Observable?

The term observable has become the standard name in quantum me-
chanics for what used to be called physical quantity or measurable
quantity in classical physics. This term derives from observable quan-
tity (“beobachtbare Grosse”), which was used by Werner Heisenberg in
his groundbreaking work on matrix mechanics [1] to emphasize that
the meaning of a physical quantity must be specified by means of an
operational definition. Together with a — state an observable deter-
mines the probabilities of the possible outcomes of a measurement of
that observable on the quantum system prepared in the given state.
Conversely, observables are identified by the totalities of their mea-
surement outcome probabilities. Examples of observables in quantum
mechanics are position, velocity, momentum, angular momentum, spin,
and energy.

In elementary quantum mechanics, the observables of a physical sys-
tem are represented by, and identified with, — selfadjoint operators A
acting in the Hilbert space H associated with the system. For any —
pure states of the system, represented by a unit vector ¢ € ‘H, the prob-
ability p:(X) that a measurement of A leads to a result in a (Borel)
set X C R is given by the inner product of v with E4(X)1, that is,
Py (X) = (Y|EA(X)y); here EA(X) is the spectral — projection of A
associated with the set X, and the map X +— E4(X) is called the —
spectral measure of A. The probability measures p§27 with 1 varying
over all possible pure states of the system, determine the observable A.
The expectation, or average [ a:dpfp‘(x), of the measurement outcome
distribution of an observable A in a state ¢ can be expressed as ()| Av)
whenever ¢ is in the domain of the operator A.

The statistical meaning of quantum observables was first recognized
by Max Born [2| who proposed that, in the position representation,
the absolute square |¢)|> of the ‘wave function’ v gives the probabil-
ity density of observing a quantum object at a given point. This idea
was systematically elaborated by John von Neumann [3| who formu-
lated and proved the spectral theorem for selfadjoint (hypermaximal
hermitian) operators and applied it to obtain the interpretation of ex-
pectations as statistical averages given above.

In his seminal paper on the uncertainty relations [4] Werner Heisen-
berg argued, among other things, that
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all concepts which can be used in classical theory for the de-
scription of a mechanical system can also be defined exactly
for atomic processes in analogy to classical concepts.

This statement can be substantiated in precise form by virtue of the
mathematical fact that for any value x in the — spectrum of a self-
adjoint operator A and for each ¢ > 0 there is a state 1 such that
pﬁ((w —¢€,x+¢€)) = 1. In particular, if A has an eigenvalue «a, that is,
there is a state 1 such that Ay = aw, then in such an eigenstate of A
a measurement of A is certain to yield the value a. Such a situation is
commonly described by saying that observable A has a definite value if
the state of the system is an eigenstate of A. The generic situation in
quantum mechanics, however, is that most observables have no definite
value in any given pure state.

It is a basic feature of quantum mechanics that there are pairs of
observables, such as position and momentum, which do not commute.
This fact, which lies at the heart of the — complementarity principle
and — uncertainty principle, reflects a fundamental limitation on the
possibilities of assigning definite values to observables and to the pos-
sibilities of measurements in the quantum world. Indeed, observables
A, B that do not commute do not share a complete system of eigenvec-
tors, so that typically an eigenstate of (say) A will be a superposition
of eigenstates of B. Moreover, according to a theorem due to von Neu-
mann [5], observables A, B are jointly measurable, that is, they have a
joint observable (see below), if and only if they commute.

The idea of identifying an observable (with real values) with the to-
tality of the outcome probabilities in a measurement does not single out
spectral measures, but is exhausted by the wider class of (real) positive
operator (valued) measures, or semispectral measures. A positive oper-
ator measure is a map F : X — FE(X) that assigns to every (Borel)
subset X of R a — positive operator E(X) in such a way that for every
pure state ¢ the map X — pf(X) := (¢|E(X)1) is a probability mea-
sure. This definition extends readily to cases where the measurement
outcomes are represented as elements of R™ or more general sets. Ex-
cellent expositions of the definition and properties of positive operator
measures can be found, e.g., in [8, 9].

Observables represented by positive operator measures which are not
projection valued are referred to as generalized observables, or unsharp
observables, while spectral measures and generally all projection valued
measures are called standard, or sharp observables. Commonly used

acronyms for positive operator measures are POVM or POM.
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The generalized representation of observables as positive operator
measures was discovered by several authors in the 1960s (e.g., [6, 7,
10, 11, 12, 13]) and has by now become a standard element of quan-
tum mechanics. It has greatly advanced the mathematical coherence
and conceptual clarity of the theory. For instance, the problem of the
(approximate) joint measurability of noncommuting observables such
as position and momentum and the relevance of the — Heisenberg un-
certainty relations to this question is now fully understood.

Two (real) POMs E, F are jointly measurable if and only if there is
a third POM, G, defined on the (Borel) subsets of R?, which has E and
F as marginals, that is, E(X) = G(X xR) and F(Y) =GR x Y) for
all (Borel) subsets X, Y of R. This definition is an instance of Ludwig’s
notion of coexistence: a set of — effects is coexistent if it is contained in
the range of some POM [12, 13|. Similarly, a collection of observables is
coexistent if their ranges are contained in the ranges of some observable.
For the coexistence or joint measurability of two unsharp observables
E F, their mutual commutativity is sufficient but not necessary. If one
of the observables is sharp, then coexistence implies commutativity.

As two noncommuting standard observables are never jointly mea-
surable, one can only try to approximate them (in a suitable sense) by
unsharp observables which in turn may be jointly measurable. This
turns out indeed to be possible as has been well demonstrated in the
cases of position and momentum or spin components. [[ PROPOSE
to modify or cancel the next sentence: one can take any commutative
sharp observable on R? and declare it to be an approximate joint ob-
servable of position and momentum. What matters is that one insists
in a “nontrivial" quality of theapproximation.| The price to be paid for
the approximate joint measurability of two noncommuting observables
is the unsharpness of the approximators.

Finally, the introduction of POMs has widely increased the applica-
bility of quantum mechanics in the description of realistic experiments
(see, e.g., [14, 15]), and POMs are now in full use also in the relatively
new fields of quantum computation and information, see, e.g., [16, 17].
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