
A DIRECT INTERPRETATION OF QUANTUM MECHANICS

CRISTI STOICA

Abstract. The Quantum Mechanics is interpreted, in this article, in a simple and
direct way. By combining the unitary evolution with the quantum condition that ob-
servations require the state vector to be an eigenstate of the observable, a discontinuity
in evolution (the state vector reduction) seems to be mandatory. Thus, for each such
discontinuity, new initial conditions for the time evolution state vector are needed, and
they are obtained by measurements. Delayed-choice experiments suggest that these
new initial conditions are specified after the discontinuity takes place. Consequently,
because it needs initial conditions that can be specified with a delay, the time evolving
state vector is semi-realistic (in the sense that it is not completely specified until the
measurement is performed), and not entirely realistic. The collapse of the wave func-
tion, especially when it is combined with the entanglement, seems to be a non-local
phenomenon. In fact, the non-locality is present only as a consistency requirement for
the initial conditions needed to select a solution of the evolution equation.

The Direct Interpretation is intended to provide to our intuition a physical back-
ground, for helping us thinking about quantum phenomena. It identifies the main
counterintuitive parts of the Quantum Mechanics in the discontinuity and the delayed
initial conditions. Because it makes minimal assumptions, it is compatible with the
main interpretations of Quantum Mechanics.

Two principal unclear points of Quantum Mechanics are identified in the discontinu-
ities, and the measurement problem. Both problems will be approached in subsequent
articles.

E m a i l : h o l o t r o n i x@ g m a i l . c o m.
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1. Introduction

Quantum Mechanics is one of the two most successful theories in physics1, because of
its capacity of explanation and prediction. Because the quantum phenomena look so
counterintuitive, some of the physicists try from time to time to interpret them in more
intuitive terms. At the opposite side, other physicists are content with the abstract
(although inconsistent) mathematical form, and consider that the efforts to interpret
the quantum world are useless.

In this paper, I will present the central ideas of Quantum Mechanics in a way that
will allow us to extract some key elements. I use these elements to provide a portrait of
Quantum Mechanics, which can be resumed like this:

(1) We start with the space Sd(H) of functions representing the time evolution of
a state vector from the Hilbert space, ψ : R → H. The functions of Sd(H) are
taken to be piecewise solutions of the Schrödinger equation given by the Hamil-
tonian H. By this we mean that they are smooth and continuous solutions of
the Schrödinger equation on an interval (ti, ti+1), then, at ti, they have a discon-
tinuity, then again on an interval (ti+1, ti+2) evolve smoothly and continuously
according to the same equation, and so on, for i ∈ Z (or a subset). We also
require that their value at each t ∈ R is a unit vector. They are waves provid-
ing the full description of reality. The piecewise continuity condition allows the
wave to suffer discontinuous jumps, which seem to be required by the Quantum
Mechanics [vN55].

(2) A subspace Sq(H) < Sd(H) is defined from extra conditions imposed to the
discontinuities by the projection postulate. It is in fact this space Sq(H) where
we will search the solutions describing the evolution of the quantum system.

(3) Having an equation and a space of solutions requires also extra conditions in
order to identify the actual solution. In our case, the discontinuities require
restatements of the initial conditions. From time to time, we add such conditions,
by performing observations. The conditions in general come together with the
state vector, forcing it to jump in one of the observable’s eigenstates.

(4) The conditions needed to reduce the space of solutions are not necessary “initial”,
but they can be “delayed”: they seem to apply also to instants previous to the
moment of observation. This behavior can be emphasized with “delayed-choice”
experiments, and it is perhaps the key of the counterintuitive nature of Quantum
Mechanics.

The present description will be used to present several non-classical aspects of the
Quantum Mechanics. A quantum system is described by waves that evolves in general
in a continuous manner, suffering from time to time discontinuities. The discontinuities
lead to a loss of the initial information, and new measurements provide a way to replace
this information. Actually, it seem that the measurement themselves are responsible for
the discontinuities, hence they simply replace the old information describing the solution
with the new one. Most of the paradoxical aspects of Quantum Mechanics are in general
traceable to seemingly non-causal and non-local behaviors. These behaviors are nothing

1The other one being, of course, the Theory of General Relativity.
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but delayed initial conditions [Wei31, Sch49, Whe77, Whe78, WZ83], combined with
quantum entanglement [Sch35, EPR35]. Despite various efforts to find an underlying,
more classical, or at least more local and causal explanation, and despite all the efforts
to deny it, this type of behavior exists and is irreducible. What I want to point out in
this paper is that, by accepting that choosing a time evolution function requires “initial
conditions”, and by understanding that these conditions can be specified with a delay,
the strange behavior of quantum phenomena become more intuitive.
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2. Wave vs. quanta

In this section we will review a central incompatibility in Quantum Mechanics. On
the one hand, the Schrödinger equation describes very well the evolution of quantum
systems (the wave-like behavior). On the other hand, the observation forces the system
to be in an eigenstate of the observable (the quantum-like behavior). We have a partial
differential equation (the Schrödinger equation), and a set of initial conditions, provided
by the observations. The core problem is that it seems that there are too many initial
conditions, this leading to incompatibilities.

We can understand easily the problem we have by thinking at a linear function f :
R → R. Generally, there exist two real numbers a and b, such that f(x) = ax + b, for
all x ∈ R. We can determine a and b by knowing two distinct points on the line, (t1, f1)
and (t2, f2), where t1 6= t2. We construct a system of two linear equations in a and b
and we solve it. But if we know more than two points, we have more than two linear
equations, with only two unknowns. If we have more than two independent conditions,
the system is necessarily inconsistent. It is like we want to determine a line by more
than two points that are not collinear.

Similarly, when we perform a quantum measurement, we are free to choose observables
that have only eigenstates that are incompatible with the previously established initial
conditions. This inconsistency is usually solved by admitting that the solution has
discontinuities.

Admitting that the quantum system may evolve with discontinuities, combined with
the fact that each observable let the system choose among more possible initial con-
ditions, has as consequence a certain randomness. The Born rule [Born26] gives the
probability distribution governing this randomness.

2.1. The wave-like behavior

A quantum system is described by a vector (named a state vector) |ψ〉 in a complex
Hilbert space2 H, with the hermitian inner product of two vectors |ψ1〉 and |ψ2〉 denoted
by 〈ψ1|ψ2〉. Any not null vector in H represents a possible state of the system under
consideration. If one state vector |ψ′〉 is a multiple of |ψ〉, |ψ′〉 = z|ψ〉, z ∈ C−{0}, then
both vectors represent the same quantum state. We will consider in general that the
state vectors are unit vectors.

The Schrödinger equation describes how a quantum system evolves, by describing how
its associate state vector ψ evolves:

(1) i
d

dt
|ψ(t)〉 = H(t)|ψ(t)〉.

The Schrödinger equation has an infinity of solutions, forming a space S(H). For any
initial state |ψ0〉 at an initial moment t0, it provides a unique continuous and smooth
solution |ψ〉 : R → H. In order to specify the solution, it is enough to specify its value
for a time t0.

2Similar considerations can be made by considering a rigged complex Hilbert space instead.
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The figure 1 represents, in a very symbolic manner, several solutions of the Schrödinger
equation, and the way to select one of them by imposing an initial condition.

H

t0 time

|ψ(t0)〉|ψ〉

Figure 1. For each possible |ψ0〉 ∈ H there is a unique solution of the
Schrödinger equation, satisfying the initial condition |ψ(t0)〉 = |ψ0〉.

The Schrödinger equation is linear, it has the property of superposition. This means
that if |ψ1〉 and |ψ2〉 are solutions, then their sum |ψ1〉+ |ψ2〉 is also solution of the same
equation, and any linear combination (with complex coefficients) is again a solution.

By solving the Schrödinger equation, we obtain a solution of the form

(2) |ψ(t)〉 = U(t, t0)|ψ0〉,
where U(t, t0) is a unitary operator (please refer to figure 2). In the case ofH independent
of time, the unitary operator has the form:

(3) U(t, t0) = exp

(

−i
t− t0

~
H

)

.

H

t0

|ψ(t0)〉

|ψ(t)〉 = U(t, t0)|ψ(t0)〉

t time

|ψ〉

Figure 2. By knowing the evolution operator U and the state vector |ψ(t0)〉
at a time t0, we can predict the state at another time t.
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Because the evolution operator U is unitary, the hermitian inner product on the
Hilbert space is preserved. This means that, for two solutions |ψ1〉 and |ψ2〉 of the
Schrödinger equation, 〈ψ1(t0)|ψ2(t0)〉 = 〈ψ1(t)|ψ2(t)〉 for any t0, t ∈ R.

2.2. The quantum behavior

In order to find out the state of a quantum system, we have to perform a measurement.
We don’t know how to measure the system itself, but only its observables. An observable

is a linear operator O on the Hilbert space H. By measuring the observable O of a
quantum system |ψ〉, we obtain a number λ. This number is an eigenvalue of the operator
O, and if it is obtained, the system is found to be in an eigenstate |ψλ〉 corresponding
to λ. Because λ is usually a real number, it is customary to impose to the observables
the condition of being hermitian.

H

time

observable O

eigenstates of O

Figure 3. The eigenstates of the observable O form a subset of the Hilbert
space H; we can depict them as a subset of points of the vertical axis repre-
senting the Hilbert space.

H

|ψ〉

t0 time

observable O

|ψλ〉

Figure 4. The quantum system is found to be in an eigenstate |ψλ〉 of the
eigenvalue λ.
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The linear operators (an hence the hermitian operators too) are characterized by their
eigenvalues and the corresponding eigenstates. The only effect an observable has to the
measured system is given by the eigenstates, hence we can forget, for the moment, about
the eigenvalues and represent the observable only by its eigenstates, as in the figure 3.

In the figure 4 we can see that the condition imposed by the observable to the quantum
system |ψ〉 at the time t0 takes the form |ψ(t0)〉 ∈ {eigenstates of O}.

2.3. Two incompatible laws

The (unitary) evolution of any quantum system is governed very accurately by the
Schrödinger equation. If at t0 the state is observed and found to be |ψ(t0)〉, at the time
t1 it evolves to |ψ(t1)〉, according to equation (2). On the other hand, by measuring
an observable O1 we find the quantum system as being only in one of a specific set of
states, namely the eigenstates of the observable. The problem is that it is very likely
that |ψ(t1)〉 is not an eigenvalue of O1.

H

|ψ〉

t1

time

observation

t0

preparation

incompatibility

Figure 5. The first measurement in the figure, named preparation, measures
the observable O0 at t0 and finds the state vector to be |ψ(t0)〉. At a subsequent
moment the state will evolve to |ψ(t1)〉. On the other hand, the observation
at t1 will find |ψ(t1)〉 to be an eigenstate of the observable O1. The trouble is
that, in most cases, |ψ(t1)〉 will not be an eigenstate of O1.

The wave behavior, as described by the Schrödinger equation, has been well tested
experimentally and it describes very precisely the quantum systems. If we have a quan-
tum system whose Hamiltonian is known, we can write down its associated Schrödinger
equation. Let’s say that, by measuring an observable at t0, we find a nondegenerate
eigenvalue λ0. Because the multiplicity of λ0 is one, any of the corresponding eigen-
states will describe the same quantum state. Hence, we have identified precisely the
state, and we can choose any of the equivalent state vectors describing it, say |ψ0〉. The
unitary evolution allows us to define a function

|ψ〉 : R → H, |ψ(t)〉 = U(t, t0)|ψ0〉,
and it also predicts that, at a subsequent time t1, the state vector will be |ψ(t1)〉.
If we measure at t1 an observable O1 having |ψ(t1)〉 as an eigenstate, we will obtain
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precisely the eigenvalue λ1 that corresponds to |ψ(t1)〉. We can say that our measurement
confirmed the Schrödinger equation. Such an experiment will always confirm the wave
behavior described by the Schrödinger equation.

On the other hand, if we decide to measure an observable O1 that does not admit
|ψ(t1)〉 as an eigenstate, then the things change. The state vector is no longer found to
be |ψ(t1)〉, but one of the eigenstates of O1. The quantum behavior has been tested as
well, and it was found no exception to the rule of obtaining eigenvalues of the measured
observables.

Therefore, the two rules appear to be incompatible in an irreducible manner.
The solution proposed is that, as a result of the measurement, the state vector jumps

from |ψ(t1)〉 to an eigenstate of O1. Of course, this implies that a discontinuity appears
in the evolution of |ψ〉.

H

|ψ〉

t1

time

observation

t0

preparation

reduction

|ψ′〉

Figure 6. It appears as the state vector |ψ〉 jumps to another state |ψ′〉, such
that |ψ′(t1)〉 is an eigenstate of the observable O1 measured at t1.

We are forced to consider a broader space, say Sd(H), by allowing solutions of the
Schrödinger equation (1) on R − D, where D is a discrete subset of R having a finite
number of elements in any closed interval. Thus, we admit functions that are solutions of
the Schrödinger equation only piecewise, having discontinuities at the moments of time
t ∈ D. We also require that, for each solution |ψ〉 ∈ Sd, and t ∈ R − D, ||ψ(t)〉| = 1,
which can be ensured by the unitary character of the Schrödinger equation.

Not all the solutions contained by Sd(H) are acceptable, as we shall see.

2.4. The probabilistic behavior

When we measure the observable O1 of a quantum system, the result is always an
eigenvalue λ of O1. The system is found to be in an eigenstate of λ, and the exact
eigenstate |ψ′

1〉 can be obtained exactly only if we know the value of |ψ〉 prior to the
measurement, by projecting it to the eigenspace corresponding to λ, Sλ. The evolution
is then obtained by taking an element |ψ〉 ∈ Sd(H) satisfying both the Schrödinger
equation and the initial conditions |ψ(t0)〉 = |ψ0〉 and |ψ(t1)〉 = |ψ′

1〉. In fact, the first
initial condition gives a solution |ψ〉, and the second one gives a solution |ψ′〉. As a
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result of the measurement, the system, which was described by |ψ〉, becomes described
by |ψ′〉. The probability to obtain a given eigenvalue is given by the Born rule [Born26]:

(4) P|ψ(t1)′〉(ψ(t1)) = |〈ψ(t1)|ψ′(t1)〉|2,
for normed state vectors |ψ(t1)〉 and |ψ′(t1)〉.

H

time

observation probabilities

reduction

t0

preparation

|ψ〉

t1

Figure 7. At the moment t1 the state vector will be found not to be |ψ(t1)〉,
as predicted by the Schrödinger equation, but one of the eigenstates of O1. The
probability to find the state to be |ψ′(t1)〉 is given by |〈ψ(t1)|ψ′(t1)〉|2.

The Born rule is a principle that completes the wave-like behavior and the quantum
behavior presented above. The projection postulate allows us to determine exactly the
state vector after the observation, from its previous value, by projecting the latter on
the corresponding eigenspace (and then normalizing).

Although the equation (4) is probabilistic, it has a definite consequence: the state
vector |ψ(t1)〉 cannot jump to a state which is orthogonal to it. As a corollary, if we
measure an observable for which |ψ(t1)〉 is an eigenstate, we obtain the same state vector
|ψ(t1)〉. That is, there is no jump. This happens because the eigenstates corresponding
to different eigenvalues are orthogonal.

In fact, this is implied also by the projection postulate, which adds even more limits.
The projector Pλ has the form:

(5) Pλ =
∑

r

|er〉〈er|,

where (|er〉)r is an orthonormal eigenbasis of Sλ, and the sum may contain integrals, as
usual. Then, if |ψ′(t1)〉 = Pλ|ψ(t1)〉,

〈ψ(t1)|ψ′(t1)〉 = 〈ψ(t1)|Pλ|ψ(t1)〉 =
∑

r

〈ψ(t1)|er〉〈er|ψ(t1)〉 =
∑

r

|〈ψ(t1)|er〉|2 ≥ 0.

This implies that, by knowing |ψ(t1)〉 and the direction of |ψ′(t1)〉 (that is, know-
ing |ψ(t1)〉 only up to a phase factor), we can determine |ψ(t1)〉 by the condition
〈ψ(t1)|ψ′(t1)〉 ∈ (0,∞) (and by the condition that its norm is 1). A first consequence
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is that, by knowing the direction in which the state vector is found after the measure-
ment, and its value before, we can determine it, independently of the observable, or the
projector. Second, the discontinuities must satisfy the condition

(6) 〈ψ(t1)|ψ′(t1)〉 ∈ (0,∞).

This is indeed a restriction, since usually the inner product is complex, and the projection
postulate implies that it must be real, and positive.

We have to exclude from Sd(H) all the solutions having discontinuities that violate
the condition (6). The remaining elements of Sd(H) will be denoted by Sq(H).

All the elements of Sq(H) can describe a quantum system. They are defined inde-
pendent of the observables to be measured. We can study them as a space of piecewise
solutions of the Schrödinger equation, with additional conditions that allows us to select
a solution. Indeed, these conditions can, and actually do come from observations, but
we can separate the measurements from the description of the quantum system.

Given two consecutive measurements Oi and Oi+1, such that between them the quan-
tum system don’t interact with another system, we will allow solutions from Sq(H) that
contain at most one jump between Oi and Oi+1.
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3. Delayed “initial” conditions

We actually don’t know what happens between two consecutive incompatible measure-
ments. If the measurements are compatible, then we expect that the system evolves
according to the Schrödinger equation. If the measurements are incompatible, then we
assume that a discontinuity occurs. First we will see that the precise moment of discon-
tinuity cannot be inferred from the Schrödinger equation, the observable’s eigenstates
and the Born rule. It can happen at any time between the measurements, and the
predictions are the same.

But when we arrange the measurements so that the choice of the observable is made
after the observed quantum system has left the preparation device, as in the delayed-
choice experiments, then it becomes clear that the state vector reduction took place
prior to the current measurement. Somehow, the choice we have made selects the history
already happened, as long as this history has not yet been recorded. The causality is
not broken, but it has some flexibility, in that it let us choose the initial conditions with
a delay.

What happened to the time also happens to the space. The Einstein, Podolsky and
Rosen’s experiment emphasize the fact that the choice of the initial conditions need to
be made in a non-local fashion.

3.1. When exactly takes place the state vector reduction?

Since the evolution operator U is unitary, it preserves the inner products. This means
that for any two state vectors |ψ〉 and |ψ′〉, the inner product 〈ψ(t)|ψ′(t)〉 is independent
of the time t. Suppose that we performed two observations, at the moment t0 finding
the state vector to be |ψ(t0)〉, and at t1 finding it to be |ψ′(t1)〉. The corresponding
probability is |〈ψ(t1)|ψ′(t1)〉|2, and the unitarity ensures us that the probability would
be the same if we consider that the state vector reduction took place at any other
intermediate moment t0 ≤ t ≤ t1. We can check this directly:

〈ψ(t)|ψ′(t)〉 = 〈U(t, t0)ψ(t0)|U(t, t1)ψ
′(t1)〉 = 〈U(t, t1)

−1U(t, t0)ψ(t0)|ψ′(t1)〉
= 〈U(t1, t0)ψ(t0)|ψ′(t1)〉 = 〈ψ(t1)|ψ′(t1)〉.

We can see that the probability for |ψ〉 to jump to |ψ′〉 is independent on the time
t ∈ [t0, t1]:

(7) P|ψ′〉(ψ) = |〈ψ(t)|ψ′(t)〉|2,
for any t ∈ [t0, t1].

Because we cannot distinguish between the different situations provided by the choice
of t between t0 and t1, it is possible to consider the jump as taking place between the
two observations, without referring to t. It is natural to simply write a formula that
does not make use of the particular choice of the time t of the collapse:

(8) P|ψ′〉(ψ) = |〈ψ(t0)|U(t0, t1)|ψ′(t1)〉|2,
thus being “invariant at the choice of the reduction moment”.
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H

|ψ〉

t1

time

observation

t0

preparation

reduction

|ψ′〉

Figure 8. There is no way to distinguish whether the state vector reduction
happened at t0, t or t1, because all the probabilities and values obtained as a
result of an observation are the same.

To the observable O1 corresponds an observable U(t, t1)O1U(t, t1)
−1 at t which has

the same eigenvalues and the corresponding eigenstates. If |ψ′
λ(t1)〉 is an eigenstate of

O1, at t we have the corresponding observable with the eigenstate |U(t, t1)ψ
′
λ(t1)〉:

(U(t, t1)O1U(t, t1)
−1)U(t, t1)|ψ′

λ(t1)〉 = U(t, t1)O1|ψ′
λ(t1)〉

= U(t, t1)λ|ψ′
λ(t1)〉 = λU(t, t1)|ψ′

λ(t1)〉 = λ|ψ′
λ(t)〉.

Hence, the unitary evolution operator U also preserves the eigenvalues and the property
of a state vector to be an eigenstate of an observable.

The only thing the observer knows is that at two moments of time t0 and t1 she
measured the observables O0 and O1, obtaining |ψ(t0)〉 and |ψ′(t1)〉. She don’t know
when exactly between t0 and t1 the state vector reduction occurred. She may only
presume that the state vector reduction took place at t1, because this is when she
performed the measurement of O1. But we will see that there are situations when it is
more natural to presume that the reduction happened at t0.

3.2. Delayed-choice experiments

Feynman considered that the two-slit experiment contains the full mystery of the Quan-
tum Mechanics [Fey85]. A lot of variations, meant to emphasize various aspects of
this mystery, were proposed during the times. The mystery consists in nonseparability
in space and time. Experiments manifesting entanglement, like the one proposed by
Einstein, Podolsky and Rosen, expose the space nonseparability. Delayed-choice exper-
iments, like the one proposed by Wheeler, emphasize the time nonseparability. These
two aspects are related, and they can be combined in a sophisticate manner, as in the
delayed-choice quantum eraser experiment [SD82, SMKYKS00]. The truth is that all
these aspects are present in a more or less visible form in the two-slit experiment. And
the strange aspects of the two-slit experiment are, in turn, contained in a simpler form
in the Mach-Zehnder quantum experiment.
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3.2.1. The Mach-Zehnder experiment

The Mach-Zehnder interferometer consists in two beam splitters (that usually are half
silvered mirrors) and two mirrors. A beam of light is divided by the first beam splitter
in two components, one transmitted and one reflected. Each of the two components
is reflected such that the transmitted beam encounters one face of the second beam
splitter, and the reflected one the other face. If we decide to detect whether a photon
passed through one of the two ways, by removing the second beam splitter, then we will
find out that it passes either through one way, or through the other (figure 9 a). If we
leave the beam splitter in place, then it recomposes the beam, and the interferometer
behaves as the beam traveled both ways (figure 9 b). Note that if we try to cheat and
detect in any way whether the photon passed through one way or the other, then the
situation falls back to the first case and the interference is destroyed.

source

detector B

mirror B

mirror A

splitter 1 mirror B

mirror A

splitter 1

splitter 2

source

detector B

detector Adetector A

a. b.

Figure 9. The first figure shows the which way type of observation. In this
case, the electron is detected either by the detector A, or by B, and the con-
clusion is that the photon passes through one way or the other. In the second
figure, the second beam splitter recomposes the photon and the interference
allows only the detector A to report. The photon traveled both ways.

As in the case of other experiments like the two-slit experiment, there are two small
modification that we can made to Mach-Zehnder experiment, in order to emphasize the
meaning of its results. The first modification is to filter the beam of light to make sure
that there is at most one photon passing through the interferometer at a given moment.
This modification proves that the interference can happen between the two components
(reflected and transmitted) of the wave describing one and the same photon. The photon
definitely hasn’t passed through one way, nor to the other. Well, it hasn’t passed through
both, nor to neither, but what it really did is usually referred as “it passed both ways”.

The second modification is to delay the choice between the two types of measurements,
the which way or the both ways. This kind of variation of a quantum experiment is
usually named delayed-choice experiment. Its purpose is to emphasize the idea that the
physicist can, by choosing what to measure, make the photon walk through both ways
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or through only one of them, after the photon passed the first beam splitter. It is like
choosing one version of history, after this already happened.

H

|ψ〉

t1

time

observation

t0

preparation

reduction

|ψ′〉

Figure 10. When we measure an observable O1 at the moment t1, the re-
duction seems to “already happen” at the moment t0. The reduction seems to
take place in advance, anticipating the experimenter’s choice of the observable

O1.

3.2.2. An explanation

Let’s say that the photon in the Mach-Zehnder experiment was emitted at t0, and
detected at t1. When exactly did the state vector reduction happened between t0 and
t1? It seems to happen when the photon interacts with the first beam splitter, or even
earlier. It depends on this interaction if it travels both ways or through one of the two
ways. But perhaps we may infer that this interaction also depends on the state of the
photon when it was emitted. In any case, the observation at t1 added a condition that
allowed us to reduce the bunch of solutions allowed by the condition at t0, and the
condition applied to a time interval that, chronologically, contains moments previous to
t1.

This seems to defy our common sense belief in the impossibility of changing the
past history. I think that this is the key difficulty in understanding and accepting the
Quantum Mechanics. But this is not that paradoxical as it may seem, and certainly
it does not break the causality. The choice of the observable at t1 don’t change the
already happened events. It only selects one solution among a set of solutions that were
not specified completely. If someone is curious to check the state of the system at an
intermediate moment t 1

2

∈ (t0, t1), then the corresponding observation O 1

2

will add a

condition and the evolution of the state will be fixed by O 1

2

. No further observation will

change it.
In the Classical Physics, the parameters identifying the state are determined experi-

mentally, but it is assumed that they are already “out there”, in the reality. In Quantum
Mechanics, the parameters describing the evolution of a quantum system also may not
be known since the beginning, as in the classical case, but something more happens.
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The world may go on with them incompletely specified, and the measurement may add
extra information that determine the state. The proof that the world evolved with the
parameters unspecified is that we can make decisions about them, by choosing what
experiment to perform. The randomness of the result, together with our choice, selects
the history that actually happened.

The time evolution of the system between t0 and t1 is determined by the values taken
by |ψ〉 at both moments. Until the value at t1 is not defined, there is no preferred
solution for the time evolution. Each discontinuity in the evolution of the quantum
system requires new initial parameters, new initial conditions for the jump moment.
But the required initial conditions may be delayed.

The selection of the alternative history consists of two conditions. One of them hap-
pened when the physicist made her choice of what to measure, the which way or the both

ways. Perhaps she decided this spontaneously, or perhaps her choice was determined
by some chemistry in her brain, or by an event in her childhood, this is out of our un-
derstanding and of our purpose. Possibly it resulted from the very evolution of a state
vector describing the physicist herself. What matters is that it resulted in the choice of
an observable.

The other condition, dependent on the first one, imposes the selection of the eigenstate
of that observable. According to our current understanding, this happens randomly, with
a probability governed by the Born rule.

3.2.3. The two-slit experiment

Having discussed the distilled version provided by Mach-Zehnder interferometer, it is now
easier to approach the two-slit experiment. It consists in sending a beam of particles
(usually photons or electrons, but they can also be atoms or even “buckyball” molecules
of C60) towards a screen. Before reaching the screen, they have to encounter a wall
having two slits. By placing a detector in one of the two slits we are inhibiting the both

ways aspect and exhibiting the which way behavior. By contrary, by allowing the both
slits to be available, we let the way open for the both ways behavior, on the expense of
the which way behavior. If the choice is delayed, then it becomes clear that it acts like
a condition that selects the time evolution after it happened.

The main difference from the Mach-Zehnder experiment is that, in the case of a both

ways measurement, there are more possible eigenstates, given by the positions where
the particles may hit the screen. But the main idea is the same, namely that the already
passed evolution can be selected after it happened.

3.3. The Einstein-Podolsky-Rosen experiment

In the Einstein-Podolsky-Rosen experiment, two particles are considered to interact
in such a manner that they remain entangled. In their original paper [EPR35], the
measurements referred to position and momentum, but for simplicity we will prefer
Bohm’s version [Bohm51], where the observables under consideration represent the spin.
One particle of spin zero decays in two particles of opposite non-zero spins, for example
two electrons. We don’t know their spins, we only know that the spins cancel one
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another. If we measure the spin of the first electron, say along the z axis, we obtain ±1
2
,

with equal probabilities. A measurement of the second particle’s spin on the same axis
yields exactly opposite values, with probability 1. If we measure the spin of the second
particle along a direction of space that makes an angle α with the direction of the spin
obtained by for the first particle, the probability of obtaining the spin in that direction
is 1

2
(1−cosα). The opposite direction corresponds to the angle π+α, and its associated

probability is given, of course, by 1
2
(1 + cosα).

The probabilities of the results of the measurement of the second particle depends on
the results in measuring the first one. They are in fact correlated in a symmetric way,
such that it doesn’t matter what particle was measured first.

In this experiment, the states of the two electrons are entangled, and they are described
by the same state vector. If two quantum systems are represented by |ψ1〉 ∈ H1 and
|ψ2〉 ∈ H2, the composed system is represented by a state vector |ψ1〉⊗|ψ2〉 ∈ H1⊗H2. If
they interact one another, the state vector representing them is still a vector in H1⊗H2,
but which in general is not of the form |ψ1〉 ⊗ |ψ2〉. Even after the interaction ceased, it
is possible to have a state that cannot be expressed in the form |ψ1〉 ⊗ |ψ2〉, and this is
an entangled state.

In the case of the two electrons, the initial state, of total spin zero, is the spin singlet
state

(9) |ψ〉 =
1√
2
(| ↑〉 ⊗ | ↓〉 − | ↓〉 ⊗ | ↑〉),

which is represented in the basis given by (| ↑〉, | ↓〉) in each of the two spin spaces. The
expression of this formula is independent of the choice of this basis.

The entangled states respects the same quantum rules described in the previous sec-
tions. The weirdness of the EPR experiment resides in the fact that the two quantum
systems may become separated by a large distance. When we measure one of them, we
learn things about the other one. But the measurement implies a state vector reduction,
and the reduction depends on the observable we choose to measure. The result of the
measurement of an observable of the first electron should be correlated with the result
of the measurement of the second electron, and this looks a bit like an instantaneous
communication between the two particles. But it is not.

What really happens is that the only possible states in which the total state vector
can collapse are correlated in such a manner. If we measure the spin of the second
electron along a spatial direction ց, the possible results are | ց〉 and | տ〉, each one
with a probability of 1

2
. The spin singlet state can be expressed in this basis (and its

correspondent basis for the second electron) by

(10) |ψ〉 =
1√
2
(| ց〉 ⊗ | տ〉 − | տ〉 ⊗ | ց〉).

If the result of the measurement performed on the second electron is | ց〉, then the
first electron follows to be in | տ〉, and reciprocally. But if we measure the spin of the
first electron along a different direction ↑, the probability to obtain | ↑〉 or | ↓〉 depends on
the angle made with | տ〉. Bell showed that the correlations predicted by the Quantum
Theory are incompatible with the ones predicted by the local hidden variables theories.
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a.

b.

c.

time

time

time

| ↓〉

| տ〉

d.

time

H

1√
2
(| ↑〉 ⊗ | ↓〉 − | ↓〉 ⊗ | ↑〉)

| ↑〉 ⊗ | ↓〉
| ↑〉 ⊗ | ց〉

state vector reduction

Figure 11. Measuring the spins of the two electrons along the same direction
of space ↑ gives correlated results (a). One measurement is a confirmation
measurement of the other. The reduction occurs during the decay. If the two
electrons are measured along different directions, there are two incompatible
measurements, hence two reductions. The first occurs at the decay, and the
other somewhere between the decay and one of the measurements, as in b and
c. d is another way to represent the case in b.

The spin states belong to Hilbert spaces that don’t include the description of the po-
sitions, but we can complete this description by tensoring the spin Hilbert spaces with
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the Hilbert spaces representing the others degrees of freedom. This way, the entangle-
ment involves also the positions of the two particles. It is the inseparability in space
what makes this experiment so strange. If we ignore this feature, what remains is the
plain quantum behavior: the state vector reduces as a result of a measurement. When
we consider the positions, we emphasize the inseparability involved by the entangled
systems. We emphasize the weird character of the collapse.

If we measure only the spin of the first electron along the direction of space ↑, the
initial spin singlet state (equation 9) of the two particles reduces either to | ↑〉 ⊗ | ↓〉
or | ↓〉 ⊗ | ↑〉. If the second measurement is performed along the same direction, the
measurement can be viewed as a measurement of confirmation, since we obtain a result
which is precisely the one predicted by the measurement performed on the first electron
(please refer to the figure 11). The state vector reduction can be thought as taking place
during the decay. If the second measurement is along a different direction in space, then
we have two different reductions. The first reduction is the one that collapses the initial
state (equation 9). The second reduction takes place somewhere between the decay and
one of the two measurements, it doesn’t matter which one, from the observation point
of view (please refer to the discussion in 3.1).

In the EPR experiment, there are two distinct measurements, two “delayed initial
conditions”, for two entangled systems. These two conditions are statistically correlated
in the way that two consecutive measurements are correlated. The difference is that
they may be separated by a spatial interval, and the correlation seems to defy the speed
limit imposed in the Special Relativity. But what matters is that the two conditions,
together with the initial condition of the spin singlet state, can be respected by at least
a solution from the space Sq(H). And this should respect also the rule of not having
two state vector reductions without measurements between them.
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4. The Direct Interpretation of Quantum Mechanics

I will summarize in a more formal way what we have discussed so far.

4.1. The time evolution of a quantum system

Let H be a complex Hilbert space, named the state space, with the hermitian inner
product between two state vectors |ψ〉, |ϕ〉 denoted by 〈ψ|ϕ〉. We denote by Herm(H)
the space of hermitian operators acting on the state space H. The Hamiltonian is
a hermitian operator H : R → Herm(H), depending smoothly on a real parameter
representing the time.

Let S(H) be the space of the solutions |ψ〉 : R → H of the Schrödinger equation
associated to the Hamiltonian H:

(11) i
d

dt
|ψ(t)〉 = H(t)|ψ(t)〉.

The space of piecewise solutions of the Schrödinger equation (11), Sd(H), is defined as
the space of the functions |ψ〉 : R → H, which are solutions of the Schrödinger equation
(11) on R −D, where D is a discrete subset of R having a finite number of elements in
any closed interval. We also require that ||ψ(t)〉| = 1 for all t ∈ R −D. D depends on
the function |ψ〉 under consideration, and this dependency will be expressed by denoting
it by D|ψ〉.

It follows that the elements of Sd(H) are allowed to have discontinuities at the instants
t ∈ D. It also follows that S(H) ⊂ Sd(H).

Let’s consider a function |ψ〉 ∈ Sd(H). We denote the left and right limits of |ψ〉 at
t0 ∈ R by:

|ψl(t0)〉 = lim
tրt0

|ψ(t)〉

and

|ψr(t0)〉 = lim
tցt0

|ψ(t)〉,

We define Sq(H) as the subspace of Sd(H) satisfying the condition

(12) 〈ψl(ti)|ψr(ti)〉 ∈ (0,∞)

for all ti ∈ D|ψ〉 (hence for all t ∈ R), which in fact contains first the condition
〈ψl(ti)|ψr(ti)〉 ∈ R, and then 〈ψl(ti)|ψr(ti)〉 > 0.

The evolution (including the reductions) of a quantum system is thus represented by
an element of Sq(H). From the point of view of the system itself, it seems that the
description is complete.

What about the probability of each discontinuity to occur during the time evolution
described by a function |ψ〉 ∈ Sq(H)? Couldn’t the Born rule improve this description,
by predicting the probabilities? The formula (4) saids that the probability depends only
on the state vector before and after the reduction, and not on the observable itself. But
at a closer look we understand that, although the probability depends only on the inner
product between the state before reduction and the state after reduction, the final state
is an eigenstate of a certain operator (the observable). It is therefore meaningless to
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introduce the Born rule before introducing the observables, because we don’t know the
probability of each observable to occur.

Hence, the description provided by the requirement that the evolution of a quantum
state is given by elements of Sq(H) is complete from the point of view of the quantum
system itself, which is not aware about the external observations.

On the other hand, from the point of view of an external observer that performs the
measurement, the description can be completed by adding two requirements. The first
one is that the result of an observation to be an eigenstate of the operator representing
the observable. The second one is the Born rule.

4.2. External conditions imposed to a quantum system

An observation, or a measurement, performed at a time tα to the system represented
by |ψ〉, can be thought as a condition imposed to the function |ψ〉. This condition is
that |ψ(tα)〉 is an eigenstate of the observable Oα under consideration. We can express
the eigenstates of Oα as a complete set of mutually orthogonal subspaces of H. These
subspaces, in turn, can be viewed as projectors. A way of generalizing the idea of
representing the observables by projectors at different times is provided by the consistent
histories approach [Gri84, Omn88, GH90a, GH90b, GH90c, Omn92, Omn94, Ish94]. For
our purposes, it will be enough to consider that at each time tα a condition of the
form |ψ(tα)〉 ∈ σα is fulfilled, where σα is a subset of H. We require that the sets
σα include, together with a state vector, all other vectors representing the same state
(hence, differing by a phase factor).

H

|ψ〉

time

t0

obs. 0

t1

obs. 1

t2

obs. 2

t3

obs. 3

t4

obs. 4

t5

obs. 5

Figure 12. The evolution of a quantum state is described by a state vector
rotating smoothly in the Hilbert space, and jumping discontinuously from time
to time. This figure represents the reductions as taking place at the preparation
time for each observation.

An external condition imposed to |ψ〉 ∈ Sq(H) is given by a pair (tα, σα), which is
required to satisfy the rules:

(1) 0 /∈ σα ⊂ H.
(2) σα is the set of unit vectors of a vector subspace of H,
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(3) |ψ(tα)〉 ∈ σα.

An external history (|ψ〉, σ) of the system represented by |ψ〉 ∈ Sq(H) consists in a
nonempty set of external conditions σ = {(tα, σα)|tα ∈ R, σα ⊆ H}, such that:

(1) Between any two consecutive tα < tα+1, there is at most one ti ∈ D|ψ〉.
(2) Any discontinuity of |ψ〉 should take place between two conditions σα and σα+1.

We will denote the set of all such pairs (|ψ〉, σ) by Q(H).
A simple external condition is an external condition obtained from a one dimensional

subspace of H. A simple external history of a quantum system is an external history σ
with all σα simple external conditions.

A set of conditions σ for |ψ〉 ∈ Sq(H) is said to be an set of independent conditions,
or a minimal set of conditions if any two consecutive conditions (tα, σα) and (tα+1, σα+1)
are disjoint in the Heisenberg representation, or equivalently, σα+1 ∩ U(tα+1, tα)σα = ∅.

To specify a time evolution |ψ〉 ∈ Sq(H) − S(H), we need to specify

(1) the set D|ψ〉 of the discontinuities,
(2) a simple external history of |ψ〉.

If at least one of the external conditions is simple, then these two types of information
specify uniquely the solution |ψ〉, up to a phase factor. We may think that we need
to specify the phase after each discontinuity, but in fact, knowing it for one continuity
interval, we can propagate it by projections to all other intervals.

From the point of view of the external observer, it is enough to know such an external
history of |ψ〉, and the Hamiltonian. The possible solutions will differ in the way analyzed
in (3.1), and by scalar factors. These differences are not observable from outside the
quantum system represented by |ψ〉.

Let |ψ〉 ∈ Sq, and σα a condition occurring in the interval (ti, ti+1), where ti, ti+1 ∈ D|ψ〉

are consecutive times. If ti � tα, then σα is named delayed initial condition. The delayed-
choice versions of various quantum experiments stress that the initial conditions can be
indeed delayed.

4.3. Probabilities

The space Q⊥(H) will denote all the histories for which each σα is given by eigenspaces
of a hermitian operator Oα.

Each history from Q⊥(H) have an associated probability obtained by applying the
Born rule.

The Born rule expresses the probability that the state vector jumps from |ψl(ti)〉 to
an eigenstate |ψr(ti)〉 of the observable measured at the instant ti:

(13) P|ψl(ti)〉(ψr(ti)) = |〈ψl(ti)|ψr(ti)〉|2.
This rule is independent on the requirements introduced so far. To check the inde-

pendence, we can consider instead another probability distribution, with the conditions
that

(1) the probability is 1 if and only if the state vector before the measurement is an
eigenstate of the observable, and that
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(2) the probability to obtain after the reduction a state vector orthogonal to the
state vector before the reduction is 0.

Any probability distribution satisfying these conditions will also be compatible with all
the functions from the space Sq(H).

4.4. Conclusions

The time evolution of a quantum system can be described as an element |ψ〉 of Sq(H).
From the system’s point of view, this description is complete. Observations performed
to |ψ〉 can be thought as external conditions of the form |ψ(tα)〉 ∈ σα ⊂ H. The history
of a quantum system |ψ〉 contains, together with the time evolution, a set of condi-
tions imposed to it. These conditions are usually “delayed”, being specified at different
instants of times. For an interval (ti, ti+1) between two consecutive discontinuities of
|ψ〉, the function |ψ〉 is specified by a condition of the form |ψ(tα)〉 ∈ σα for a time
tα ∈ [ti, ti+1]. The quantum experiments analyzed in this paper seem to suggest that
there are situations in which the conditions are delayed in the sense that ti � tα.
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5. Reality, locality and completeness

It is well known the Einstein-Podolsky-Rosen argument [EPR35] proving that Quantum
Mechanics cannot in the same time:

(1) describe reality,
(2) respect the principle of locality,
(3) be complete.

They defined an element of physical reality as being associated to any physical quantity
that can be predicted with absolute certainty without disturbing the system. Accord-
ingly, a complete physical theory is characterized to account for every element of physi-
cal reality. After exposing their famous experiment, they concluded that the Quantum
Mechanics provides an incomplete description. Their paper also pointed out the incom-
patibility between reality and locality, because by measuring a system we can disturb
the predictions made for the outcome of the measurement of another system.

They suggested that perhaps there exist some hidden variables able to complete the
description of reality provided by the Quantum Mechanics. Later, J.S. Bell [Bel64]
showed that the Quantum Mechanics is in conflict with the locally hidden variables
theories. Subsequent experiments [CHSH69, CS78, ADR82, Asp99] ruled out the locally
hidden variables. Hence, the only allowed hidden variables theories ought to be non-local.
David Bohm already provided an example of non-local hidden variables theory [Bohm52].

We will see what conditions of the EPR argument satisfies the Direct Interpretation.

5.1. The inside view

Sometimes the Born rule is applied to give the state vector a probabilistic interpretation.
The state vector before reduction is thought to be a superposition of states, and the state
vector after the reduction is thought to be the real state. This view has the disadvantage
of considering the state vector to have two different meanings, as a physical state and
as a superposition of physical states.

In the Direct Interpretation of the Quantum Mechanics, the state vector describing the
system has physical existence. Before or after reduction, it is simply a wave propagating
through space according to the Schrödinger equation. This wave is indeed different than
the classical waves, in two aspects. First, it is valued in a large complex space. This
complex space increases its dimension as the quantum system to be represented gets
more complex. The set of all such wave functions form the Hilbert space H. The second
difference resides in the discontinuities. Except for these two aspects, |ψ〉 looks very
classical.

When the system consists in one particle, this one is described by a wave. And the
wave contains everything we can know about the particle. Sometimes, the particles
are viewed as being point-like, and the wave as describing the probabilities to find the
particles in a position or another. But if we consider the particle as being the wave,
we understand that the particle is point-like only if it is localized in a very small region
of space. This can happen as a result of a measurement of its position. But it doesn’t
mean that the particle has been found to be point-like, and the wave is an unphysical
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function governing the probabilities to find the particles in different places. In fact, not
only the positions, but any other basis in the Hilbert space, can be used to describe
the particle. In all these cases, the probability wave will be not about positions, but
about other state vectors. It is therefore natural to consider that there is no preferred
basis in the Hilbert space, from the Quantum Mechanics point of view. The positions
are sometimes viewed as more natural because the wave functions are functions over
the space. From this point of view, indeed, the positions should be privileged. But the
fundamental principles of Quantum Mechanics makes no use of this preference, being
independent on the orthonormal basis we choose for representing the phenomena.

The time evolution of the state vector, |ψ〉 ∈ Sq, contains all the information that can
be determined about the system. It is real, describing the physical reality. The descrip-
tion is complete, because there are no other physical quantities except the ones that can
be computed from |ψ〉. The locality is clear, because |ψ〉 is, piecewise, just like a classical
wave. What is missing is the determinism. The state vector evolves deterministically on
some intervals, but since from inside the system the moment of the next collapse cannot
be predicted, nor the state after that, the system is not deterministic.

We conclude that, from the point of view of the system itself, there is nothing that
contradicts the reality, completeness and locality.

5.2. The outside view

The things change when we try to describe the quantum system by observations. The
observation causes the system to be found in an eigenstate of the observable. For exam-
ple, if we choose to measure the momentum, we will find the system in a totally different
state than if we would measure the position. But we decide what to measure, and we
can make this decision in such a way that the preparation of the measurement devices
don’t interact with the system under consideration. It is like the system anticipates our
decision, or like its past is chosen by our decision. Therefore, its state is not established
until we determine it by an observation. We can see the word “determine” as a two-way
road. “To determine” can mean to detect the state of the system, but also it can signify
to influence the state.

According to Niels Bohr [Bohr28, WZ83], the phenomena does not exist until they
are observed. But this don’t mean that there is no reality prior to the observation. By
contrary, all possible realities available are real, and by the mean of the experiment, one
is chosen.

Should there be an underlying level that contains extra information to help us? The
quantum system is completely described by |ψ〉. The only thing is that we have to
determine it (in the both senses I mentioned).

Determining by observation the reality must have a non-local character, but not the
reality itself. The reality is local. But when we determine it we have to take care of all
possible implications, so that we don’t break the physical laws. Therefore, the choice
cannot be local. For example, let’s consider a wave function which extends through all
the space. If we measure its position, the wave function will collapse. The state vector
reduces to an eigenstate of the position, a Dirac function. The position can be anywhere,
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because the wave function extends everywhere. But once the position was determined
to be at a place A, instantaneously the possibility to find it at another place disappears.

5.3. Particles vs. waves

It is often stated that the Quantum Mechanics exhibits a duality between waves and
particles. Sometimes, this duality is presented as being the core of the quantum phe-
nomena. The Direct Interpretation considers that the duality is between the wave-like
behavior (expressed by the unitary evolution) and the quantum behavior (expressed by
the eigenstate condition). Nevertheless, there is a duality between the position operators
and the momentum operators. They are canonical conjugated observables. The duality
refers to two ways to describe the state vector, but there are more possible bases in
the Hilbert space (actually, an infinity). The preference for the positions and momenta
resides in the privileged role of the space, and in the classical descriptions in terms of
point-like particles.

I consider that, although the point-like particles provide an intuitive image for many
situations, it is simpler to consider the quantum systems as being waves, subject to the
delayed initial conditions. Thinking in point-like particles entails complications, such
as rejecting the existence of the particles until they are observed [Bohr28, WZ83], inte-
grating over all the possible paths, changing the logic to allow contradictory statements,
evoking hidden trajectories that interact instantaneously etc. Each of these solutions
proved to be very valuable, leading to the path integral formalism, various types of logics
(quantum logics [BvN36, Lup47], consistent logics [Omn88, Omn92, Omn94, Ish94]), and
causal interpretations of the Quantum Mechanics [Bohm52, BH93]. The contribution
of these approaches to our understanding of the world is inestimable. They may have
started as means of accommodating the classical paradigm with the quantum revolution,
but they did much more than this.

The Direct Interpretation presented in this article is intended as a simple way of
viewing the quantum world, complementing all these views already fertile. I name this
interpretation “direct” because it seems to me as arising without many assumptions from
the postulates of the Quantum Mechanics. It is the simplest way I could find to represent
to myself in a physical way what the mathematics of Quantum Mechanics expresses. In
this sense, it can be considered minimal. It is compatible with other interpretations, or
at least it can be made compatible with them.

5.4. The nature of the wave function

There were several attempts to provide the wave function with a physical meaning. Louis
de Broglie proposed that to each particle, such as the electron, to be associated a wave
function. He believed that this wave really exists in the physical world. Schrödinger
himself, who provided the equation governing these waves, believed in their reality. He
was unhappy when Bohr tried to convince him that the collapse of the wave function
really happens. Bohr insisted to convince him that the wave function has no physical
meaning, but only a probabilistic one, as seemed to result from Born’s probabilistic
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interpretation. Louis de Broglie believed that both the wave function and the point-
like particle have physical existence, idea developed by Vigier and Bohm [Bohm51,
Bohm52, BH93]. In Bohm’s approach the point-like particle is related to the wave by a
quantum potential. The probabilistic aspect is recovered by statistical methods, reaching
de Broglie’s dream of a hidden (deterministic) “thermodynamics” behind the quantum
randomness.

The difference between the image presented by the Direct Interpretation and Bohr’s
view is that in the former, the wave really is physical. In contrast to other approaches,
such as the hidden variables one, there is no need for a point-like particle. We don’t need,
in the Direct Interpretation, a point-like particle to be guided by the pilot wave or by a
quantum potential, nor do we need the wave function to have a singularity representing
the particle.

But how is it possible for the wave functions to be physical? The interference doesn’t
occur between any two wave functions, but rather between one and the same. As Dirac
pointed out, it is only the particle’s wave function that interferes with itself, and not to
other wave functions. He based his assumption on the observation that the interference
occurs, for example in the case of the two-slit experiment, even when there is only one
photon.

The well known answer is that the wave functions are valued in different vector spaces.
The interference occurs, but only between the components living in the same vector
space, and there is no contradiction with the experiments. This argument against the
physicality of the wave function holds only if we consider that all the wave functions are
valued in a vector space with a few number of dimensions. But when each particle has
it’s own dimensions occupied in the Hilbert space, there is enough place for the physical
particles to interfere or not, according to the predictions of the Quantum Mechanics.

There are, though, some questions that the direct view fail to address. For example,
we don’t know when, why and how the collapse takes place. Also the measurement
problems remain. The present article don’t try to answer these problems.

5.5. Many Worlds

Taking the wave function as real in a different way led Everett to the Relative State
Interpretation. He considered that the collapse does not occur, or rather that all the
possible collapses occur. This seem paradoxically, but here is the point. The wave
function evolves all the time governed by the Schrödinger equation. After a measurement
is performed, the state vector evolves as a superposition of all possible collapsed states.
The coefficients in the superposition can be taken such that the Schrödinger equation is
not violated by a state vector reduction. Everett interpreted the state vector reductions
as a split of the world in one world for each possible outcome of the measurement.
This way, the unitary evolution governs all the history of the Universe, but in the
same time each possibility occurs, such that their superposition gives the state vector
according to Schrödinger equation. But each possibility in the superposition entails
that the measurement device obtained the corresponding eigenvalue. The total unitary
evolution contains all the alternative histories.
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Each alternative world is similar to ours, in that the people who lives in it have the
illusion of the collapse. For them, the collapse is not an illusion, but their reality. It
would be nice if we can answer to their own questions about the occurrence of the state
vector reduction. These questions are the same as in other interpretations, and they are
not answered. We cannot simply dismiss them as unappropriate by saying that there
is no collapse at the level of the multiverse, because at the level of each universe the
collapse has a meaning.

In the view proposed by the Direct Interpretation, the Many Worlds Interpretation
has its place. A world is defined starting from the space Sq(H). Each of its sections is,
piecewise, a local solution of the Schrödinger equation. Each solution is selected from
the possibilities provided by the space Sq(H), by the mean of the “initial conditions”,
which may be delayed. We can see each of these possibilities as having its own reality, as
being a world. The Many Worlds Interpretation, in Everett’s vision [Eve57, Eve73], or in
DeWitt’s view [dW71, dWG73], David Deutsch’s Multiverse variation [Deu85, Deu99],
and the Many Minds Interpretation, are all naturally conceivable in the framework
provided by the Direct Interpretation. And, of course, the problems enumerated above
still remain unsolved.

But I want to emphasize that the Direct Interpretation is not a warrant of the Many
Worlds Interpretation (nor of its variations). It simply is a minimal formalism which uses
the delayed initial conditions to select a piecewise solution of the Schrödinger equation.
The Direct Interpretation provides a roof for many interpretations of the Quantum
Mechanics, but not a proof.
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6. The probabilities in the Direct Interpretation

6.1. Born’s rule

Born’s principle tells us the probability that, during a collapse, a system in a state
represented by the vector |ψ〉 jumps on another state represented by |ψ′〉:
(14) |〈ψ|ψ′〉|2.
This probability is independent on the specific observable which is measured, depending
only on the chosen eigenstate. It is the core of the probabilistic interpretation of the
wave function, or generally, of the state vector.

In the Direct Interpretation, the state vector has a physical meaning, and not a
probabilistic one. The probabilistic behavior occurs only during a state vector reduction,
but the probabilities are related to the initial and final physical states. Because in the
theory presented in the current paper the wave function is entirely physical, it makes
no sense to consider that its nature is probabilistic. Only the selection of the eigenstate
during the quantum jump is probabilistic. Assigning a probabilistic meaning to the
state vector itself makes the same sense as assigning a probabilistic meaning, in Classical
Mechanics, to a coin, based on the possibility that we can toss it and obtain head or
tail.

6.2. Heisenberg’s relations

Heisenberg’s relations can be derived from the non-commutativity of the operators, or
from Fourier analysis. But the meaning is the same: they express a minimum of the
product of the dispersions of the state vector in two canonically conjugated bases. For
example, the less the wave is dispersed in the momenta space, the more it is dispersed
in the positions space.

We see that there is nothing probabilistic here. I haven’t employed any word like “un-
certainty” or “indeterminacy”, simply because there was nothing like this in what I said.
These relations are valid whether or not a measurement is performed to the state vector,
whether or not a collapse, or a state vector reduction, takes place. Heisenberg’s relations
are simply about the dispersions of the state vector’s coordinates in two complementary
bases.

But why we name them usually the uncertainty principle or relations, or the principle

of indeterminacy? Because, when we combine Heisenberg’s relations with Born’s rule,
we indeed obtain a probabilistic meaning for them. But this probabilistic meaning
manifests only during a state vector reduction, while Heisenberg’s relations are valid
at any instant, and most of the time we have a dynamical evolution. Hence, most
of the time the system evolves according to the Schrödinger equation, and respects
Heisenberg’s relations. When a collapse takes place, Born’s principle enters the game,
and Heisenberg’s relations acquire a probabilistic meaning.
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7. Some problems of Quantum Mechanics

The description of Quantum Mechanics provided in the previous sections allows us to
state clearly some problems. These problems were pointed out at various times after the
discovery of the quanta.

7.1. Problem 1: The delayed-choice initial conditions

The possibility that the initial conditions be delayed is a strange behavior which seems to
contain all the mystery of Quantum Mechanics. Choosing later the parameters describing
the evolution of a quantum system which already took place is very strange for the
common sense. But if we can accommodate with this phenomenon, then the Quantum
Mechanics become more friendly. There still remain some unexplained problems, but I
think that one of the main mysteries is this one. It was emphasized by Wheeler [Whe77,
Whe78, WZ83] when he revived 3 the idea of delayed-choice experiments.

The nonlocal character of the collapse of the wave function is due to a conjunction
between the delayed initial conditions behavior and the discontinuities representing the
state vector reduction. I think that the delayed initial conditions phenomenon is one
face of the “only mystery” indicated by Feynman [Fey85] to be find in the two-slit
experiment. Another face being given by the discontinuities.

7.2. Problem 2: The discontinuities

During the evolution described by the Schrödinger equation, there are some quantities,
like the momentum, energy, electric charge etc., associated to the quantum system, that
are conserved. What is interesting is that these quantities are to be conserved also
during the collapse caused by the measurement. We don’t know of any process during
which the conservation laws break down. Even the experiments with entangled particles
respect them. While in the case of the dynamical evolution described by the Schrödinger
equation the quantities are conserved because of Noether’s theorem, in the case of the
collapse there is a discontinuity that requires another explanation for the conservation
laws. Moreover, although the collapse has a non-local character, there is no experimental
evidence that the conservations are also non-local. On the theoretical side, the relativity
of the simultaneity don’t cope well with a non-local conservation law, because it would
imply that for some reference frames the conservation is broken. These considerations
entail that we should complete the list of the principles of Quantum Mechanics with the
strange requirement:

Principle. The collapse must take place in such a manner that it conserves the
quantities conserved by the Schrödinger equation. At least, it should happen in a way
that prevents the experimental detection of a violation of the conservation laws in their
local form.

3It seems that similar suggestions were made before by Weiszäcker [Wei31] and Bohr [Sch49].
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In fact, not the requirement is strange, but it is strange that we need to add it. It is
an unusual kind of principle, because it states that the system evolving discontinuously
should behave like there is no discontinuity.

A second problematic aspect of the discontinuities is the question about the time
when they occur. On the one hand, it is the possibility that the initial conditions be
specified not when the discontinuity occurs, but later. On the other hand, there have
been emitted various hypotheses about when exactly the collapse happens as a result
of a measurement: when the interaction takes place, when the effect to the apparatus
becomes irreversible, when the apparatus records, when the conscious observer acknowl-
edges the result, or even never. These possibilities were suggested by various physicists
during the discussions about the measurement problem.

7.3. Problem 3: The measurement

This problem has been stated in many forms. Various definitions, explanations, analyses
were proposed during the time. Its paradoxical status has been exposed by the mental
experiment known as “The Schrödinger’s cat”.

I will state this problem like this:
The measurement problem. Why the observations find always the quantum state

to be an eigenstate of the observables?
According to the discussion at the beginning of this paper, there are two behaviors, the

wave-like one and the quantum one. The wave-like behavior states that the evolution
of a system should obey the Schrödinger equation. According to this principle, the
Schrödinger equation being linear, any two possible solutions can be linearly combined
in a third one. On the other hand, there is the quantum behavior: the observations find
the state vector to be an eigenstate of the observable.

Why cannot linearly combine, according to the wave-like behavior, two eigenstates of
the observable? Well, if we would be allowed to do this, there would be no quantum
behavior, and the space of solutions S(H) will contain every possible time evolution.
There would be no discontinuities. This is because an orthonormal frame provides a ba-
sis of solutions for the Schrödinger equation, and the observable admits an orthonormal
frame of eigenstates. If we would allow superpositions of the outcomes of the measure-
ments, then any outcome would be allowed, and there would be no quantum behavior.
We would have only the wave behavior.

The measurement problem is then related as well to the wave vs. quantum incompat-
ibility. The rule of obtaining eigenvalues would not be that strange, if there would not
be the superposition principle to contradict it.

Maybe the idea that the Schrödinger equation should be everything led to the idea
that in fact no reduction takes place, idea which is at the core of the Many Worlds
Interpretation. In my opinion, MWI is very interesting and plausible, enlightening some
crucial aspects of the Quantum Mechanics. But this interpretation needs also to be
completed with an explanation of the illusion of the state vector reduction, which seems
to have such convincingly reality for the observers confined to only one of these parallel
worlds. We cannot simply say that the reduction doesn’t happen, we have to explain
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why it appears to happen. Therefore, the measurement problem cannot be dismissed as
not real.

A promising approach in understanding how the classical world emerged from the
quantum world, and of the measurement problem, is the study of environmental induced
decoherence and selection [Zeh96, Zur98, Zur03a, Zur03b, Zur03c, Zur04].

7.4. Three related problems

The three problems exposed so far are all different faces of the incompatibility between
the wave-like behavior and the quantum behavior. It is the quantum behavior that, when
the eigenstate condition is imposed to the unitary time evolution, adds the delayed initial
conditions. It is again this incompatibility that seems to require the discontinuities. And
it is the wave-like behavior that makes us to expect a superposition between “dead cat”
and “alive cat”, while the quantum behavior allows us to find only one of the possible
eigenstates, and not a superposition.

The central problem of Quantum Mechanics is the incompatibility between wave and
quanta, from which all other problems, paradoxes and mysteries follow.

7.5. Other problems

The three problems presented above are not necessarily all, nor the most important
problems of Quantum Mechanics. An important one concerns the emergence of the
classical level from the quantum one, considering that the latter is more fundamental
than the former.

The various directions taken in the development of Quantum Mechanics raise con-
tinuously new interesting problems, and continuously some of them are solved. For
example, the difficulties of dealing with the Special Relativity led to the Quantum Field
Theory. A big problem is the apparent incompatibility between Quantum Mechanics and
General Relativity, although new important progresses in reconciling them are reported
permanently.
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8. Conclusions

The Schrödinger equation (1) describes the evolution of a quantum system. All solutions
form a space S(H), where H is the Hamiltonian. In order to know a specific solution of
such an equation, we need to know some initial conditions. The measurements are ways
to specify the initial data which allows us to know which one of the possible solutions of
(1) is the one under observation. Because two consecutive measurements may provide
inconsistent sets of initial data, it seems that we have to enlarge the space of solutions
S(H) to a space Sq(H) containing discontinuous solutions of the Schrödinger equation.

We can consider that the evolution of a quantum system is simply a solution from
Sq(H). This gives some physical intuition to the Quantum Mechanics. On the other
hand, the delayed-choice experiments allows us to understand that the solution is depen-
dent on the observer, in fact, on the observable she choose to measure. More precisely,
we have some freedom in choosing the initial data of the solution even after the evolution
described by that solution took place. This makes us to see that the reality may exist,
but it is not yet fixed, even for already happened events.

When we determine (in both meanings of the word) what is the history of a system,
our choices seem to have non-causal and non-local consequences. In fact, each evolu-
tion contained in Sq(H) is causal and local (being piecewisely a wave), but the initial
conditions imposed by observations need to be consistent, even if they are separated in
spacetime by spatial intervals, so here resides the apparent non-locality.

Three main problems are enumerated: the delayed initial conditions, the discontinu-
ity, the measurement problem. In subsequent articles, I will propose a solution to the
problem of discontinuities and discuss the measurement problem.
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