describes here a non-standard model of Euclidean plane. 

Why not a model of his new Hyperbolic geometry as the today's reader would most 

probably expect? Why Lobachevsky translates convenient notions of Euclidean 

geometry into a new language of Hyperbolic geometry rather than the other way 

round? Let me now explain why and how.  

Basic facts about Hyperbolic geometry proven by synthetic methods and mentioned in 

the previous section were mostly known before Lobachevsky. However it was 

Lobachevsky who first publicly claimed the invention  of Non-Euclidean geometry while 

earlier workers in the field remained reserved. Actually Lobachevsky's conviction that 

he indeed invented a new geometry, or more precisely found a far-reaching 

generalisation of the old geometry, was not without a reason: he first managed to 

supply a system of synthetic reasoning described in the previous section with an 

appropriate analytic apparatus. Lobachevsky uses his non-standard model of Euclidean 

plane for developing this analytic apparatus. I shall now briefly explain how it works 

referring the reader to STP for further details. 

In Euclidean geometry there are two kinds of sheaves of straight lines: (a) sheaves of 

parallel lines and (b) sheaves of lines passing through the same point. Given a sheaf of 

either sort consider a line (or surface in 3D case) normal to each line of the given 

sheaf. So you get (a) either a  straight line (plane in 3D case) or (b) a circle (sphere in 

3D case ) (fig.8 a, b)

a b

fig. 8 

In Lobachevskian (Hyperbolic) geometry both configurations shown at fig.7 a, b exist 

although lines at fig.7b are not parallels in Lobachevsky's sense. But in addition one 

gets a new specific sort of sheaf, namely that of Lobachevsky's parallels. 

Correspondingly one gets a new normal line and a new normal surface, which 
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Lobachevsky calls limiting circle (or otherwise horocircle) and limiting sphere 

(otherwise horosphere) (fig.9):

fig.9 

To see that horocircles on given horosphere verify AP (and in fact the rest of axioms 

of Euclidean geometry) observe the following. Call (as usual) a given straight line l 

parallel to a given plane α just in case l is parallel (in Lobachevsky's sense) to its 

orthogonal projection m onto α. It can be then easily shown by usual synthetic methods 

(I leave it as an exercise) that given l and α as before there exist a unique plane β 

having no common point with α (that is, parallel to α in the usual sense) such that l 

lays in β. This lemma, which resembles AP in a way, doesn't depend on AP. Notice that 

any horocircle laying on a given horosphere can be obtained as an intersection of the 

horosphere with a plane parallel to the sheaf of Lobachevsky's parallels corresponding 

to this horosphere. This immediately implies that the non-standard interpretation of 

Euclidean geometry suggested by Lobachevsky verifies AP (the horocircles are called 

here parallel in the usual Euclidean sense of having no shared point) (fig. 10):         
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Lobachevsky himself uses a slightly different lemma (STP, proposition 28) for the 

same purpose . Let me quote only his conclusion (STP, proposition 34), which shows 

more precisely the way in which Lobachevsky anticipated Hilbertean scheme:

"On the limiting surface [i.e. on the horosphere] sides and angles of triangles hold the 

same relations as in the Usual [i.e. Euclidean] geometry". 

This crucial observation allowed Lobachevsky to develop (what we call today) 

Hyperbolic trigonometry on the basis of the usual (Euclidean) trigonometry. He writes 

down basics of this new calculus in the form of four (eqational) identites (STP, 

proposition 37, formula 8). In FG and NFG  Lobachevsky applies this calculus to a large 

class of geometrical problems and in AIG -  to calculation of certain integrals, which 

earlier were not given any geometrical sense. On the top of that Lobachevsky puts 

forward in FG the following general argument purporting to show that the new calculus 

guarantees consistency of his Imaginary geometry:

"[1] As far as we are found the equations which represent relations between sides and 

angles of triangle ... Geometry turns into Analytics, where calculations are necessarily 

coherent and one cannot discover anything what is not already present in the basic 

equations. [2] It is then impossible to arrive at contradiction, which would oblige us to 

refute first principles, unless this contradiction is hidden in those basic equations 



20

themselves. [3] But one observes that the replacement of sides a, b, c by ai, bi, ci 

turn these [basic hyperbolic] equations into equations of Spherical Trigonometry. [4] 

Since relations between lines in the Usual [i.e. Euclidean] and Spherical geometry are 

always the same, [5] the new [i.e. Imaginary] geometry and [Hyperbolic] Trigonometry 

will be always in accordance with each other." (FG , i stands here for the square root 

from minus one) 

Let's analyse this complicated argument step by step. First ([1]) Lobachevsky claims 

that trigonometric relations valid for an arbitrary triangle allow one to translate the 

whole of geometry from synthetic to analytic language. He takes this claim for 

granted in case of Euclidean geometry and then says that it equally holds in a more 

general case of Imaginary geometry. In [2] Lobachevsky apparently assumes that 

algebraic transformations are better controllable than synthetic constructive 

procedures. The transparency of the " analytic" procedures guarantees that  if basic 

equations contain no hidden contradiction) so does the rest. One cannot claim the 

same for constructive synthetic procedures since such procedures can bring a 

contradiction at any step of reasoning but not only at the initial step of laying out 

basic principles. So the analytic means help to reduce the question about consistency 

of Imaginary geometry to that concerning only foundations ("basic equations") of this 

geometry. [3] is a crucial observation (first made by Lambert), which allows for a 

profound analogy between Spherical and Hyperbolic geometries. Lobachevsky didn't 

understand the precise sense of this analogy but rather took it as purely formal (see 

again Note 20). His  argument, as far as I understand it, is the following. Spherical 

geometry (including spherical trigonometry) is a well-established part of Euclidean 

geometry ([4]) and so there is no reason to expect any contradiction in it.  The two 

parts of Spherical geometry - synthetic and analytic - match each other just like in 

case of Plane Euclidean geometry. Hence Spherical trigonometry is consistent. Since 

the formal substitution a-->ai turns every equation of Spherical trigonometry into an 

equation of Hyperbolic trigonometry Hyperbolic trigonometry is consistent if Spherical 

trigonometry is consistent. Hence Hyperbolic trigonometry is consistent. But ([5]) the 

match between the analytic part of Imaginary geometry (that is, Hyperbolic 

trigonometry) and the synthetic part of Imaginary geometry can be assured just like in 

Spherical case. Hence Imaginary geometry (including its synthetic part) is consistent 

in general. The line of the argument can be pictured with the following diagram 

(fig.11):
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The match between synthetic and analytic parts guarantees that if one of them is 

consistent then so is the other. This works both in Hyperbolic and Spherical cases. The 

formal substitution a-->ai allowing for the switch between the two cases on their 

analytic sides supposedly preserves consistency. The consistency of Spherical 

geometry is guaranteed by the fact that this geometry makes part of Euclidean 

geometry (actually of Euclidean stereometry). Thus the consistency of Hyperbolic 

geometry is ultimately implied by that of Euclidean geometry.  

It is tempting to see in this Lobachevsky's argument a proof of relative consistency in 

Hilbert's sense. Even if such reading is not unreasonable one should keep in mind that, 

first, this argument is in fact very vaguely formulated and, second, it is produced by 

Lobachevsky at the absence of any genuine understanding of what is behind the formal 

correspondence between trigonometric identities in Spherical and Hyperbolic cases. 

The main source of Lobachevsky's ambiguity here is the lack of any proper distinction 

between Imaginary (Hyperbolic), Spherical and Usual (Euclidean) geometries. The 

context strongly suggests considering them on equal footing as we do it today. But 

remind that Lobachevsky also considers the Usual geometry as a special case of 

Imaginary and Spherical geometry as a part of Usual. At least the latter assumption is 

essential for the argument.  When Lobachevsky says that "relations between lines in 

the Usual and Spherical geometry are always the same" he, in my understanding, looks 

at a given sphere as an Euclidean object but not intrinsically. Thus he doesn't think 

about it as a model in anything like today's sense. The formal character of 
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substitution a-->ai  is obviously explained by Lobachevsky's lack of understanding of 

what is behind it. Lobachevsky like Lambert simply noticed the striking analogy 

between trigonometric identities valid in his Imaginary geometry and well-known 

trigonometric identities for spherical triangles. The analogy suggested considering 

Plane Imaginary geometry as a sort of Spherical geometry on a sphere of imaginary 

radius, for example, of radius equal to i. Prima facie this didn't make any geometrical 

sense. But the analogy also suggested that the new trigonometric calculus could work 

just as well as Spherical trigonometry, and this in its turn suggested that the 

synthetic reasoning behind this new calculus was also correct. This is the core of the 

above argument. But obviously the analogy noticed first by Lambert and later by 

Lobachevsky was calling for explanation. It is nothing but an irony of history that 

Lobachevsky's eventual "formalism", which was due to the lack of understanding of 

one particular mathematical question, could be later seen as an anticipation of 

Hilbert's deliberate formalism based on serious epistmological considerations. 

5) Rethinking Hilbertian Scheme with Lobachevsky

We have seen that although Lobachevsky had some elements of Hilbertian scheme at 

his disposal he was quite strongly attached to the traditional way of geometrical 

thinking. Given the historical distance between Lobachevsky and Hilbert this is hardly 

very surprising. What is more surprising is the unusual way in which Lobachevsky uses 

these elements of Hilbertian scheme. Remind that Hilbertian scheme comes with the 

idea according to which models serve (among other purposes) for providing an intuitive 

support to abstract (formal) theories. But Lobachevsky's non-standard model of the 

Euclidean plane does not serve this purpose. This author has an intuitive support both 

for Euclidean and his Imaginary geometry to begin with and use his non-standard model 

for building a system of calculus. Remind also that in order to build a theory in a 

Hilbertain setting one needs first to take a suitable metatheory for granted. But 

Lobachevsky proceeds in the opposite epistemological order. He naturally grants first 

Euclidean geometry (in the sense that he assumes its consistency), not his Imaginary  

geometry. But then he uses the latter as a metatheory for the former but not the 

other way round! He builds a new model of well-known Euclidean Planimetry by means of 

a new non-accomplished theory and this helps him to accomplish the theory in 

question. This technically clever trick from Hilbertian viewpoint looks weird.  

Although we have found in Lobachevsky something strongly resembling the notion of 

model relevant to Hilbertian scheme the epistemological background behind this 

scheme doesn't square well with Lobachevsky's work. We didn't find in Lobachevsky 

any trace of the ifthenist attitude described by Greenberg in the above quote or any 

particular tendency toward an abstract or formal thinking (as opposed to concrete 
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intuitive thinking). One obvious moral about this is the need to read historical textes 

carefully and avoid their unjustified anachronistic interpretations. But another moral is 

the need of keeping mind open to eventual revisions of currently accepted views about 

mathematics. I shall now show how one can make a better sense of Lobachevsky's 

work than just saying that this author anticipated certain elements of Hilbertian 

scheme but didn't know how to put them rightly together. Elsewhere (Rodin, 

forthcoming) I presented a general theoretical argument aming to show that Hilbertian 

scheme is unsatisfactory. Here I summarize and illustrate the argument using 

Lobachevsky's work as an appropriate historical example. I shall start with a more 

precise analysis of tensions between Hilbertian scheme and Lobachevsky's work.  

Hilbertian scheme introduces a twofold relativity in mathematical (and more generally - 

in theoretical) thinking. Using Fregean terminology I shall call the first kind of relativity 

relativity of sense and the second kind - relativity of reference  or semantical 

relativity (Note 21). The relativity of sense amounts to saying that meaning of basic 

theoretical terms like "plane",  "curve", "between", etc. are context-dependent, i.e. 

that the terms mean different things in different theories (for example, in Euclidean 

and in Lobachevskian geometries). This equally applies to derived terms like "triangle", 

which are defined through basic ones. Semantical relativity in its turn has to do with 

the assumption according to which mathematical terms just like words in natural 

languages not only mean something (i.e. have a sense) but also refer to something. 

Within Hilbertian scheme reference of mathematical terms is obtained through 

interpretation of a given formal theory, i.e. through picking up one (or more) of its 

models. These features of Hilbertian scheme support an anti-essentialist view about 

mathematical objects according to which basic geometrical notions like that of point or 

straight line have no mathematical content outside a given theory (and this content 

always changes when one changes a theory). 

The semantical account just given involves an obvious infinite regress since to get a 

model M for a given theory T one needs to repeat the whole reasoning once again, 

namely, build another theory T' and specify its model M'  which can allow for building 

the desired model M of T. The usual way to stop this regress is this: one assignes to 

pair (T', M '') a special epistemic status of metatheory, which implies that in the given 

context M' and T' are taken for granted. 

Since Lobachevsky recognised horocircles on a horosphere in a hyperbolic space as 

Euclidean straight lines one may argue that Lobachevsky already well understood 

Hilbertian semantical relativity. However this argument is not conclusive as we shall 

now see. To show this I shall not try to reveal Lobachevsky's hidden assumptions but 

rather suggest an alternative understanding of his explicite geometrical construction, 

which will allow us to avoid the absurd conclusion that Lobachevsky used his Imaginary 
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geometry as a metatheory for developing Euclidean geometry in a unusual way.  

A Hilbertian analysis of the Lobachevsky's finding goes like this. Since Euclidean plane 

and straight lines on this plane can be equally represented by the usual intuitive 

concepts (supported by traditional drawings) and by a horosphere with horocircles on 

it the two representation share in common a conceptual core of these notions and in 

addition have certain specific features, which are theoretically superfluous. This 

conceptual core can be identified by Hilbertian scheme (using formal relations between 

relata of "any nature" as a shared form (rather than essence) of the two things, then 

abstracted away and given the name of Euclidean structure. I claim that this analysis 

is inconclusive (Note 22) because the two "representations" cannot and shouldn't be 

taken on equal footing.  For on the traditional "standard" side we have here a pure 

geometrical intuition (whatever this might mean) while on the other side we have a 

well-elaborated theoretical construct, namely a horosphere, which doesn't make sense 

outside its ambient hyperbolic space and without its supporting theory of Hyperbolic 

geometry. I don't believe one can apply to such different things the same notion of 

abstraction and then talk about about a shared structure allegedly specified by this 

abstraction. In fact Hilbertian scheme suggests in this case two different procedures. 

In the case of traditional (standard) representation it suggests simply to give up the 

usual adherence to intuition and re-orient geometrical thinking toward a more formal 

mode. But in the case of a non-standard representation it suggests something 

different: to leave a theory supporting this representation out of consideration by 

providing it with a special epistemic status of metatheory. Even if this move is 

supposed to be only temporal it is generally not justified. As we have seen in 

Lobachevsky's case it leads to a sheer epistemic absurdity. 

The above argument becomes particularly clear if one looks at the situation from a 

Riemanian viewpoint. Euclidan plan E2 and Hyperbolic 3-space H3 are (or at least can be 

readily conceived of as) Riemanian manifolds. But a horosphere is not! A horosphere is 

not a manifold of its own but an embedding  E2-->H3 of one manifold into the other. 

For intrinsically a horosphere is indistinguishable from E2. This is why the intrinsic 

viewpoint is inappropriate when on talks about a horosphere meaning a specific 

surface living in Hyperbolic space. In a Riemanian perspective a horosphere cannot be 

seen as an embodiment of the concept of Euclidean plane standing on equal footing 

with the "usual" embodiment of this concept because the notion of horosphere doesn't 

make sense outside a Hyperbolic space and a Hyperbolic space is a manifold of its own, 

which cannot be left out of consideration in the given context. This shows that the 

Hilbertian way of thinking about this situation, which amounts to "carving out" a given 

horosphere from its ambient space and forgetting about its supporting theory (by 

calling it "metatheory"), is seriously misleading. 
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I shall use the above Riemanian view on the problem for introducing some general 

notions important for what follows. Embedding E2-->H3 is a map between the two 

manifolds. It is an irreversible map, i.e. it is not an isomorphism. In structuralist terms 

this observation is tantamount to saying that E2 and H3 support different structures. 

However this map can be also viewed as a partial isomorphism between the whole of E2 

and a part of H3, namely a horosphere. As I have just argued this latter view is 

misleading even if not plainly wrong because the separation of parts of H3 (or of any 

other space) changes properties of these parts dramatically as it happens when one 

looks at a horosphere intrinsically and it "turns into" an Euclidean plane. However this 

misleading view is essential for making sense of the notion of Euclidean structure in 

the given example. For given an isomorphism A<-->B (e.g. isomorphism between E2 and 

a horosphere) one can think about objects A,B "up to isomorphism" and replace both by 

a new abstract or "formal" object C (e.g. Euclidean structure).  With a general map (in 

particular, with an embedding) A-->B  one cannot do anything similar. To show this I 

shall use Frege's account of abstraction given in his (1884). Consider a class of 

individuals with an equivalence relation on it. Frege's abstraction amounts, roughly, to 

replacement of each equivalence subclass by a particular abstract object (Note 23). 

The existence of isomorphism is an equivalence relation, so reasoning "up to 

isomorphism" (at least in simple cases like our) can be understood in terms of Frege's 

abstraction. But the existence of a general map A-->B is not an equivalence (since it is 

not symmetric) and so Frege's abstraction doesn't apply . A general map A-->B 

doesn't make objects A,B in any reasonable sense the same and doesn't allow for 

replacement of both by some new object C. (Note 24)

Hilbertian scheme and Mathematical Structuralism are usually opposed to various kinds 

of essentialism about mathematical objects. But the alternative approach I am thinking 

of is different. While Structuralism comes with the slogan "think up to isomorphism" 

(Note 25) this alternative approach amounts to thinking "up to general morphism" 

(where morphism is another word for map). This analogy shouldn't be taken too 

literally because the mere existence of general morphism between two objects doesn't 

provide any sense in which these objects could be thought of as the same. Thinking 

about mathematical objects "up to general morphism" amounts to conceiving of them 

through their mutual maps. The idea is not a new one. In his (1925) von Neuman first 

made an attempt of building an axiomatic set theory taking the notion of function (i.e. 

map between sets) as primitive. Later this idea has been realised in a different setting 

by Lawvere in (1964) who used for it Category theory, which is a general theory of 

maps (called in this theory morphisms). A similar approach (also based on Category 

theory) to Riemanian geometry brought about Synthetic Differential geometry. Instead 

of making assumptions about how a general manifold looks like one begins here with 
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describing a category of manifolds, which comprises the class of "all" manifolds with 

all available maps (but not only isomorphisms) between them. For this end one first 

assumes that manifolds form a category (i.e. a class of objects with composable maps 

between them) and then makes appropriate additional assumption, which specify the 

given category as the category of Riemanian manifolds (Note 26). For further details 

and references see (Bell 2005, chapter 10) and for further philosophical discussion 

see my (2007). Here I shall only show how this categorical approach allows for making 

a better sense of Lobachevsky's work. 

As we have seen Lobachevsky certainly understood how Euclidean Planimetry can be 

translated into terms of his Imaginary , i.e. Hyperbolic, geometry. This allowed him to 

provide Hyperbolic geometry with a powerful analytic apparatus. But he didn't need 

anything like Hilbert's notion of formal theory for this purpose. Categorical approach 

to theory-building sketched above takes this notion of translation (under the name of 

morphism) as primitive and purports to (re)construct further mathematical concepts 

out of it. So it makes it less surprising that a particular map found by Lobachevsky 

turns to be a key for the whole of his theory. 

In 19th century people learnt to think about complex numbers as points on Euclidean 

plane, exchange points for straight lines and vice versa in Projective geometry 

(projective duality) and make other earlier unknown translations between different 

parts of mathematics. Hilbert's notion of formal theory and the later notion of formal 

structure provided a general epistemological account of these findings. But it was in 

fact only a limited and insufficient account, which didn't fully grasp their potential. For 

the Hilbertian account has been based on a strong assumption according to which all 

"good" translations are isomorphisms. When Jordan in 1870 first distinguished 

between isomorphisms and homomorphisms in Group theory he conceived of the latter 

as partial isomorphisms (Note 27). However historical examples like Lobachevsky's 

suggest to abandon this way of thinking about morphisms and treat different kinds of 

morphisms on equal footing to begin with. Instead of looking at Lobachevsky as one of 

Hilbert's predecessors and asking how much of the content of (Hilbert 1899) was 

already present in Lobachevsky's works one should rather recognise that 

Lobachevsky's project was essentially different and in certain respects more 

promising.   

6) Conclusion

We have seen that Lobachevsky's writings provide no support for the canonical story 

about early days of Non-Euclidean geometry, which has been produced in order to 

comply Hilbertian views on mathematics with the earlier history of this discipline. In 

particular we have found in Lobachevsky no tendency towards a retreat from spatial 
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intuition and spatial experience and no trace of ifthenism. We have also seen that the 

often repeated claim according to which Non-Euclidean geometry cannot be intuitively 

conceived in principle is nothing but a philosophical myth designed for supporting a 

particular view on mathematics. Non-Euclidean geometry extends Euclidean intuition 

but doesn't throw it away. At least this is a possible way to understand it. However 

important Hilbert's formalist views about mathematics might be (both historically and 

theoretically) they should not be taken for granted when one makes a historical 

research. 

A more specific conclusion concerns the notion of map and its historical genesis. In 

today's mathematics this notion has many faces and subsumes in particular, older 

notions of function and geometrical transformation. The face relevant to the present 

discussion concerns the notion of map as "translation" from one geometrical 

framework into another. The idea that familiar geometrical concepts like that of 

straight line can be rendered in unusual ways (so a straight line in a different 

framework can "become" a curve) is usually associated with Hilbert's fundamental text 

(1899), his notions of axiomatic theory and its interpretation, and later developments 

including Model theory. However, as we have seen, Lobachevsky had the idea of map 

but conceived of it in a way very different from Hilbert's.

To claim that Lobachevsky anticipated Category theory would be even more absurd 

than claim that he anticipated Hilbert's Formal axiomatic method. However there is 

nothing absurd in analysing Lobachevsky's finding  in terms of maps rather than in 

terms of models understood in Hilbertian sense. A careful reading of historical 

mathematical texts as ever provides a lot of material for reflection on today's hot 

topics. Lobachevsky's recovering of Euclidean plane in Hyperbolic space through a 

horosphere allows us for a better understanding of where today's notion of map 

comes from. Such historical understanding seems me necessary for further 

development of this new mathematical concept.  

Thus the straightforward answer to the question whether or not Lobachevsky had a 

model of his geometry is that the question is ill-posed. I opted nevertheless for taking 

it seriously for two reasons. First, because this question naturally arises within the 

standard view on history of geometry of 19th century. So the question provided me a 

good opportunity to suggest a revision of this standard view. Second, because this 

straightforward answer doesn't imply that Lobachevsky's work has nothing to do with 

today's notion of model. As we have seen Lobachevsky certainly grasped a basic idea 

behind this notion, namely the possibility to represent objects and relations belonging 

to a given mathematical theory by objects and relations of another theory. But as I 

have argued in this paper one can make a better sense of Lobachevsky's work than 

claim that he was one of Hilbert's predecessors. It is far more interesting, in my view, 
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to find in Lobachevsky and other older writers grains of some conceptual possibilities, 

which hasn't been yet fully explored, and then try to develop them further. Instead of 

looking at Lobachevsky's way of translating between different theories as an early 

incomplete grasp of a later notion of model I suggested a different approach, which 

takes this notion of "incomplete" translation seriously and puts it into foundations of 

geometry. Then as it so often happens in history apparent shortcomings of an older 

work become to look as strokes of genius. 

Endnotes:

Note 0:

The shortened titles of Lobachevsky's works used in this paper are explained in the 

Bibliography, section A, where the reader can find the full references. 

Note 1: 

Consider, for example, this account provided by Wikipedia (entry "Non-Euclidean 

Geometry" as for February 20, 2008      http://en.wikipedia.org/wiki/Non-

Euclidean_geometry):

"Even after the work of Lobachevsky, Gauss, and Bolyai, the question remained: does 

such a model exist for hyperbolic geometry? The model for hyperbolic geometry was 

answered by Eugenio Beltrami, in 1868, who first showed that a surface called the 

pseudosphere has the appropriate curvature to model a portion of hyperbolic space, 

and in a second paper in the same year, defined the Klein model, the Poincaré disk 

model, and the Poincaré half-plane model which model the entirety of hyperbolic 

space...."

A very different and, in my view, much more satisfactory treatment of this question 

has been given in 2007 by Roberto Torretti in another public internet resource: 

Stanford Encyclopedia of Philosophy: plato.stanford.edu/entries/geometry-19th/ 

Note 2:

(Greenberg 1974) is a geometry textbook of college level containing some historical 

and philosophical material. It may be argued that it is not appropriate to take historical 

and philosophical claims contained in this book too seriously and criticise them 

thoroughly. I disagree. Such books written for younger students often make explicit 

certain assumptions about history and philosophy of mathematics, which in more 

serious studies are often taken for granted or hidden behind further details. The fact 

that on Greenberg's account these assumptions are oversimplified and perhaps even 

partly confused is a price to be paid for its compactness. Since my aim here is to 
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reconsider basics rather than elaborate on details (Greenberg 1974) serves me as a 

perfect reference.   

Note 3.

Beware that we are talking about the pure mathematics here, not about a study of 

physical space. The scheme of theory-building in question usually comes with a strong 

epistemological thesis according to which these two things are quite distinct and the 

former has a priority over the latter in the following sense : one may reasonably ask 

whether a given mathematical construction correctly describes physical phenomena 

but one is not allowed to use physical arguments in pure mathematics.

Note 4

My presentation of Hilbertian scheme is slightly anachronistic with respect to Hilbert 

(1899) and based on a later distinction between syntax and semantics. I opt for this 

anachronism here because my aim here is to make explicit a fairly standard today's 

understanding of the matter rather than to analyse its genesis. 

Note 5:

This is, of course, a strong and highly controversial metaphysical claim, which can be 

challenged, in particular, via a reference to changing entities: a changing entity A has 

some property P before a change and doesn't have this property after the change. 

This problem is usually (but in my view mistakenly) seen as irrelevant to mathematics 

since, as people often believe, mathematical objects cannot change.      

Note 6:

I provide some further details about Hilbertian scheme in section 5 of the main text.

Note 7: 

I don't claim here that Greenberg's "formalist viewpoint" is indeed shared by the 

majority of living working mathematicians. Actually I think that this is not the case. 

Nevertheless Hilbertian scheme (liberally understood) remains a fairly standard 

"official" framework for doing mathematics, and in this sense its identification with 

"modern mathematics" is justified.  

Note 8:

This choice of references needs a justification. I provide it here beginning with a brief 

description of Lobachevsky's works in Geometry. G is a geometry textbook published 

only after the author's death, which contains no material related to Non-Euclidean 
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geometry. FG and NFG are two author's attempts to write a fundamental geometrical 

treatise covering the whole of the discipline from its foundations to its special 

chapters. Lobachevsky's project of rebuilding foundations of geometry developed in 

these two works doesn't reduce to what became known as Lobachevskean geometry 

but also includes some other new ideas which I cannot discuss here. IG and AIG have, on 

the contrary, a more limited task of presentation of a new analytic apparatus related 

to Lobachevskian geometry (the hyperbolic trigonometry) and demonstration of its 

power. Lobachevsky introduces here this apparatus "by hand" reducing its geometrical 

background to minimum.  STP is another shortened account of the basics of 

Lobachevskean geometry, which, however, is theoretically complete: it begins with 

synthetics geometrical considerations and proceeds to analytic methods. STP doesn't 

cover some more specific issues (like calculation of areas and volumes) treated in FG 

and NFG but unlike IG includes the foundational synthetic part. PG is the last overview 

of Lobachevskean geometry written by the author; it is less systematic than STP and 

fixes some minor technical problems, which Lobachevsky found in STP after its 

publication. This description makes it clear that  STP is the best compact systematic 

presentation of the topic written by Lobachevsky himself.  Importantly Lobachevsky's 

notion of "Imaginary geometry" remains quite  stable across all of these works. This 

allows me not to refer to any particular period of his work in the present  general 

discussion. English translation of STP is available and referred to in the Bibliography 

below. 

Note 9:

AP is also known under the name of Playfair's Axiom.

Note 10:

For suppose that m and l intersect in A. Then the external angle RPA is equal to the 

internal angle PSA. This contradicts the theorem about an external angle which implies 

that RPA  must be strictly superior to PSA .    

Note 11:

To prove (iii) rigorously one needs Pasch's axiom which Lobachevsky never mentions 

but always tacitly takes for granted. This axiom first introduced in (Pasch 1882) says 

this:

Given a triangle and a straight line intersecting one of the triangle's sides but passing 

through none of the triangle's apexes the given line intersects one of the two other 

sides of the given triangle. 
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To apply this axiom to the given case one needs a simple additional construction, which 

I leave to the reader.  Remind that my point here concerns common intuition but not 

rigorous proofs: whatever improvement on (iii) can be possibly made it remains 

intuitively evident.  

Note 12: 

Consider, for example, the first half of Lobachevsky's proof of the fact that his 

definition of parallel doesn't depend of the initial choice of point P of this parallel. Let 

m  = PA be the right parallel to the given straight line l passing through the given point 

P outside l , PS be the perpendicular dropped from P to l, P'  be any other point of m 

laying to the right from P, and finally P'S' be the perpendicular dropped from P' to l 

(fig. 5). We now show that given any point B inside angle AP'S'  line P'B intersects l at 

certain point D. (This will mean that m  is right parallel to l with respect to P'). To see 

this draw line PB. Since B lays inside angle APS  and m is right parallel to l with respect 

to P line PB intersects l at certain point C. Then draw line P'B , denote by E the point 

of intersection of P'S' and PC, and consider triangle ES'C. P'C intersects side EC of 

this triangle in B and doesn't intersect ES' by the choice of B. Hence P'B intersects the 

third side S'C (and hence line l) in some point D. 

fig. 5

The last step requires Pasch's axiom, see Note 10 above. The other half of the proof 

corresponding to the case when P' lays to the left of P  I leave as an exercise to the 

reader. 
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Note 13:

see (Bonola 1955)

Note 14:

In recent philosophical discussions this claim is often identified as Kant's view. For the 

obvious historical reason Kant never distinguished between Euclidean and Non-Euclidean 

geometries in his writings but always refers to geometry tout court. The only reason 

to identify geometry mentioned by Kant as Euclidean in today's technical sense of the 

term is Kant's choice of examples: in particular, in his Critique of Pure Reason 

(A713/B741) Kant refers to Euclid's proof of the fact that the sum of internal angles 

of a given triangle is equal to two right angles. If Kant would learn more about the 

Problem of Parallels (from Lambert or otherwise) he would likely change his examples 

without changing principle arguments.  

Note 15:

Hereafter translations of Lobachevsky's passages from Russian are mine. 

Note 16:

Lobachevsky doesn't distinguish clearly between geometrical truth and truth about 

physical space, even if some of his passages suggest such a distinction. Given his 

empiricists view on geometry this is hardly surprising. 

Note 17:

I have here in mind Euclid's distinction between Axioms and Postulates, which I explain 

in the end of section 4 of this paper. The question whether a construction with some 

desired properties is doable or not often have no trivial answer. 

Note 18:

See Bonola (1955). Wallis (1616-1703) first realised that P5 is equivalent to any 

proposition, which grants the existence of similar triangles. Lambert re-interpreted 

this result in terms of the possibility of scaling , i.e. the free choice of the unit of 

length. In my view there is a sense in which these authors resolved the Problem of 

Parallels.  For the scaling property of geometrical spaces can be justified on 

epistemological and pragmatic grounds and then be adopted as a plausible axiom or 

postulate. This certainly makes sense  if geometry is seen as a theory supporting 

measuring practices rather than an a priori science of space. It is moreover 

remarkable that having at hands what looked like a genuine proof of P5 (based on a 
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new plausible principle) Lambert didn't rule out the possibility of Non-Euclidean 

geometries.  

Note 19:

See (Bonola 1955). Sacceri constructs a quadrilateral with three right angles and then 

conciders separetely cases when the fourth angle is right, acute and obtuse. Hence 

the three hypotheses. The third hypothesis can be ruled out without the use of P5 but 

the second cannot. 

Note 20: 

In the same year of 1840 when Lobachevsky published his STP Ferdinand Minding 

(1806-1885) published in the Crelle Journal a note (Minding 1840), where he showed 

that trigonometrical formulae for triangles formed by geodesics on surfaces of 

constant negative curvature can be obtained from trigonometrical formulae for 

spherical triangles by replacement of usual trigonometric functions by hyperbolic 

functions. Lobachevsky in STP makes a similar observation about straight lines of his 

geometry (see section 3 below in the main text). A communication between the two 

authors would most probably lead to the discovery made by Beltrami later in 1868! 

However Lobachevsky apparently didn't read this Minding's paper in spite of the fact 

that the library of Kazan University had this issue  the Crelle Journal. At least the 

preserved list of books and journals borrowed by Lobachevsky from the University 

Library doesn't include this reference (see �Ł�Ł��ººŁ� et al. 1974).     

Note 21: 

See (Frege 1892). Notice that the two kind of relativity I discuss below build upon the 

more general denotational  relativity which allows for replacement of any sign having 

certain sense and certain reference by another sign. 

Note 22:

I don't mean, of course, that there is a simple error in this reasoning. After all it 

grounded a strategy of mathematical research - I mean the structuralist program 

broadly conceived - which proved successful in 20th century and brought about a 

great part of the bulk of today's mathematical knowledge. It is my view, which I cannot 

fully expose and defend in this paper, that today the structuralist strategy is mostly 

expired. See my 2007 for further discussion. My critical arguments against 

mathematical structuralism don't challenge its historical importance.  
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Note 23:

Frege's example: the equivalence relation of being parallel between Euclidean straight 

lines and the notion of direction abstracted away by the described method. Frege's 

notion of abstraction allows for more refined interpretations than one just given in the 

main text but this have no impact on the following argument. 

Note 24:

Let me be more precise. The bare existence of morphism between two given objects 

A ,B  (i.e. existence of morphism of the form A-->B  or of the form B-->A) is an 

equivalence relation (let's call this relation R1). However the existence of morphism 

from A to B (i.e. existence of morphism of the form A-->B  ) for a given ordered pair 

A ,B  is not (let's call this latter relation R2). Beware that R1 is not the relation of 

isomorphism (since morphisms in question are, generally, not isomorphisms). Call now 

objects A, B  morphic just in case they hold R1 and then observe that all sets, groups 

and topological spaces are correspondingly morphic (obviously objects are morphic only 

if they belong to the same category). This shows that the idea of "thinking up to 

general morphism" by identifying morphic objects like structuralists do this with 

isomorphic objects is sheerly absurd:  R1 is too weak to replace the relation of 

isomorphism in any reasonable way. R2, which takes the sense of morphisms into 

account, is stronger but it is no longer an equivalence relation, and so it gives no new 

meaning to the expression "morphic objects" (which suggests a splitting of a given 

class of objects  into equivalence sub-classes of morphic objects). This shows that one 

cannot use R2 either in anything like the same way people use the relation of 

isomorphism in a Hilbertian setting. 

Note 25:

Preparing his (1899) Hilbert thought about classes of isomorphic constructions (later 

called models) and their shared forms (structures).  He thought that in this way one 

may distinguish between what is theoretically significant (the form) from what is not 

(specific features of particular models). Hence his idea of formal mathematics. The 

fact that formal theories, generally, have also so-called non-standard models, which 

are not  isomorphic to standard models (i.e. the models one begins the Fregean 

abstraction with) Hilbert first realised and first treated only in his (1900); in the 

second and later editions of his (1899) Hilbert added a new controversial axiom 

(Vollstandigkeitsaxiom) supposed to treat the same problem. The property of an 

axiom system, which consists of the fact that all of its models are isomorphic was 

called by Veblen in his (1904) categoricity. Since then the pursuit of categoricity 

became a part of programs of formalisation of mathematics through Hilbertian 
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scheme.  It has been realised that the requirement of categoricity cannot be generally 

met without a price, which in many important cases, like in axiomatic Set theories, 

turns to be quite high. 

Note 26:

A category of manifolds can be also obtained through construing manifolds and their 

maps by some other methods and then putting all these things together. The approach 

I'm talking about is clearly different. 

Note 27:

In Book 2, section 67 of his (1870) Jordan distinguishes between isomorphisme 

holoédrique (literally "complete isomorphism), which is isomorphism in today's sense, 

and isomorphisme mériédrique (literally "partial isomorphism") called today 

homomorphism (see Jordan 1957 and Kline 1972 ).  
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