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You are free, therefore choose—that is to say,nhve

Sartre L'existentialisme est un humanisme

Philosophy, and especially metaphysics, has oféem lattacked on either epistemic
or semantic grounds. Anything outside of expereaied the laws of logic is said to be un-
knowable, and according to Wittgenstein and theckdgositivists, there are no such things
to know; metaphysical disputes are either meangsgbe merely verbal. This was thought to
explain philosophy’s supposed lack of progressiopbphers argue endlessly and fruitlessly
precisely because they are not really saying angtabout matters of fact (Wittgenstein
1953, Remark 402; Carnap 1950).

Since the mid-twentieth century, the tide has kaggainst such views, and metaphys-
ics has re-established itself within the analytadition. Ontology, essentialism, add re
necessity have regained credibility in many eyabae often investigated by excavating in-
tuitions of obscure origin. Relatedly, externasismantic theories have claimed that meaning
or reference has a secret life of its own, largelfettered by our understanding and inten-
tions (Kripke 1971; 1972; Putnam 1973; 1975a). t¥vait is claimed, would denote, &

even if we had never discovered that particularemwhlr structure, and this is allied with the
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view that such structure is metaphysicabsentiato water—that water could not have been
otherwise (Kripke 1971; 1972).

| wish to explore a third way, an approach to polghical problems that is sympa-
thetic to Wittgenstein and the positivists’ diagsas philosophy (“[P]hilosophical problems
arise when language goes holiday; 1953, Remark 38), while rejecting their gloomyg¥
nosis and Wittgenstein’s anti-interventionist preggon (“Philosophy leaves everything as it
is,” 1953, Remark 124). | will call this third walye Method of Conceptual Articulation
(MCA). In general, it consists in refining or modifyingncepts, or engineering altogether
new ones, so that an apparently “empty” questicojuiresa satisfying answer—or if you
prefer, so that some related, more specific questinerges that has a definite answer and is
relevant to some motivatidn When we find that we have posed a question teabwvselves
do not entirely understand, we should not demasi|,'what is therue answe?’ but step
back and ask, ‘What more precisely would we reldtly to know?’ In this way, even ques-
tions that are metaphysical in the pejorative Vasesense, questions with no factual an-
swers (if such there be), can nonetheless be aadwer they can bgivencognitive con-
tent? and perhaps in a well motivated way. By refinimgnodifying our concepts and ques-
tions, I think we can “fill” some initially emptywestions, and evesolvephilosophical prob-
lems, which | define here as finding definite ansatbat are relevant to our motivations.

This approach is partly inspired by, and endoraertain libertarianism that one

! The MCA has many precedents, perhaps most clea@arnap 1950. But there the connection between o

tology and language choice was treated as anotigtowdismiss metaphysics rather than rehabilitate

2 Of course, this depends on how we individuate tipres. If we suppose that any change in cognitivetent
(induced by a change in language or theory) imglies we are dealing withdifferentquestion then trivially
the content of a question can never change. Busdems to be a purely verbal issue; | do noktaitything

here rides onit.



finds in the views and practices of at least sorndem mathematicians, namely the view
that we are free to develop concepts and introdbgects as we wish, provided they do not
spawn inconsistency. As Cantor put it, “Mathensatgcentirely free in its development,
bound only by the self-evident concern that itsoemts be both internally without contradic-
tion and stand in definite relations, organizedii®ans of definitions, to previously formed,
already existing and proven concepts” ([1893] 198j, On that view, whatever we can
consistently define is a legitimate object of studi§ore recently, Wilder wrote of modern

abstract algebra,

From this it is evident that the modern mathemaridias lost the qualms of his fore-
bears regarding the ‘reality’ of a ‘number’ (or ethmathematical entity). His criteria
of acceptance are of a completely different soMoiving such matters as consis-
tency, utility of the concept, and the like. (19688)

On that view, the reputed uncritical realism of kiog mathematicians does not in general
limit their freedom, for it is no longer reservat fntuitively appealing structures like the
natural numbers or Euclidean spa€mne internally consistent concept or mathematioal t
ory is no more true or real than anothedence Cantor wrote that if a proposed objectsati
fies his above conditions, “mathematics can andtmaggrd it as existent and real” (iDid

To be sure, many mathematicians are concernednhotith consistency but with the-
gitimacyof the objects they introduce, in some broadessdnat may depend on utility, in-
tuition, elegance, and so on. Such practical @&sthatic concerns may even provide some
evidence of consistency, which itself is usuallytedifficult to prove, but they are not the
same thingas consistency, much less reality or truth. Reribertarian, thers no question
of the truth for a definition or axiom, for suchrths make no claim of fact. They only stipu-

late linguistic conventions and determine a donadidiscourse.



As evidence that this has becompopular view among mathematicians, | would cite
the emergence of non-Euclidean geometries, the trefunction theory from more to less
restricted concepts of function (Jourdain 1906Maddy 1993; 1997) and the ascendance of
the big-tent notion of set that Maddy calls Combnialism (op cit), the latter two of which
Cantor himself played important parts in. Buhiétreader is unconvinced, no matter; noth-
ing | have to say here depends on it. | mentianlibertarianism only to illustrate the kind
of approach | have in mind, and as a significaetnant inCantor’sviews, which we will
discuss at length. If libertarianism and the eda¥ICA do not reflect the views and prac-
tices of most mathematicians, | would urge themetmnsider. We should study mathemati-
cal practice to determine what works amgbroveour understanding of mathematics. We
should not regard the prevailing practice as sacred

| believe thaseveral philosophical problems have already bekeddy means ap-
proximating the MCA, but rarely deliberately. Tleosho have solved philosophical prob-
lems by articulating new concepts have typicallyutpht that they were discovering deep
facts, not stipulating definitions. Still, in seaecases, a problem was in fact solved by arti-
culating concepts that addressed concerns mordisgbkan the initial question. One exam-
ple was the problem of the world systems, ultimapeit to bed by Newton’s refinement of
the concept of motion and his successful theogyravitation® Another lies in recent exten-
sions of decidability to the continuous context (Wbld 1997, Parker 2003, 2005, 2006). A

more overtly metaphysical example that quite cleanhploys the MCA is Parfit's work on

% DiSalle (2002; 2006) reads Newton’s Scholium ® Erefinitions in thePrincipia as giving alefinition (pre-
sumably stipulative) of absolute space and absaohattion. This would fit wonderfully with my methotbgy,
but it does not seem to fit Newton’s text. Newseems rather to have made metaphysiedinsaboutabso-
lute space and motion. Still, such claims perfatiee function of giving those notions empiricahtent and

rendering the Copernican question determinate.



personal identity (1971; 1984). | hope to disahese and other examples elsewhere. The
one | will consider here is Cantor’s extensionha toncept of number to the transfinite, and
the resolution this supplies for “Galileo’s ParatfofGalileo [1638] 1954), namely that the
square numbers seem to be at once fewer than aatiteghe positive integers.

There, too, the MCA was not applied deliberatélne historical figures discussed
below—Galileo, Bolzano, and Cantor—did not see theles as altogether freafipulating
useful new conventions, but either as drawaogclusions abouhe relative size of infinite
collections, or, in Cantor’s case, as extendingcthrecept of numerosityin a constrained
way. Nonetheless, key elements of the MCA arece#d in some of their remarks and ar-
guments. | will argue in light of their writingkdt, whatever those authors may have
thought, questions of transfinite numerositgrein certain senses indeterminate, and Can-
tor's extensions of numerosity were stipulated nioeely than some of his remarks would
suggest. His stipulations—in particular the notxmpower—not only served to resolve Gali-
leo’s Paradox (which Galileo and Bolzano had alsioed in different ways), but at least par-
tially solvedthe broader philosophicgroblem of transfinite numerosity insofar as itgesl
to address major background concerns. The maileege that the MCA can work, then, is

that ithasworked. (Note that | do not claim that the MCApart of standard mathematical

* The paradox far pre-dates Galileo; see note 1fse fthe word ‘paradox’ throughout in the sense cdntra-
diction engendered by otherwipkausiblesuppositions. (Assuming the law of non-contradictl do not see

what else a paradox could be.)

® Cantor himself paid little attention to that pasagbut he did present a version of it (with theag numbers
replaced by the even numbers), not as a paradaxénaly an illustration of a property of powers 788242-

3). He also alluded to the some phenomenon iruple®f other places, as we will see.

® Throughout this essay | use ‘numerosity’ to derbéegeneral notion of cardinal number, irimnber-of-
elementswithout presupposing Cantor’s analysis of thatagpt. Cantor’s “cardinal number” will be called

power, as he initially called it.



practice, only that it, or something quite closét ttvas been successfully applied to some
philosophicalproblems, in mathematics and elsewhere.)

If indeed the MCA has sometimes been successthkimealm of mathematics, there
is a further question as to whether it can be ¢drsaggest, already has been) useful in more
general metaphysics. Of course, the problem oirth@te is traditional metaphysigsar
excellence Nonetheless, | will not argue here for the beyaapplicability of the MCA. |
have mentioned some applications that | wish toudis elsewhere, and | hope to apply it to
others as well. The broad success of the methothes be evaluated in terms of those ap-
plications. Here let us bracket that questionfaeds on mathematics.

In Section I, | further articulate and contextualthe method. | describe a roughly
Wittgenstinian picture of concepts and Cantor’'sted notion of concept splitting. | then
state a naive version of the method, raise som&lgeobjections, and finally mention a
modified method that avoids most of the difficudtieSection Il reviews Galileo’s Paradox
and his motivations for presenting it. There lusrdghat, in concluding that the concept of
relative size cannot be applied to the infinitewses in a certain sensight, and Cantor, in
claiming that there ino contradiction in cases like Galileo’s Paradox, wasng’ In Sec-
tion Ill, I review Bolzano’s position, that propsubsets are always smaller and bijection is
not sufficient for equinumerosity. | argue fromdyan’s (1999) order extension theorem
that Bolzano was not simply mistaken; the relabbproper subset can be extended to a gen-
eral concept of number quite different from CargorSection IV evaluates Cantor’'s me-
thods, his own perspective on his work, and theess of his theory in addressing some ma-

jor concerns common to all three of our historfgglires. Section V briefly criticizes

" This is not an attack on Cantor’s theory. Thenpisi just that his theory required a concepimabvationin

order toescapeGalileo’s Paradox (and it was not the only sucloiration possible).
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Godel’'s arguments for absolutism about the coneepardinal number and touches on some
more recent debates about realism in mathema&estion VI concludes with brief summary

remarks.

|. THE METHOD

The approach to philosophical problems consideszd Bmerges from a certain pic-
ture of concepts and of how philosophical problemse, a picture derived from Wittgens-
tein, Waismann, and to some extent Kant. [Kangeatgd that the antinomies arise from
stretching our concepts beyond their proper dom@ir81] 1998, Aii ff.), an idea antic-
ipated by Galileo ([1638] 1954, 31, quoted belowglpments of this picture can even be
found in Cantor’s remarks, as we will see.

Wittgenstein pointed out in the early sectionshaflbivestigationg1953) that many
of our concepts do not have any tidy set of necgssad sufficient conditions. He used the
metaphor of a rope, which derives its unity fromrtany overlapping fibers rather than a
single pervasive thread. Another apt metaphor @vbelthat of a well worn rag. Typically,
our informal concepts are woven of many strandsious conditions or properties, similari-
ties between instances, and different approximaglyvalent characterizations. They fray
at the edges, where borderline cases arise (“deggaeeness,” as Alston called it in 1964).
They also have holes: cases that do not lie erzayfboundary but rather are omitted from

classification altogether (“combination-of-condit®vagueness”, ibii® They can be

8 Alston’s “degree vagueness” is the sorites typesisting in “the lack of a precise cut-off poifreg some
dimension” (1964, 87), while “combination-of-coridits vagueness” consists simply in the indeternyiredc
the truth conditions for a term (87-88). Waismani@mous notion of open texture (1945) is relat@diginally
calledporositat—literally, ‘porosity’—it is, on one reading, justhat | mean by holes, i.e., combination-of-
conditions vagueness. But as Ackerman (1994) paint, Waismann further distinguishes open texasie-

eliminable no definition can completely remove it. Our gagture is partly motivated by a suspicion thattsuc
7



stretched to cover new cases, but, as Cantor dpstretched too far they will tegFigure

1). When we extend a concept beyond its usual dgma& may find that it comes apart, so
that some characteristic conditions are no longgually consistent, or various formulations
are no longer equivalent.

Cantor pointed out just such a case. He of coextended the concept of number in
two directions, that oAnzahf (later called ordinal number) and that of powdaghtigkeit
later called cardinal number). For dimjte set, Cantor observeAnzahland power coincide
and determine each other, but not so for the itefitwo infinite sets can have the same pow-
er but differentAnzahlen Hence, as Cantor put it, “the whole conceptwhhber...in a
certain senssplits upinto two concepts when we ascend to the infinite” ([188B%16, 78,
Cantor’'s emphasis). In fact, it splits into moomcepts than that, for other notions of trans-
finite number are possible, as | will explain incgen Ill. (Besides those discussed here,
another alternative notion is given in Buzaglo 2002

When concepts split, we may be puzzled as to weatally had in mind in the first

place. Which criteria truly characterize the argjinotion? But this is often a misguided

ineliminablevagueness exists and is even the rule, but tia¢ssential to the present considerations.
Such vagueness should also be distinguished frdright category errors. The emptiness of ‘What
time is it on the sun?’, for example, is not du&agueness but todefiniteinapplicability. Nonetheless, it

seems we coulthodifythe concept of time-of-day to cover that case.

° Cantor also describaxtder type(a generalization oAnzah) as the natural extension of the concept of number
([1895-7] 1915, 117).

There is some disagreement about the sengenafhl in Cantor’s hand. Ordinarily this word is
translated as ‘number,’ ‘cardinal number,’ or ‘nuenlof elements,’ contradicting Cantor’s later deatigpn of
his Anzahleras theordinal numbers. Tait (2000) on the other hand, reéadmhlas ‘counting number,” and
elsewhere (1996) treats this as a synonym fornaddi Cantor did refer to aAnzahlas the result of counting
([1883] 1976, 75), but note that this is consisigitlh regarding it as a measure of numerosity {redao an

ordering). To avoid any anachronism or prejudiag]l simply use Anzahl’
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Figure 1. A concept that has been stretched too far.

guestion. The original appeal of the conceptisrestablished domain of application, may
have been due to tleencurrenceof several conditions or characterizations. B@neple,

part of the value of ordinal number, in the serfSpasition in a sequencé?is that for finite
sets it coincides with cardinal number or numeyosithis after all is what makes it possible
to count; we correlate finite numbers with the edais of the set being counted, and the last
positionwe reach in the sequence of numbers indicatesummerosityof the set. Thugoth
cardinal numbeandordinal, and the fact that they concur, and as thellcondition that
proper subsets are always smaller—all of thesenzoré are what truly characterize the orig-
inal concept of number. When such concurrent cmmd diverge, there may be no uniquely
right way to extend the concept, and hengaestionthat stretches a concept beyond its

usual domain may have no uniquely correct ansverobtain answers, we have to refine or

19 cantor's“ordinal numbers” ar@ot merely positions in a sequence. They are ordsgeslof “units” that
represent the “order type,” in effect theucture of a well-ordered set ([1895-7] 1915). They aotthe

grammarian’s ordinals.



modify the concepts involved.

So far we have made free use of the notion of ¢thecept ofX,” but this requires cla-
rification on a number of fronts. In general welwse ‘concept’ to denote some disjunction
of conditions. Like Frege, we have in mind a ladjicbject, not a psychological one. But to
speak othe concept of number, for example, leaves open tlestqpn of whichconditions
count. They might be those associated with thelWarmber’ by everyone in some commu-
nity, or by the “competent” speakers of a langu@gach requires further clarification), or
by a particular individual. They may be the coiudis regarded as constituting timeaning
of ‘number,’ or they may include all commonly héldliefsabout number. Or, the concept
of number might be something more objective, a $mwedistinguished set of conditions
that we may not even be aware of. These distinstall be helpful in understanding the
views of our historical figures.

Like typical concepts, the MCA can be refined imieas ways. One naive version is

as follows:

The Naive Method of Motivational Analysis (NMMA)

(1) Establish that the question at hand, as sthgino uniquely determined answer.

(2) Identify background motivations for the questieither practical or theoretical.

(3) Refine or extend the concepts involved indbestion so that under the amended con-
cepts, the question does have a determinate amswas relevant to the background motiva-
tions.

Some clarifications are in order.

There are different senses in which a questiorheae no unique answer. Olson
(2006) suggests that even vague questions havatdednswers, for if a case is vague, then
the assertion of vagueness is itself the uniquegect answer. But if we ask, as in our ex-
ample below, ‘IsA greater tham,” then ‘The question is vague’ motin the normal sense an

answer to the question, for the question presugaseanswer of ‘yes’ or ‘no.” The assertion
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of vagueness is just a way of denying that theeeuniquely correct answer. Other res-
ponses, such as ‘Those terms do not apply,” anty‘@rdegreex,” are quite different from

the former. They do not assert semantic indeteaayinbut a category error; they imply an
established usage thadefinitelyrules out a simple yes-or-no answer. Such diffegs im-
pinge on the nature of a conceptual amendmentf, floe question is genuinely indetermi-
nate, there is room to refine or extend conceptisout transgressing established limits on
usage, but not if the question commits a defiratiegory error. Still, even if a particular ap-
plication of a concept or word @efinitivelyruled out, we may be to extend its domain none-
thelesschangingits content. (I will explain shortly why this i@tobviouslytrue.) The

main purpose of step (1), besides removing the tiaiop to keep looking for straightforward
answers (e.g., yes or no), is to prevent us rayisoncepts that are already doing good work
(though sometimes non-cumulative revisions aresszog). But there does not appear to be
much danger in extending a concept beyond prewooglosedimitations of scopehowev-

er definite, so long as logical consistency is rraimed.

A question that arises about step (2)nikpsemotivations should we considét?The
method is intended to serve those who apply iin sing it one should consider onelsn
motives. But we can choose our motives, and omginehoose to address someone else’s
concerns. So in general, the goals consideredtrhighanyone’s or even no one’s, but the
success of a conceptual innovation or refinemene-gtrestion of whether it constitutes a
solutionin the sense | have given—is then relativizechtisé goals. To address the histori-
cal question of whether the method was successdpibfied to a particular problem, we
merely ask whethanyone’smotives were considered, and whether the sharpgunestion

addressed those motives. It matters little, fat gurpose, whose motives they were, but then

™ Thanks to an anonymous referee for raising tlsisas
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the resulting answer is only a solution relativéhiose motives. In the present case, we will
see that all three of our historical figures hddtezl motives that were indeed addressed by
Cantor’s solution.

When we cammpply the NMMA, we really ought to. The steps tisefaes imply that
the method will succeed in a way that addresses$ wh@aportant to us, as long as the steps
can be carried out, and step (1) protects us froimgddamage to other useful concepts and
theories. But there are several reasons to wonether the methodanbe executed. The
presupposition that we can determine whether angipestion has a unique answer is chal-
lenged by Quine’s attack on the analytic/syntheistinction (1951), externalist semantics
(Kripke 1971; 1972; Putnam 1973; 1975a), and theerfaet that analytic philosophers have
struggled a hundred years or more to discern mgamnd meaningfulness, with limited suc-
cess. The threat from externalism is that we nmgiithave epistemic access to the meaning
or reference of our own expressions. If water ¢ethébO long before hydrogen and oxygen
were even discovered, as Kripke and Putnam cld&iem how can we be sure what our own
words denote, and hence whether a given questi@ally empty or not? The NMMA also
presupposes the apparent truism that we are masteus own language—that veanrevise
our concepts to make our expressions mean whateverant. This too is challenged by a
form of externalism, namely Lewis’s notion of agefhce magnet, something that draws ref-
erence to it in virtue of its natural “eligibility(1983; 1984; Hodes 1984, Sider 2001; forth-
coming). How strong after all are these magnetd,can we override them?

A further worry is that we might not be able tofpem step (2), to identify motiva-
tions more specific than the initial question.fdnt, it is characteristic of philosophy and
pure science that the main goal is extremely génévaunderstand. In the spirit of pure in-
vestigation we often pose puzzles without knowixgotly what we are looking for or having

any specific purpose in mind. Wittgenstein progida apt (and peculiarly bawdy) illustra-
12



tion: many problems are “like the problem set i king in the fairy tale who told the prin-
cess to come neither naked nor dressed, and steewaaring fishnet...He didn’t really know
what he wanted her to do, but when she came thusbdorced to accept it” (from a lecture
quoted in Ambrose 1959%. Moreover, even if there are distinct backgrourativations, it
may be very difficult to discern them until aftesalution is given. Otherwise there would
not be much of a philosophical problem.

Supposing weanidentify motivations, the final step is to constraoncepts that will
make our question determinate and relevant. Irestases this may be easy, but in others, it
may require superhuman foresight, and this likelyadibes Cantor’'s case. Among the back-
ground motivations for his theory were desiresridarstand the structure of continuous
spaces and other infinite point sets, the reprabdity and integrability of functions, and the
relations between numerosity and geometric mageifady., length or voluméy. Toforesee
that the concept of power would be so useful te¢hends would have required genius
beyond even Cantor’s, and as we will see, Cantlyrr@cognized the great importance of the
concept, and adopted it as a notion of number,ugifd as applications occurred and a rich
theory developed.

A final grave worry is that the method does notusately describe the history of the
example under consideration: Galileo’s Paradoxianeesolution. Indeed, for the most part
it does not fit the views of the participants. Butill argue that in fact, extensions of the
concept of numerosity were freely stipulated; Bantor developed his concepts of numeros-

ity gradually, in light of motivations, applicatisnand results; that he had certain motivations

2| do not, like Wittgenstein, think this characzes all mathematical problems, but many philosagiioes.

13 As we will discuss, Ferreirds (2004) argues thantr's dominant motivations lay not in mainstremathe-
matical concerns like function theory but in metggibs and natural philosophy. However, he cerydiald

these more specifimathematicaboals as well, and some were stimulated by hiadepmotivations.
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in common with Galileo and Bolzano; and that hisapts of numerosity proved particular-
ly pertinent to those motivations.

Some of the above difficulties can be avoided Isyrieting our attention to matters of
logical consequence rather than truth. Given tiquéar set of concepts, expressed as a set of
propositions, i.e., theory, we may well be able to determine whether or ncar@swer to a
given question follows from that theory, along wattmer, uncontroversially determinate
propositions® and the standard laws of logic (or some otheofktws if you like). We need
not distinguish between definitions in the theang &actual hypotheses; just throw them all
in. Whether or not there is a genuine analytidtsgtic distinction, the determinacy of the
answer to a question relative to a given theorysdud depend on it. We need only remem-
ber that such determinacy or indeterminecthen relative to a theory (and the laws of logic
employed, if those are not in fact immutable). tRermore, reference no longer enters into
the matter. Even if we cannot tell whether refeeedetermines an answer to our question,
we may still be able to establiglgical independence. We need only find two models of the
theory which give different answers to the question

We could generalize our method further and avo&hewore of the difficulties. Giv-

en a seemingly unanswerable question, we mighepooughly as follows:

14 We may simply stipulate a set of propositions as=lito have determinate truth values. For the#giosi-
tivists, these were observations or sense dat®Ndarton's problem of giving empirical meaning tcsatute
motion, they would have been the propositionsetdtive position and motion; here they include the relzdiof
relative size among finite sets, and the relatmisroper subset-hood and 1-1 correspondence améinige

sets.
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The Generalized Method of Theory Revison (GMTRY

(1) Propose a theory.

(2) Attempt to deduce an answer to the question.

(3) Evaluate the fruits of the theory (especidtly tmotivations that it serves).
(4) As with shampoo, repeat as necessary.

Here we omit the step of showing that the quedtasno determinate answer, for even if it
does, we can, if we wish, just propose a new th#dwibetter serves our motivations. We
also avoid the problem of identifying our backgrdunotivations and engineering appropri-
ate concepts in advance. We can just as well gepdheory first anthenexamine the in-
terests that it serves. Note that the purposéepf(®), ‘Evaluate the fruits,’ is not to judge
thelegitimacyof a theory or conceptual innovation, much lesgriith or reality. In the con-
text of mathematics, that would contradict theriganism | have advocated above: the
claim that one logically consistent mathematicalcapt is no more real or true than another.
But we are concerned here with developing conaaptiseories that serve our motives. The
point of step (3) is to determine whether the peabhas been solved in that sense.

The question of whether we can override referenagnats is still troubling. We
may propose a theory that answers our initially tetysus question, but reference magnetism
might imply that the resulting theory is not infabout its intended subject, and it may con-
sequently be false even if it is true of its inteddubject. However, it is hard to see how
such considerations would bear on our understandday for example we want to have a
theory about a clear liquid with molecular struetdYZ. We construct a theory of XYZ and
deduce lots of enlightening consequences. Butasethat, despite our intentions, the

theory is really about #D, because $O is a very strong reference magnet, and suppase ou

1%0f course, this is just the standard hypothetiodudéive method of empirical science, with the usiiap of
testing predictions radically generalized to “Exafuthe fruits,” but it is meant to apply as welhtathematical

andphilosophicaltheories, in order to evaluate, not their truth, thbeir interest and usefulness.
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theory is false with regard to,B. What does it matter? The consequences wedeieced
are still true of theimtendedreferent, as desired. If somehow they are netsmnpliciter,

that would seem, in this case, to be an irreletestinicality. How can reference matter here
if it plays no role in our understanding or our e$éanguage®?

In any case, the GMTR fits more easily than the NMWith historical examples, in-
cluding the one discussed below. Cantor did ngi@that the question posed by Galileo’s
Paradox was initially empty, nor regard himselfragly stipulating the nature and existence
of transfinite numbers, but he certainly did prapasew theory that provided a solution to
the paradox, derive consequences, and evaluafaeuttsee Of course, this is not saying much.

The GMTR is so loose that nearly any theoreticaktgpment will instantiate it. The impor-

tant point is that mysterious philosophical questioan thus be made determinate and rele
vant to our concerns. By augmenting or revisinglanguage or theory, we can obtain an-
swers that bear on our broader purpddes.

However, the GMTR does not so much resolve ourcdities as dodge them, and by
abandoning step (1) of the NMMA, it threatens tdamith willy-nilly revisions as much

progress as it achieves. In what follows | widve the GMTR aside and try to exhibit the

18| have ignored here serious questions about jhst & theory of reference is supposed to assert-thehi
makes genuine claims of fact or rather proposemaemtion of interpretation, whether it is supposete
completely adequate or a limited toy model, e@ndg might argue that we can diagonalize our waybany

given theory of reference just by stipulating timatertain cases reference will work differently.)

Y There are further questions as to which propasitire essential to a theory, and which ones arenp
determined by the theory but meaningful in soméhfrrsense. We might, for example, add to Newtthésry

of gravitation the statement ‘Discontent is orahgeking that sentence part of a useful theory,ibuat clearly

ad hocand unhelpful way. We would like to have some whglistinguishing such inessential appendages to a
theory from its integral, functional elements, that is essentially the problem that hobbled Idgicesitivism
(Hempel 1950) even before Quine’s “Two Dogmas” (@5Perhaps the “evaluate” and “repeat” stepsief t
GMTR can help, but | make no attempt to resolvepttdlem here. | only make the modest claim thstage-

ment can sometimes gain determinacy and relevandetiie of a new concept or theory.
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extent to which the resolution of Galileo’s Paradax be assimilated to the NMMA or

something close to it. But | will focus daogical implication, ignoring worries about exter-
nalism and reference magnets until we reach tleaiskson of Godel’s realism. After all, if,
as | argue, something close to the NMMA has in vemtked, there is little to fear from the

objections | have mentioned.

II. GALILEO

Galileo points out in his last dialogue ([1638] 4932) that the square numbers (1, 4,
9, 16,...) are clearly fewer than the “numbersg (ositive integers 1, 2, 3, 4...), for the latter
include the squares as well as many more. Yagolks on to show, these two collections are
equal, since they can be placed in a one-to-orresmondence; just match each square with
its root. So the two collections are at once equal unequal® Galileo’s protagonist Salvia-
ti concludes that infinities “transcend our finitederstanding” (26), and “the attributes
‘equal,’ ‘greater,” and ‘less,” are not applicabdeinfinite, but only to finite, quantities”
(32)1°

Some may regard this as simply a naive mistakegtihexcusably so, given its date.

Not all readers will agree, baoftenit is taken for granted that Cantorian set theesplves

8 There is a nearly continuous family of similarg@dwxes going back to the distantly related WheghdRax

from around the @ century BCE (Sambursky 1959; Murdoch 1982; Garii#&4; Duhem [1954] 1985; Tho-
mas 1958; Rabinovitch 1970). Notably, Duns Scausnd 1302, compared the odd and the even nurttbers
the whole numbers and even anticipated Cantorjéttiag what we will call Euclid’s Principle (Gaeti 1984,
45-6). Gregory of Rimini, around 1346, adoptedapproach surprisingly close to the MCA: he digtisged
two senses of ‘larger,’ the “improper” one correspogdio Euclid’s Principle, and the “proper” correaping

to what we will call Hume’s Principle (Duhem [1951985, 111-12). However, he offered this more esra
ceptualanalysisthan an innovation, and still suggested by hisper/improper’ terminology that the Humean

notion of larger was the uniquely correct one.

19 According to Duhem ([1954] 1985, 89ff.), this walso held by Duns Scotus and several subsequenewaed

als.
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the paradox in the only way possible. As we kmew, some will say, two sets are equal in
numerosity if and only if they can be placed in-dox@®ne correspondence. Tiaetthat the
set of integers is thus equal to a proper subsigtedf is just an odd phenomenon characteris-
tic of infinite sets, which any suitably modern aspken-minded individual will accept once
accustomed to it. Gddel ([1947] 1983) held theaiand Cantor himself said, “There is no
contradiction when, as often happens with infimiggregates, two aggregates of which one is
a part of the other have the same cardinal numbedfurther, “I regard the non-recognition
of thisfactas the principal obstacle to the introductionrahsfinite numbers” (quoted in
Jourdain 1915, 75; my emphasis).

But in a clear sense, Salviati waght and Cantor wag/rong

The concept of relative siz@th which Salviati and his author were equipptken
in whole,cannotbe applied consistently to infinite sets. Fori@al these concepts involved

at least two principles:

Euclid’s Principle (Common Notion 5) The whole is greater than the part (i.e.,
strictly greater than angroper part).

Hume’s Principle: Two collections are equal in numerosity if and oiflyeir
members can be put in one-to-one correspond@nce.

% Galileo did not spell out these principles, letre call them by these names, but they are claagicit in
his statement of the paradox.

In recent debates on neo-logicism (e.g., Hale andw2001, Demopoulos 2006), ‘Hume’s Principle’
usually refers to Frege’s implicit definition ofedhumbers stating that two classésivethe same number if and
only if they can be put in 1-1 correspondence (f18®80, 73). What Hume actually wrote is, “Whemt
numbers are so combin’d as that one has alwaysitmanswering to every unite of the other, we prorce
them equal” Treatisel, iii, ). ‘Number’ here is taken to mean ‘set’ something like i{Tait 1996, 241; De-
mopoulos 2006, 109), so Hume is merely definingadityy not introducing numbers as objects. Ta%9@)
objects to the phrase ‘Hume’s Principle’ in appiica to infinite sets, since Hume himself disavoveel infi-
nite, but for us, the question whether and how univocally, to extend Hume'’s finitaryrriple to the infinite

is at issue.
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In daily life, the collections we reckon about arestly finite (if conceived asollections—
usually excluding regions of space and the like}l l&ke Anzahland power, the above prin-
ciples always agree in such cases. For thosdunied in these matters, the two principles
are not distinguished at all; they are integratgaf asingleconcept, which we divide only
in post hoc'analysis.” Galileo’s own inability to separatesttwo principles is evidence for
the unity of this pre-theoretic concept. Thoughdbes implicitly suggest the conflict be-
tween them, and thus their distinctness, he nemesiders the possibility of a notion of size
under which one of the principles fails. Both piples appear to have been firmly en-
trenched irhis conception of numerosity, and experience with eiisl shows that the same
is true for many today. Such a concept of numgroas Galileo showed, cannot be applied
to the infinite.

Cantor was wrong in that theisea contradiction when an aggregate and a propér par
of it have the same cardinal number, namely théradittion between the above two prin-
ciples. Cantor only avoided this by abandoningfiis¢. Of course, he might have meant
that there is no contradiction undes technical concept of cardinality, but then to ¢hié
cardinal number, in the general sensawherosityjust ignores the fact that Euclid’s Prin-
ciple was so deeply ingrained in our intuitive natbf (or entrenched beliefs about) nume-
rosity. Furthermore, such a reading would makenbig remark about “the non-recognition
of this fact” very strange. How could anyone hea®ognized a fact about his technical con-
cept before he introduced it?

The dogmatic view that Cantor’s analysis wight and those of Galileo and Bolzano
(the latter discussed belowjistakens fairly common today, perhaps due in part to &&d

([1947] 1983) arguments (also discussed befdwjhe MCA suggests a more pluralistic res-

% Frege and Russell were also committed to powétesssential concept of numerosity (Frege [1888D1
19



olution of the paradox (one that some readers mgard as obvious and standard, but others
will disagree). There are at le&st ways to characterize the relative size of setsiaha
Euclid’s Principle and Hume’s. Euclid’s definesathive might calthe ‘greater’ of inclu-
sion one set igreatef,. than another if it properly includes the otherhié obviously has
very limited application, but as we will see, indae extended.) Hume’s suggdsis ‘great-
er’ of power one set igreategq, than another if there is a bijection between taitel a
subset of the former, but not between the formdraasubset of the latter. Only gregigr
has generated a rich theory of relative size fbitiary sets, and only greagg; concerns the
intrinsic size of setas setsindependent of ordering or any other propertyasgal on a set
or derived from the nature of its elements. Noeletss, both notions are in some degree legi-
timate heirs to the pre-theoretic notion of numeyos virtue of the entrenchment and see-
mingly analytic status of our two principles. Gard notion of cardinality is not the unique-
ly right concept, but a particularly elegant and useful ofl@s pluralistic resolution harmo-
nizes with Cantor’s own notion of concept splittexgd his professed conceptual libertarian-
ism, yet it is clear from the above quotes, an@wotonsiderations below, that this is not how
Cantor himself always saw the matter.

| have said Galileo wasght that his concept of number did not apply to tHaite,
but this does not contradict the conceptual plsmali am endorsing. Galileo was right about
his concept, understood in terms of tasit commitment to both principles, i.e., his disincli-
nation to consider rejecting one. Further, this @pparently the conception of many, for
several before him drew the same conclusion, thaté’ and so on do not apply to the infi-
nite, and few suggested the possibility of a ‘mdhat violates one of the principles (Duhem

[1954] 1985; cfnotes 18, 19 above). Yet, understood in termofmon, explicit conven-

73, 98; Russell [1903] 1992, Chapter IX).
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tions, “the concept” of numerosity was unsettledlmquestion of whether both principles
must be upheld simultaneously in the infinite caShe matter was disputed. (See note 18.)

Galileo came rather close to step (1) of the NMMAe concluded from his paradox
that the notion of numerosity simply does not agplthe infinite. It is not that all infinite
sets are equal, as he makes clear in the above gndtelsewhere (33). The concept of rela-
tive size does not apply at all. One might take th mean that the question of whether the
squares are fewer than the positive integers oha®ino determinate answer, but this is not
quite right. Galileo gave an answer: “[N]eithethe number of squares less than the totality
of numbers, nor the latter greater than the forni@2). So for him, the answer to all such
guestions is ‘No’—or perhaps, if we do not readltdst quote too closely, ‘We cannot speak
of such relations among infinities’ (31). In argse, a ‘yes’ is strictly ruled out. If we ask
what was the answer accordingtmlelyacknowledged, explicdtonventionsthenthere is
room for a ‘yes’ or a ‘no,’ but Galileo takes tharadox (derived from hiscit principles) to
establish a more definite answer.

We can reasonably say that step (2) is presenaiie@'s discussion, for he makes
the concerns behind his paradox quite clear. €gan of theDialoguesin which it appears
proposes a notoriously speculative and unsuccessfilidnation for the cohesion of bodies:
that a solid contains infinitely many miniscule wagand it is nature’s resistance to these va-
cua that somehow accounts for the rather strongsioh of solid$? (He describes an inge-
nious experiment showing that the force engendeyeal single macroscopic vacuum is not
enough.) This account presupposes that a satiohigosed of infinitely many indivisible

parts. But to that there is an old objection (Magld 1982), which Simplicio, the Aristotelian

% The existence of the infinitely many vacua is adjfrom an ancient relative of the paradox itssinely the

Wheel Paradox of the pseudo-Aristoteldachanica
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antagonist in the dialogue, puts in terms of liratker than solids. If a line is composed of
infinitely many parts, then a longer line has aaregreater infinity of parts, which seems ab-
surd to the pre-Cantorian. “This assigning tordimite quantity a value greater than infini-
ty,” Simplicio says, “is quite beyond my comprehiens (Galileo [1638] 1954, 31).

Galileo has Salviati reply as follows (anticipatikgnt’'s idea that antinomies arise

from stretching our concepts beyond their propenaas):

This is one of the difficulties which arise when ateempt, with our finite minds, to
discuss the infinite, assigning to it those prapsrivhich we give to the finite and li-
mited; but this | think is wrong, for we cannot agef infinite quantities as being the
one greater or less than or equal to another. r@dwepthis | have in mind an argu-
ment... {bid.)

And here the paradox appears. Hence there & dittibt about its purpose: to show that rel-
ative size does not apply to infinite collectioasd thus to defeat Simplicio’s objection to the
particulate analysis of continuous bodi@sMore generally, in seeking to escape the line pa-
radox, Galileo was concerned with the puzzlingtrehs between numerosity and geometric
magnitude. Thus, what he required from a notiotrasisfinite numerosity was to illuminate

those relations, to determine whether a continuamaoherently be decomposed into infi-

% 0One may wonder how one paradox can refute ane#rgrsimilar one, but Galileo’s Paradox accomplishe
this in two ways: First, it showed thise line paradox does not arise from the continuwatsire of linessince
Salviati's version concerns the discrete set ofleimmbers. Denying the particulate analysis oftiooa does
not resolve the square number paradox, so a moeragesolution is needed, and Galileo offers oBecondly,
the number paradox provided reason to think thap$tio’s argument was invalid. Salviati’s paradax
volved two collections, the positive integers ame $quares, which very plausiltlg exist and whictido consist
of infinitely many parts, with much the same puaglresults as the line paradox. If we acceptrthish
(though one might not, instead denying any actfatity), then an example of the same form, sucthadine
paradox, cannot show that composition from infigimany parts is impossible. Neither of these {sode-

pends on Galileo’s particular way of resolving fagiare number paradox.
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nitely many indivisible parts, and ultimately, tetdrmine whether an infinity of point-vacua
can somehow account for the strong cohesion ofdsodis we will see, Bolzano and Cantor
too were much interested in the relations betwesmnenosity and magnitude, the nature and
structure of continua, and even physical applicetio

In effect, Galileo also executed step (3), but Withited success. By declaring that
the language of relative size does not apply tartfieite, he was supporting one proposed
refinement of the public concept of numerosity. dées not appear to have regarded this as
a stipulation; he instead took it to be provedhsy paradox, tacitly taking both Euclid’s and
Hume’s Principle for granted. Nonetheless, herésd@ clear boundary where none was
publicly established, and which he was therefage fo impose without contradicting any
established rules or theory. This did at leastiypdetermine an appropriateponseo his
implicit question whether the squares are fewen tha wholes: either ‘No’ (for no such rela-
tions hold among infinite sets) or, ‘That concepésl not apply.” However, the bearing of
this result on his background motivations was kait It did imply a kind of degenerate
analysis of the relations between magnitude andenosity, namely that infinite sets have
relations of greater and lesser numerosity, regasdbf the magnitudes of the wholes they
compose. But this is quite a crude and unenlighteanalysis compared to Cantor’s, and
besides defusing Simplicio’s objection, Galileadusion of the paradox did nothing to clari-
fy the tenability of the analysis of continua imbalivisibles, nor the feasibility of Galileo’s
hypothesis about vacua and cohesion. It was abasak partial solution of the larger phi-

losophical problem.

[ll. BOLZANO
Bolzano boldly claimed that infinite sets diffenedhumerosity, and that transfinite

numerosity did not satisfy both Euclid’s Principled Hume’s (though again, see note 18).

23



He even recognized the divergence of those priesipé a necessary and sufficient condition
for infinity ([1851] 1950), though he did not, likeedekind ([1888] 1901), adopt it as a defi-
nition. But unlike Cantor, Bolzano sduclid’s Principle, not Hume’s, as indispensible to
the notion of quantity. Despite the existence bijection between two sets, he claimed, they
“can still stand in a relation of inequality in teense that the one is found to be a whole, and
the other a part of that whole” ([1851] 19%®)2*

This he argued from two paradoxes similar to Galdgbut involving continuous
sets. He showed first that the real numbers inrttegval [0, 5] can be matched with those in
[0, 12] by means of the equationp 5 12x. Analogously, he exhibited a bijection between th
points in a line segmert and an arbitrary proper segmai a version of Simplicio’s line

paradox. In an earlier wo(kLl837] 1973), Bolzano considered a generalizabioGalileo’s

% Berg (1962, 177; 1973) seems to grant Bolzanchtbeat absolution by claiming that Bolzano had rewedn
his allegiance to Euclid’s Principle in his lasiyyda He points out that, in a letter to a pupiledaiMarch 9, 1848,
Bolzano retracts the conclusion tigtinfinitely exceedss,.; (see my next paragraph). “Hence,” writes Berg,
“it seems that at the last Bolzano confined theritwe that the whole is greater than its parthofinite case
and accepted [bijection] as a sufficient condifionthe identity of powers of infinite sets” (1962peated al-
most verbatim in 1973). But Bolzano’s renunciatfpaoblished in Bolzano [1837] 1973) is too obsdares-
tablish that he accepted Hume’s Principle. In,fBoizano continued tdenythat principle in thé?aradoxes
which he worked on at least until September 3081®teele 1950), more than six months after thexditter.
(On the other hand, the quality of the posthumaliting of theParadoxeshas been criticized; see Steele 1950,
54-5.) Furthermore, BolzanoRaradoxegloes treat a variation on Galileo’s Paradox insmmer that is appar-
ently consistent with the remarks of his letterd@sing similar S,/ notation), and yet connects it with lessons
learned from théailure of Hume’s Principle ([1851] 1950, 118&f. 100, 110, 114). There Bolzano does not
accept the mere existence of a bijection as seffidior the equinumerosity of infinite sets; onbyree connec-
tion in the “mode of specification or of generatigmsufficient (98). If one sequencepsoducedfrom another
by squaring each term, for exampleenthe two sequences have the same number of elefpantly anticipat-
ing Godel's argument discussed below). For Bolz#ime does not contradict Euclid’s Principle bessabe
distinguishes between terms that have the same v&duthat the result of squaring the terms irstdwience 1,
2, 3,... isnota proper subsequence of that sequence. Strarges\vand problematic as these views are, we
have no proof that they cannot be developed imtorsistent and interesting theory. Berg's attidoubf a

Cantorian view to Bolzano looks suspiciously likeyanptom of the Cantorian hegemony.
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square number paradox (without citing Galileo). pl it in modern terms, he defined the
sequenceS, = {nzm}nDZ+ for eachmON and argued that ea&y, contains infinitely many

more terms thaBy,+ ;.

Much like Galileo, Bolzano attributed the “air cdifadox” (in the continuous exam-
ples at leastio the over-extension of notions from the finites&a When a bijection between
finite sets is possible, “then indeed are the tinite sets always equal in respect of multiplic-
ity. The illusion is therefore created that thiggbt to hold when the sets are no longer fi-
nite...” (ibid., 98). However, far from concludinigat questions of size are vague or indeter-
minate in the infinite case, or like Galileo, thia¢ notion of size does not apply—far then
from initiating our naive methé8—Bolzano regarded it agovedby the so-called paradoxes
that bijection does not entail equinumerosity. Bolzano, being a proper part constituted a
notion of ‘smaller.” At least twice (pp. 95, 98 hemarked that an infinite set can be greater
than another “in the sense that” the two are rélagewhole to paff

Despite his own view of the matter, Bolzano wafaut free to choose among Euc-
lid’s principles. The very fact that he took ther@doxes to refute Hume’s Principle in the
infinite case is further evidence that before Cgritoiclid’s Principle was integral to tacit
conceptions of number, and Hume’s was not the @hygessential principle of numerosity.
Indeed, there is a clear sense in which theeemore whole numbers than perfect squares, for
‘more’ often means ‘additional.” The whole numbirslude the squaresd morei.e., oth-
ers. A notion of numerosity that does not reftect would seem to be missing something

basic. Even in current mathematics, one sometuses “small”’ in a Bolzanian sense. For

% Bolzano did, however, attribute certain mistakesalculating infinite sums to expressions beingvaid of
objective reference” ([1851] 1950, 112-114).

% But notice also a hint of pluralism: “in the setisat” suggests the possibility of a different sens
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example, ar-algebra is often defined as “the smallest” sehwé#rtain properties. What is
meant in that case is not the set of smallest p@feethat does not even pick out a unique
set), but rather the unique set, with the specfliegberties, such that pwoper subsehas
those properties. Anelven Godelin the midst of arguing that Cantor’s conceptsfareed
on us ([1947] 1983), said that new axioms can &ase the number of decidable proposi-
tions” (520). But the set of such propositionsafe has the power of the integers! What
Godel meant by “increase the number” was just {zaag the set of decidable propositions to
aproper supersedf the former—a Bolzanian use of ‘number.’

The notion of proper inclusion on its own is natesty satisfying notion of ‘greater,’
for it leaves vastly marfy sets incomparable to each other. However, ibizinreasonable
to extend the finitary notion of ‘greater’ to a rarpartial ordering on the infinite sets. This
would at least seem to be an improvement on Galikact confinement of relative size to
the finite. Furthermore, it is possible to extemy partial ordering to a strict weak ordering
‘<’ on the subsets of any well-ordered set, andcbegiven the Axiom of Choice, on the sub-
sets ofanyset (Duggan 1999). In a strict weak ordering,ititemparable sets form equiva-
lence classes, so we can regard any two incompasald as equal in “size.” We thus obtain
a total preorder ‘<that extends both the relation of ‘no greatemnthan finite sets and the
subset relation(?".?® Hence we can define notions of smaller, greated,equal, as broadly
as we like, while respecting Euclid’s Principle f(labandoning Hume’s).

There are two worries about this argument: Hihg, relations defined might not re-

#"vastlymany, that is, under Cantor’s notion of cardiyalind in any case, infinitely many.

2 \We can also choose the extension tadmpatible meaning that if two sets in the old domain (iinété sets)
were not of equal size (i.e., if not botx B andB < A), they do not have equal size in the extendedioala
either (Duggan 1999).
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spect other intuitive principles of size, and miayst seem undeserving of that name. For ex-
ample, let us say a relation ‘<’ on setsnenotonidf A < B if and only ifA\B < B\A (a gene-
ralization of Euclid’s Principle). Duggan’s powelextension theorem (1999) shows that for
a very broad class of properties, binary relatibias have those properties can be extended to
totality while preserving the properties. As ippans, monotonicity isot one of the proper-
ties covered by Duggan’s theorem (since it is @aot-receptive”), but this in itself does not
rule out the possibility that theege total monotonic extensions of the ‘less than’ praper
subset relations, perhaps in virtue of some oth@rgble extension theorem.

If not, so be it. We already know that no extensabthe notion of size preserves
every property of size that holds for finite sefs1 extension cannot preserve both Hume’s
Principle and Euclid’s. As Cantor wrote, some atghbegin by attributing to the numbers
in question all the properties of finite numbersianeas the infinite numbers, if they are to be
thinkable in any form, must constitute quite a nemd of number” (quoted in Jourdain 1915,
74)2?° If we wish to speak at all about different sipénfinity, we must choose the proper-
ties of size to preserve.

Secondly, we might worry, especially given Duggappeal to the Axiom of Choice,
that total extensions of the subset relation winaddjuite arbitrary and uninteresting. But
given the power of Duggan’s theorem, there magnbaypossible extensions, and perhaps
some among them@re especially interesting. In any case, being irsieng is a separate con-
cern from being logically possible. | concede tGantor’s notion of cardinal number is
probably the most interesting, elegant, intuitivappealing, and useful extension of nume-

rosity to the infinite. | mainly want to insistahsuch virtues do not make it the uniquedy-

% Though Cantor continues anti-pluralistically, “thature of this new kind of number is dependenthemna-

ture of things and is an object of investigatiout, ot of our arbitrariness or our prejudice” (iBid
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rect notion of numerosity in the sense of verisimilgudJnless we presuppose a semantics in
which ‘size’ automatically designates some partidyleligible property, of which we might
have true or false conceptions, the notion of vreiigude does not apply. So ignoring such
semantic considerations, Bolzano was free to chatbeut risk of being mistaken.

Bolzano did not make the motivations for Rigradoxeq[1851] 1950) explicit, but it
is clear that some of them were shared with Galiles Cantor noted ([1883b] 1976, 78), the
main purpose of the book was to defend the actdiaite, including the constitution of con-
tinuous bodies out of point-like atoms, against yn@pparent contradictions. Bolzano criti-
cized various leaps of logic that others had madd,he took particular interest in divergent
infinite sums as well as time. But like Galileg, &lso grappled with the curious relations
between numerosity and geometric magnitude, detetideanalysis of space and matter into
a continuum of points, and even attempted to useatialysis to explain physical phenome-
na.

Bolzano distinguished the magnitude of a spatitdresion from the numerosity of the
set of points of which it consists ([1851] 1950443, and then asserted various propositions
about magnitude and numerosity, such as that iffiguves are perfectly similar, the num-
bers of their points stand in the same ratio as gemetric magnitudes (136). [He de-
fended this from an objection similar to Simpli@dine paradox, and closer still to the Wheel
Paradox, by repeating his rejection of Hume’s Rpiec(137).] Later in the book, he hy-
pothesized that the whole of infinite space wasmetaly filled with substances, and yet var-
ious parts were filled with different degrees ohsi¢y (161). To defend this, Bolzano urged
that “there is no sort of impossibility in one ahe@ same (infinite) set of atoms being distri-
buted, now in a larger region without a single pstanding solitary there, now in a second

and contracted region without a single point raqgito absorb two atoms” (162), and re-
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ferred the reader to his versions of Galileo’s Baxa® Thus, Bolzano was concerned with
relations between magnitude and numerosity, thigcpéate analysis of continua, and physi-
cal applications.

Like Galileo, Bolzano took the paradoxes to prowsthing, but by taking them to
prove one thing rather than another, he imposexheaptual refinement. No doubt he did so
with an eye to some of the motivations noted abd¥at like Galileo’s, his success was quite
limited. He found many applications for his ratkague conception of infinite numerosity in

the Paradoxesbut most seem to have been incoherent and Ssitle

IV. CANTOR

Cantor’s approach to the infinite seems to have logeser to the NMMA than those
of Galileo or Bolzano. Though Cantor did not egply claim that questions of relative size
for infinite sets lacked uniquely right answers wes somewhat pluralistic about concepts of
transfinite number, and as | will explain, this gasts that even for him, some questions
about relative numerosity were indeterminate uefihed. Furthermore, he did, unlike Gali-
leo and Bolzano, regard himself@gendinghe concept of number, and he did so under the
influence of certain specific motives.

By 1887, Cantor clearly endorsed multiple notioheumber, including power and
Anzahl(by then taking the additional names of cardina ardinal number), as well as the
more general notion afrder type([1887-8] 1962). It is often thought that powersnsdways

the primary notion of number for Cantor (e.g., Egts 1999, 265, 270), who did make sev-

%0 The point of referring to the paradoxes was apyiBréo show that a continuum of atoms, with nogjamuld
nonetheless be compressed into a smaller regiorgdsing its density. But this seems incompatibtk his

assertion that the ratio between numbers of elesyvamuials the ratio between magnitudes.
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eral remarks about the basic, general, and intrictsaracter of power, ([1882] 1962, 150;
Grattan-Guinness 1970, 86). Ferreir0s pointsasdlremarks as well as the structure of
Cantor’s “most mature work,” thgeitrage([1895-7] 1915), in which the cardinals are intro-
duced before the ordinals. But the remarks in tijue$eave some room for interpretation
and are counteracted by others. In fact, it dMagahlthat Cantor first called the “number of
elements” of an infinite sét,in theGrundlagenwhile power retained its less suggestive
moniker for some tim& Even in theBeitrage to which Ferreirés appeals, Cantor exalted

the notion oforder type That concept, he wrote,

...embraces, in conjunction with the concept of ‘acamtinumber’ or ‘power’ intro-
duced in Section 1, everything capable of beinglmened that is thinkable, and in this
sense cannot be further generalized. It contadtisimg arbitrary, but is the natural

extension of the concept of number. (117)

3L4n the case of infinite aggregates, on the otteTd, absolutely nothing has so far been saiderithmy own
papers or elsewhere, concerning a precisely definetberof their elementsAnzahlder Elemente]” (Cantor
[1883] 1976, 71; 1962, 167). But soon, “Anothegajrgain...is amewconcept not previously in existence, the
concept of theumberof elementsAnzahlder Elemente] of aell-orderedinfinite manifold ([1883] 1976, 71;
1962, 168). However one translatészahl here, ‘Anzahl der Elemente’ strongly suggest®tam of nume-

rosity rather than position in a series.

%2 His first use of ‘cardinal number’ in print appedrin 1887 ([1887-8] 1962). Jourdain (1915) qu&tastor
using it in a lecture of 1883, and a footnote fréantor attributes the relevant part of [1887-8]286 a lecture
of that year and a letter of 1884 (p. 387). Stedyyghough, Cantor did not to my knowledge usedo@al’ in
any publications or other letters before 1887. rEwehis review of Frege’&rundlagen(Cantor [1885] 1962)
and his 1886, Cantor used ‘ordinal number’ but‘catdinal,” and kept power distinctly separate fraomber
[even though Frege had argued (using different sjatttat Cantor’$\nzahlerwere ordinal numbers and his
powers were cardinals ([1884] 1980, 98).] It segtasisible, then, that Cantor only inserted theapbrcardi-
nal number’ into the later published form of histlee (and perhaps likewise for the 1885 lettediphbd as
part VIII of [1887-8] 1962). Jourdain may have diseardinal number’ anachronistically, as many auhdo.
believing that Cantor always thought of power asftmdamental notion of numerosity. If so, thedéar
nal/ordinal terminology was probably spurred bygeérs remarks and further justified by Cantor’s depenent

of cardinal arithmetic. (See note 37.)
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Power, then, was not unequivocally privileged,@antor. The beste could say for it in
light of this quote is that it was somehow “congli’ to or within, the natural extension of
number. The pluralism here, encompassing at fEasér and order type, is explicit.

Still, one might infer from Cantor’s “ordinal/cardil” terminology that power was his
only concept ohumerosity He even wrote, “The ‘powers’ represent the uaigand neces-
sary generalization of the finite ‘cardinal numBe(EL.891] 1996, 922). But as we have just
seen, it was thAnzahlerthat first took that position. In tierundlagen Cantor made it

clear that he regardethzahlas a notion of numerosity, relativized to an oirtgr

[A] finite aggregate exhibits theamenumber of elements [Anzahl von Elementén]
for everyorder of succession that can be given to its elésnen the other handif-
ferentnumbers [Anzahlen] will in general have to be htited to aggregates consist-
ing of infinitely many elements, depending upon dhger of succession given to the
elements” ([1883] 1976, 72; 1962, 168).

This was natural, given the way in which #hezahleremerged from Cantor’s theory of
point sets. As is well documented (Jourdain 19ttty sprang from the indexes on his “de-
rived sets’P", whereP' = P is the set of limit points of a sBt andP* Y = pM" (1872).
Cantor later define® as the intersection of all derived sBt4 for v a positive integer
([1880] 1962). IntuitivelyP™ was the result of taking the derivative infinitehany times
(once for every positive integer) aRf’ ¥ the result of taking it more times. This helps
explain how theAnzahlerrepresented a kind of numerosity; they answeredjtiestion,

“How manytimes”

Hence there was some pluralism in Cantor’s conoepf numerosity. Already in

33 Again, this expression strongly suggest numerosity
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the Grundlagen the claim that the original concept of numbeitsph two implied that both
power andAnzahlwere in some degree legitimate heirs to the ditf@umber.” Such plural-
ism suggests that even for Cantor, certain questbout the relative size of infinite sets
were indeterminate prior to his refinements. Coasthe ordered set (1, 4, 9, 16,...; 2, 3, 5,
6...), i.e., the positive integers arranged sottatsquares come first. Is this ordered set big-
ger than its infinite initial segment (1, 4, 92..With respect té&nzah| yes: The former se-
guence has the ordinaéwhile the latter has ordinah But with respect to power, no.
Hence, the question requires refinement. In &aatn the question of thnzahlalone may
be indeterminate, for it depends on the orderiad)\We apply to a set. In particular, Galileo’s
guestion whether the squares are fewer than thevyeositegers may be seen as indetermi-
nate, even rejecting Euclid’s Principle, provideditt'fewer can be understood in terms of
Anzahland one does not take the natural orderings fortgda Thus, Cantor’s own ideas
implied that some questions of relative size, and Btretch even Galileo’s, were insuffi-
ciently precise to determine an answer.

However, Cantor’s pluralism and libertarianism dat extend to Euclid’s Principle.
We have already noted his claim that there is simplcontradiction when a set has the same
cardinality as a proper subset. As well, Begtragecontained a venomous assault ([1895-7]
1915; 117-118) on Veronese’s definition of equaktyich attempted a compromise between
Euclid’s Principle and CantorAnzahlen “Numbers whose units correspond to one another
uniquely and in the same order and of which theismeither a part of the other nor equal to
a part of the other are equal” (quoted in Cantiid.}>* Cantor criticized the circularity of

this definition (ibid.), but according to Dauber®{B, 234) he also objected to its arbitrari-

34 Veronese’s work is now regarded as an importaetrémner to that of Robinson, Conway, and Ehrlibk,

latter two of which generalize Cantor’s transfinitembers (Ehrlich 2006).
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ness. “He complained to Peano that Veronese lgglithe definition of equality, both for
numbers and for order types, was entirely at theeynef one’s choice, which was a heretical
suggestion from Cantor’s point of view...” (ibid.)nauben’s reading, Cantor was much
more the dogmatic essentialist than @reindlagers libertarian declarations would suggest.

Hence, Cantor might appear to have been inconsistetihe subject of mathematical
freedom. In th&rundlagenhedefended the actual infinite both by waxing graogiilent on
the freedom of mathematics and by claiming thathesry was forced on him ([1883b]
1976, 75). But perhaps he can be seen as occugyagerent middle ground: He was
forced torecognizecertain extensions of the notion of number, he tigive said, but not to
forsake all others. The forcing he refers to istlumderstood in terms of his derived point
sets. Taking repeated derivatives and infinitarypns, Cantor obtained sets with larger and
larger transfinite indices, a process he calle¢téssary” and “free from any arbitrariness”
([1880] 1962, 148). Without these indices, man¥yisffuture results on point sets would
have been unattainable, including the Cantor-BesahxTheorem (1884a) and the important
theorem that any set with a countabléderivative, for anyAnzahla, has zero outer content
(the lower limit of the total length of any setawvering intervals), and hence, in modern
terms, zero measure (1883a). Considered indepynadémpoint sets, thénzahlerenabled
Cantor to establish an infinite hierarchy of infenpowers, having only established two infi-
nite powers before, and to show that there is guensecond infinite power, seemingly a step
toward Cantor’s goal of proving the Continuum Hypesgtis. Thus Cantor was forced to rec-
ognize theAnzahlenby their apparent naturalness and his need toantipém, but none of
this required him to dismissther notions of transfinite number. After all, he laitecorpo-

rated power and order type as additional concepisimber (1887; [1895-7] 19155.

%t is not clear, then, why Cantor categoricallieoted Euclid’s Principle. Surely it was in paedause the
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Moreover, Cantor calleAnzahland order typextension®f the concept of number
([1883b] 1976; ([1895-7] 1915), not mere descripsiof its transfinite implications. He
even callecdAnzahl“a newconcept not previously in existence” ([1883b] 1978, Cantor’s
emphasis) and pointed out that any transfinite rermiust be “quite a new kind of number”
(Jourdain 1915, 74). Hence he did not see himidetf Galileo and Bolzano, as merely de-
ducing factsaboutthe sizes of transfinite sets from a well estélgitsnotion of number, but
as defininghewconcepts. If he did not regard this as mere stmn, it can only be because
he thought that some concepts were coherent andembas concepts of number, while oth-
ers, not. But that much is perfectly consisterthwlie NMMA.

If we take Cantor’s words seriously, then, we nugsiclude that he saw see himself
as extending the concept of number, and with soegee@ of freedom. Further, he did so in
light of some explicitly acknowledged motivationde cited a need to employ tA@zahlen
in the theory of point sets as well as some apiidica to function theory ([1883b] 1976).

But he also stated goalsphilosophyandnatural sciencehat help to explain his interest in
both theAnzahlerand the powers, namely the resolution of certéfrcdlties in the philo-
sophical systems of Leibniz and Spinoza, whichhioaight would help us to develop a rigor-

ous and “organic” account of nature. The standambunt of Cantor’'s motives largely ig-

Euclidean notions of number on offer, such as Bazmand Veronese'’s, seemed incoherent. But oaksds

led to speculate that Cantor’s bouts of dogmatisrewpartiybecauseof his vitriolic debate with Veronese over
the coherence of infinitesimals. [The opposite besn suggested, i.e., that Cantor opposed Verteeseise

he was dogmatic about his concept of number, botd@Caehemently denied infinitesimals as early 888l
(Ewald 1996, 867), well before introducing his sfinite numbers.]

It is worth noting too that Cantor&nzahlenrmade some concessions to Euclid’s Principle. éNety
proper part of a well ordered set has smallezahlthan the whole, but every propaeitial segmentoes. The
Anzahlerthus partly reflect the idea, encoded in Eucli@fmciple, that if we add more elements to an itdin
set, we have a larger set, thoughAozahlerthis only holds if the new elements are addedms\fficiently

near) the end of a sequence.

34



nores these remarks and places his main motivéswitainstream function theory (e.g.,
Jourdain 1906-13; 1915; Dauben 1979). Howevergelés (2004) makes a strong case that
Cantor was not chiefly concerned with mainstreartheraatics but with broad biological,

physical, and even spiritual matters. Cantor itegexplicit about this in an 1884 letter:

| have been working on this project of a precisepgaing into the essence of every-
thing organic for 14 years already. It constitutesreal motivation why | have con-
fronted, and during this time have never lost s@fhthe fatiguing enterprise of inves-

tigating point-sets, which promises little recogmit (Ferreirés 2004)

Through the background of German Romaht&turphilosophieand Cantor’s own testimo-
ny, Ferreirdés shows that by “organic” Cantor did silmply mean biological; rather he
sought a natural philosophy unifying mechanistid apiritual elements.

Cantor’s work on this program raised key matherahgioals for his theory of the
transfinite, namely to illuminate what we now daktopologicalandmeasure-theoretitea-
tures of physical space and objects. For exarhpl@roposed an analysis of matter into a
countable infinity of point-like corporeal “monadahd a continuum of point-like ethereal
monads, and used his theorems on point sets, poaminuity, and outer content to offer
explanations of various physical phenomena (F&se&2004). Thus Cantor’s investigation of
the transfinite was in considerable part motivdigdn interest in the qualitative structural
features of space and matter. In particular, laeeshwith Galileo and Bolzano an interest in
the relations between numerosity and geometric matg (addressed by Cantor in terms of
dimension and outer content), the analysis of matte a continuum of points, and the ap-
plication of this analysis to explain physical pberena.

Cantor did not deliberately design his conceptasfimal number to serve those goals,

but that concept developed very gradually under thiuence, each conceptual develop-
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ment being spurred by new applications and res@tmtor took up questions about bijection
even before 1869 (Ferreirds 2004, 52), long bedoriging at the notions of power, counta-
bility, and last of all cardinalumber Soon after he raised the question of a bijedben

tween the whole numbers and the reals, in an 187 to Dedekind, he wrote, “[I]t has no
special practical interest for me. And | entiralyree with you when you say that for this rea-
son it does not deserve much effort” (Ewald 1998L)8 Yet an answer, he pointed out,
would yield a new proof of the existence and dgrsithe transcendental numbers, and once
Cantor accomplished that, Dedekind remarked thafptfoved the problemwasinteresting

and worthy of effort (ibid., 848). In 1877 Cantteveloped the proof that there is a bijection
between a line segment and amglimensional continuum, and simultaneously begamgusi
the word ‘power’ (Ewald 1996, 853ff.). In the pidaition of that result (1878), he even de-
fined the notions o§maller and largepowers, and pointed out the fact that the even-num
bers have the same power as the positive intedédrs.term ‘countable’ or ‘denumerable’ did
not appear until 1882, when Cantor proved thatpadern terms, an-dimensional space can
include at most countably many disjoint open gdi882] 1962). At that time, only sets of
the first two infinite powers were known. Onlyeafusing the ordinals to generate an infinite
hierarchy of powers and producing several morertdmas on the powers of point sets (in-
cluding that countable sets have zero content; 488i8l Cantor adopt the term ‘cardinal

number’ ([1887-8] 1962, from a lecture of late 1883ut see note 34 abov&).Thus his

*Apparently, Cantor had also worked out cardinaharetic in a manuscript of 1885. Jourdain (1919, ré-
ports this, but perhaps based on Cantor’s footimoE887-88] 1932 (411), which is in fact a bit weg(“[E]r ist
der Hauptsache nach vor bald drei Jahren gerfd). In any case, if Cantor did develop cardiagthmetic
before or simultaneously with adopting the ternrd@aal number’ (also contrary to Jourdain; see 3t then
this would further explain Cantor’s construal ofa@y as cardinal number, for, one justification laseyfor call-
ing hisordinalsby the name ‘number’ was their possession of tesyatic arithmetic (in an 1882 letter; Ewald
1996, 876).
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concept of cardinal numbewrolved in a dialectical milieu of applications and inadwens,
most of which concerned the structure of continuspeces and point sets within them. If
Cantor did not deliberately design the concephexddight on such matters, those interests
nonetheless seem to have exerted a selection pgemsthe concept’s evolution. In this re-
spect the concept was tooled to fit its motivations

The result was tremendously successful. Cantdrysipal hypotheses were as spe-
culative and mistaken as Galileo’s infinity of ppracua and Bolzano’s smooth plenum of
variable density, but still, his theory of trang@nnumerosity was much more fruitful than
those of Galileo and Bolzano concerning all thretlhe shared motivations we have identi-
fied. Not only did Cantor offer a way out of olfjens to the particulate analysis of the con-
tinuum, such as the supposedly absurd consequieaitcerte obtains infinities of different
sizes—all three thinkers managed that—but he aisated a rich and ultimately coherent
theory of such sizes which shed further light aadtructure of continua. He was able to
show that while there are different sizes of irtfi{powers and order types), line segments of
different lengths have the same potfeand if both segments are closed, the same oyger t
(a consequence of [1895-7] 1915, 134), contrai§itaplicio’s argument (Galileo [1638]
1954, 31). Thus he was able to distinguish cleaetyveen geometric magnitude and “num-
ber of elements.” He further showed that contiolidifferent dimensions have the same
power (1878), and that finite and countable poats fiave zero magnitude ([1882] 1962).
And though his own speculations on the structunmatter failed, his theory of the transfinite
has in fact afforded some insight into physicalngraena.

The fact that countable sets have measure zerbdeasespecially useful in this re-

37 |n effect, Bolzano showed this too, but he did mate the notion of power, i.e., of aquivalence clasis-

duced by bijection, and he did not take a bijectietween sets to show anything significant ([188430).
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gard. Given a measure-zero set of possible dimte®me physical system, it is generally
plausible to assume that the probability of theesystaking on one of those states at a given
time is zero. [Poincaré made much use of thisraption in his celestial mechanics ([1892-
99] 1957), and it plays a key role in statisticaaanics (Sklar 1993).] The same, then, goes
for countablesets of states. In one interesting applicatiordan@ard (1898) showed that, of
the continuum-many bounded geodesics through agieent on a surface of negative curva-
ture, only countably many are asymptotic to clos@des. Hence, “almost all” bounded
curves on such a surface—with regard to power, ureaand frequency—are thoroughly
non-periodic, and this is reflected in the typigalhaotic behavior of many dynamical sys-
tems. Thus power sheds light on physical phenomena

| say that such results—those concerning the strectf continua, the relations be-
tween numerosity and magnitude, and physical phenam-are good reasons to regard Can-
tor’s theory of the transfinite asiccessfutelative to the goals that he shared with Galileo
and Bolzano. Whether this accounts forpbeularsuccess of his theory is another question.
No doubt the fact that countable sets have zersunedargely explains the introduction of
Cantor’s cardinals in many elementary analysisstextd this in turn must have contributed
to their widespread acceptance. Other contributaatprs likely include applications of both
power andAnzahlin function theory and analysis (Cantor [1884b$2.9260; Mittag-Leffler
1884; Borel 1895; cf. Hallett 1979), the support\atierstrass, Mittag-Leffler and Hilbert
(Dauben [1993] 2004; Hilbert [1900] 1902; 1926} ¢e and Russell's use of power in their
definitions of number (Frege [1884] 1980; [1893-3pD962; Russell [1903] 1992), Frege’s
proof of the axioms of arithmetic from Hume’s Piple ([1893-1903] 1962; cf. Hale and
Wright 2001), and perhaps most of all, theinsic nature of power, the fact that it is inde-
pendent of the nature and ordering of element®ifa pmphasized by both Frege [1884] and

Russell [1903] 1992). No doubt the last two poares strong reasons to count Cantor’'s
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theory a genuine success, popularity aside, bsiigtrue relative to certain goals, and not the
ones we have identified as common to our threetdst figures.

To summarize the essential points we have notedt&entor’s theory, (1) Cantor
was pluralistic about concepts of numerosity, witlmits; (2) such pluralism implied inde-
terminacy in some questions about numerosity; @)@ explicitly stated certain philosoph-
ical and scientific motivations; (4) each of theshhcommon goals we have attributed to Ga-
lileo and Bolzano was either included in or raibgdCantor’s explicit motivations; (5) Can-
tor did devise new concepts of numerosity, thougldid not regard them as entirely free in-
ventions; (6) he did so gradually, while discovgrapplications and results that apparently
influenced the theory; and (7) the resulting comeg@poved to be very useful for the common

goals we have identified.

V. GODEL

The NMMA (Section |) takes it for granted that wanddentify questions that lack a
determinate answer, and that we are free to ex@eddefine concepts and meanings as we
wish. Yet some metaphysicians hold that certagstjans, whose answers sursgemnde-
terminate, nonetheless have unique factual ansilvevsis 1984, 1985; Sider 2001 and forth-
coming; Olson 2006). One might think that the refee of numerosity expressions was
likewise predetermined, before Cantor’s work, iolsa way that any extension of the num-
ber concept that produced different results woelechtt only inapt butalse Gdodel’s view
was close to this ([1947] 1983). He claimed thahtOr’s concept of cardinality as well as
the axioms of set theory had a self-evident trb#t tve cannot help but recognize, if we care-
fully examine the concepts that we already loogehgp. But in arguing that such ideas are
forced upon us, Gddel neglects the fact that thepwer-determined With the concept of

numerosity as with our other intuitions about stts,very principles that once seemed unde-
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niable have led to paradoxes, including Galilearsj cannot be maintained. Gddel (op. cit.)
had an excuse for the other paradoxes of set thebey result from misapplying the intui-
tive principles to exotic, impossibly comprehenstadiections, such as the set of all sets. If
we admit only sets of pre-established objectsitdrative conception of set), the paradoxes
do not arise. But this is not so for Galileo’s &ox; that problem lives right in our back
yard, among the whole numbers. If we want to lewenotion of transfinite numerosity we
must face up to it and adopt a notion (or sevéehal) violates either Euclid’s Principle or
Hume'’s (or both).

Admittedly, Godel gives a very compelling argumfamtHume’s Principle: If two
sets can be put in one-to-one correspondencewbaould conceivably alter the individual
elements of one set until they were indistinguishélom their counterparts in the other, and
then surely the two sets must have the same nuityerdsay this is very compelling, but
nonetheless it is only an intuition pump. Gddstegards the fact that Euclid’s Principle is
alsointuitively compelling! If sefA contains everything that is in &&tnd also some further
things, then it containsore. Both Euclid’'sand Hume’s Principles seem forced on us. To
have a consistent theory of transfinite numerosiy must break free of these forces, much
as Gauss and Lobachevsky broke free of the papalktllate. We have learned from them
that intuitions do not limit our freedom to formwderintuitive conceptions. Even if Hume’s
Principle seems stronger than Euclid’s, no adegueason has been given to believe that it is
unrevisable or a brute fact. It is up to us toageoour preferred principles, or to articulate an
arsenal of different concepts incorporating diffeénerinciples.

On the other hand, Gédeflsalismmight supply a reason to regard a conception as
false. If one concept satisfying some of our itnmis has an ontological status privileged
over others, we might therefore regard that cohagphe one that we had loosely grasped

all along. In other words, some special “existérfoe some other property) beyond mere
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consistency might make one concept naligible than others. If such eligibility helps to
determine reference, then there might be a faattalbich transfinite relation is really the
referent of ‘more’ and other such terms. Agairseiéms wisest to ignore such considerations
and focus on the motivations for a concept; neviedwhat the referent of th@e-theoretic
term is, let us establigiewconcepts that bake some bread. But now we magy\loat we
cannot even do that; the “real” objects may be sochmmore eligible in virtue of their “reali-

ty” that we cannot force our words to mean anytlalsg.

The usual objection to Godel's realism is that @kes our possession of mathemati-
cal knowledge inexplicable (Benacerraf [1973] 19&3Maddy 1996; 1997). Gddel propos-
es a special faculty of mathematical perceptiohsice abstract objects lack causal effica-
cy, such a faculty seems impossible. The objedtlmave raised just above gives us further
reason for doubt: The fact that our intuitions stimes lead us into paradox suggests that
we have ndrustworthymathematical perception. Why then should we ss@ploat such
“perception” is anything but prejudice?

A standard alternative to Godel’s form of realignthie indispensability argument. In
Quinian terms, it says that if we accept a theameyare committed to the objects over which
its quantifiers range. Insofar as our best emgliticeories involve quantification over ma-
thematical objects, we should accept that thosectdbexist (Quine [1948] 1953; Putnam
1971; 1975b). However, this faces charges of editting mathematical practice, for ma-
thematicians believe in many things that have ebpyoven useful (Maddy 1997, 106-7,
153-160 ). Maddy (1997) instead proposes thatake mathematical considerations and mo-
tivations, such as the desire to provide a univdéesmdation for all of mathematics, as the
arbiters of mathematical truth. Quine’s and Maddyews do not seem to give us reason to

denythe existence aftherobjects besides those that serve empirical antensdtical
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goals® but we might worry that scientific usefulnesslitgmplies a strong eligibility that
prevents us referring to other things.

But suppose there are indeed irresistible mathealagference magnets. How might
that affect mathematical practice? Can we ndtggtie alternative definitions and theories,
and follow out their consequences? Even if wealosncceed in referring to the things we
wish to, this has no impact on what we can logycd#élduce. Hence it again seems that all
that is important about a concept or theory, beyantsistency, is its interest and fruitful-

ness.

VI. CONCLUSIONS

It has been claimed here that at least some gdgyh#osophical problems are solv-
able by the Method of Conceptual Articulation, aadne have already been solved by such
means. In particular, Galileo’s Paradox was re=iblyy the articulation of numerosity into
distinct concepts, including those of proper indasAnzah| and power. Granted, none of
our historical figures saw themselves as stipulp¢ixtensions of the concept of number with
complete freedom. Cantor in particular seeme@c¢ognize that he was presenting genuine
extensions, but not arbitrarily; he regarded histiple conceptions as forced by his mathe-
matical needs, by the determinate iterative prottestsdefined the ordinals, and by consider-
ations of naturalness. But new extensions thegwenetheless.

Power has become the basis of an elegant and uksebtuly and has proven especially

useful in addressing the motivations common tol€aliBolzano and Cantor, namely, to

3 Godel of course has argued from his theorems @inttompleteness of arithmetic that there is monaa-

thematical truth than mere consistency. But ef/gmeiagree with Gddel that there is a unique sysiemhole
numbers—a unique intended model for our axiomgidiraetic—that is no reason to deny the existerice o
otherobjects, ohon-standardnodels of arithmetic. Indeed, their existenciniglied by the incompleteness

theorems and the completeness of first-order paggliogic.
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grasp the relations between numerosity and gearmatignitude, to defend the analysis of
the continuum into points, and to explain physmanomena. It is in virtue of its success in
serving such motivations that Cantor’s theory ahgfinite numbers constitutesalutionto
some of the deeper philosophical problems pose€d@dijeo’s Paradox.

Nonetheless, to say that power is the adgrectnotion of numerosity is distorting.
Anzahltoo can be considered as a notion of numerosity,Gantor did so conceive it. Fur-
thermore, order extension theorems like Duggarve gs reason to think that a theory of
numerosity satisfying Euclid’s Principle is possibl

In its naive form, the Method of Conceptual Artatibn presupposed that empty
guestions could be identified and concepts fregfiped or modified. These presuppositions
face many challenges, perhaps most forcefully feomernalist theories of reference. But
those challenges do not bear on the most impogtantients of the method. However refer-
ence works, and whether or not we can distingugtivéen determinate and indeterminate
guestions, we can still, at least sometimes, iflebickground motivations for our philo-
sophical puzzles, if perhaps after the fact, anadavearticulate concepts, or theories if you

prefer, that serve to address those motivations.
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