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ABSTRACT 
 

 

 The central part of Everett's formulation of quantum mechanics is a quantum 

mechanical model of memory and of observation as the recording of information in a 

memory.  To use this model as an answer to the measurement problem, Everett has to assume 

that a conscious observer can be in a superposition of such memory states and be unaware of 

it.  This assumption has puzzled generations of readers. 

 The fundamental aim of this dissertation is to find a set of simpler assumptions that are 

sufficient to show that Everett's model is empirically adequate.  I argue that Everett's model 

needs three assumptions to account for the process of observation: an assumption of 

decoherence of observers as quantum mechanical systems; an assumption of supervenience of 

mental states (qualities) over quantum mechanical properties; and an assumption about the 

interpretation of quantum mechanical states in general: quantum mechanical states describe 

ensembles of states of affairs coexisting in the same system.  I argue that the only plausible 

understanding of such ensembles is as ensembles of possibilities, and that all standard no-

collapse interpretations agree in this reading of quantum mechanical states.  Their differences 

can be understood as different theories about what marks the real state within this ensemble, 

and Everett's theory as the claim that no additional 'mark of reality' is necessary. 

 Using the three assumptions, I argue that introspection cannot determine the objective 

quantum mechanical state of an observer.  Rather, the introspective qualities of a quantum 

mechanical state can be represented by a (classical) statistical ensemble of subjective states.  

An analysis of these subjective states and their dynamics leads to the conclusion that they 

suffice to give empirically correct predictions.  The argument for the empirical adequacy of 

the subjective state entails that knowledge of the objective quantum mechanical state is 

impossible in principle.  Empirical reality for a conscious observer is not described by the 

objective state, but by an Everettian relative state conditional on the subjective state, and no 

theoretical 'mark of reality' is necessary for this concept of reality.  I compare the resulting 

concept of reality to Kant's distinction between empirical and transcendental reality. 
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Chapter 1 

Metaphysics and the Interpretation of Quantum Mechanics 
 

 

 This thesis is about the interpretation of quantum mechanics.  However, after seventy 

years of attempts at interpreting quantum mechanics, no agreement has emerged as to what it 

means to give such an interpretation.  In this introduction, I want to sketch what I see as the 

problem about understanding quantum mechanics that requires an interpretation and what 

such an interpretation should do.  There is agreement that the present mathematical 

formulation of quantum mechanics is well developed and—mathematically—well 

understood.  There is also widespread agreement that the empirical application of quantum 

mechanics has been extremely successful.  Although it has proven to be one of the most 

intractable problems in philosophy of science to explain how theories apply to experimental 

practice and its results, it is fair to say that whatever the criteria for empirical success of a 

theory may be, quantum mechanics has not failed them or we would have heard from 

experimental physicists about it. 

 What else could be required of a theory than a clear formulation and its successful 

application to experimental practice?  One could express the desire for an interpretation thus:  

knowing a mathematical formalism and being able to apply it in certain situations does not yet 

amount to an understanding of what it is that this formalism describes.  It seems like quantum 

mechanics puts us into the situation of the uninitiated user of an elaborate piece of software 

who has learned to push certain buttons to make the computer do certain things, but who has 

no idea of what is going on inside the mysterious machine.  However, while it is possible to 

learn about the inner workings of a computer, it may be intellectual hubris to expect to learn 

about the inner workings of nature.  This sentiment was famously expressed by Richard 

Feynman: 

I am going to tell you what nature behaves like ... Do not keep saying to 

yourself, if you can possibly avoid it, "But how can it be like that?" because 

you will get "down the drain," into a blind alley from which nobody has yet 

escaped.  Nobody knows how it can be like that.1 

                                                
1(Feynman 1965, 129), quoted after (Hughes 1989, 1) 
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What Feynman expressed here is a conviction that has been almost universally shared by 

physicists of his generation (and, mostly, up to this day):  physics can give us successful 

predictions for experiments, it enables us to build all kinds of devices that operate just as we 

want them to, but to expect physics to tell us what 'nature is like' is a misguided demand of an 

unenlightened past for a god-like insight into the essence of things, which leads into nothing 

but fruitless speculation.  This blind alley is known under the name of metaphysics.   

 The repudiation of metaphysics is not the invention of physicists, though: they had 

predecessors in the logical positivists who wanted to clear science (and meaningful discourse 

in general) of metaphysical ballast.  To this end, they created a normative picture of science 

that has become known as the 'received view' (Putnam 1962).  Two fundamental postulates of 

this picture were that scientific theories are axiomatic logical theories that operated on 

symbols without regard for their meaning, and that meaning is given to the terms of the theory 

only by a set of correspondence rules that connect theoretical terms to observable events.2 

 This clean-cut picture of physics started to crack on both ends by the 1950s:  In 

physics, it turned out that the restriction of quantum mechanics to experimental predictions as 

the only aim was impossible in cosmology, which deals with a system not confined to a 

laboratory.  The classical version of quantum mechanics was unsuitable for this task because 

it makes explicit use of acts of measurement in the formulation of the dynamics.  This 

problem led Hugh Everett to formulate a version of quantum mechanics that treats 

measurement as a purely quantum mechanical interaction.  But, as John Wheeler put it, this 

picture carried too heavy a metaphysical ballast to become widely accepted (Wheeler 1977).  

In order to give an internal account of measurement, it was seen as postulating the constant 

splitting of our world into countless copies of itself.  Therefore, it overstepped the boundary 

between physics and metaphysics that the received view had erected and fell under Feynman's 

ban:  a theory like Everett's was mere metaphysical speculation, not science.  Nevertheless, it 

turned out that Everett's theory could be used to solve a long-standing puzzle about quantum 

mechanics:  its relation to classical mechanics.  Starting with the work of Zeh,3 it was shown 

that within Everett's theory the constant interaction of a quantum mechanical system with its 

environment resulted in the emergence of a classical behavior of that system.  This 

phenomenon, called decoherence, has increasingly become accepted as a field of research by 

theoretical physicists.4  

                                                
2See the detailed discussion in (Suppe 1977, 16-61). 
3(Zeh 1971) 
4See the references in section 3.2, which discusses decoherence in more detail. 
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 In philosophy of science, the shortcomings of the received view became increasingly 

clear:  the characterization of scientific theories as axiomatic systems of first order logic is too 

impoverished to give a realistic account of scientific theories, and the correspondence rules 

postulated by the received view are not sufficient to fix the meaning of theoretical terms. 

(Suppe 1977)  Beginning with the work of Patrick Suppes, a new view of scientific theories 

emerged called the semantic view:5 science should not be understood as producing a formal 

language, but rather as offering models of phenomena.  Theoretical statements are justified 

semantically (because they are true of the models in the theory) and not syntactically, i.e. by 

deduction from a set of axioms.  The models of physics are mathematical structures.  They are 

models in two senses:  they are mathematical models in the sense mentioned, i.e. giving truth 

conditions for the theoretical statements; on the other hand, they are representative (or iconic) 

models of the objects of the theory, i.e. they resemble the objects in some important respect, 

and can be used to represent them within the theory.   

 The semantic view gives a more realistic account of scientific theories.6  However, it 

still does not give us a place for the notion of an interpretation of a theory that we seek to 

explain.  Certainly, the mathematical model is an interpretation of the theory in a sense.  But 

this does not seem to be the sense that we are after.  In quantum mechanics, we have a 

beautiful mathematical model, the Hilbert space, and there still seems to be something that we 

do not understand about it.  Take, for example, the notion of a superposition:  in the Hilbert 

space the state of a system is represented by a vector.  Because the Hilbert space is a linear 

space, we can form linear combinations of such vectors called linear superpositions.  But 

what does such a linear combination mean?  It seems that we need to look at the 

representational function of models to answer this question.  However, in the case of quantum 

mechanics, the look at the phenomena is not very helpful.  It is certainly true that the 

mathematical structure of the Hilbert space reflects a phenomenal structure of experimental 

outcomes (here, the probabilities for different measurements), but the phenomenal structure is 

not any less arcane than the mathematical structure of the Hilbert space.  That nature behaves 

like that does not answer our question of how it can be like that. 

 For an answer to this question, a brief excursion is necessary.  As Nancy Cartwright 

has argued in detailed case studies (Cartwright 1983), the application of theoretical models to 

physical phenomena is far from straightforward.  It is the art of the physicist to build concrete 

models from the elements of the theory so that the concrete model simulates a given 
                                                
5See, e.g., (Suppes 1967). 
6For a detailed exposition, see Suppe 1989. 
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experimental situation.  Cartwright calls such models simulacra, and compares them to the 

notion of a thinker toy model used by Cushing (Cushing 1982).  This model building is a 

highly non-trivial task:  the tinker toy model is neither a realistic picture of the system under 

consideration, nor, properly speaking, a mathematical model of the underlying theory.  It uses 

all kinds of ad hoc assumptions, even assumptions that are in conflict with the theory.  

Nevertheless, Cartwright argues, without such model building fundamental theories cannot be 

applied to any real situations.  I will call such models phenomenal models. 

 How does Cartwright's argument relate to the semantic view?  Here is my attempt at 

reconciliation:  the underlying theory furnishes us with elements to build a phenomenal model 

for a concrete situation.  However, these elements are not mathematical structures, i.e. 

uninterpreted formal concepts.  They are mass points, force fields, physical properties, and 

their likes, that is, concepts that are at least partially grounded in our experience.  When we 

use such concepts in physics, we make substantial assumptions about what the world is like, 

and over time, we might be forced to revise these assumptions.  I will call the totality of these 

assumptions the physical model of the theory.  Unlike the mathematical model, which is a 

formal structure, the physical model is a conceptual model, and its elements are interpreted 

concepts that are never fully abstract.   

 In eighteenth century rigid body mechanics, for example, the concept of a rigid body 

was treated as elementary:  Rigidity was part of the definition of a mechanical object, that is, 

part of the physical model of mechanics.  With the development of continuum mechanics this 

concept was analyzed and explained as the effect of the inner forces of solid bodies, and it 

turned out that perfect rigidity was not only not a fundamental concept, it was an unrealistic 

idealization of the properties of solid matter.  The concept of rigidity, part of the physical 

model of rigid body mechanics, becomes a phenomenon to be explained within continuum 

mechanics.  We may think that all the assumptions in our physical models are of such 

provisional nature.  Nevertheless, it seems hard to imagine what a theory without such a 

model would be like:  It is this basic intuitive interpretation that relates the theory to our 

experience (we have a pretheoretical notion of rigidity, and therefore we know how a theory 

that contains this concept will relate to our practice.) 

 But all of this means that the two functions of a model in the semantic view are 

performed by two different structures:  there is the mathematical model, given by a 

mathematical space and diverse mathematical structures defined on it (transformation groups, 

algebras, measures, and so on); and there is the physical model, given by mass points, rigid 

rods, forces, light rays, or what have you.  The mathematical model gives a mathematical 
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representation of the physical model.  The physical model, on the other hand, gives an 

interpretation to the mathematical model.  Without such a model, all we have are "formulas 

with holes in them, bearing no relation to reality." (Cartwright 1983, 159).   

 It is the interpretation through a physical model that embeds the phenomenal model of 

an atom, or a laser, or any concrete physical structure into a physical theory as 

electromechanics or quantum mechanics:  Only after we have built a phenomenal model from 

the elements of the physical model, we can translate its structure into mathematical terms of 

the theory.  (And again, this translation is not trivial at all. We use all kinds of approximations 

and simplifying assumptions to arrive at a mathematical model that we actually can work 

with.)  It is through this embedding into a physical model that the phenomenal model leads to 

empirical predictions:  Phenomenal models don't come with their own correspondence rules.  

We need the theory itself to tell us what the observational effects of the phenomenal model 

will be. 

 Take the Bohr model of the atom as an example:7 it employs elements of the physical 

model of Maxwell's theory of electromagnetism to represent an atom, such as charged 

particles, or the electromagnetic field.  And although the orbits of electrons in Bohr's model 

are not possible motions for charged particles in an electrical field (because they are restricted 

by quantum conditions), the model nevertheless portrays electrons as charged particles, their 

energies as electromagnetic potential and kinetic energies, and their interactions as 

electromagnetic interactions.  It is only through this embedding that the Bohr model leads to 

empirical predictions:  the underlying electromagnetic theory is necessary to relate the 

electron jumps in the Bohr model to another theory, Planck's quantum theory of radiation.  

And without this relation, the Bohr model would not be able to say anything about the relation 

of atomic spectra to the parameters calculated with the model. 

 Physical theories are not mathematical theories:  the physical models are an integral 

part of physics.  This explains why we hardly ever find the separate correspondence rules 

postulated by the received view in the practice of physicists:  the elements of physical theories 

are not uninterpreted formal structures that need to be linked to observations by explicit 

correspondence rules.  Hence, the meaning of theoretical terms is not given by 

correspondence rules.  It is given by their interpretation in terms of a physical model. 

 What, then, is the physical model for a fundamental physical theory such as 

mechanics?  What are the basic elements we need to build the countless phenomenal models 

                                                
7(Heilbron 1977) 
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that physics employs?  I will look at this question in Chapter 2 in more detail, but I want to 

sketch the general answer already here:  these basic elements are entities like objects and their 

properties, or states and their change.  These are the kinds of things that fundamental 

mechanical theories are interpreted in:  we say that a point in phase space represents a state, or 

that a one-parameter transformation represents its change.  The theory of such entities has had 

a name since Aristotle's times:  metaphysics.  I will therefore, boldly, call the models of our 

fundamental physical theories metaphysical models.  They are metaphysical because they 

interpret the mathematical models of these theories in metaphysical terms.  But they are 

models nonetheless:  we do not need to believe that they tell us how the world truly is in order 

to use them, just that the world is like these models say in certain regards.  In theoretical 

physics, they are generally termed 'assumptions of the model', i.e. they are assumptions that 

we implicitly make by choosing a certain mathematical model.   More importantly, they do 

not reflect a non-empirical knowledge about the world, but they are tools we construct to 

interpret the mathematical models.  They are not prior to these mathematical models, and in 

the history of science they often have developed considerably later than the theory they 

interpreted.  The notion of a field only slowly emerged in the electromagnetic theory of the 

nineteenth century, and it found its final formulation only in the theory of relativity; or, most 

famously, Newton's mechanics led to a long process of reformulating the mechanical picture 

of nature that lasted into the nineteenth century.  In Chapter 2, I will try to make the notion of 

a metaphysical model more concrete by discussing such models in various mechanical 

theories. 

 A metaphysical model in this sense, then, is not something we can impose a priori on a 

physical theory.  It evolves slowly from the complex process of applying a theory to concrete 

situations.  Such a model, on the other hand, is not a useless formal embellishment: it is a tool 

we need for the construction of phenomenal models.  But it should do more than that: the 

model of a fundamental theory has to enable us to embed other theories.  The best-known 

example for this is statistical mechanics, which allowed thermodynamics to be embedded into 

classical mechanics.  This was not a reduction in the sense of the received view: statistical 

mechanics employs fundamentally new principles that are not found in classical mechanics.  

But it formulates these principles on the elements of classical mechanics (ensembles of atoms 

seen as mechanical bodies), and therefore allows us to see how thermodynamics and classical 

mechanics are related. 

 This is the deeper sense why I propose the name of a 'metaphysical model': we know 

very well that we cannot deduce thermodynamics from mechanics, and much less chemistry, 



7 

biology, or psychology.  Nevertheless, there is a widespread conviction that all these sciences 

do not operate completely independently from the mechanical model of nature.  Few people 

find animism in biology or dualism in psychology a promising paradigm.  But it is not very 

clear what exactly the assumption of physicalism in these sciences means.  A way to 

understand physicalism is as the principle that it should be possible to embed these sciences 

into the metaphysical model of mechanics. 

 This, then, is the answer I propose to the question of what an interpretation of quantum 

mechanics should be: it should be the description of a metaphysical model for quantum 

mechanics.  Such a metaphysical model might revise some of the assumptions about nature 

embedded in the metaphysical model of classical mechanics.  Nonetheless, the relation to the 

classical model has to be clearly formulated.  The easiest way this can be achieved is by 

embedding one model into the other.  Of course, this enterprise might fail, and we might have 

to live with a metaphysical dualism of a quantum and a classical realm.  This was Bohr's 

conviction, and it has been, under the name of the 'Copenhagen interpretation', more or less 

the standard position ever since.  However, the ongoing debate over the interpretation of 

quantum mechanics shows that it is not a very satisfying conclusion.  And different from the 

other great dualism debate in the philosophy of mind, we have not even been able to establish 

anything like a clear border between the two realms.   

 According to my claim that metaphysical models are devices to construct phenomenal 

models, this lack of a coherent metaphysical model should have an impact on our ability to 

apply quantum mechanics to concrete phenomena.  And I think that exactly this is the case in 

quantum mechanics:  Bohr's interpretation basically offers two incompatible metaphysical 

models for quantum mechanics and the general rule that it can only be decided ex post  (i.e. 

after an actual experiment is performed) which of these to apply.  This is the thesis of wave-

particle dualism.  It is plausible that such a metaphysical model makes the building of 

phenomenal models a rather daunting task.  Physicists have developed several strategies to 

deal with this problem.  The most common is the building of semi-classical models, that is:  

one first constructs a classical model for a phenomenon and then, after a mathematical 

representation of this model is found, and generally after it has been solved, one constructs an 

approximate translation of this representation into a Hilbert space representation.  One main 

problem about such methods is that they work generally only if we restrict our attention to a 

single particle.  (A typical example is the Hartree-Fock method.)  Because of this, the 

quantum mechanical treatment of complex systems is still in its infancy.  This also has far-

reaching consequences for the applicability of quantum mechanics to theories that it should 



8 

clearly be applied to, e.g. general relativity and cosmology, chemistry,8 or, for a more specific 

and very telling example, chaos theory. 

 For the optimists and heretics who want to pursue a unification program, there are two 

strategies:  One is the attempt to embed quantum mechanics into the classical model.  This 

was Einstein's aim and it is the goal of the different types of hidden variable theories and the 

modal interpretations.  All of these interpretations try to construct an essentially classical 

metaphysical model underlying quantum mechanics.  The main arguments against these 

attempts are various 'no hidden variable proofs' that try to show that no such model is 

possible.  I will discuss several such arguments in the course of this thesis.  While none of 

these arguments can exclude the possibility of any kind of hidden variable theory, they have 

established that any such theory has to admit some nonclassical elements.  The main question 

for the classicist camp today is which toad is easiest to swallow. 

 The second strategy is to find a metaphysical model for quantum mechanics that is 

able to embed classical mechanics.  Its early proponent was von Neumann.9  Later, this 

enterprise was taken up by Everett and his defenders.  However, because this group has 

almost exclusively consisted of physicists, the focus of their work has been the mathematical 

formulation of a "pure" quantum mechanics or quantum field theory, without trying to 

formulate a consistent metaphysical model.  This thesis attempts a metaphysical interpretation 

of Everett's formulation.  I believe it is a worthwhile task to find out what the world is like 

according to quantum mechanics, even if one, in the end, does not want to believe that ours is 

such a world. 

 

                                                
8Theoretical chemists have found their own highly ingenious ways to deal with the application of quantum 
mechanics to molecular structures.  They are mostly qualitative, but unlike many models in physics they don't 
rely on classical approximations. 
9I will argue for this unorthodox claim in section 3.4 
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Chapter 2 

The Interpretation of Mechanical Theories 
 

 

 Since the seminal work by Heisenberg, Jordan, Dirac, and Schrödinger, the Hilbert 

space has generally been accepted as the mathematical structure for the formulation of 

quantum mechanics.10  Von Neumann's Mathematische Grundlagen der Quantenmechanik 

was not only the first work to give a rigorous exposition of the Hilbert space formulation of 

quantum mechanics, it also gave the first systematic attempt at the interpretation of this 

formalism.  I will outline the interpretation of the Hilbert space formalism given by von 

Neumann before I turn to a discussion of Everett's model.  This will lead to a specific setting 

for the measurement problem as a problem of the interpretation of quantum mechanics and 

give a framework for the solution of this problem proposed in this thesis.  Von Neumann 

develops the interpretation of quantum mechanics in analogy to the interpretation of classical 

point mechanics and classical statistical mechanics.11  Therefore, I will give an account of the 

fundamental mechanical concepts and their application to quantum mechanics in this chapter.   

 

2.1 Classical Mechanics 

 Every mechanical theory assumes that it is possible to pick out a mechanical system 

that is distinguished from its environment.  If the system is sufficiently isolated from its 

environment, that is, if the action of the environment on the system is negligible, then it is 

assumed that we are able to make predictions about the behavior of the system.  Mechanics is 

the theory of the behavior of isolated systems.  For example, we might consider a mechanical 

clock.  The assumption that we have a mechanical system means that we are able to tell what 

is part of the clock and what is not and we are to shield its functioning from possible 

disturbances by the surroundings.  The system of the clock would consist of the wheels, the 

springs, the dial, the hands but not the air between the wheels, the dust, etc.  We assume that 

we can disregard the effect of the air and the dust on the functioning of the clock's parts.  

Another example of a system is a volume of gas in a given container.  The container is not 

                                                
10For an excellent, much more extensive introduction to the formalism, see (Hughes 1989). 
11Von Neumann, ibid., p. 1:  "Vor allem sollen die schwierigen und vielfach noch immer nicht restlos geklärten 
Interpretationsfragen näher untersucht werden.  Besonders das Verhältnis der Quantenmechanik zur Statistik und 
zur klassischen statistischen Mechanik ist hierbei von Bedeutung." 
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part of the system but it isolates the system from its environment, i.e., the air surrounding the 

container. 

 Mechanical systems are represented by different mathematical structures in classical 

and quantum mechanics.  In classical mechanics, a system is represented by its phase space, 

in quantum mechanics, by its Hilbert space.  We will discuss these mathematical 

representations in more detail later.  For now it is only important that they both are 

representations of the same metaphysical concept of substance.  Compare, e.g., the concept of 

a system with Aristotle's notion of substance.12   The main characteristics Aristotle gives for 

the concept of substance are: 

- While it is the subject of attributes and predicates, it is itself not an attribute or predicate of 

something else. 

- It is individual. 

- While remaining one and the same, it is capable of admitting contrary qualities13. 

Mechanical systems are the fundamental and individual subjects of theoretical description in 

mechanics. 

 The counterpart to the concept of substance is the concept of attribute.  In mechanics, 

this concept is represented by the concept of a variable.  In general, we call mechanical 

variables all changeable properties of systems as opposed to the permanent and essential 

properties that define the system, for example, the mass of a mass point, the radius of a wheel 

in the clock or the number of molecules in the container of gas.  Von Neumann distinguishes 

two kinds of attributes in mechanics:  quantities (Größen) and properties.  Their difference is 

that quantities have numerical values (the real numbers or a subset of them) whereas 

properties only have two values (yes or no). The variables in the example above are 

quantities.  Examples for properties in von Neumann's sense would be the property that the 

temperature of the gas is under its condensation temperature, or that a wheel of the clock 

moves counterclockwise.  Properties can be regarded as quantities that only assume two 

values (0 or 1), while quantities can be considered as sets of properties (e.g., 'the value of the 

quantity is smaller than a for any real number a).   

  The central idea of mechanical theories is that all variables are determined by a set of 

fundamental variables of the system, the so-called dynamical variables.  I will call this 

assumption the mechanistic postulate.  Often, the fundamental variables are the positions and 

                                                
12Categoriae 2a-4b or Metaphysica Δ 1017b 
13The last point concerns the relation of substances to time (which we will discuss in section 2.2). 
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momenta of its parts, but they can also be angles or angular momenta, or, in a field theory, the 

field strength at a specific point in space and time.  Any other facts about the system are 

considered irrelevant.  In our example of the clock, we would not give a geometrical 

description of a wheel or a description of what the wheel is made of but only its angular 

coordinate, i.e., the angle in a given frame of reference, and its angular velocity, i.e., the speed 

at which it is turning.  

 In the example of the gas, the dynamical variables are the positions and velocities of 

all the molecules in the gas.  In this case, we are not in practice able to measure a single 

dynamical variable that is the position or velocity of one gas molecule because we cannot 

pick out a single gas molecule with any physical measurement apparatus that we have today.  

Here, the dynamical variables are practically unobservable.  Still, it is assumed that they obey 

the same physical laws as observable positions and momenta (like those of macroscopic 

objects) and that they could be observed in principle.   

 The task of mechanics is to formulate the dependence of variables from the dynamical 

variables mathematically.  It was, for example, an important achievement of Maxwell's 

kinetic gas theory to express temperature and pressure of an ideal gas in terms of the 

dynamical variables of its molecules.  To be able to achieve this we have to define what kinds 

of mathematical objects suitably represent mechanical variables, i.e. find the algebraic rules 

that govern their relations.  The algebra of the dynamical variables defines the fundamental 

structure of the mechanical theory.  All other variables can be represented by algebraic 

expressions of the dynamical variables.  In classical mechanics, the algebra of the dynamical 

variables is simply the familiar algebra of the real numbers (their addition, multiplication, and 

their powers).  This means that we can do algebraic operations with the dynamical variables 

as if they were numbers, and that all other variables are simply real functions of the 

dynamical variables.  Also the mechanical properties form an algebra: they are connected by 

the usual logical connectives and therefore form a Boolean algebra. 

 Because of this algebraic representation, a specification of the dynamical variables 

also specifies the other mechanical variables.  Such a specification is called a mechanical state 

of the system.  In the simplest case, this specification consists of giving numerical values to 

all dynamical variables.  This is the case in classical point mechanics.  In the example of the 

clock, the mechanical state would be given by giving values for the positions and momenta of 

all its parts. 

 The mechanical state is the mechanical correspondence to the concept of a 

proposition, i.e., a substance's having an attribute.  The mechanistic postulate implies a kind 
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of propositional atomism, i.e., that all propositions depend on a set of fundamental 

propositions, the mechanical states.  The totality of all possible mechanical states forms the 

state space of the system.  The mechanistic postulate implies that all properties can be 

represented by subsets of the state space, and all variables by functions on the state space.  

The logical operations on properties are mirrored by set theoretical operations on the subsets 

(e.g. the property A∨B is represented by the subset M(A)∪M(B)).  As is well known, also set 

theoretic operations form a Boolean algebra and this algebra is isomorphic to the Boolean 

algebra of the logical operations on properties, hence this representation is consistent. 

 While the mechanical state describes the reality of the system (in the sense of the 

actual matters of fact about it), its state space can be understood as giving an account of its 

possibilities (in an absolute sense, i.e., everything the system could possibly be, not just its 

possible future states).  The state space therefore is the fundamental account of the nature of 

the system, i.e., all its intrinsic essential attributes.  The dynamical variables are coordinates 

in the state space, that is, a specific way of describing elements of the state space.  But this 

means that dynamical variables are not unique:  because any state space allows for many 

different coordinate systems, there are many different sets of dynamical variables that can 

describe the same system. 

 

2.2 Time and Space in Mechanics 

 So far, we have not explicitly addressed the role of time in mechanics.  It turns out that 

time plays a fundamentally different role than the mechanical variables.  Mathematically, this 

difference is represented by the fact that the mechanical state is a function of time, i.e., time is 

a free variable, while the mechanical variables are bound variables, their values at every point 

of time given by the mechanical state.  There is a certain ambiguity of formulation here:  we 

can either take the mechanical state as the function itself or as the value of the function at a 

given point of time.  The former is more commonly called the trajectory of the system, and I 

will restrict the notion of a mechanical state to the momentary value. 

 The goal of mechanics is to establish relations between mechanical states at different 

times that allow the derivation of a mechanical state at one time from the mechanical state at 

another time.  These relations are the equations of motion for the system.  They are either 

given in integral form (like the principle of least action) describing possible trajectories, or in 

differential form, describing how the mechanical state changes with time.  The mathematical 

equivalence of these two formulations shows that it does not matter whether we take 
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trajectories or mechanical states as the fundamental propositions of mechanics.  

Corresponding to the choice of mechanical states as fundamental propositions, I will consider 

the equations of motion in differential form as the basic dynamical law of mechanics. 

 Notice that the equations of motion do not merely describe the actual motion of a 

system, but all of its possible motions.  The actual motion of the system is determined by 

boundary conditions, i.e., the designation of some mechanical state as the actual one at a 

certain time.  The equations of motion in the Hamiltonian formulation of mechanics can be 

expressed as first-order differential equations.  This possibility has important consequences:  

under reasonable restrictions (no singularities), the equations have exactly one solution if one 

is given the mechanical state at one time.  This uniqueness of the solution is taken as an 

expression of the determinism of classical mechanics:  a complete specification of the 

dynamical variables at one time fixes all of the system's past and future variables, too.   

 It has been a long-standing problem in metaphysics how to explicate the role of time 

in mechanics.  One possible way is to assume that objects at different times are not identical, 

so that time is really part of the intrinsic or essential specifications of the object.  What we 

commonly think of as the same object at two different times are really two objects.  Their 

'identity' is really a relation (Lewis, 1986, 202-4).  This position has been attractive to 

logicians and philosophers, because it removes the apparent contradiction between change 

and the logical law of contradiction (a thing cannot be both A and non-A).  Nevertheless, it 

does not agree well with mechanics, because this relation of transtemporal identity cannot be 

based on mechanical variables.  As we have seen in the definition of a mechanical system, it 

is part of the notion of the individuality of a mechanical system.  

 A second way of thinking of the temporal structure of mechanics is by taking systems 

as simple objects and differentiating their properties by their time of occurrence, i.e. the 

proposition that a system has property A at time t has to be properly understood as the 

proposition that the system has the property 'A-at-time-t'.  This representation corresponds to 

the assumption mentioned above those trajectories, not mechanical states are the fundamental 

propositions in mechanics.  Again, this leads to a problem of transtemporal identity, this time 

for the properties. 

 The most intuitive way to represent the role of time in mechanics is by assuming that 

physical systems have temporal parts very much like a spatially extended object has spatial 

parts.  The mechanical state at a given time is a description of the part of the system at that 

time.  This picture is called the geometrization of time.  It does not attempt to reduce time to a 

specification of systems or of properties, and it takes the transtemporal identity of systems as 
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a given.  It therefore seems the most suitable to represent the special role of time in 

mechanics.  The geometrization of time does not only allay the old worry of logicians how 

temporal change can be consistent with the law of contradiction, but it also sits well with the 

symmetry of space and time demanded by the theory of relativity.  In this picture, the 

equations of motion define the relations between variables at different temporal parts of the 

system.  The fact that these equations of motions can be expressed as differential equations 

means that these relations are defined locally, i.e., only the variables at contiguous temporal 

parts are related. 

 There is a fundamental intuition about time that is not represented adequately in this 

interpretation, though:  namely, the tense structure of time, i.e., the qualitative difference 

between past, present, and future.  This is not the place to go into the many metaphysical 

theories of time that have been offered in the long history of philosophy, but I think it is fair 

to say that not a single cogent metaphysical representation of our intuitions about the tense 

structure of time has emerged so far.14  Nevertheless, there are two fundamental features 

about our experience of time that any metaphysical picture has to address: 

- The future seems 'less real' than past and present.  The idea that we can influence 

future events by our actions seems to require that, as of now, there is no matter of fact about 

future events.  Past matters of fact, on the other hand, seem to be well-defined like present 

matters of fact. 

- Even more elusive is the distinction between past and present:  both are factual (in the 

sense sketched above); nevertheless, there seems to be a sense in which only the present is 

actual while the reality of the past is merely inferred. 

 Both these intuitions are not represented in the mechanical model.  The actuality of the 

present could be represented by an extraneous statement "the time 

€ 

t0 is now" which depends 

on the time of utterance.  This statement would designate the 'temporally actual' state much as 

the boundary conditions designate the real state.  However, while it seems unproblematic to 

think of the boundary conditions as representing an objective matter of fact, because their 

truth-value is universal, the definition of the present changes with time, and therefore seems 

to require another notion of temporal change outside of mechanics.15   

                                                
14 (Van Benthem 1983) 
15Notice, though, that any such extraneous definition of the present does not agree well with special relativity:  it 
introduces an absolute concept of simultaneity which makes the Lorentz symmetry of relativistic mechanics 
appear like a strange coincidence. 
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 The distinction between past and future is even harder to represent in mechanics.  Not 

only are future mechanical states represented in the same way as past states, but the 

determinism of mechanics does not seem to leave room for contingency of future states.  

Moreover, for most mechanical systems the equation of motion is symmetrical under time 

reversal.16  Therefore, a dynamical definition of the distinction (through processes that have a 

definite direction in time) is also excluded.  On the other hand, the distinction of past and 

future is closely connected to the second law of thermodynamics, which does explicitly 

introduce this distinction.  This is a fundamental problem for the unification of 

thermodynamics and classical mechanics. 

 Classical point mechanics represents spatial properties of systems as variables, i.e., as 

properties of the mass points that make up the system.  This is not a satisfying representation 

for spatially extended objects.  Already Newton introduced the use of differential calculus to 

account for such cases:  we can think of an extended object as made up by infinitesimal parts 

that only interact with their neighbors.  Otherwise, this model (continuum mechanics) uses the 

same categories as classical mechanics.  We can distinguish between local and global 

variables:  local variables are defined on a single infinitesimal element, their values 

represented as functions over space; the global variables are defined as space integrals of the 

local variables. 

 Again, all local variables can be defined as functions of a set of local dynamical 

variables, called fields.  The mechanical state is a specification of the fields, i.e., given by a 

set of functions over space.  The assumption that a spatially extended object can be thought of 

as a composite of infinitesimal parts is reflected in the concept of the separability of the state:  

the state of a system always is the logical conjunction of the states of a complete set of spatial 

parts of the system.  For the dynamics, the assumption that infinitesimal elements only 

interact with their neighbors leads to the assumption of locality:  the evolution of the system 

can be expressed by a set of differential equations in space and time, i.e., only the values of 

the dynamical variables and their spatial differentials determine the dynamics of the system.  

Notice that in this model, space mathematically plays a similar role as time:  it is a free 

variable, and properties are defined as functions of space.  Unlike in the case of time, though, 

the interpretation of a system having spatial parts, and of all these parts coexisting, poses no 

difficulty. 

                                                
16The criterion for reversibility is that the Hamiltonian is time-independent and an even function of the 
momentum, which is always fulfilled for isolated and dispersion-free systems. 
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Notice further that continuum mechanics takes its notion of a substance from classical 

mechanics, i.e., the infinitesimal elements are thought of as individuals, and as having 

transtemporal identity.  When in the nineteenth century continuum mechanics was applied to 

electromagnetic phenomena and to light, it was therefore natural to assume such a substance 

as the bearer of these phenomena:  the ether.  Einstein's revolutionary act in the special theory 

of relativity was to emancipate the notion of a field from the idea of a substance whose 

property the field is.  This move is reflected in the abandonment of the idea of a transtemporal 

identity of spatial elements, i.e., the ideal of a velocity of the ether.  Nevertheless, even 

general relativity maintains the concept of space-time elements as individuals and as the 

bearers of properties (the fields). 

 In summary, the interpretation of classical mechanics is for the most part a rather 

unambitious endeavor:  the fundamental concept of mechanics fit easily into a logical 

structure that agrees with basic intuitions of objects and their properties.  The most 

problematic issue is the mechanical concept of time.  We will return to this topic in the 

context of the interpretation of quantum mechanics, where I will argue that quantum 

mechanics, suitably interpreted, can offer a more satisfying representation of temporal 

change. 

 

2.3 Statistical Mechanics 

 In classical mechanics, the state of a system is given by a complete specification of all 

its dynamical variables.  However, such complete knowledge of the dynamical variables is 

generally neither possible nor necessary.  In statistical mechanics, a more general notion of a 

physical state is used: the statistical state does not give a unique value for the dynamical 

variables, but a distribution over values, which is understood as giving the probabilities for 

different values.  Mathematically, the concept of probability is well understood:  it is a 

measure over the state space.  The definition of a measure on a subset of the state space 

requires the definition of a suitable set of subsets, i.e. a restriction of the Boolean algebra of 

subsets, which is called a σ-algebra of measurable subsets.  A measure maps these subsets on 

positive numbers (in our case, the probabilities).17  Such statistical states have proven 

extremely useful for the treatment of systems with many degrees of freedom like our 

                                                
17The classical text on the foundation of probability theory is Kolmogorov (1933) 
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container of gas, where it is practically impossible to determine the exact positions and 

momenta of every single molecule.   

 Nonetheless, they pose a problem for the interpretation of statistical mechanics:  a 

state in classical mechanics can be interpreted as a proposition (a substance having an 

attribute, or a set of attributes) and ascribing a state to a system simply means asserting a fact.  

But statistical states have a fundamentally different structure: They do not give a value to a 

variable, but they define a function over a range of values for the variable.  Mathematically 

speaking, the mechanical variables are treated as free variables in the statistical state, not as 

bound variables (as in the case of the classical mechanical state).  This is similar to the role of 

time and space discussed in the last section, which lead to the problematic notion of the 

coexistence of all times.  The problem seems even worse now: the coexistence of different 

values of a variable is a logical impossibility if variables are to be understood as attributes of 

a substance.  This problem is not confined to mechanics:  it applies to the use of probabilities 

quite generally.  It has given rise to a lot of attempts to clarify the metaphysical status of 

probabilistic statements.  I will only sketch the interpretations that are most relevant for 

mechanics.18 

 In the most straightforward interpretation, which goes back to Laplace's Philosophical 

Essay on Probabilities  (Laplace, 1995), probabilities are an expression of our incomplete 

knowledge of the real mechanical state of the system.  They are determined by the so-called 

"principle of insufficient reason":  if we have no reason to predict the occurrence of an event 

rather than an alternative, we should give equal probability to both.  But this principle fails to 

define a unique probability distribution for continuous variables.  Here, the notion of 

equidistribution depends on the chosen parametization of the variable.19  This problem has 

been perceived as a result of the fact that the principle of insufficient reason is merely an 

epistemic principle:  it only gives a criterion for attributions of probability to our beliefs.  

Therefore, it is not surprising that it does not define a unique notion of probability.   

 There are two responses to this problem: 

 One can accept the fact that probabilities are not objective and attempt to build a 

theory of probability that does not presuppose that there is a unique and objective notion of 

probability.  This is the premise for subjective theories of probability (de Finetti, 1937; 

Ramsey, 1950).  Such an interpretation of probability is problematic for statistical mechanics, 

                                                
18For an overview of interpretations of probability see Gillies (1973), Introduction 
19A well-known case for this is Bertrand's paradox: there is no natural notion of equiprobability for the mixing 
ration of two liquids.  See, e.g. (Mises 1957, 77-79) 
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where a well-defined notion of probability is of central importance.  For example, the entropy 

of a system is defined by the distribution of its statistical state.  Nevertheless, it is a well-

defined physical quantity that plays a fundamental role in the thermodynamic equation of 

state. 

 Alternatively, one has to try to find another way of defining probabilities that can be 

understood as representing an objective matter of fact.  The most widely accepted approach 

takes probabilities as properties not of a single system, but of an ensemble of systems.  The 

law of large numbers of the mathematical theory of probability asserts that for a sufficiently 

large ensemble of probabilistic events, the frequency of an outcome is close to the probability 

of that outcome with a high probability.  In the limit of infinite ensembles, the frequency 

converges towards the probability.  Frequentists  (Mises, 1957) have attempted to use this law 

for the definition of probability as the limit of the frequency of an outcome.  This approach is 

quite plausible for many situations in statistical mechanics, where the system is actually 

composed of a large number of similar systems (e.g., a volume of gas is composed of a 

gigantic number of molecules of the same kind).  A statistical state can then simply be 

understood as the idealized list of the actual ratios of molecules that have a given value of a 

variable.  In this case, the statistical state is an abbreviated way of writing a large number of 

mechanical states for single molecules.  But, strictly speaking, the use of the law of large 

numbers already presupposes a measure on the state space, because it only makes 

probabilistic statement for frequencies.  Therefore it already assumes a concept of probability. 

 Furthermore, statistical mechanics is not limited to such simple cases, and Gibbs has 

demonstrated that the power of statistical physics can be greatly improved if we take the 

whole of the system as the basis of our description (not the single molecule) and consider a 

statistical state in the state space of the whole system (Gibbs 1902).  Here, the simple 

interpretation of the statistical state in terms of ratios of molecules is impossible.  Gibbs 

himself invoked the notion of an imaginary ensemble of systems, but this move again opens 

up the question: how can the so defined probabilities be objective features of the physical 

system?  One possible answer is given by ergodic theory that takes probabilities not as 

defined by frequencies in simultaneous ensembles but by frequencies in the temporal 

succession of states of a system.  While this approach makes the probability distribution an 

objective feature of the single mechanical system, it still is not a mechanical property as 

defined in the last section, because it is not a function of any one mechanical state but a time 

integral over many such states.   
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 Notice that all these interpretations of statistical states are interpretations in term of 

classical mechanics, i.e., they formulate the statistical state under the assumption that an 

objective description of a system can be given by its mechanical state.  Especially in the 

context of the interpretation of quantum mechanics states, this premise has been called the 

'ignorance interpretation' of statistical states because it assumes that the statistical description 

of a system implies our ignorance about the objective mechanical state of the system.  

Regarding the distinction between subjective and objective interpretations, this coinage can 

be misleading because only subjective interpretations understand probabilities as epistemic 

concepts, and the notion of 'ignorance interpretation' seems to imply an epistemic explanation 

of probability.  What is really meant is simply an interpretation in terms of classical 

mechanics. 

 Nevertheless, none of the interpretations above offers a way to understand the 

statistical state as a property of the individual system in the mechanical sense, whether they 

interpret statistical states subjectively or as properties of some ensemble.  But this leads to a 

kind of epiphenomenalism for statistical states:  because the fundamental assumption of 

mechanical dynamics is that the future development is completely determined by the 

mechanical state, it seems impossible that a statistical state can play a causal role, and neither 

can a intrinsically statistical quantity like entropy.  The problems about the interpretation of 

time and of probability are connected in a rather mysterious way in the second law of 

thermodynamics, which says that in any thermodynamical process, the entropy never 

decreases with time.  But this means: entropy, which does not seem to be a mechanical 

property of systems, distinguishes between future and past, which classical mechanics cannot.  

What could be the missing part? 

 

2.4 The Hilbert Space 

 We will now turn to the interpretation of the Hilbert space formalism.  From early on, 

quantum mechanics was perceived as necessitating a revision of the fundamental 

metaphysical ideas in mechanics.  But at the same time, there are striking similarities in the 

structure of quantum mechanics and classical mechanics.  It is plausible to assume that 

analogous structures in both theories should be interpreted in the same way.  This is  not a far-

fetched methodological claim:  it was exactly around these metaphysical analogies that 
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quantum mechanics developed.20   The question is therefore how far these analogies can be 

taken and where the difference of the formalism forces us to abandon metaphysical tenets of 

classical mechanics.  In this section I will follow von Neumann's analysis of the analogies and 

disanalogies between quantum and classical mechanics.   

 Quantum mechanics uses exactly the same concept of a mechanical system as classical 

mechanics, i.e. the notion of individuated substances that persist through time.  This may 

seem surprising at first.  Quantum mechanics, after all, is perceived to be a theory about 

atoms and elementary particles, the microscopic constituents of matter.  One would expect, 

therefore, that there is a statement in the theory to this effect:  that it is a theory about atoms 

and not about cuckoo-clocks.  But, as a matter of fact, there is no such statement:  every 

system that can be described by classical mechanics, can be described by quantum mechanics 

as well.21 

 This fact will be of central importance to the later argument because once we have 

convinced ourselves that quantum mechanics is the correct theory to apply to atomic 

phenomena, there is nothing in the theory itself that keeps us from applying it to all other 

mechanical systems, too.  (Of course, there might be extraneous reasons to limit the scope of 

the theory.)   

 The representation of variables in quantum mechanics is fundamentally different from 

that in classical mechanics.  This reflects the fundamentally new phenomenon that forced the 

abandonment of classical mechanics in favor of quantum mechanics:  the quantization of 

variables.  It was the seminal discovery of quantum mechanics that this fact can be expressed 

by representing variables by linear operators (Heisenberg 1925).  The values of the variables 

are then represented by the eigenvalues of these operators.  As a special case, properties (in 

von Neumann's sense) are represented by projection operators, i.e. operators which only have 

the eigenvalues 0 and 1.22 

                                                
20For example, the formal analogy between Hilbert space operators and classical variables given by their 
algebraic properties is the main heuristic tool in 'quantizing' equations of motion. 
21It is this notion of a system that limits the applicability of quantum mechanics to particle physics.  The 
indistinguishability of elementary particles conflicts with the notion of individuality.  While this problem can be 
dealt with by introducing extraneous symmetry conditions imposed on the status of these particles, the 
possibility of creation and destruction of particles cannot be represented within the formalism of point mechanics 
at all.  This is taken as an indication that not point mechanics is the fundamental theory of elementary particles 
but field mechanics. 
22Again it can be shown that both notions are mathematically equivalent, but here the equivalence is far from 
trivial and only valid under certain restrictions.  The proof of the mathematical equivalence of Hermitian 
operators with sets of projection operators is discussed by von Neumann (1932), 59-88, and forms the central 
part of his discussion of the eigenvalue problem, that is the question under which circumstances variables 
represented by operators can have values.   
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 Linear operators are defined as mappings of a linear space onto itself.  Therefore, the 

fundamental mathematical structure in quantum mechanics is a complex linear space, the 

Hilbert space.  The linearity of the Hilbert space means that it allows for the addition of two 

elements and the multiplication of an element with a complex number.  Furthermore, a scalar 

product is defined on the Hilbert space which maps pairs of elements on complex numbers.  

This scalar product defines the notion of orthogonality of two elements. 

Quantum mechanical states are defined as one-dimensional subspaces of the Hilbert space:  if 

two elements are only distinguished by a complex factor, they represent the same state.  

Linear combinations of two states are called superpositions of these states.  This leads, 

intuitively speaking, to a large number of new elements in the space. A central problem in the 

interpretation of quantum mechanics is to understand this feature of the Hilbert space in 

metaphysical terms. 

 This structure implies that variables don't have values for all states.23  Each eigenvalue 

of an operator defines a subspace of the Hilbert space, and subspaces belonging to different 

eigenvalues are orthogonal.  This fact has an important corollary:  only states that are 

orthogonal can be distinguished by the values of a variable or, equivalently, there is no 

property that can distinguish between two nonorthogonal states (in the sense that one state has 

the property while the other one does not). 

 The connection between variables and states is not as direct as in classical mechanics:  

we cannot define all states by their values for a set of dynamical variables because there is no 

variable that gives values to all states.  Instead, the role of dynamical variables is taken by 

non-degenerate operators, that is operators who have for every eigenvalue a one-dimensional 

subspace of eigenstates.  Such an operator defines a basis on the Hilbert space, and every 

element of the Hilbert space can be represented by its complex coefficients in this basis.  

Position is the standard example of such a non-degenerate operator and the representation of a 

Hilbert space element in position basis is called a wave function.24 

 The operators form an algebra with a noncommutative multiplication given by the 

concatenation of two operators.  Two operators 

€ 

A , 

€ 

B commute if 

€ 

AB = BA.  If and only if 

two operators commute,  there is at least one basis whose elements are eigenstates of both 
                                                
23Properly speaking, operators associated with unbounded variables have no eigenstates at all.  Dirac introduced 
improper states (Delta functions) as eigenstates of such operators, while von Neumann insisted that this fact 
represented the only finite sharpness of values of unbounded variables. 
24The basis vectors are only defined up to a complex phase by the non-degenerate operator.  Therfore, properly 
speaking, we need a second noncommuting operator (the standard example is momentum) to define the relative 
phases of the basis.  Theis leads to a situation analogous to classical mechanics, where the dynamical variables 
also come in pairs. 
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operators.  The algebra again makes it possible to express variables as functions of the 

dynamical variables if we assume the mechanistic postulate, which now has the form 

(because of the linearity of the Hilbert space): every variable can be expressed by a linear 

operator on the Hilbert space, and every property by a subspace of the Hilbert space.  But in 

the case of quantum mechanics, the mechanistic postulate has an important consequence: 

subspaces of the Hilbert space don't form a Boolean algebra, but a so-called partial Boolean 

algebra.  The main difference is that the joint of two subspaces A∪B is not a subspace itself.  

Therefore, one defines instead the smallest subspace that contains A∪B as the span  of A and 

B, written A⊕B.  But this operation does not fulfill the distributive law of Boolean algebra, 

i.e. (A⊕B) ∩ C ≠ (A∩C) ⊕ (B∩C) for some A, B, C.  The mechanistic postulate now implies 

that also properties in quantum mechanics don't form a Boolean algebra, i.e. their logic is not 

the familiar logic, but a non-distributive logic called quantum logic.25   Many of the 

nonclassical phenomena in quantum mechanics can be represented by the difference between 

quantum and standard logic. 

 The representation of the dynamics of a system is given by a set of differential 

equations exactly like in classical mechanics.  As in classical mechanics, these equations of 

motion can be represented by the system's Hamiltonian, i.e. the energy expressed as a 

function o the dynamical variables.  In the Hilbert space, this leads to an especially simple 

characterization of the dynamics of a system:  it can be described as a unitary evolution 

€ 

ψ t( ) =U t( )ψ 0( ) of the state vector 

€ 

ψ , where U is a unitary operator.  This representation 

makes it obvious that the evolution is deterministic, like in classical mechanics. 

 So far, the interpretation of the Hilbert space formalism was analogous to the 

interpretation of the (Hamiltonian) formalism of classical mechanics, although the formalisms 

are quite different.  The fundamental discrepancy is given by the fact that operators do not 

attribute values to all states.  This is an obvious lacuna in the interpretation, because if a 

variable is measurable, then we should be able to measure it on any state of the system.  

Being measurable, after all, means that we can conceive of a procedure to measure the value 

of the observable.  This procedure should (at least in certain limits) not depend on the state 

the system is in.   

 This question is answered by Born's rule (Born, 1926):  If a property A is measured on 

any state 

€ 

ψ  of a system, the probability for finding the property is given by 

€ 

ψ,P A( )ψ , 

                                                
25See Hughes (1989) 178-217 
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where 

€ 

P A( ) is the projection operator representing the property.  Because of the spectral 

decomposition theorem this rule also gives the probability for the value 

€ 

α  of any variable 

(quantity) 

€ 

A  as 

€ 

ψ,PA α( )ψ .   

 This rule gives empirical predictions for the measurement of quantum mechanical 

states, but it is not an interpretation in our sense, i.e., it does not make an assertion about the 

nature of the relation between variables and their values, but it gives empirical predictions for 

their measurement.  Therefore, it leads to the question whether it can be taken as the basis of 

an interpretation of quantum mechanical states as statistical states in the sense of section 

2.3.26   

 Before we turn to von Neumann's treatment of this question, I will give a brief review 

of the representation of statistical states in quantum mechanics which again is quite similar to 

what was said in section 2.3.  First of all, it has to be noticed that an appropriate notion of 

probability in quantum mechanics has to accommodate the linear structure of the Hilbert 

space:  Probability cannot be defined as a measure on subsets of the Hilbert space, but it must 

be defined on the linear subspaces.  This leads to a generalized notion of probability, because 

the subspaces don't form a σ-algebra (compare footnote 8 in 2.3):  Instead of the operation of 

joining two subsets we have the operation of the direct sum (span) of two subspaces, because 

the joint of two subspaces is not a subspace itself.   

 Gleason's theorem27 asserts that any so defined probability measure on a Hilbert space 

(of dimension greater than two) can be represented by a positive definite Hermitian operator 

of trace 1.  Such an operator is called a density operator.  Especially, this means that a 

probabilistic distribution 

€ 

pn  over quantum mechanical states 

€ 

ψn  is represented by a weighted 

sum 

€ 

ρ = pnP ψn( )
n
∑  of the projection operators 

€ 

P ψn( )  defined by 

€ 

ψn  (von Neumann, 157-8).  

On the other hand, ever density operator can be written in this form (von Neumann, 174).  

Therefore, density operators can always be understood as representing probabilistic mixtures 

of pure quantum mechanical states or, shorter, mixed states.  This representation is not unique 

though, i.e., there is more than one way to represent a quantum statistical state (density 

operator) as a probability distribution over pure states.  This feature distinguishes quantum 

statistical states from classical statistical states, where the representation is always unique.  
                                                
26Von Neumann and Born see this rule as the central statement of a 'statistical interpretation' of quantum 
mechanics, but von Neumann makes very clear that this is not to be understood in our sense, i.e. as an 
interpretation of quantum mechanical states as (classical) statistical states.  (Von Neumann (1932) 108-9).  The 
latter is the meaning of 'statistical interpretation' that is commonly used nowadays.  
27Gleason (1957) 
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We will return to the interpretation of statistical states in the context of the discussion of 

composite systems in the next chapter. 

 Back to the question of whether pure quantum mechanical states can be understood as 

statistical states.  Von Neumann distinguishes these possibilities along the lines of the two 

possible ignorance interpretations of statistical states we discussed in the last section.   

 First, one could assume an ensemble interpretation of quantum mechanical states, i.e., 

one could explain the probabilistic dispersion of measurement outcomes postulated by Born's 

rule by assuming that the quantum mechanical state is not an irreducible pure state of a single 

system (or at a single time), but represents an ensemble of systems on which the measured 

observable has different values with frequencies given by the Born rule.  Von Neumann 

shows that this interpretation is not possible if we assume that the Born rule is valid for any 

Hermitian operator defined in the Hilbert space.  (v. Neumann, ibid., 167-71)  Von 

Neumann's argument rests on the assumption that the value assignments obey the algebraic 

rules for all variables, that is even if two operators A, B don't commute, the expectation values 

given by the Born rule satisfy the equation 

€ 

E A + B( ) = E A( ) + E B( ).  This assumption has 

been criticized, because in general, we don't have an independent method of measurement for 

each possible quantum mechanical operator. 

 Kochen and Specker showed with an example that for any Hilbert space of dimension 

greater than two there is no value assignment for three noncommuting observables on a finite 

set of states (exactly, 117, in their example) that correctly reproduces the prediction of Born's 

rule,28 weakening the premise of Gleason's theorem which only considers value assignments 

for all variables on the system and weakening von Neumann's assumption above: they only 

assume that the expectation values of commuting operators are additive.  Of course, even in 

the face of Kocher and Specker's argument one could maintain the assumption that all 

variables have values if one gave up the assumption that these values were faithfully 

represented by the measurement outcomes.  But this move would defeat the primary purpose 

of a statistical interpretation of quantum mechanics: to understand the quantum mechanical 

state as a statistical state.29 

 The second possible interpretation of the probabilistic dispersion is on the lines of a 

subjective interpretation of probability, namely, that the distribution of values in the Born rule 

is an effect of an inability to exactly measure the true value:  the Born rule describes the 

                                                
28Kochen and Specker (1967), see Hughes (1989) 162-175 for a discussion. 
29We will discuss such "hidden variable" interpretations in section 4.3. 
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statistical distribution of a measurement error.  This liberates us from the requirement that the 

probabilities in the Born rule be representable as frequencies in a statistical ensemble.  But as 

von Neumann observes (von Neumann, ibid., 110-112), the measurement error would also 

affect the measurement of two compatible variables (i.e., variables whose operators 

commute).  Therefore, it should be impossible to obtain exact correlations between the 

measurements of two compatible observables.  As a special case, if one measures the same 

variable twice, the results of both measurements should not be correlated, but each should be 

distributed independently according to Born's rule.  But this conclusion is in contradiction to 

our empirical evidence:  it is possible to find correlations in variables that are much more 

exact than the spread of the distribution of these variables given by the Born rule.  Von 

Neumann discusses the scattering experiments of Compton and Simon as an example.  Here, 

the momenta of the scattered electron and photo are exactly correlated, but they are spread 

over a wide range of possible values.  Therefore, also a subjective interpretation is ruled out.   

 Taken together, these two arguments mean that an ignorance interpretation of the 

probabilistic distribution of values for a variable given by the Born rule is impossible.  A 

measurement cannot simply be the recording of an existing value of the observable, because 

there is no consistent way in quantum mechanics to attribute values to noncommuting 

variables, and explaining the inconsistency with an inexactitude of the measurement is in 

conflict with experimental evidence. 

 There is an alternative interpretation of the dispersion of values in a quantum 

mechanical state.  It takes the state as a field, which for a single particle is quite plausible: the 

state can be described by a complex function in space, the wave function, and its unitary 

evolution can be expressed as a differential field equation, the Schrödinger equation.  

Variables that are not functions of position, such as momentum, can be understood as field 

operators, i.e. global variables of the field.  This interpretation, known as wave mechanics, 

was advocated by Schrödinger and de Broglie, and was an extremely important heuristic tool 

in early quantum mechanics.  Its main problem is to account for the probabilistic nature of the 

Born rule: While variables on fields show dispersion, the different values exist simultaneously 

(like different momenta in a wave), not stochastically.  A further problem for the plausibility 

of a field interpretation is that many-particle systems cannot be described by fields in three-

dimensional space. 

 Instead, von Neumann proposes a dynamical interpretation of the probabilities, which 

is called a propensity interpretation: if a state is not an eigenstate of an operator, the 

corresponding variable has no value for that state.  But in the case of a measurement of the 
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variable, the state 'produces' a value indeterministically.  That is: it has a propensity  for 

different values without any value being realized before a measurement is performed.  The 

probabilities of the Born rule describe the strength of this propensity for different values. 

   It is instructive to look at the Compton-Simon experiment in yet another way:  It can 

be interpreted as two successive measurements of the same variable.  The existence of exact 

correlations means then that the state of the system after the first measurement must have 

changed:  the second measurement does not show a dispersion in the measured variable 

anymore.  Therefore, it can be shown the state after the first measurement must be an 

eigenstate of the measured observable (von Neumann, ibid., 112-114). 

 Von Neumann takes this as a general principle:  the measurement of a variable 

changes the state into an eigenstate of the measured variable with a probability given by the 

Born rule.30  This principle is called the reduction postulate and the eigenstate after the 

measurement the reduced state.  Because the different possible reduced states are distributed 

probabilistically according to Born's rule, the resulting state can be represented by a density 

operator which is nontrivial (i.e. not a pure state) unless the initial state of the system was an 

eigenstate of the measured observable.  This means that the process of measurement cannot 

be described by a unitary evolution, which always transforms pure states into pure states.  

This is quite obvious when we remember that unitary evolution is a deterministic process:  

Von Neumann's argument against an ignorance interpretation of quantum mechanical states 

implies that the process of reduction must be irreducibly indeterministic.  But as we remarked 

earlier, quantum mechanics assumes that every temporal evolution of a system can be 

described by a deterministic evolution of its state.  Therefore, von Neumann has to assume 

that two fundamentally different kinds of dynamical evolution exist in quantum mechanics: a 

'normal', deterministic evolution and a special kind of indeterministic evolution that only 

takes place if a measurement is performed.   

 The impossibility of an ignorance interpretation of pure quantum mechanical states 

leads to a rather puzzling metaphysical picture:  at any given time, there is no matter of fact 

about the value of most variables.  It is only through acts of measurement that variables 

acquire a value.  But this leaves us with several open questions:  What kind of processes are 

                                                
30This assumption of the repeatability of quantum mechanical measurement has been criticized, because many 
actual measurements are not repeatable: they change the measured state even if it is an eigenstate of the 
measured variable.  But as we will see in the next chapter, non-repeatable measurements can be easily modeled 
in quantum mechanics once we have a model of repeatable measurements.  Von Neumann's interest in this 
section is not to give the most general model of a physical measurement, but to discuss the problem of values in 
quantum mechanics.  For that, the decisive fact is the possibility of repeatable measurements. 
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measurements and how can they have the power to actualize values of variables?  How is it to 

be understood that measurement does not seem to obey the law of unitary evolution?  And 

finally: macroscopic objects seem to have well-defined values for all their variables at any 

time.  How is that possible if we assume that quantum mechanics is the more fundamental 

theory and underlies also macroscopic phenomena? 

 This problem is illustrated by Schrödinger's cat paradox: Schrödinger shows us a way 

to prepare a superposition of two states of a cat, one in which the cat is alive and one in which 

it is dead.  Do we have to conclude that there only is a matter of fact about whether the cat is 

alive or dead once someone performs a measurement on the cat (or at least looks at it)?   

The complex of these questions is known as the measurement problem.  What feature could 

give measurement such a special status as a physical process?  Of course, a measurement is 

not simply the evolution of an isolated system, but it involves the interaction with a 

measurement apparatus.  Therefore, we have to discuss the quantum mechanical 

representation of interactions on a system before we can address these questions. 
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Chapter 3 

The Measurement Problem 
 

3.1  Composite Systems 

 It is a surprising feature of quantum mechanics that it makes nontrivial predictions 

about the behavior of composite systems.31  Whereas in classical mechanics any composite 

system is completely characterized by describing the states of its parts, this is not true in 

quantum mechanics.  It is easy to see why this is so.  If a composite system S consists of two 

subsystems S1 and S2, then of course every pair of states 

€ 

φ  of S1, 

€ 

ψ  of S2 is a possible state 

for the composite system.  This state is called the direct product of the subsystem states and is 

written 

€ 

φ ⊗ψ .  But then it follows from the linearity of the Hilbert space that also every 

linear combination of such direct products must be a possible state of the composite system, 

that is:  if 

€ 

φi and 

€ 

ψi are possible states of the subsystems, and 

€ 

ci are complex numbers, then  

   

€ 

ω = Σiciφi ⊗ψ i (3.1) 

represents a possible state of the composite system.  But ω in general cannot be written as a 

single direct product of any two states of the subsystems 

€ 

′ φ ⊗ ′ ψ .  This means:  in general the 

composite system can be in a state that cannot be described by giving a pure state for each 

subsystem.  Such states are called entangled states.  There are no such states in classical 

mechanics, where any pure state of a composite system is fully described by the state of its 

components.  This very important feature is often called the holism of quantum mechanics, as 

opposed to the atomism of classical mechanics.   

 There is an analogue in statistical mechanics to entangled states, though:  Generally, a 

joint distribution of several variables cannot be written as a product of distributions over the 

single variables.  This can be understood by observing that the joint distribution does not only 

tell us about how the values of every single variable are distributed, but also how the values 

for different variables are correlated.  This means:  assume we know the joint distribution of 

two variables, then we can calculate the conditional distribution of one variable given a 

distribution over the other.  In quantum mechanics, we can make an analogous statement, and 

it turns out that if the given state 

€ 

ω  of the composite system is pure, and if system S1 is in a 

                                                
31 The formalism of composite systems is described in von Neumann (1932), ch. VI.2 
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state 

€ 

η, then the conditional state of system S2 is also pure.  It is called the relative state to 

€ 

η and is defined by: 

 
    

€ 

ψrel η( ) = N η ⊗ψ i ,ω ψ i
i
∑  (3.2) 

where N is a normalization constant,  and 

€ 

ψi is any basis of S2 (Everett 1973, 38). 

 All possible states for a composite system (given in the construction in (3.1)) form a 

Hilbert space, called the tensor product space of the Hilbert spaces of the subsystems H1, H2, 

written H1⊗H2,.  It is easy to construct a basis for the tensor product space: if 

€ 

φi and 

€ 

ψ j  are 

bases of the subspaces, then the vectors 

€ 

φi ⊗ψ j  form a basis for the product space.  The 

scalar product of two vectors 

€ 

φi ⊗ψ j , 

€ 

φk ⊗ψl  is defined as     

€ 

φi ,φk ψ j ,ψ l .  For all other 

states, the scalar product follows from linearity.  The tensor product of two operators A on H1 

and B on H2 is defined by the equation 

   

€ 

A⊗ B( ) φi ⊗ψ j( ) = Aφi ⊗ Bψ j  (3.3) 

and linear combinations.  Again, there are operators on H that cannot be written as a tensor 

product of two operators on the subspaces, but any operator can be written as a sum of such 

tensor products.  The operators A on H1 and     

€ 

A⊗ 1 on H are equivalent, i.e. they have the 

same expectation values for any states 

€ 

φ  on H1 and

€ 

ψ  on H2: 

       

€ 

φ ⊗ψ, A⊗ 1( ) φ ⊗ψ( ) = φ, Aφ ψ,ψ = φ, Aφ  (3.4) 

Therefore we regard A and     

€ 

A⊗ 1 as representing the same physical quantity. 
   The fact that a general state of the composite system cannot be simply decomposed 

into two pure states of the subsystems leaves us with the question how to describe subsystems 

by a quantum mechanical state, if we are given the state of the composite system.  After all, 

we can always make separate measurements on each of the subsystems and hence be able to 

deduce a state description of the subsystems from these measurements.  Note especially that a 

composite system can be formed by any two systems even when these are perfectly isolated 

and noninteracting.  In this case, it follows from our basic assumptions about mechanical 

theories that each of the subsystems must have a well-defined state.  It can be shown (ibid., 

41) that for any state ω of the composite system there exists a mixed state 

€ 

ρω  for subsystem 

S1, so that the expectation value     

€ 

Tr(Aρω )  for any variable A on S1 is the same as the 

expectation value       

€ 

ω,( A⊗ 1)ω  for the equivalent variable     

€ 

A⊗ 1 on the composite system.  
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But this also means that any probabilistic prediction for the system S1 that the two states yield 

will be the same.    

€ 

ρω
S1( ) is always uniquely defined: 

 
    

€ 

ρω
S1( ) = φiψk ,ω

*
φ jψk ,ω φi

†
⊗φ j

ijk
∑  (3.5) 

where   

€ 

φi and   

€ 

ψk  are bases on S1 and S2, respectively, and     

€ 

φi
†
⊗φ j is the tensor product of the 

vectors   

€ 

φi and   

€ 

φ j, i.e. the operator that maps   

€ 

φi onto   

€ 

φ j and all vectors orthogonal to   

€ 

φi onto 

0.  Von Neumann calls the state   

€ 

ρω
S1( ) the projection of ω onto the factor space H1, but note 

that this is very different from the projection onto a subspace (which always produces a pure 

state.) 

 The fact that   

€ 

ρω
S1( ) is uniquely defined implies that it is independent of which bases   

€ 

φi 

and   

€ 

ψk  we choose to evaluate (3.5).  But note that in the representation of   

€ 

ρω
S1( ) given in (3.5) 

there are elements     

€ 

φi
†
⊗φ j which cannot simply be read as projection operators.  Therefore, 

(3.5) is not in a form that allows us to read   

€ 

ρω
S1( ) as a probability distribution over pure states.  

As we have seen in the first chapter, there are always such representations for any mixed 

state, but they are not uniquely defined.  Von Neumann has shown that for every   

€ 

ω ∈ H1⊗H2  

there is a representation of the form  

 
  

€ 

ω = ciφi ⊗ψ i
i
∑  (3.6) 

where the   

€ 

φi and   

€ 

ψi are elements of two bases on the two subspaces.  If one writes the 

projected states in these bases, they are 

 
    

€ 

ρω
S1( ) = ci

2
φi

†
⊗φi

i
∑  (3.7) 

and the analogue for S2.  These mixtures are diagonal and can therefore be interpreted as a 

probability distribution over the elements of the bases.  Furthermore, we can simply read off 

the relative states for any element of the bases:    

€ 

φi is the relative state to   

€ 

ψi  and vice versa.  

This representation of an entangled state is called its biorthogonal decomposition.  Also the 

biorthogonal decomposition is not always uniquely defined.   

 In general, any interaction of two systems will create an entangled state of the 

composite system.  The interaction of two systems is described by a unitary transformation on 

the composite system.  This transformation will in general not transform disentangled states 

into other disentangled states.  Therefore, after any interaction the only state we can ascribe to 

a system is the projected state, which in general will be a mixture.   
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 It is extremely important to realize that mixed states resulting from the projection of 

an entangled state cannot be given an ignorance interpretation like the mixtures of quantum 

mechanical states that we discussed in the last chapter.   It is simple to see why this is so:  if 

we give the projection mixture (3.7) an ignorance interpretation, what we say is that 

subsystem S1 is really in some pure state   

€ 

φi, but we don't know in which one; it follows that 

S2 is in the pure state     

€ 

ψrel φi( )  But this would mean that the composite system is in the 

disentangled state     

€ 

φi ⊗ψrel φi( ) , which is different from the pure state ω (3.6) we know it to be 

in.  This leads to a contradiction in the value assignment to operators.  Assume that the   

€ 

φi are 

eigenstates of a variable A.  Hence, on an ignorance interpretation of (3.7), S1 would be in an 

eigenstate of A.  As we have seen, it follows from the properties of the tensor product that the 

state of S1 and S2,     

€ 

φi ⊗ψrel φi( )  is an eigenstate of     

€ 

A⊗ 1. But ω is, by definition, not an 

eigenstate of     

€ 

A⊗ 1.  Hence, we cannot maintain that the two descriptions are empirically 

equivalent, so the ignorance interpretation is not tenable.  

 In general, any quantum mechanical system we encounter may have somewhere in its 

past interacted with some other system and may therefore be in an entangled state with that 

other system.  But then it follows from our reasoning above that the system is in a mixed 

state, and this mixed state cannot be given an ignorance interpretation.  I will call a mixture of 

this kind an objective mixture.  It might at first sight seem more plausible in a situation like 

this to maintain that there really is no state at all that describes the system, and that only the 

composite system has a well-defined quantum mechanical state.   But besides the argument 

used earlier, that we can perform any measurement on each subsystem and hence must be 

able to summarize our measurement results in a state description, this line of reasoning would 

also lead us to the conclusion that no system but the universe as a whole will have a quantum 

mechanical state properly, because we can say with confidence for any system that at some 

point in the past it has interacted with another system.  Hence, if we did not allow objectively 

mixed states for quantum mechanical systems, quantum mechanics would become 

inapplicable to any system in nature.   

 In the formalism introduced in section 2.4, we treated mixed states as the analogue of 

classical statistical states.  But we did not discuss the interpretation of mixed states in 

quantum mechanics there.  We implicitly assumed that all mixed states can be understood as 

ignorance mixtures in analogy to the approach generally taken in statistical mechanics.  The 
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argument above shows that this approach is not possible for quantum mechanics.  We must 

accept mixed states as equally objective as pure states.   

 The argument against an ignorance interpretation of projection mixtures was based on 

the fact that this would lead to a different and experimentally distinguishable state of a 

composite system.  But on the other hand, it is obvious that for any measurement confined to 

a single subsystem there is no difference in the empirical predictions of Born's rule whether 

we give the mixed state an ignorance interpretation or whether we treat it as an objective 

mixture.  This follows simply from the fact that the mixed state itself gives us any empirical 

prediction that we can have.  Its interpretation does not matter.  Let us call this feature the 

local indistinguishability of objective and ignorance mixtures.  While local 

indistinguishability cannot be an answer to the measurement problem, it is an important 

indicator of what the measurement problem is about:  it is not a problem about certain 

empirical predictions of quantum mechanics that could be solved by changing the theory, but 

it is a problem about the interpretation of the theory, i.e. a problem about how to describe the 

reality that is reflected in these empirical predictions. 

 

3.2  Decoherence 

 If we confine our attention to a single system and only consider measurements on this 

system we can therefore say:  interactions will transform pure states of the system into 

mixtures.  This process is called decoherence.  It has only recently gained the interest of 

theoretical physicists in order to explain the emergence of classical behavior in quantum 

mechanical systems.32  The theory of decoherence is important for an interpretation that 

wants to maintain that quantum mechanics is the fundamental theory of nature and classical 

mechanics only an approximation for macroscopic systems.  Decoherence is supposed to 

answer the fundamental problem for such an interpretation: why is it that macroscopic 

systems always seem to  behave classically if they are to be understood as large quantum 

mechanical systems?   

 The general line of the answer is that this happens because of the interaction of 

systems with their environment, especially the thermal electromagnetic field (which of course 

is always present unless at temperatures close to absolute zero).  This interaction 

spontaneously turns superpositions of eigenstates of certain variables (namely, macroscopic 

                                                
32  For an introductory account, see Zurek (1991) 
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classical variables) into mixtures of these variables.  Of course, on von Neumann's 

interpretation of possessed values discussed in the last chapter, this process will not be 

sufficient to explain the existence of definite values for the classical variables.  For these 

mixtures are not ignorance mixtures, but the local projected states of a superposition in the 

combined system of the object and its environment.  Hence, on von Neumann's account, they 

do not have a possessed value.  We will return to the question of possessed values in our 

discussion of Everett's interpretation.33  For now, we can say that the objective mixtures 

which a process of decoherence produces are locally indistinguishable from ignorance 

mixtures. 

 This is not the place to discuss in detail the research done on decoherence which is 

still a very new field and which has not yet furnished us with a general theory applicable to all 

macroscopic objects.  But it is clear from the discussion so far what the question is that any 

theory of decoherence has to answer.  While any interaction can transform the initial state of a 

system into a mixture, it needs to be shown that this mixture actually is a mixture of states 

that have a classical interpretation.  This means:  the basis that diagonalizes the density matrix 

is determined only by the interaction (and not the initial states of the systems) and it is 

approximately a basis of "classical" states, i.e., eigenstates of classical variables like position 

and momentum.  In general, the basis determined by a decoherence interaction that 

diagonalizes the projected states is called a decoherence basis. 

  The central interaction to be considered for decoherence is the interaction of a system 

of charged particles with a thermal electromagnetic field.  Unruh and Zurek (1989) have 

treated this case in a simple calculable model of a harmonic oscillator and a scalar field 

interacting with this oscillator.  For this interaction, they derived an exact equation for the 

density matrix of the harmonic oscillator and solved this equation numerically for different 

initial conditions and strengths of interaction.  The result they obtained is:  there is very fast 

decoherence, that is, the decoherence is much faster than the relaxation time, i.e., the time of 

reaching the thermodynamic equilibrium.  This means, decoherence happens long before any 

considerable amount of energy is exchanged between the oscillator and the scalar field.  

Hence, the interaction with the field turns the state of the harmonic oscillator into a classical 

state already before it affects the state in any way that is classically accountable.  It is 

                                                
33  I consider it a strong argument for Everett's interpretation that it is able to accommodate the theory of 
decoherence, whereas this is not possible in a traditional interpretation.  Most recent proponents of decoherence 
subscribe to some kind of an Everett interpretation, e.g. Unruh and Zurek (1989), Gell-Mann and Hartle (1991), 
Halliwell (1993).  
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plausible to assume that the same happens for more complex systems and the full 

electromagnetic field, even when the complexity of these problems has made it impossible, at 

least as of yet, to formulate equations of motion or even to solve them. 

 Another interesting question about decoherence is treated by Amann (1992):  the 

question of delocalization in molecules, that is, the fact that in many molecules atoms do not 

have well-defined positions. On the other hand, macromolecules do have well-defined shapes, 

as is well-known from decades of biochemical research into the structure of organic 

molecules.  Amann has shown that whereas in smaller molecules superpositions of position 

eigenstates often are energetically the most favorable states, such superpositions decohere in 

larger molecules because of the interaction with the thermal electromagnetic field.   

 In all cases of interaction with an electromagnetic field, it is important to note that the 

escaping photons travel at the speed of light and hence cannot be caught up with anymore 

after the interaction happened.  This means:  unless a measurement device is already in place 

before the decoherence happens, there is no experimental method to ever distinguish the local 

projected mixture of the system that has undergone decoherence from an ignorance mixture, 

because it is never possible even in principle to show the fact of a superposition of the 

combined system and electromagnetic field.  

 The effect of decoherence can be described as the introduction of superselection rules.  

Superselection rules say that certain states of a quantum mechanical system are never 

transformed into each other by any unitary time transformation matrix that is physically 

possible for the system.  Consider, for example, a composite system consisting of two 

separate parts that are completely isolated from each other.  Here, the Hamiltonian operator is 

simply the sum of the Hamiltonians for the subsystems:  

       

€ 

H = H1 ⊗ 1+ 1⊗ H2 (3.8) 

Its eigenstates are the disentangled states   

€ 

φi ⊗ψ j  where   

€ 

φi,   

€ 

ψ j  are the eigenstates of     

€ 

H1 and 

€ 

H2 .  From this it follows that H never transforms a disentangled state into an entangled state 

and, on the other hand, that an entangled state  

 

€ 

cijφi ⊗ψ jij∑   (3.9) 

and the corresponding mixture of projected states  

 

€ 

cij
2
P φi( )⊗ P ψ j( )ij∑  (3.10) 

will evolve in exactly the same way.  Therefore, also the evolution of the system will never 

give us any clue whether the system is an entangled state or in a mixed state.  
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Proof of the statements above: 

If 

€ 

H = H1⊗1 + 1⊗H2, then the unitary transformation operator U of the combined 

system is: 

    

€ 

U = e−itH  = e− itH1⊗1  ⊗ e− it1⊗H2  , 

because 

€ 

H1 and 

€ 

H2  commute (they are operators on different Hilbert spaces.)  But this 

is simply 

€ 

U =U1⊗U2, where   

€ 

U1 = e− itH1   is the unitary transformation operator on S1 

and analogous   

€ 

U2 = e− itH2  .  Hence, for any disentangled state 

€ 

φ ⊗ψ , the transformed 

state is 

€ 

U φ ⊗ψ( ) =U1φ ⊗U2ψ , which is a disentangled state, again.  

On the other hand, every state of the combined system can be represented in 

biorthogonal form as 

€ 

ciφi ⊗ψ ii∑ , where the 

€ 

φi  and 

€ 

ψ i  are some sets of orthogonal 

states in 

€ 

H1 and 

€ 

H2 .  The projected states in this representation are 

€ 

ci
2P φi( )i∑  and 

€ 

ci
2P ψ i( )i∑  . The time-transformed state is  

  

€ 

U ciφi ⊗ψ ii∑( ) = cii∑ U1φi ⊗U2ψ i( ),  

which again is in diagonal form, because the 

€ 

U1φi and 

€ 

U2ψ i  are sets of orthogonal 

states, too (because 

€ 

U1 and 

€ 

U2  are unitary operators.)  Therefore, the projected states 

of the transform are  

  

€ 

ci
2P U1φi( )i∑ = ci

2U1P φi( )U1
−1

i∑ ,  

and analogously for 

€ 

H2 .  But these are the time-transforms of the projected states, 

q.e.d. 

 Generally, if there is any interaction between the subsystems, the superselection rules 

break down and entangled states will develop differently than the corresponding projected 

mixtures.  But if each subsystem is coupled with its environment in such a way that 

decoherence results (and moreover, that decoherence happens on a shorter time scale than the 

interaction between the different subsystems), then entangled states will decohere quickly into 

mixtures of disentangled states:  assume that the interaction results in an entangled state 

€ 

cijφi ⊗ψ jij∑ .  The interaction with the environment leads to a state 

€ 

cijφi ⊗ψ jij∑ ⊗ω ij  

(assuming for simplicity that the interaction doesn't change the 

€ 

φi  and 

€ 

ψ j .)  If all the 

€ 

ω ij  are 

pairwise orthogonal (i.e. if decoherence is complete), this has as a projected state for the 

systems without the environment the mixture 

€ 

cij
2
P φi( )⊗ P ψ j( )ij∑ , which is a mixture of 



36 

the disentangled states 

€ 

φi ⊗ψ j .  Hence, the system will essentially behave like a classical 

Markovian stochastic system:  the interaction between different subsystems will not create 

entangled states but mixed states of each subsystem.  Whereas, properly speaking, this is a 

dynamic effect and not the result of a universal superselection rule, it leads to the same 

phenomenological results: disentangled states always evolve into disentangled states (possibly 

mixtures), and entangled states behave like the corresponding projected mixtures (they 

actually evolve into them.)  Therefore, this effect of decoherence has been termed, somewhat 

sloppily, the introduction of superselection rules in decoherent systems.34  

 Superselection rules have first been used to address the measurement problem by 

Beltrametti and Cassinelli (1981).  They did not introduce them as a dynamical effect, though, 

but simply gave an ad hoc postulate of superselection rules for classical systems.  This way of 

introducing superselection rules causes problems for the account of measurement that 

dynamical superselection rules don't have (Hughes 1989, 285-87).  The application of 

superselection rules caused by decoherence to the measurement process will be discussed in 

the next section. 

 Altogether, we can hope that decoherence is an answer to the question how classical 

behavior of macroscopic systems can be consistent with quantum mechanics:  it gives a 

mechanism that makes the interference effects of quantum mechanics disappear and gives rise 

to a classical domain.  But two problems still remain:   

 (1) So far the process has only been analyzed for very simple models.  It is a 

problem for applied physics to treat decoherence for sufficiently realistic models of complex 

systems.  This involves complicated questions of matter-field interactions and it may not be 

possible to give exact solutions for the more complex cases.  But the research in this field is 

just beginning and with the help of experimental results and numerical methods we can 

expect further insight into the workings of decoherence.  Nevertheless, it is plausible to 

assume that for normal macroscopic objects that are in constant interaction with particles and 

fields in their environment, decoherence will be pervasive and local superpositions are highly 

unstable.  

 (2) A question of a very different kind is how we are to interpret the projection 

mixtures of decoherence as reduced states in von Neumann's sense.  As we have seen, a 

straightforward ignorance interpretation of objective mixtures will not do.  This means: 
                                                
34  I am not aware of any research being done on the subject, but it seems to me that a study of complex 
decoherent systems could give us new insight into macroscopic chaotic systems like the human brain, where the 
combination of quantum effects and decoherence very well might play a substantial role in the dynamics.    
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although the local indistinguishability makes us expect that these projection mixtures will, for 

all practical purposes, look like ignorance mixtures of pure states, we still need the reduction 

postulate to attribute values to such projection mixtures.  The fundamental question now is:  

can we eliminate this notion of a measurement altogether and give a strictly objective account 

of whether and how variables can have values in objective mixtures?  This is a question about 

the interpretation of the formalism of quantum mechanics and it will be addressed in the next 

sections.   

 

3.3  The Interaction Model of Measurement 

 Let us return to our discussion of the measurement problem.  Any measurement 

involves an interaction between the system that the measurement is performed on, and the 

measurement apparatus ("apparatus" here can very well mean a human observer).  Therefore, 

it is important to characterize measurement as an interaction if we want to find an answer to 

the measurement problem.  This attempt has a long history:  a quantum mechanical model of 

measurement as an interaction was first introduced by von Neumann (1932, 233-37) and was 

used by many authors in their attempt to give an explanation of the reduction postulate.35  It 

has very much become the standard setting for discussions of the measurement process, and it 

will play a central role in this thesis.  Nevertheless, it raises a lot of questions about its general 

applicability, especially because it extends the use of the quantum mechanical formalism to 

macroscopic measuring apparatus.  Because of our lack of empirical confirmation for 

quantum mechanics as a theory of macroscopic systems, this extension is not trivial.   

 The first argument against such an extension is that quantum mechanics is so 

fundamentally different from classical mechanics that it gives obviously absurd descriptions 

of macroscopic systems.  Macroscopic systems are never found in superpositions of different 

states.  But rather than seeing this as an argument against the universal applicability of 

quantum mechanics, one can understand it as a more general form of the question of the 

measurement problem: why is it that quantum mechanics does not seem applicable to 

macroscopic systems if it is applicable to their microscopic parts? 

 The second argument against the interaction model of measurement is that it is too 

restrictive in its idealization of any actual measurement process, and that it cannot deliver 

what its proponents claim once these restrictions are given up.  In this section, I shall try to 

                                                
35  E.g., Wigner (1976), Everett (1973), Jauch (1968), Daneri, Loinger, Prosperi (1962), Healey (1989), van 
Fraassen (1991). 
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defend the model from this suspicion by showing that it can be generalized to accommodate 

approximate measurement interactions.  For this, I will draw on the discussion of interactions 

in the last section.  First, let us discuss von Neumann's original model: 

 There are two systems, a measured system S and a measurement apparatus M.  The 

initial state of S is any state 

€ 

φ ∈HS, the initial state of M is some specified "ready" state 

€ 

ψ o .  

This state 

€ 

ψ o need not be unique or a pure state.  Already von Neumann observed that the 

question whether 

€ 

ψ o  is mixed or pure is irrelevant for the discussion of the reduction.36  For 

simplicity of notation, I shall assume that 

€ 

ψ o  is a pure state.  Von Neumann imposes the 

following criterion on a physical interaction between S and M to be a measurement of an 

variable A on S:   

 If the initial state of S is an eigenstate 

€ 

φi  of the measured variable A, then the 

interaction will lead to a state 

€ 

′ φ i ⊗ψ i , where 

€ 

ψ i is an eigenstate of some variable B on M, 

which we will call an indicator state (because 

€ 

ψ i indicates that S was in 

€ 

φi ).  For two 

orthogonal eigenstates 

€ 

φi , 

€ 

φ j  of A, also the resulting eigenstates 

€ 

ψ i, 

€ 

ψ j  of B are orthogonal.  

The reason for this criterion is that it is necessary to guarantee that by a single observation of 

M we can say in which eigenstate of the variable A the system S was.   As we have seen in 

section 2.4, only orthogonal states are distinguishable by single measurements. 

 There is an obvious circularity in the criterion.  All it says is that, once a measurement 

interaction has taken place: if we are able to observe eigenstates of B, then we are also able to 

observe eigenstates of A.  For this reason alone it is clear that the criterion by itself will not 

suffice as a definition of measurement.  One might hope that in the case of a macroscopic 

measuring apparatus we can circumvent the circularity because it is clear what an observation 

of B means.  But this cannot work:  for the characterization of the measurement interaction we 

need a quantum mechanical description of the measuring apparatus, and with this come all the 

nonclassical states that are possible for a quantum mechanical system, like superpositions or 

objective mixtures.  But once we allow these states, it is not clear any more what 

"observation" means—this was the problem we sought to explore, after all.  Therefore, we 

need another postulate to tell us when a measurement is complete.   

 Von Neumann's addresses this problem by observing that every measurement consists 

of a chain of interactions that eventually has to lead to a human observer's consciousness.  It 

                                                
36   Von Neumann (1932), p. 233 refutes the proposal that the transition from a pure state to an ignorance 
mixture could be explained by assuming that M was initially in an unknown state represented by an ignorance 
mixture. 
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is this endpoint that defines a measurement.  He claims that it is the involvement of 

consciousness that causes the process of reduction (which we will discuss later in this 

section).  We will return to this issue in the next section.  

 Besides this criterion, von Neumann imposes a second criterion on a measurement 

interaction:  the measured eigenstates are not changed by the process of measurement:   

 

€ 

φi ⊗ψ o →φi ⊗ψ i.   (3.11) 

This criterion is too restrictive and highly unrealistic, because many measurements change the 

measured state.  This criterion is only plausible when we consider the reason why von 

Neumann introduced the model of measurement in the first place:  he wanted to account for 

the possibility of repeatable measurements because repeatability was his main argument for 

postulating the reduction process (see footnote 20 in section 2.4).  I propose to take this 

criterion as a definition and call a measurement repeatable if it fulfills this criterion.   

 What follows from the definition of a measurement process for a general state of the 

measured system?  Because of the linearity of any unitary transformation matrix, criteria (1) 

and (2) suffice to tell us the final state of S.  If the initial state of S is expressed on the basis of 

eigenstates of A as 

€ 

ciφii∑ , then the interaction with M will lead to: 

 

€ 

ciφii∑( )⊗ψ o → ciφi ⊗ψ i( )i∑ . (3.12) 

The final state is entangled.  The projected states on the subsystems are 

 

€ 

ci
2P φi( )i∑  and 

€ 

ci
2P ψ i( )i∑  .   (3.13) 

  Because the 

€ 

φi  and the 

€ 

ψ i are pairwise orthogonal sets of states, each 

€ 

φi  and 

€ 

ψ i are relative 

states of each other.  The biorthogonal decomposition can simply be read off from the 

mixtures:  With probability 

€ 

ci
2, S is in state 

€ 

φi  and M is in state 

€ 

ψ i. 

 That is:  the measurement interaction turns a superposition of eigenstates of the 

measured variable into a mixture of these states, with a probability distribution 

€ 

ci
2 that obeys 

Born's statistical interpretation of quantum mechanical amplitudes.  On the other hand, the 

measuring apparatus is in a mixture of indicator states 

€ 

ψ i that are exactly correlated to the 

€ 

φi  

(and hence have the same probability distribution).   

 This looks very much like everything we need to explain the measurement process:  

the interaction turns superpositions into mixtures, and even gives them the right probability 

distributions.  So what is the problem?  To be sure, there are two: 

 1. The mechanism only works if the interaction exactly fulfills criteria (1) and (2).  

If the measurement is not repeatable or if it is not exact, the biorthogonal decomposition rule 
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does not even approximately represent the state of S after the measurement as a mixture of 

eigenstates of A.37  I will argue that this problem can be addressed by considering the 

decoherence of measurement devices. 

 2. As we already discussed in section 3.1, the mixtures resulting from an 

interaction are not the right kind of mixtures:  while we need an ignorance mixture as the 

outcome of a measurement, which is really a pure state (we just don't know which), the 

interaction model gives us an objective mixture, which is objectively different from any pure 

state.   

 In the remainder of this section, I will generalize von Neumann's model to 

accommodate approximate measurements and return to the second question in section 3.4.  

Let us begin with a more detailed analysis of the measurement interaction. 

 Von Neumann assumes for simplicity that the 

€ 

φi  form a complete basis.  This is 

equivalent to the requirement that the measured variable A be nondegenerate on HS.  This 

requirement is not necessary, though.  It is obvious that if our model allows us to measure any 

nondegenerate variable, we can also measure any degenerate variable (there is less 

information required for the latter).  The requirement then is:  Be 

€ 

Φ i the subspace spanned by 

the eigenvectors of the i-th eigenvalue.  If the initial state of S is some 

€ 

φi ∈Φ i , then the 

resulting state 

€ 

ψ i of M must be an element of a subspace 

€ 

Ψi corresponding to the i-th 

eigenvalue of some variable B on M.  Obviously, the subspaces 

€ 

Ψi have to be pairwise 

orthogonal to assure that measuring B will be sufficient to tell which subspace 

€ 

Φ i the system 

S was in. 

 So far, a measurement is treated as exact:  the final states or subspaces of the 

measuring apparatus are perfectly correlated with the initial states of the system.  There is no 

mistake possible.  Let us try to generalize the model to accommodate approximate 

measurements:  if we keep the repeatability criterion, the most general form the interaction 

can take is 

€ 

φi ⊗ψ o →φi ⊗ψ i. Therefore, all that criterion (1) amounts to is the requirement 

that the 

€ 

ψ i are pairwise orthogonal.  Hence, this is the only requirement that we can relax.  

And this is indeed what we need:  if the 

€ 

ψ i  are not orthogonal, the state of M will not give 

unambiguous information about the state of S.  It is only possible to give probabilistic 

statements about the correlation between about the value of B on M and the value of A on S.  

                                                
37  Albert (1992),194-6, who credits the argument to Yakir Aharonov.  
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In this way, the Hilbert space formalism can elegantly account for approximate 

measurements.38   

 If we don't use pure states but subspaces, the account of approximate measurements is 

analogous: all interactions can be seen as a transformation of a given set of initial subspaces 

€ 

Φ i on S into a set of final density operators 

€ 

σ i  on M in the following way:  if S is initially in 

some unknown state in the subspace 

€ 

Φ i, this fact can be modeled by attributing to it the 

density operator  

 

€ 

ρi =
1
Ni

P Φ i( ), (3.14) 

where 

€ 

P Φ i( )  is the projection operator onto 

€ 

Φ i and 

€ 

Ni  the dimension of 

€ 

Φ i.  (If 

€ 

Φ i is of 

infinite dimension, we have to use unnormalized density operators and can only give 

conditional probabilities.)  This assignment of a density operator to an unknown state is called 

the von Neumann rule and corresponds to the maximum entropy principle in statistical 

mechanics.  We will discuss it further in chapter 5.  Again, 

€ 

ρi ⊗ψ 0
 gets mapped to some 

density operator 

€ 

Σ i  of the product space HS⊗HM by the measurement interaction.  This 

operator is projected onto a density operator 

€ 

σ i  in HM. 

 From that, we can give a general characterization of an approximate measurement:  an 

interaction is a measurement for a set of orthogonal subspaces 

€ 

Φ i if the final projection 

mixtures 

€ 

σ i  are sufficiently distinct.  To define distinctness of density operators, we can use a 

scalar product for operators defined by 

€ 

A,B = tr(AB).  If the scalar product is zero, we call 

the density operators orthogonal, and the measurement is exact.   

 Notice, however, that in the case of an approximate measurement the final states do 

not project to a mixture that is diagonal in the original eigenstates 

€ 

φi , because in the final 

states 

€ 

ciφi ⊗ψ i( )i∑ , the 

€ 

ψ i are not orthogonal.  As Albert has noted (Albert 1992), even 

approximately orthogonal 

€ 

ψ i can completely change the decomposition of the mixed state of 

S.  As an example, take a measurement of the variable A having an eigenbasis 

€ 

φ1,φ2 on S.  

Ideally, an initial state 

€ 

φ1 + φ2( ) 2  should lead to a final state 

 

€ 

ξ = φ1ψ1 + φ2ψ 2( ) 2 ,  (3.15) 

                                                
38  The only alternative to this that I can see is to assume that the interaction is not unique because of external 
disturbances.  But if the external disturbances are modeled quantum mechanically, we will again have a unique 
interaction, now on the combined system of S, M and environment and the result will be as above:  the final 
projected states of M are not orthogonal.   
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where 

€ 

ψ1,

€ 

ψ 2  are orthogonal states on M.  Now think of the measurement interaction 

introducing a small error Δ, so that the final state is 

 

€ 

′ ξ = φ1 ψ1 + Δψ 2
 
 

 
 + φ2 Δψ1 +ψ 2

 
 

 
 ( ) 2  (3.16) 

(where I ignore an overall normalization constant).  This has as biorthogonal decomposition: 

 

€ 

′ ξ = 1+ Δ( ) φ1 + φ2( ) ψ1 +ψ 2( ) + 1− Δ( ) φ1 −φ2( ) ψ1 −ψ 2( )[ ] 2 2  (3.17) 

which, for Δ as small as you want to choose it, represents 

€ 

ρξ ′
S( ), the projected state of S as a 

mixture of orthogonal pure states of S in the following way: 

 

€ 

ρξ ′
S( ) =

1+ Δ
2

P
φ1 + φ2
2

 

  
 

  
+
1− Δ
2

P
φ1 −φ2
2

 

  
 

  
 (3.18) 

But the states 

€ 

φ1 + φ2( ) 2  and 

€ 

φ1 −φ2( ) 2  are states that are maximally incompatible with 

the basis we had set out to measure (

€ 

φ1 and 

€ 

φ2).  This means:  we cannot say that the 

measurement interaction turns the state of S into a mixture of states that even approximately 

are eigenstates of the measured variable.  By the same argument, also M will not be in a 

mixture of eigenstates of B.  

 What would be a physically more plausible outcome of an approximate measurement?  

Consider an approximate position measurement:39  a plausible result from the model should 

be that the apparatus is in a mixture of (orthogonal) eigenstates 

€ 

ψ′ i of some macroscopic 

variable B (which can be read off by an observer and tells her the approximate value of A), 

and that the system is in a mixture of states that are correlated to the 

€ 

ψ′ i, but not necessarily 

orthogonal or eigenstates of any particular variable.  Rather, we expect wave packets of a 

certain width (depending on the error of the measurement) centered around the approximate 

value for A.  Obviously such wave packets are neither pairwise orthogonal nor are they 

defined as eigenstates of some variable on S.  Can we, instead of the biorthogonal 

decomposition rule, find some other rule for decomposing the final state that makes more 

sense physically?   

 This can be done by assuming that the measuring apparatus is decoherent.  In this 

case, the final state of the measuring apparatus gets quickly correlated with the environment, 

and therefore the final superposition 

€ 

ciφi ⊗ψ ii∑  of the combined system turns into a 

mixture.  Let us call the decoherence basis of the measuring apparatus a pointer basis 

€ 

ψ′ i.  

Obviously, if M is a decoherent system, then the final states 

€ 

ψ i must be elements of the 
                                                
39  Von Neumann has treated this in a simple model (von Neumann, 1932,  236-7). This model is discussed in 
more detail in Everett (1973), 56-60 and 100-103  



43 

pointer basis, otherwise the superselection rules for M will have the result that the information 

about S is not retrievable by any measurement on the measuring apparatus alone.   

 In the case of an approximate measurement the 

€ 

ψ i will only be approximately 

identical to the pointer basis 

€ 

ψ′ i.  That is, we can express the 

€ 

ψ i as  

 

€ 

ψ i = bijψ ′ jj∑  with bij ≈ δ ij . (3.19) 

Then the final state of the measurement interaction is 

 

€ 

ξ = ciφi ⊗ψ ii∑ = cibijφi ⊗ ′ ψ j =
ij∑ ′ c j ′ φ j ⊗ ′ ψ jj∑  (3.20) 

with 

 

€ 

′ φ j = N j cibijφii∑  (3.21) 

where 

€ 

N j  is a normalization constant, and 

€ 

′ c j = 1 N j .  In the terminology we introduced in 

section 3.1, 

€ 

′ φ j  is the relative state to 

€ 

′ ψ j , given 

€ 

ξ . 

 Now this final state decoheres because of the interaction of M with its environment, 

the decoherence basis being 

€ 

′ ψ j .  That is, the state develops into a state 

 

€ 

′ ξ = ′ c j ′ φ j ⊗ ′ ψ j ⊗ω jj∑  (3.22) 

where the 

€ 

ω i  are a set of orthogonal states of the environment.  To calculate the projected 

states after formula (3.4), we use the bases 

€ 

φi , 

€ 

ψ′ i, and 

€ 

ω i  in the systems S, M, and the 

environment (remember that it doesn't matter which bases we use to calculate the projected 

state) and obtain for S: 

 

€ 

ρξ ′
S( ) = φiψ′ kω l ,ξ′

*
φ jψ ′ kω l ,ξ′ φi

† ⊗φ j
ijkl
∑

= φiψ ′ kω l , ′ c m ′ φ m ′ ψ mωm
*
φ jψ ′ kω l , ′ c n ′ φ n ′ ψ nωn φi

† ⊗φ j
ijklmn
∑

= ′ c k
2
φi,φ′ k

*
φ j ,φ′ k φi

† ⊗φ j
ijk
∑

= ′ c k
2
′ φ k
† ⊗ ′ φ k

k
∑ = ′ c k

2P ′ φ k( )
k
∑

 (3.23) 

where I have left out the tensor product sign ⊗ within scalar products.  This result means:  

unlike using the biorthogonal decomposition rule, using decoherence will give us a projected 

state of S that depends bilinearly on the states 

€ 

φ′ i  and therefore approximates a state diagonal 

in the 

€ 

φi  as 

€ 

bij →δ ij .  This is the result we found physically plausible in our considerations 

above:  whereas the biorthogonal decomposition gave us as the final state a mixture that was 

diagonal in some basis that depended on the initial state and could basically be any basis on S, 

decoherence gives us a state that is a mixture of the relative states 

€ 

φ′ i  to the pointer basis 

€ 

ψ′ i.  
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This means:  if we, for example, have a position measurement with an error 

€ 

Δx , then the 

resulting state of S will be a state of width 

€ 

Δx  around the position that the pointer state 

indicates. 

 The final state of M is: 

 

€ 

ρξ ′
M( ) = φkψ′ iω l ,ξ′

*
φkψ ′ jω l ,ξ′ ′ ψ i

† ⊗ ′ ψ j
ijkl
∑

= φkψ ′ iω l , ′ c m ′ φ m ′ ψ mωm
*
φkψ ′ jω l , ′ c n ′ φ n ′ ψ nωn ′ ψ i

† ⊗ ′ ψ j
ijklmn
∑

= ′ c i
2
φk,φ′ i

*
φk,φ′ i ′ ψ i

† ⊗ ′ ψ i
ik
∑

= ckbki
2
′ ψ i
† ⊗ ′ ψ i

ik
∑ = ckbki

2P ′ ψ i( )
k
∑

 (3.24) 

That is:  

€ 

ρξ ′
M( )  is always diagonal in the pointer basis 

€ 

ψ′ i, and the probabilities approximate 

the correct probabilities as 

€ 

bki →δki .  Again, this is exactly the desired result.   An analogous 

treatment can be given to an approximate measurement of degenerate operators. 

 Of course, the question still remains whether measuring apparatus really are 

decoherent.  Because, as I have said, we don't have a universally applicable theory of 

decoherence yet, this claim remains an hypothesis.  But in the case of measuring apparatus, 

there is an argument why this should be the case:  remember that it is sufficient for the pointer 

basis to be decoherent that the states of the pointer basis will interact in such a way with the 

environment that the resulting states of the environment are orthogonal without changing the 

pointer states.  But this means simply that the interaction of the environment with the 

measuring apparatus is again a measurement interaction.  Now remember von Neumann's 

observation about the chain of measurement interactions:  the measurement apparatus itself is 

never the endpoint of a measurement, it must at least allow the possibility of an observation, 

i.e., the different pointer states must interact differently with the environment so that, if an 

observer is present, the environment can transmit the information about the pointer states to 

the observer.   

 In the most common case, the transmission from the measurement apparatus to the 

observer will be optical, that is, the measurement apparatus must look differently in its 

different pointer states, which is to say it must emit or reflect orthogonal states of the 

electromagnetic field.  Consider, for example, a photographic plate:  if different spots on the 

plate are blackened, this results in different patterns of absorption of incident light.  In the 

case of a measuring apparatus with a material pointer, this pointer will interact differently 

with the electromagnetic field depending on which position it is in.  In all these cases, it is 
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sufficient that the state of the environment (electromagnetic field) after the interaction is 

different for different states of measuring apparatus.  And of course it is the purpose of a 

measuring apparatus that its different states are simply discernible (generally just by looking 

at it).  But this means that different apparatus states lead to clearly different states of the 

electromagnetic field around the apparatus.  Otherwise we would not be able to see any 

difference between the apparatus states.  Of course, the measurement apparatus might be read 

by other means than by looking at it (printout, electrical signals, or sound, for example).  But 

then, whatever the states of the environment are that carry the information about the state of 

the measuring apparatus, those states have to be orthogonal.   

 Note that in case of approximate measurements, which of course may happen at any 

stage of the chain of measurement interactions, the argument above ensures that as long as the 

final states of the last  measuring system in the chain are decoherent, the final states of the 

measured system will be the relative states of these and therefore approximate the eigenstates 

of an exact measurement.  The question of the endpoint of the chain is of course still open.   

 Let us sum up what an analysis of von Neumann's model of the measurement 

interaction can tell us.  First of all, the disappearance of coherent states of the measured 

system can be explained from the interaction itself.  Any measurement will transform 

superpositions of  eigenstates of the measured variable on the system into mixtures.  If, 

furthermore, the measuring apparatus itself is decoherent, the combined system (object plus 

apparatus) will decohere into a mixture of states of the pointer basis for the measuring 

apparatus and the corresponding relative states for the system.  In this case, only the observed 

system plus the measuring apparatus plus the environment will be in a superposition.   

 It follows from this discussion that the transition from an initial superposition to a 

final mixture of eigenstates in the process of measurement can be explained, not by invoking 

an ad hoc biorthogonal decomposition, but from the decoherence of the measurement 

apparatus.  This makes it possible to say why just the eigenstates of the measured variable 

decohere:  this is exactly the purpose for which measurement apparatus are built.  A 

measuring apparatus only serves its purpose if its decoherent states get correlated with the 

eigenstates that it is supposed to measure, and therefore it serves to decohere the eigenstates 

of the measured observable (at least approximately.)  But as we found in section 3.1:  the 

resulting mixture is not an ignorance mixture and hence cannot be interpreted as a probability 

distribution over reduced states.  It is only at this point that reduction becomes necessary.  

Without it, as von Neumann argues, we cannot explain the repeatability of measurements:   
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 If all the measurement interaction does is producing an objective mixture of 

eigenstates then nothing tells us that repeated measurements will result in the same 

measurement outcome.  We would rather expect that there is a probabilistic distribution of all 

possible outcomes.  Is there anything in quantum mechanics that tells us otherwise?  This 

problem often has not been noticed by proponents of an interaction model of reduction.40  

They implicitly assume that the resulting mixture can be understood as an ignorance mixture, 

that is, that the system is really in one eigenstate and we just don't know in which one.  Once 

we know this from observation, of course, the system will be in this eigenstate whenever we 

perform a measurement again.  But why should we expect the same behavior in the case of an 

objective mixture?  Here we know that the system really is not in any pure state. 

 

3.4  The Reduction Postulate 

 Von Neumann bridges the difference between the objective mixture attainable by 

decoherence and the ignorance mixture demanded for the repeatability of measurement  by 

postulating that there is a separate process of reduction to pure states that happens upon 

measurement.  His reason for this postulate is that a physical process governed by a unitary 

transformation matrix can never produce a reduction to pure states (or, we might add, an 

ignorance mixture of these) (von Neumann 1932, 202-6).  Hence, there must be some 

fundamentally different process that explains that measurements give unique values for 

variables even if the initial state of the system did not have such a value. 

 While von Neumann does not explicitly distinguish between objective and ignorance 

mixtures, we can rephrase his treatment in the following way:  the interaction between a 

system and a measurement apparatus leads to an objective mixture of eigenstates of the 

measured variable, the separate and parallel process of reduction turns this objective mixture 

into an ignorance mixture, i.e., some unpredictable pure state.   

 That is:  if the initial state of the object system is 

€ 

ciφii∑ , where the 

€ 

φi  are eigenstates 

of the measured variable A, the state of the object system after the measurement is some pure 

state 

€ 

φi , but we don't know which.  All we know is that the probability for the outcome 

€ 

φi  is 

€ 

ci
2.  We can represent this fact by attributing to the system the state 

€ 

ci
2P φi( )i∑ , where this 

state has to be understood as an ignorance mixture.  As we have seen in the section 2.4, this 

                                                
40  See, e.g., Nancy Cartwright's criticism of the model of Daneri, Loinger, and Prosperi (Cartwright, 1983, 
p.169-171), and Hughes's criticism of Jauch (Hughes, 1989, p.283) 
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state cannot be obtained through a unitary transformation from the initial state of the system, 

and we found in this chapter that also the interaction with some other system cannot produce 

this state.  Therefore we have to postulate that there is some fundamentally different process 

in nature which happens when a measurement is performed and which, unlike all other 

physical processes, cannot be described by a unitary transformation.  This process is called 

the process of reduction. 

 Von Neumann justifies the existence of a process of reduction that cannot be 

explained within quantum mechanics with the necessary distinction between subject and 

object in our description of nature.  (Von Neumann, ibid., 222-23)  Consciousness is 

fundamentally different from any phenomenon that can be modeled in a physical theory.  Any 

theory of nature presupposes a conscious subject that formulates and entertains this theory.  

Therefore, the conscious subject always stands outside of the model.  

 Hence, it is possible that a process involving a conscious subject has a fundamentally 

different description than any other physical process.  Von Neumann's position here is 

subjectivist:  saying that the process of conscious observation is fundamentally different from 

all other physical processes is equivalent to saying that the conscious subject stands outside of 

the physical world.  If we were to take human observers as physical systems like others, this 

distinction would lose all plausibility.  But von Neumann does not want to refute the 

physicality of the human mind completely.  Rather, he invokes what he calls the "principle of 

psycho-physical parallelism."  Usually, this is taken as the thesis that mind and physical world 

are causally independent as in Leibniz's theory of preestablished harmony.  But von 

Neumann's claim is rather epistemological than metaphysical:  He says that it must be 

possible to describe the process of subjective apperception—which, in truth, is outside of the 

model—as if it was happening within the physical world.   This statement is yet another 

indication of the subjectivist position underlying von Neumann's argument:  The physical 

world is not the objective substratum of every phenomenon (including conscious observers), 

but the construct of our consciousness.  Therefore, consciousness itself is outside of the 

physical world.   

 If apperception is a process that is fundamentally different from ordinary physical 

processes, then we are faced with the following dilemma:  if we are to be able to give a 

physical description to the process of apperception, then how can we postulate that a 

fundamentally different process of reduction is consistent with a general description of 

physical systems given by quantum mechanics, which entails that all processes are unitary?  If 

on the other hand, measurement involves something that is outside of physics as described by 
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quantum mechanics, then how should we be able to give a description of this fact within 

quantum mechanics?   

 Von Neumann's answer to this dilemma is to give the process of reduction a strange 

ambiguity.  It is so to speak not fully physical, but as far as its physical effects are concerned, 

it can be shown to be consistent with unitary evolution in a certain sense.  The "not-quite-

physicality" is explained by the fact that it only happens in processes involving 

consciousness, which is beyond the reach of any theory of nature.  About the issue of 

consistency, von Neumann remarks that measurement doesn't just involve the interaction 

between an object system and a measuring apparatus.  It always involves a whole chain of 

such interactions eventually leading to a conscious observer.   

 Von Neumann cites the example of a measurement of temperature (von Neumann 

1932, 223):  one could say that a thermometer measures the temperature of its environment.  

But one could also describe the interaction of the mercury with its environment and its 

expansion by a suitable physical model and say that it is the length of the mercury column 

that is measured.  Further, one could physically describe the interaction of the mercury with 

the electromagnetic field and say that its state is measured.  Or, one could give a description 

of the refraction of the light and absorption in specific parts of the retina and claim that it is 

the position of the absorption that is measured.  One could go on to describe the excitation of 

cells of the optical nerve and certain areas of the brain and say it is this that the observer 

measures.  But, as he finishes:  ". . . however far we calculate . . . at one point we will have to 

say:  and this is perceived by the observer."  This means, however far we extend our physical 

model, we cannot get rid of a conscious subject perceiving a measurement outcome at the end 

of any measurement process.  This is the endpoint in the chain of interactions that actually 

defines a measurement and without which our definition from the last section would be 

incomplete.  But at the level of the conscious subject are we forced to require that variables 

actually have single values.  It is not possible to give a meaning to a conscious observer being 

in a superposition of conscious states.  But we are free to move the border between what we 

consider the observed object and the observer:  at any point in the chain we can say that this is 

the point where the observation happens, and therefore apply the reduction postulate.  Hence, 

if we want to avoid contradictions in the model, we have to show that it doesn't matter for the 

predicted measurement outcome at what point we choose to apply the reduction postulate. 

 The important argument for this proof of consistency is that because of the linearity of 

the equations of motion it does not matter at which point the process of reduction takes place.  

Every measurement in the chain only is an interaction with the measurement apparatus 
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before, not with the complete composite system.  Therefore, only the projected mixture plays 

a dynamical role and not the overall superposition.  Hence, all the reduction postulate 

amounts to is the reinterpretation of the projection mixture as an ignorance mixture, and it is 

obviously irrelevant at which stage this is done: the equations will look exactly the same 

regardless.  Von Neumann concludes from this that while it is necessary to postulate a distinct 

process of reduction, it is not necessary to worry about when exactly in the chain of 

interactions between the object system and human consciousness it happens.  It is sufficient to 

know that somewhere on the way from the system to the human consciousness a reduction 

takes place.  It follows from this argument that the only way to test the reduction postulate 

empirically would be to perform a measurement on the total state of the composite system:  

Only there could we see a difference between the superposition and the ignorance mixture.  

But as we have seen in our discussion about decoherence, such a measurement would be 

extremely difficult to perform if any decoherent system is involved. 

 Von Neumann's subjectivism is of a different kind than Bohr's (Bohr 1935):  Bohr 

takes the whole categorical system of classical physics as given and thinks that quantum 

mechanics can only be formulated within these categories.  First, we have to describe an 

experimental setup in terms of classical physics and only then can we predict the behavior of 

a quantum mechanical system in this setup.   

 Von Neumann, on the other hand, has no problem admitting that quantum mechanics 

is a fundamentally new and, in principle, self-sufficient way of describing nature.  Therefore, 

also measurement apparatus and even human observers must be describable by quantum 

mechanics.  But any physical theory does not give us nature as it is but only a model that the 

subject constructs.  Therefore, his subjectivism is not the same as Bohr's operationalism but 

more of the kind of Kant's transcendental idealism.  He acknowledges the demand for a 

universally applicable physical law (here for the case of the physicality of human observers), 

but not in the form of a direct postulate of physicality.  Instead, he formulates it as a 

methodological principle that we should be able to describe processes of human perception as 

if they were physical.  This is reminiscent of Kant's regulative principles or maxims,41 which 

are not to be understood as statements about how the world is, but what form our inquiry into 

nature should take.  Kant writes  (Kant 1929, B694): 

                                                
41  I take it that Kant uses "maxims" and "regulative principles of reason" as synonyms, at least in the Critique of 
Pure Reason.  For a more detailed analysis of his use of regulative principles, see (Lehner 1986). 
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I entitle all subjective principles, which are derived, not from the constitution 

of an object but from the interest of reason in respect of a certain possible 

perfection of the knowledge of the object, maxims of reason.  There are 

therefore maxims of speculative42 reason, which rest entirely on its speculative 

interest, although they may seem to be objective principles. 

When merely regulative principles are treated as constitutive, and are therefore 

employed as objective principles, they may come into conflict with one 

another.  But when they are treated merely as maxims, there is no real conflict, 

but merely those differences in the interest of reason that give rise to differing 

modes of thought.  In actual fact, reason has only one single interest, and the 

conflict of its maxims is only a difference in, and a mutual limitation of, the 

methods whereby this interest endeavors to obtain satisfaction. 

 Let us try to adapt Kant's ideas to our situation:  our interest in a systematic and 

coherent theory of nature compels us to extend the application of a mechanical model as far 

as ever possible.  From this "interest of reason" results a postulate of physicalism.  But we 

have no reason to take this postulate as an objective law:  all it tells us is to try to find a 

mechanical explanation for any phenomenon we encounter.  It does not make any statement 

about matters of fact independently of our modeling.  This is the content of von Neumann's 

postulate of psycho-physical parallelism, and like Kant, he stresses that it should be taken as a 

statement about our making of models. 

 Conflicting with this postulate of physicalism in von Neumann's account is the 

postulate that once we have performed a measurement, the system (and the measuring 

apparatus and any further element in the chain of measurement) is in a pure state.  Von 

Neumann justifies this claim by theory-immanent reasoning:  there is no other quantum 

mechanical state that we could ascribe to the system which would give us the right empirical 

predictions.  He obviously sees this as a sufficient reason to postulate the reality of the 

reduced state.  But notice that this argument goes from empirical knowledge (the value of a 

measurement outcome) to some statement within the model (i.e., a state description).  Hence, 

it is not a logical deduction but rather a form of inference to the best explanation.  Or, to put it 

in another way:  the theory itself does not tell us how to relate its elements to our perceptions.   

                                                
42  i.e. theoretical 
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  Kant invokes a different faculty of reason for the making of such connections 

between theory and empirical knowledge:  this is the faculty of judgment.  He claims that in 

all such instances of judgment we use a regulative principle:  nature is suitable for the 

formulation of systematic empirical laws (Kant 1952, B XXV - XXXIX).  This principle 

again is only justified by an interest of reason, namely the abstraction of theories from 

specific phenomena.  Therefore, postulating a pure state as the outcome of a measurement 

process should also not be seen as a statement about a matter of fact independent of the given 

theoretical framework, but merely as a methodological rule to ensure the applicability of 

quantum mechanics to our empirical knowledge.   

 There is a further parallel: von Neumann's solution to the conflict between unitary 

evolution and reduction resembles very much Kant's treatment of the antinomies:  there are 

two conflicting methodological principles that give the appearance of an objective 

contradiction.  But this is an illusion resulting from taking methodological rules as laws of 

nature existing objectively and independently of the perceiving subject.  If one was to be a 

realist about quantum mechanics, the coexistence of the two conflicting processes would 

clearly pose a problem.  But von Neumann claims that on a subjectivist account it is sufficient 

to show that within the theoretical account of quantum mechanics the application of the two 

different postulates is consistent.  This consistency proof is von Neumann's proof of the 

irrelevance of the moment of reduction discussed above.   

 It is not surprising that many people were not convinced of von Neumann's defense of 

the consistency of the two processes.  It is undoubtedly true that for all practical purposes the 

coexistence of the two processes does not lead to any inconsistencies in the application of 

quantum mechanics.  But even if we accept von Neumann's subjectivist standpoint, his 

solution of the measurement problem is not very satisfying.  First of all, if we are to take his 

notion of psycho-physical parallelism serious, it should be possible in principle to model a 

conscious observer in quantum mechanics.  This would be all the more important because, as 

we remarked earlier, the definition of a measurement in von Neumann's model is incomplete: 

it only makes the conditional statement that if a quantity is measurable on the apparatus, then 

a correlated quantity is measurable on the object.  If we don't give a quantum mechanical 

account of what constitutes the endpoint of such a chain of interactions, the definition is 

spurious.  Von Neumann does not say anything about how this endpoint is to be expressed in 

quantum mechanics.   This leads to a fundamental ambiguity in the status of the reduction 

process:  Are we to think of reduction as the subjective appearance of a quantum mechanical 

superposition and hence not as a physical process, but rather a redescription of the same fact; 
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or are we to take reduction as an objective physical process on the same footing as unitary 

evolution which is caused by a conscious act of observation? As I have argued in the 

introduction, this distinction makes sense independently of whether we ultimately hold a 

subjectivist or objectivist view about the epistemology of scientific theories.  In principle, this 

question is decidable by experiment, as we have seen before, because it is equivalent to the 

question whether the state of the composite system is a superposition or a mixture. 

 Notice that also on the Kantian account of von Neumann's position, his proposed 

solution is not admissible.  Compare the situation to Kant's solution of the third antinomy:  

Kant accepts that the principle of causality cannot exclude the existence of transcendental 

freedom (that is, absolute spontaneity of an act).  Nevertheless, he insists, such transcendental 

freedom necessarily lies outside of the reach of all possible experience.  The fact that 

universal causality is postulated by a regulative principle does not mean we can ever exempt a 

phenomenon in our experience from it.  More general: regulative principles are not limited in 

their scope, so that there could be a phenomenon that the principle does not apply to, but in 

the status of their claim:  they do not give us a categorical description of an object, but they 

tell us how we are to find a representation of the object within the categorical framework 

(Kant 1929, B537-38). 

 Von Neumann, though, attempts the former use: he tries to limit the applicability of 

the dynamical law of unitary evolution within the range of possible experience, and wants to 

express the transcendental nature of the observing subject by a different phenomenal law of 

causality.  This must lead to contradictions within the theory.  These contradictions appear in 

von Neumann's conflicting characterizations of the reduction process: his consistency 

argument seems to be an argument for the subjective nature of reduction, because it assumes 

that there should be no objective matter of fact when the reduction takes place.  On the other 

hand, his argument from the repeatability of measurement for a process of reduction is an 

argument for the objectivity of this process: because an ignorance interpretation of objective 

mixtures is impossible, there must be an objective process of reduction. 

 A subjective account of reduction seems quite implausible: how could an observer be 

in an objective mixture of states (i.e. there is no matter of fact about which measurement 

outcome she observed) and still have a definite belief about having observed one outcome?  

This problem led E. Wigner to assume that the dynamical evolution of conscious observers 

must be fundamentally different from the unitary evolution of other systems (Wigner 1961).  

This enables them to cause a physical process of reduction.  But not only is there no empirical 

evidence for such a difference, it even seems hard to imagine what kind of a nonunitary 
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process could be at work here and how this (quantum mechanical) process would manage to 

reliably produce pure classical states. 

 J. A. Wheeler has discussed a fundamental problem about an objective interpretation 

of the reduction postulate (Wheeler 1957 and 1979-81): how are we to apply the reduction 

postulate to cosmology, where we don't have a defined experimental setting and an observer 

who is external to this setting?  Should we assume that without the presence of a conscious 

observer no reduction of the state has ever taken place?  Then we will have to assume that the 

state of the universe evolved into more and more complicated superpositions for billions of 

years until the first conscious observer in the history of nature appeared.  Even worse, the 

appearance of a conscious observer itself cannot be supposed to happen simultaneously for all 

the components of the state of the universe, which presumably is an immensely complex 

superposition of eigenstates for any macroscopic variable.  But then, it becomes fully unclear 

when the reduction would happen.  This cosmological argument turns the ambiguity of von 

Neumann's postulate of psycho-physical parallelism into a serious paradox:  if a conscious 

observer is to be the agent of reduction as von Neumann postulates, then it has to be outside 

of the physical universe.  But if it is supposed to be a physical system (or at least can be 

described as such), then it must be part of the physical universe.   

 The gravity of the dilemma becomes fully visible if we consider measurement on 

entangled states.  This was first pointed out by Einstein, Podolsky, and Rosen (1935) in their 

famous thought experiment:  Consider a composite system in an entangled state, and let the 

two subsystems separate to some large distance.  If we now perform a measurement on one of 

the subsystems, this measurement will not only reduce the state of the measured subsystem, 

but also the state of the distant partner.   

 This fact alone puts adherents of an objective process of reduction into an 

uncomfortable position:  they have to assume that the process acts nonlocally, i.e., directly 

from one system to the other without any intermittent medium.  It seems much more plausible 

(and that was Einstein, Podolsky, and Rosen's intention) to assume that we simply learned 

about a fact about the second subsystem that objectively existed already before our 

measurement (although it was not described by the quantum mechanical state).  But there is 

little reason for a subjectivist to feel confirmed either:  we can, after all, measure any variable 

on the first subsystem, and from this it follows with a suitable entangled state that we can 

measure any variable on the second subsystem.  This is especially clear in David Bohm's 

(1957) version of the thought experiment.  Here, the entangled state is a singlet (spin zero) 

state, and we measure different components of spin on each subsystem.  Because the total 
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spin of the composite system is zero, if we measure the spin in any direction on one 

subsystem, we know that in the other system the spin in that direction has the opposite value.   

 A subjectivist now would have to assume that there are objective facts about any 

variable that is measurable in this way (in Bohm's example values for spin in any direction).  

John Bell (1964) was able to derive from this assumption an inequality of measurement 

outcome correlations that is in conflict with the values predicted by quantum mechanics.  But 

this means that there cannot be any local hidden variable theory that could explain away the 

nonlocality of the reduction process.  The result can be generalized to the assumption that the 

measurement outcomes depend only statistically from the hidden variables (Wigner 1970).  

The inequalities have been tested experimentally, and the quantum mechanical predictions 

have been vindicated.43  

 The Bell-Wigner inequalities have given rise to an enormous body of literature, 

because they seem to make metaphysical assumptions empirically testable without the need of 

a prior theoretical model.  An important result was found by Suppes and Zanotti (1976) and 

by Jarrett (1984):  The assumptions of the Wigner-Bell inequalities can be analyzed in two 

postulates: 

• The probabilities of measurement outcomes on one side are independent of what 

measurement was performed on the other side.  (Jarrett calls this assumption 'locality'.  It 

is not equivalent to the concept of locality I introduced in 2.2, although we would expect 

it to follow from locality as defined there, if no interaction through fields is present.) 

• The probabilities of measurement outcomes on both sides, given a complete description of 

the state, are statistically uncorrelated  (completeness). 

The quantum mechanical predictions fulfill the first postulate.  Therefore it seems plausible to 

require that also the theoretical model of the measurement process is local.  This conclusion 

has been disputed (Jones, 1991) because of the fact that locality is a notion that is only 

defined in field theory (see Section 2.2).  Nothing in point mechanics a priori excludes the 

possibility of action at a distance.  Nevertheless, locality seems a well-confirmed empirical 

principle and it plays a central role in experimental practice:  One fundamental assumption of 

experimental physics is that you can shield systems from their environment.  This would be 

impossible if there are non-local interactions.  Furthermore, there is nothing in the derivation 

of the Bell-Wigner inequality that could not be applied to a modeling of the process in a 

                                                
43Best known is the experiment by Aspect (1976) which also proved that if there is a reduction, it has to 
propagate faster than the speed of light. 



55 

relativistic quantum field theory.  The nonlocality, after all, does not stem from the non-

relativistic character of the Schrödinger equation, but from the reduction postulate, which is 

logically independent from any assumption about the dynamics of the theory and supposed to 

apply to any measurement on a superposition.   

 Because of the no hidden variable theorems, there is no way to get rid of some form of 

nonlocal process if we assume the reduction postulate.  It has often been pointed out that the 

nonlocality of the process cannot be used to send signals, so that the violation of relativistic 

locality is 'hidden' and one can assume that reduction is at least at the phenomenal level not 

inconsistent with theories that assume locality, such as the theory of relativity (Shimony, 

1980).  But this is of little comfort if one tries to give an interpretation of quantum mechanics 

in the sense discussed in the introduction:  then we don't look merely for empirical 

consistency, but for a joint model of both theories.   

 To sum up:  we have two weighty reasons to look for a replacement of the reduction 

postulate:  its conflict with desiderata of scientific methodology and its conflict with the 

assumption of locality.  Everett's formulation promises just that: it is a theory of quantum 

mechanics without an objective process of reduction, and it does not prohibit us from treating 

conscious observers as quantum mechanical systems. 
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Chapter 4 

The Interpretation of Everett's Formulation 
 

4.1  Everett's Relative State Formulation of Quantum Mechanics 

 The fundamental idea of Everett's model is that the repeatability of measurement can 

be accounted for within quantum mechanics.44   It is only for the interpretation of quantum 

mechanical states in terms of observations (i.e., the Born rule) that we need to introduce the 

consciousness of the observer.  The starting point of Everett's treatment of the question of 

repeatability is that we need some recording device that keeps track of an earlier measurement 

outcome if we want to be able to decide whether this outcome agrees with a later 

measurement or not.  Everett calls such a recording device an observer.  Note that despite this 

anthropomorphic term all we need at this point is a system that allows for some kind of 

permanent trace of a measurement outcome (e.g., a photographic plate, a written recording, or 

a computer memory).  I will call such systems memories.   

 A quantum mechanical model for a memory is not difficult to construct.  A memory 

should be a system whose states can permanently represent propositions about other systems.  

As we have found in Chapter 2, mechanical propositions contain four components that 

specify: 

(1)  a system 

(2)  a variable (or property) on that system 

(3) the value of the variable 

(4)  the time 

We will call such a specification a memory entry, and a (finite) set of entries a memory list.  

Everett represents an entry by a symbol 

€ 

ω i
j( ), where j designates the measured system, the 

choice of Greek letter 

€ 

ω  the measured variable, and 

€ 

ω i  the i-th eigenvalue of this variable.  

In Everett's model, the specification of time is not given explicitly, but by a linear ordering of 

the entries.  As long as we are only concerned with the temporal order of observations and not 

their exact time, this is sufficient.  Otherwise, we could easily add a fourth parameter to each 

entry specifying the time of the observation.  A memory list therefore will be written [A, B, ... 

, N], where each letter stands for a memory entry and the order of the letters represents the 

temporal order of the entries. 

                                                
44Throughout this section, I will rely on (Everett 1973)  
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 We can now define a quantum mechanical memory:  it is a quantum mechanical 

system which has states in its state space that represent memory lists.45  Such a memory state 

representing the list [A, B, ... , N] is written as 

€ 

ω [A, B, ... , N].  As in the case of a 

macroscopic measurement (section 3.3), it is more appropriate to say that a memory sequence 

is represented by a subspace of states of the memory, because generally a memory will be a 

macroscopic system and a lot of different quantum mechanical states will correspond to one 

memory sequence.  But again this generalization doesn't substantially change the argument, 

so I will generally use single states for simplicity of notation. 

 As in von Neumann's model of measurement, we require that two memory states that 

represent different lists be orthogonal, for the same reason as there:  it guarantees the 

distinguishability of different memory states.  Let us now turn to the dynamics of a 

measurement process for a memory, which is a simple analogue to von Neumann's model:  

the memory states must be stable over time, i.e., they must be stationary states of the system.  

The only change they can undergo is the acquisition of new information through a 

measurement.  This must not disturb the information already contained in the memory.  

Hence, the measurement interaction of a memory with an object that is in the eigenstate 

€ 

ϕ i  of 

a measured variable 

€ 

A  with eigenvalue 

€ 

α i will look like 

 
  

€ 

ϕ i ⊗ω …[ ]→ϕ i ⊗ω …α i[ ], (4.1) 

where    

€ 

…[ ] stands for any memory list that was recorded before the measurement, and 
  

€ 

…α i[ ] 

stands for the same list with the entry 

€ 

α i added at the end. 

 Here, we have assumed that the measurement interaction is exact (for simplicity), 

repeatable (because that is the case we are interested in), and only involves the object and the 

memory, without an intermediate measuring apparatus (which could easily be written in, but 

is irrelevant for our purposes).  In the case of a measurement on a superposition of 

eigenstates, linearity dictates, as we have seen, that the interaction will lead the initial state  

 
  

€ 

Ψ0 = ciϕ i ⊗ω …[ ]
i
∑  (4.2) 

into the final state 

 
  

€ 

Ψ1 = ciϕ i ⊗ω …α i[ ]
i
∑  (4.3) 

                                                
45The meaning of the memory states of course is not an intrinsic physical property of these states, but given by 
the form of the interaction given in equation 4.1. 
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 To represent a second measurement, all we have to do is replace the memory list   

€ 

…[ ] 

by 
  

€ 

…α i[ ] in (4.2), and we obtain for the state after the second measurement: 

 
  

€ 

Ψ2 = ciϕ i ⊗ω …α i,α i[ ]
i
∑  (4.4) 

While this state is still a superposition, the state of the memory now is an objective mixture of 

memory states in which the earlier and the later result agree.  According to the Born rule, only 

records in which both measurement outcomes agree have a nonzero probability.  This 

argument has a long history, it actually predates Everett's theory:  its original form was Mott's 

argument for the emergence of particle trajectories in quantum mechanics.46   Hence:  while 

there still is no objective matter of fact about the measurement outcome, it is an objective 

matter of fact that there are no outcomes which represent different values for 

€ 

A  in the two 

measurements.  To make this claim somewhat more precise, let us think of a second 

measurement apparatus that measures on the memory the property 'the last two entries agree'.  

That is, all 
  

€ 

ω …α i,α i[ ] are eigenstates of eigenvalue 1, all other 
  

€ 

ω …α i,α j[ ] with 

€ 

α i ≠ α j  

eigenstates of eigenvalue 0.  Then, 

€ 

Ψ2  is an eigenstate of this measurement, i.e. it also has the 

property 'the last two entries agree' although it is not an eigenstate for any single outcome 

  

€ 

ω …α i,α i[ ].  We will discuss this type of argument in more detail in the next chapter:  it is of 

fundamental importance for the interpretation of Everett's model. 

 This argument throws a new light on von Neumann's reason for postulating the 

reduction process.  Maybe the postulate is not necessary to ensure the repeatability of 

measurements.  But before we accept Everett's argument, there is still a major problem to be 

solved:  How are we to understand this claim:  that the state 

€ 

Ψ2 shows the measurement to be 

repeatable, although there is no matter of fact about a value for the observable?  It is at this 

point that Everett invokes the consciousness of observers.  He says (Everett 1973, 63): 

... we do not do justice to the theory of pure wave mechanics until we have 

investigated what the theory itself says about the appearance of phenomena to 

observers, rather than hastily concluding that the theory must be incorrect 

because the actual states of systems as given by the theory seem to contradict 

our observations. 

                                                
46Nevill F. Mott, "The Wave Mechanics of α-Ray Tracks," Proceedings of the Royal Society A126 (1929): 79–
84 
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That is:  assume the memory in question is a conscious observer.  Instead of trying to find a 

physical process that gives 

€ 

A  a value on a state like 

€ 

Ψ1, we could explain the observation of a 

value as a subjective appearance to an observer in these states.  It is obvious that any physical 

theory of a conscious observer has to distinguish between the physical state of this observer 

and the phenomenal quality that her state has for the observer herself.  This is the fundamental 

idea of Everett's interpretation:  that the difference between a superposition of observer states 

given by the unitary evolution and the observation of a single outcome has to be explained as 

the difference between an objective physical fact about an observer and its appearance to the 

observer. 

 Everett proposes the following interpretation:  we know that in a state 

€ 

Ψ1 we cannot 

say that the variable 

€ 

A  has one value.  But instead of saying that it has no value, let us assume 

that it has all eigenvalues given by nonzero components of 

€ 

Ψ1 simultaneously.  The state 

€ 

Ψ1 

describes not a single fact about the system, but a coexistent ensemble of facts, each element 

of the ensemble being represented by a component of 
  

€ 

ciϕ i ⊗ω …α i[ ]
i
∑ .  If the memory in 

€ 

Ψ1 

is instantiated by a conscious observer, each component 
  

€ 

ω …α i[ ] describes the observer as 

having perceived a single measurement outcome.  That is: for each component 
  

€ 

ω …α i[ ] the 

observer, as described by that component, is not conscious of any other component but 

  

€ 

ω …α i[ ]. 
 To be precise, Everett does not say quite that much.  The better part of his explanatory 

effort is contained in one footnote:  

At this point we encounter a language difficulty.  Whereas before the 

observation we had a single observer state afterwards there were a number of 

different states for the observer, all occurring in a superposition.  Each of these 

separate states is a state for an observer, so that we can speak of the different 

observers described by the different states.  On the other hand, the same 

physical system is involved, and from this point of view it is the same 

observer, which is in different states for different elements of the superposition 

(i.e., has had different experiences in the separate elements of the 

superposition) (Everett 1973, 68). 

 This is about everything that Everett gives us as an interpretation of his understanding 

of a superposition.  And clearly, it is not quite enough.  There are at least three problems for 

an interpretation of Everett's statement: 
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(1) It is quite obvious that we are not simply dealing with a 'language difficulty' here:  one 

should think that there is a clear answer to whether we are dealing with a single observer or 

many of them.  If it is one, how possibly could she be in many different states simultaneously, 

and if there are many, does that not mean that we have introduced a new physical process—

call it observer fission—that makes von Neumann's reduction process look perfectly 

harmless?  This means:  we are either left with a serious metaphysical or a serious physical 

problem.47 

(2) In whichever way we answer question (1), why would we as observers never be 

conscious of the process of splitting or the multiplicity of states?  This is an epistemic 

problem about Everett's model.  It has attracted less attention than problem (1), presumably 

because it seems hard to imagine how it could be addressed as long as problem (1) is not 

settled.  The first to seriously attempt to address this question were Albert and Loewer (1988) 

with a thought experiment that we will discuss in section 5.1. 

(3) Even if the observer herself is not conscious of the superposition, there could be 

interference between different components of the superposition.  Everett seems to assume that 

there are no possible interference effects between different observer states, but he does not 

give an argument for this assumption. 

 Before we turn to these problems, though, I will review how Everett argues that his 

model can substitute von Neumann's reduction process.  First of all, it is to be applied to the 

case of several observers:  we should demand that if Everett's model is to represent an 

apparent reduction, different observers measuring the same variable should agree on the 

outcome of the measurement.  If in the situation of equation (4.3) a second observer (with 

memory states   

€ 

′ ω …[ ]) observes the object, the total state after the second observation is 

 
  

€ 

ci ϕ i ⊗ω …α i[ ]⊗ ′ ω …α i[ ]( )
i
∑  (4.5) 

If then the first observer measures what eigenvalue the second has found (if the second 

observer is honest, she can simply ask her), and the result "observer two has found eigenvalue 

€ 

α i" will be recorded as a value 

€ 

′ α i  in the first observer's memory, the state is 

 
  

€ 

ci ϕ i ⊗ω …α i, ′ α i[ ]⊗ ′ ω …α i[ ]( )
i
∑  (4.6) 

This means:  for every possible component of the first observer's state, her observation of 

€ 

α i 

and the second observer's report about her observation (

€ 

′ α i ) agree. Again, the agreement is 

                                                
47This problem has been widely discussed in the literature.  See (Healey 1984) for a detailed treatment. 
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not an objective matter of fact, but only established 'within' the components of the 

superposition. 

 This argument together with the argument for repeatability seems sufficient to account 

for the appearance of reduction (of course only if we accept the possibility of a consistent 

interpretation):  neither any further observations of the observer herself nor any observations 

of other observers will contradict the value originally found.  That is: they are arguments for 

the stability and the intersubjectivity of an appearance of a measurement outcome, although 

there is no objective matter of fact about it. 

 But to recover the reduction postulate we need not only a statement about the 

repeatability of an observation, we also need a statement about the probability of each 

outcome.  Only these two statements together will give us the Born rule.  Everett addresses 

this issue by considering a sequence of measurements on an ensemble of N identically 

prepared systems.  If the initial state of each object system (numbered by the index j) is again 

€ 

ciϕ i
( j )

i
∑ , the initial state for the composite system is: 

 
  

€ 

Ψ0 = ci1ciNϕ i1
(1)⊗…⊗ϕ iN

(N )⊗ω …[ ]
i1 ,...iN
∑  (4.7) 

After the first k systems are observed (k < N), the state is 

 
  

€ 

Ψk = ci1ciNϕ i1
(1)⊗…⊗ϕ iN

(N )⊗ω …α i1
(1),…α ik

(k )[ ]
i1 ,...iN
∑  (4.8) 

All possible sequences of observation results 
  

€ 

…α i1
(1),…α iN

(N )[ ]  occur in this superposition. 

Everett defines the probability for a specific sequence as a measure M defined over the 

components 
  

€ 

ω …α i1
(1),…α iN

(N )[ ].  He then postulates two requirements for this measure: 

(1) It is a function of the coefficients 

€ 

ci and invariant under a change of the phase of the 

€ 

ci. 

(2) It is additive for the sum of components.  Everett justifies the additivity requirement 

with the conservation of probabilities over subsequent states 

€ 

Ψk  (being steps in a 

sequence of measurements).  The probability for a component 
  

€ 

ω …α i1
(1),…α iN

(N )[ ]  of 

€ 

Ψk  

should be the sum of the probabilities for all components of 

€ 

Ψk+1 that have memory 

sequences that begin with 
  

€ 

…α i1
(1),…α iN

(N )[ ]  , i.e. 

 
  

€ 

M ω …α i1
(1),…α ik

(k )[ ]( ) = M ω …α i1
(1),…α ik

(k ),α ik+1

(k+1)[ ]( )
ik+1

∑  (4.9) 
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This requirement ensures that the probabilities of later observations can be correctly 

conditionalized on the probabilities of earlier observations. 

He then shows that the only measure that fulfills these requirements is Born's square 

amplitude measure.   

 It follows from this definition that for long sequences (large N) the frequencies of the 

€ 

α i  within the memory lists will approximate the Born probabilities 

€ 

ci
2 for almost all 

component states, i.e. for a subset of the component states with a measure close to one, using 

the measure defined above.  Everett claims in the introduction to his paper (Everett 1973, 9) 

that he is able to deduce the probabilistic statements of the Born rule from his model.  

Apparently, what he has in mind is this argument linking probability to observed frequencies, 

which is completely analogous to the attempts to define probability from frequencies in 

frequentist theories of probability (mentioned in 2.3).  We see from the foregoing that this 

claim is exaggerated.  The law of large numbers for long sequences cannot be used to define 

the concept of probability in Everett's model, because the law of large numbers itself is a 

probabilistic statement: it requires a notion of probability already defined.48  The introduction 

of probabilities is part of the empirical interpretation of the model and logically independent 

of the model itself.  But this is not a problem for Everett's model as long as the interpretation 

does not lead to inconsistencies.  From this point of view, Everett's discussion of long 

sequences of observations can be seen as a check of consistency for his definition of 

probability: however probability is defined in his model, the definition must imply that 

observed frequencies approximate the probabilities. 

 Everett's introduction of probability has been criticized on several counts: 

(4) It has been argued widely49 that the measure that Everett defines cannot be interpreted 

as a probability if one is to assume that all outcomes of a measurement coexist: Because then 

all outcomes occur with certainty and are not probabilistic events. 

(5) A decomposition of a quantum mechanical state as a superposition of states is in no 

way unique:  we can represent it as a superposition of any basis of the Hilbert space.  Why 

should we, for the sake of the probabilistic interpretation, prefer one basis (the memory states) 

over any other?  This problem is known as the basis problem of Everett's interpretation.50  

                                                
48This mirrors the problem of a frequentist definition of probability in classical mechanics, see sect. 2.3. 
49For example, (Healey 1984) or (Hughes 1989) 
50(Cartwright 1974) raised this problem as a critique of an interpretation of Everett proposed by van Fraassen. 



63 

This problem leads to a host of puzzling questions if the measurement is not exact and 

produces a state that is not diagonal in the memory states. 

(6) Everett is silent about whether and how the measure M is defined for states other than 

the memory states.  But it follows immediately from his definition that the measure is also 

defined for the states of the observed systems 
  

€ 

ϕ i1
(1)⊗…⊗ϕ ik

(k ) (being the relative states of the 

memory states) and hence for any element of the basis  

 
  

€ 

χ I = ϕ i1
(1)⊗…⊗ϕ ik

(k )⊗ω …α i1
(1),…α ik

(k )[ ]  (4.10) 

of the Hilbert space 

€ 

Hk  of the composite system of observer and observed systems (I is the 

collective index).  Now we are faced with a dilemma: if the measure 

€ 

M  is a normal quantum 

mechanical measure, it is the defined for any state in 

€ 

Hk .  According to Gleason's theorem, 

this means that there is exactly one quantum mechanical state (mixed or pure) that represents 

this measure.  It is easy to see that this state is not the superposition 

€ 

cI χ II∑  but the mixture 

€ 

cI
2P χ I( )I∑ .  (The measure given by the superposition is not additive.)  But this means that 

the assumption of the additivity requirement simply begs the question of the measurement 

problem:  how it is that a superposition of measurement outcomes can be treated like a 

mixture.  If on the other hand, we treat M as a classical measure only defined over the 

elements of the basis 

€ 

χ I  considered as a classical state space, then we have aggravated the 

basis problem (5) further: we have excluded any superposition of these states from ever 

occurring, that is we have introduced an explicit notion of a 'classical realm' (in form of an a 

priori superselection rule) for which the rules of quantum mechanics don't hold. 

 Notice, though, that if we were to find an answer to problem (5) that justified the 

existence of a preferred basis independently from the state 

€ 

Ψk , it would be possible to correct 

problem (6) if we accept that the concept of probability is not derived from the theory but 

explicitly defined:  instead of the square amplitude measure, we can simply interpret the 

overall state 

€ 

Ψk  itself as defining the measure over the final observer states.  While 

€ 

Ψk  does 

not give a classical measure on 

€ 

Hk , it does define a classical measure over the basis 

  

€ 

ω …α i1
(1),…α iN

(N )[ ] of the observer's Hilbert space even if the projection of 

€ 

Ψk  on this space is 

not diagonal in the 
  

€ 

ω …α i1
(1),…α iN

(N )[ ] (simply because it does so for any basis).  Notice on the 

other hand that even if we had made sure that the projection is diagonal in the memory states, 

this would not answer problem (5):  a mixture can be interpreted as a measure over any basis. 
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 Before we try to interpret Everett's model, it makes sense to give another reason why 

we should even try.  Such a reason is the fact that Everett's model can account for the EPR 

paradox without invoking nonlocality (Everett 1973, 82-83).  Assume a particle pair S1, S2 in 

a singlet state 

€ 

Φ0, separated by a large distance.  Now two observers O1 and O2 perform 

measurements on S1 and S2, respectively.  If O1 measures a variable 

€ 

A  whose eigenstates are 

€ 

ϕ1,ϕ2, we can write 

€ 

Φ0 in this basis as  

 

€ 

Φ0 = 1 2 ϕ1
1( )ϕ2

(2) −ϕ2
1( )ϕ1

(2)( )  (4.11) 

O2 measures a variable 

€ 

B with eigenstates 

€ 

η1,η2.  The 

€ 

ϕ i  can be expressed in the basis of the 

€ 

ηi as  

 

€ 

ϕ i = bijη jj

2
∑ , (4.12) 

where 

€ 

bij  is a 2×2 unitary matrix.  The two measurements result in the state  

 

€ 

Φ1 = 1 2 ω 1( ) α1[ ]ϕ11( ) ⊗ b1 jη j
2( )ω 2( ) β j[ ]j

2
∑(

−ω 1( ) α2[ ]ϕ21( ) ⊗ b2 jη j
2( )ω 2( ) β j[ ]j

2
∑ )

 (4.13) 

If O1 now goes on to find out what results O2 has obtained (in the way we discussed above), 

the resulting state is  

 

€ 

Φ2 = 1 2 b1 jω
1( ) α1, ′ β j[ ]ϕ11( ) ⊗η j

2( )ω 2( ) β j[ ]j

2
∑(
− b2 jω

1( ) α2, ′ β j[ ]ϕ21( ) ⊗η j
2( )ω 2( ) β j[ ]j

2
∑ )  (4.14) 

Following Everett's interpretation, we can give this state a probabilistic interpretation for 

observer O1.  The probability for a state 

€ 

ω 1( ) α i, ′ β j[ ] is the square of its coefficient, i.e., 

€ 

1 2 bij
2
.  This is the probability that quantum mechanics predicts.  But no assumption of a 

nonlocal physical process was necessary to derive this result:  all that happened were two 

local interactions between O1 and S1, and O2 and S2, and the temporal order of the two 

measurements is irrelevant.  Because all the possible outcomes are represented in state 

€ 

Φ1, the 

choice of one observer which observable to measure does not affect the state of the distant 

particle and observer at all (and hence lead to a nonlocal process), but only determines how 

the observer's state is correlated to the state of the particle pair—and that is a perfectly local 

process.  Of course, this answer is not satisfying if we are looking for an explanation of the 

phenomenon in classical terms, because the states 

€ 

Φ0 , 

€ 

Φ1, and 

€ 

Φ2 are entangled states:  they 

are not separable in our definition of Section 2.2.  What is important here is that there is a 
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good sense in which the dynamical evolution is local:  the measurement interaction on one 

side has no effect on the interaction on the other side.   

 Let us sum up the results of this section:  Everett's model of a memory can account for 

the repeatability of quantum mechanical measurement.  But it remains unclear how this model 

is to be interpreted:  Everett neither gives a satisfying metaphysical interpretation of the 

superpositions resulting from the measurement process, nor does he give a sufficient 

explanation of his claim that the reduction can be understood as a subjective appearance of 

observers objectively in a superposition.  Finally, his derivation of the Born rule is 

problematic.  Nevertheless, his derivation of repeatability and his ability to give a local 

account of the EPR phenomenon seem important enough to explore his formulation of the 

measurement problem further.  Is it possible to supply an interpretation of Everett that 

answers the open questions?  In the following sections, I will review some attempts at such an 

interpretation. 

 

4.2  The Interpretation of Everett's Theory 

 Everett’s model of observation had a peculiar fate.  This is already evident in the name 

it has become known under, the ‘Many-Worlds Interpretation,’ a term that Everett himself 

never used.  The name was coined by Bryce DeWitt who was one of several physicists who in 

the early seventies rediscovered Everett’s work (DeWitt and Graham 1973) which in the years 

before had found little attention.  But where Everett’s interpretation of his model was 

noncommittal in metaphysical terms, DeWitt offered a bold statement of ontology: 

. . . the real universe is faithfully represented by the state vector [the 

superposition of measurement outcomes].  This universe is constantly splitting 

into a stupendous number of branches, all resulting from the measurement-like 

interactions between its myriads of components.  Moreover, every quantum 

transition taking place on every star, on every galaxy, in every remote corner 

of the universe is splitting our local world on earth into myriad copies of itself.   

This very much is a straightforward answer to our first question about the interpretation of 

Everett's formalism:   if the universe splits upon an act of measurement, then a forteriori also 

the observer.  After the measurement, we have for every outcome a separate universe, 

inhabited by an observer who is convinced that she has found that outcome -- and no other.  

So far, so good.  But it is obvious that this interpretation is not satisfying as an answer to our 
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questions about the measurement process.  If the universe splits upon each measurement, then 

this is a physical process and as such is just as obscure as a physical process of reduction.  It 

actually is nothing but a fancy way to describe the reduction process.   And if we were 

worried about the subtle nonlocality of the reduction process as manifested in the EPR 

paradox, then the instantaneous splitting of the whole universe sure won’t make us sleep 

better.  Philosophers ever since have been worrying about how such a split could happen -- is 

it space-time that splits or rather the objects within space-time, are the splits reversible, and 

how can there be one state for many universes (e.g., Healey 1984)?  It seems that the many-

worlds phenomenon shows but one thing:  that physicists have a quite different attitude 

towards words than philosophers, and that DeWitt, writing for a popular scientific journal, 

might have used a bold metaphor -- mostly for shock value. 

 Let us return to Everett.  The closest to a mention of 'splitting' in Everett is his remark 

in the footnote (quoted in the last section) that after a measurement we could talk about many 

observers instead of one.  But should we conclude from this that we have to understand 

Everett as postulating a physical process of 'observer splitting'?  Although not as blatantly 

nonlocal, such a process still would not be something you would like to find in your physics 

textbook.  Many criticisms have been leveled at the violation of conservation of energy or 

particle number that such a process would imply.  But there is an even more straightforward 

argument against any numerical increase in observers:  Everett's claim that he does nothing 

but extending the scope of quantum mechanics.  And of course, in standard quantum 

mechanics, a system's being in a superposition does not mean in any way that there are 

several systems.  Therefore, we would have to reintroduce the distinction between observers 

and ‘normal’ quantum mechanical systems at the level of the interpretation of a superposition.  

But this means that Everett would not have satisfied his own requirement. 

 Moreover, Everett himself states (Everett 1957, 459): 

Throughout all of a sequence of observation processes there is only one 
physical system representing the observer, yet there is no single state of the 
observer (which follows from the representation of interacting systems). 

The remark in parentheses refers to his earlier discussion of composite systems (ibid., 456): 

There does not, in general, exist anything like a single state for one subsystem 
of a composite system.  Subsystems do not possess states that are independent 
of the states of the remainder of the system, so that the subsystem states are 
generally correlated with one another. … It is meaningless to ask the absolute 
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state of a subsystem—one can only ask the state relative to a given state of the 
remainder of the subsystem. 

What Everett refers to here is the fact, discussed in section 3.1, that subsystems of composite 

systems cannot be ascribed pure states in quantum mechanics.  In 3.1, I called such states 

objective mixtures: they are represented mathematically as mixed states (i.e. distributions 

over states), but this distribution cannot be given an ignorance interpretation, that is, be 

understood as representing our incomplete knowledge of the true state.  Everett's proposal, 

then, is to take this puzzling feature of quantum mechanics seriously: objective mixtures 

describe a system that is simultaneously in several—mutually exclusive—states or, 

equivalently, that has several mutually exclusive properties.51 

 This reading of Everett has long been overshadowed by the many worlds 

interpretation, at least in the discussions of philosophers.  Here its only serious defender has 

been Simon Saunders.52  Plausibly, it is also this reading of Everett that underlies the work of 

many of the physicists that have worked on the basis of Everett's model, even if they typically 

have been reluctant to engage in an analysis of the metaphysical presuppositions of their 

work.  Noteworthy in this group is especially Wojciech Zurek in his work on decoherence 

(e.g. Zurek 1993) who has been the most willing to discuss 'philosophical' issues of 

interpretation.  The decoherent histories approach53 in quantum cosmology rests on Everett's 

model, and while its proponents have mostly been silent on the issue of interpretation, the 

approach clearly presupposes an understanding of quantum mechanics as I have sketched 

above: it starts from a complex quantum mechanical state of the universe that evolves 

unitarily and tries to find conditions on the emergence of classical behavior through 

decoherence of nonclassical components of the state. 

 It is undoubtedly true that this interpretation of Everett amounts to a radical revision of 

our fundamental beliefs about the logical structure of nature.  But this fact in itself cannot be a 

reason to reject the interpretation.  It has to be shown, though, that the metaphysical 

assumptions are self-consistent and that Everett's model under this interpretation is consistent 

with our experience as described by standard quantum mechanics.  I will address the latter 

                                                
51Notice that it still makes good sense in quantum mechanics to call states of properties mutually exclusive: 
according to von Neumann's identification of properties with Hilbert space projection operators, the conjunction 
of two properties is identified with the product of the two operators.  If this product is zero, then the properties 
are mutually exclusive, i.e. we can never observe a system having both.  For states, the same is true if the states 
are orthogonal. 
52See (Saunders 1996) for a concise exposition of his views. 
53For example, (Griffiths 1984) or (Gell-Mann and Hartle 1990) 
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question in chapter 5.  The issue of self-consistency is not easy to address, especially in a 

theory that is so at odds with our everyday way of thinking.  It can basically only be shown 

that certain seeming inconsistencies can be resolved and that the theory can be successfully 

used in a variety of situations.  I will return to this issue in chapter 6.  In the remainder of this 

chapter, I will make a preliminary attempt at clarifying some of the fundamental 

consequences of the interpretation and try to make plausible that they do form a coherent 

picture.   

 How can we think of a system having several incompatible properties simultaneously?  

There is an instructive parallel in the case of contingent properties: an object can have 

incompatible properties at different times.  One way to think about this (that I mentioned in 

section 2.2) is that the object is extended in time, i.e. that it has temporal parts, and that it has 

different properties at different parts of its extension.  Even simpler, a spatially extended 

object can have different local properties at different spatial parts of its extension.  Similarly 

we can think of quantum mechanical systems as extended, not only in geometrical space and 

time, but also in logical space, and as having different properties at different parts of their 

"logical extension".54  The logical space of a mechanical system is its state space—in 

quantum mechanics the Hilbert space.  Therefore another way to explain this interpretation is 

to say that it is a realist interpretation of the Hilbert space of quantum mechanical systems, 

just as a geometrical interpretation of time is a realist interpretation of e.g. the Minkowski 

space of special relativity.  This means: the ensembles that superpositions represent in Everett 

are not physical ensembles of objects (like worlds or observers) but logical ensembles of 

properties of one and the same object.  The do not describe a singular matter of fact about 

many things, but a range of possibilities for one thing.  We have already encountered this 

difference in our discussion of statistical ensembles in section 2.3:  There it was the difference 

between a physical ensemble of particles in some piece of matter and the Gibbs ensemble of 

possible states for that whole piece of matter (a logical ensemble). 

 If a quantum mechanical state is understood as describing a range of possibilities, then 

the foremost question arising is:  How does this interpretation represent the difference 

between the one state in the ensemble (for example, of measurement outcomes) that is actual 

and all the others that are not?  Everett's answer is simple and radical: there is no objective 

difference whatsoever.  He writes (ibid. 459, note): 

                                                
54The analogy between the status of time in the theory of relativity and the status of possibility and actuality in 
quantum mechanics has been pointed out by Saunders (1996) 
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The whole issue of the transition from "possible" to "actual" is taken care of in 

the theory in a very simple way—there is no such transition, nor is such a 

transition necessary for the theory to be in accord with our experience.  From 

the viewpoint of the theory all elements of a superposition (all "branches") are 

"actual," none any more "real" than the rest. 

Actuality is not an objective "metaproperty" that picks out certain states in the state space and 

distinguishes them from counterfactual possibilities, but it is an indexical, i.e. a relational 

concept that is only defined once a specific "position" in logical space is given, just as the 

word 'here' is only meaningful if a spatial position is given.  Again, there is a close analogy to 

the case of time: because in special relativity the notion of simultaneity depends on the rest 

frame of the observer, it is quite implausible to assume that there is an objective fact about 

which events happen now in Minkowski space-time.  Instead, it is natural to interpret 'now' as 

an indexical that is defined only in relation to a given point on a specific trajectory.55  

Therefore, it is not surprising that Everett stressed the notion of relativity in his model and 

called it "relative state interpretation".  This interpretation of actuality is known in 

metaphysics as modal realism. 

 I will return to the discussion of the metaphysical issues connected with Everett's 

interpretation in chapter 6.  For now, I will only remark that a consequence of the modal 

realism and relativism of Everett's model is that there is plenty of opportunity for 

terminological confusion about concepts of reality of actuality.  The Everett quote above is an 

example for this: saying that all elements of a superposition are actual does (strictly speaking) 

not make sense even for a modal realist—objectively the term 'actual' is not defined, and for 

any given reference frame, i.e. a definite component of the state, only one element is actual.  I 

believe that such confusions are to blame for the suspicion that Everett's interpretation (and 

modal realism in general) is inconsistent or incomprehensible.  I will attempt to minimize the 

risk of misunderstanding by distinguishing a concept of objective reality comprising the 

totality of facts described by the quantum mechanical state (e.g. "All the outcomes of a 

measurement process are equally objectively real.") and a concept of actuality defined relative 

to a given state of a physical system (e.g. "After a measurement has been performed, only one 

outcome is actual for any state of the observer.") 

 All of this is to say: Everett does give an answer to question (1), even though this 

answer has been widely eclipsed by the notion of a "many worlds interpretation":  
                                                
55Simon Saunders has explored this analogy in detail (ibid.) 
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Superpositions describe logical ensembles of possible states of one physical system.  But he 

does not attempt to justify this answer.  And it certainly would be desirable to have an 

argument for it before we accept such a fundamental revision of the metaphysical model of 

physics.  Furthermore, Everett's interpretation makes question (2) even more pressing:  Why 

should a conscious observer not be aware of this multiplicity of states if they all are to be her 

states?  This means: the fundamental question of empirical adequacy is whether Everett's 

claim is correct that it follows from quantum mechanics (in this interpretation) that the 

phenomenal reality of conscious observers is given by the indexical 'actuality' (i.e. the relative 

state) and not by the concept of objective reality (the complete quantum mechanical state). 

 

4.3  Saving Reality: Hidden Variables 

 The radical assumptions of Everett's theory are a good reason to wonder if we cannot 

make do with a more conservative metaphysical picture, but still construct a theory that 

avoids the troubling reduction postulate.  And it looks like we have come rather close to that 

goal: maybe what Everett's theory shows is that Einstein's suspicion was correct, after all, that 

quantum mechanics cannot be a complete theory of nature.  It only describes the possible 

trajectories of systems, like statistical mechanics.  We have found that the simplest strategy, 

namely treating quantum mechanical states as statistical distributions, leads to conflicts with 

the predictions of quantum mechanics.  But to save the objectivity of actuality, a more modest 

move would be sufficient: we can admit the objective reality of the quantum mechanical state 

but stipulate that there is an additional theoretical entity that marks what is real in the range of 

possibilities described by the quantum mechanical state. 

 Such a theory will have two kinds of state: the quantum mechanical state, evolving 

according to a Schrödinger equation without collapse, and a value state which assigns values 

to certain variables (the pseudoclassical or hidden variables) to which the quantum 

mechanical state only assigns a distribution.  In a measurement situation, the value state then 

should single out one outcome as real—all the others are counterfactual.  Even then, 

additional value assignments are problematic in quantum mechanics: we would get a conflict 

with Kochen and Specker's no-hidden-variable proof if we assumed that the value state 

specified values for all variables and that these values are revealed in a measurement.  The 

extent to which we can assign values to variables (in addition to eigenvalues) without getting 

into conflict with the minimal requirement that these variables have consistent functional 

relations for commuting variables has been explored by Bub and Clifton (1995).  Roughly 
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speaking, their result is that only one additional maximal variable (or a commuting set of 

nonmaximal variables) can have a value for a given state.56  Two basic strategies have been 

explored to pick this pseudoclassical variable:  Either one variable can be singled out a priori, 

or the quantum mechanical state itself determines which variables have values.  Both 

approaches have been used by well-known no-collapse interpretations. 

 The first approach is exemplified by Bohm's hidden variable interpretation.57  Here the 

hidden variable is position:  Every mechanical system (particle) always has an exact position 

and a deterministic trajectory.  The quantum mechanical state represented in position 

variables is considered as a physical field (the wave field).  This field evolves under the 

Schrödinger equation without collapse.  The particles move under classical forces and an 

additional 'quantum force' that the wave field exerts on them.  Probability in this 

interpretation is to be understood purely subjectively, that is statistical distributions describe 

of lack of exact knowledge of the particle positions.  Because the Schrödinger equation is 

formally equivalent to a form of the classical equations of motion (the Hamilton-Jacobi 

equation), it turns out that one can consistently regard the square of the wave field as a 

probability density for the particle position:  If the initial probability distribution for the 

position of a particle is given by the square of the wave function, then the equation of motion 

for the particle implies that any later probability distribution will be given by the square of the 

wave function at that time.   

 The value state in Bohm's theory is a classical state, i.e. it specifies values for all 

mechanical variables.  The reason why this fact does not lead to conflicts with quantum 

mechanical predictions is that these values do not determine the measurement outcomes for 

variables other than position (unless the system is in an eigenstate of the variable).58  Rather, 

such measurement outcomes are contextual, i.e. they are determined by the particle position 

and by how the measurement is set up.  Hence a measurement of any variable other than 

position does not reveal anything about the true value of that variable.  Nevertheless, after the 

measurement the particle will be in the component of the wave function that is an eigenstate 

of the measured variable with the measured eigenvalue.  Hence the realist could take comfort 

                                                
56The exact result is more complex.  Simultaneous value assignments are possible in noncommuting subspaces 
as long as these subspaces are orthogonal to the given state.  I will not discuss these results in detail here, 
because no attempt has been made to exploit such value assignments for the purpose of interpretation.  
(Obviously what is of interest for the interpretation are the non-orthogonal subspaces.) 
57(Bohm 1952).  See (Albert 1992) for a concise presentation in the context of other no-collapse interpretations. 
58See (Albert 1992) for a detailed discussion of this fact. 
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in the idea that what we are really measuring in measurements of such variables are field 

variables of the wave field. 

 But is the wave field a comfortable object to be realist about?  First of all, it is not a 

field in geometrical space proper but in phase space.  This means that for many-particle 

systems of N particles, it is defined not in three-dimensional space, but in 3N-dimensional 

space.  (After all, it simply is the quantum mechanical state in a specific representation.)  And 

it is this feature of the wave function (that it is defined on the tensor product space) that is 

responsible for its nonclassical behavior.  Therefore that all the weirdness of entangled states 

is still with us, represented by the wave "field".  And of course we know from our discussion 

of Everett what it means that the wave field represents the total uncollapsed state of the 

world:  It describes the totality of all possible histories of the universe.  All the "ontological 

baggage" of Everett's interpretation has not gone away—it just has been relegated to a realm 

of shadows, the wave field, which represents all these possible histories—and Bohm's theory 

explicitly requires from us to take this as an objectively real physical object.  Just like in 

Everett's theory we need an argument why there are no interference effects from other 

components of the wave field, i.e. why after a measurement all other components of the wave 

field will have no effect on the subsequent motion of the particle. 

 Other than Everett's theory, Bohm's has to use nonlocal effects to explain EPR 

measurements.  These effects result from the fact that the wave field is defined in phase 

space:  Any change in the wave function on one side of the particle pair can have an 

immediate effect on its interaction with the particle on the other side.  If the reason why we 

were unhappy with the reduction postulate was its assumption of action at a distance, Bohm's 

theory is not an improvement.59 

 Lastly, there is a deeper problem with Bohm's theory:  As we have seen, the 

consistency of its probabilistic predictions with standard quantum mechanics depends on the 

assumption that all we know about the initial particle position is the probability distribution 

given by the initial wave function.  Because the particle position determines any measurement 

outcome, if we knew any more about the initial particle position, we could predict 

measurement outcomes with more accuracy than quantum mechanics admits.  In Bohm's 

theory, this assumption is justified with the fact that any measurement (also measurements of 

position) has to rely on physical interactions, and these interactions always are interactions 

with the wave function, not with the particle itself.  The particle only gets carried along 

                                                
59See the discussion of this issue in section 3.4. 
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passively with the wave function, but its position has no effect in turn on the wave function.  

Hence, if we perform a position measurement, the final pointer position will be correlated to 

the particle position only insofar as the pointer's wave function is correlated to the particle's 

wave function.  And this means that even if we could know the pointer position exactly, all 

that we knew about the particle's position was its wave function relative to the pointer 

position (i.e. Everett's relative state) but not where within this wave function the particle is 

located.  Put simply, through position measurements we can localize the wave function of a 

particle, but never localize the particle within the wave function.  But this means that the only 

element that distinguishes Bohm's theory from Everett's, namely the particle positions, have 

no physical effects and are unobservable in principle. 

 This leaves us with a strange tension.  Because in ones sense, the particle positions are 

observable: namely by introspection.  After all, they are supposed to explain why after a 

measurement we experience one outcome as real: because it is the one designated by the 

hidden variables.  But this means that different from any other process in nature, for which 

the particle positions are completely irrelevant, for consciousness they do matter.  Hence, 

consciousness is fundamentally different a process than any other in nature.  And on the same 

token, this means that conscious phenomena do not matter for whatever else happens in 

nature:  They are purely epiphenomenal. 

 To sum up: Bohm's theory does not get rid of the "ontological ballast" of 

counterfactual possibilities existing in nature, because it treats the full wave function as 

existing objectively.  Rather, it adds a new theoretical entity (The particle position vector) to 

explain why we experience only one of the possibilities as actual.  The decisive question is 

now:  Can we explain our experience of reality, namely the actuality of only one component 

of the quantum mechanical state, from Everett's theory alone (without invoking an additional 

value state)?  If this is so, then the introduction of a value state serves no explanatory purpose 

(besides being unobservable as a physical quantity) and should fall prey to Ockham's razor.  

Even worse for Bohm, introducing such a value state would leave us with an inextricable 

sceptical problem:  If the pure wave function is enough to account for the experience of 

conscious observers, then even introspection cannot reveal any information about the value 

state.  The fact that I consciously experience one measurement outcome (or any state of 

affairs) does not imply that this is the outcome that is picked out by the value state.  I might 

just as well be part of the "realm of shadows", the vast expanses of the wave function that are 

not inhabited by the value state. 
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 The second approach for picking the pseudoclassical variable is taken by the so-called 

modal interpretations.  This is a group of interpretations of quantum mechanics whose best 

known representatives are Richard Healey (1989) and Dennis Dieks (1989).60  In these 

interpretations, the overall quantum mechanical state defines which variables have values.  

The pseudoclassical variables are defined for subsystems of composite systems through the 

biorthogonal decomposition rule discussed in section 3.1.  As we have seen, given a pure state 

of the composite system, each of the subsystems is in a mixed state and there always are bases 

of the subsystem spaces that diagonalize these mixed states (eqs. 3.6 and 3.7).  I already 

remarked then that it is very tempting to interpret these mixed states as ignorance mixtures for 

some pure state (which in the case of a von Neumann measurement would just be the desired 

result).  Modal interpretations do just that:  Those variables on the subsystems have values 

which have eigenstates that are elements of such a basis.  As we have seen, this would lead to 

deviant predictions for variables defined on the composite system (such as correlations).  

Therefore, modal interpretations have to assume that the total quantum mechanical state 

objectively exists and that it determines the predictions for measurements on irreducible 

variables of the composite system.  But in addition to this, there are value states for the 

subsystems which assign values to the additional (pseudoclassical) variables.  The value states 

are quantum mechanical states defined on the Hilbert space of the subsystem or (as in 

Healey's interpretation) subspaces of this Hilbert space called system representatives. 

 Modal interpretations have the advantage over Bohm's interpretation that in the case of 

an exact von Neumann measurement they give a straightforward explanation why we always 

find one well-defined value: because in such a measurement both the state of the object and 

the state of the apparatus are mixtures diagonal in the eigenstates of the measured variable, 

and therefore this variable has a value, given by the value state.  But as we have seen in 

section 3.1, the biorthogonal decomposition rule runs into problems in the case of non-exact 

measurements. 

 On the other hand, modal interpretations have problems that Bohm's interpretation 

doesn't have:  It is not clear how the overall state is to be decomposed if we have composite 

systems of more than two parts, because in this case there is no possibility to have subsystem 

states that both are elements of a basis and are perfectly correlated with each other (which is 

what we need to explain a measurement outcome).  And of course, in nature we will always 

                                                
60Bas van Fraassen's interpretation (van Fraassen 1991) shows some marked differences in how the value state 
is assigned.  I will not discuss his interpretation here.  But my main criticism is aimed at the introduction of a 
value state in general, and therefore also addresses van Fraassen's interpretation. 
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encounter systems that have interacted with countless other systems in the past.  Even worse, 

it seems a completely intractable problem to define explicit equations of motion for the value 

states as soon as there is any interaction between the subsystems (Albert 1992: 191–97).  This 

means that modal interpretations don't actually give us a physical theory, but only promissory 

notes for one. 

 But finally and in my view, most fundamentally, modal interpretations share with 

Bohm's theory all the problems caused by the fact that they simply add a new theoretical 

entity to Everett's quantum mechanics without changing the empirical predictions of quantum 

mechanics: 

– As in Bohm's theory, there are explicit nonlocalities in EPR measurements:  Upon 

measurement on one particle, the value state of the other particle will change 

immediately.61 

– As in Bohm's theory, the quantum mechanical state of the universe exists objectively, 

representing all possible histories of the universe.  The irreversibility of measurement has 

to be shown:62  Why can we ignore the total quantum mechanical state after a 

measurement for all practical purposes? 

– Again, all interactions have to be described by the full quantum mechanical state, the value 

states are just being carried along.  This fact is of even more central importance for modal 

interpretations, because we don't even know the equations of motion for value states.  As in 

Bohm's theory, this means that we can measure value states only insofar as we can 

establish correlations in the quantum mechanical state.  And this, like in Bohm's theory, 

leaves us with a picture of consciousness that is somewhat unphysical and fully 

epiphenomenal. 

For these reasons we are led to the same conclusion as with Bohm's theory:  If Everett's 

theory can explain the subjective appearance of single measurement outcomes, then the 

introduction of additional variables is simply superfluous and burdens our theory with 

completely unobservable entities.  In the next chapter I will turn to this question, the central 

problem of this thesis. 

                                                
61Both Healey (1989: 137–79) and van Fraassen (1991: 338–74) discuss this issue extensively. 
62Both Dieks and Healey (1995) have appealed to decoherence for this. 



76 

Chapter 5 

Quantum Mechanics and Consciousness 
 

5.1  Supervenience and the Interpretation of Superpositions 

 In this chapter, I will return to the questions about Everett's model enumerated in 

section 4.2.  In this section, I will treat Everett's claims about the appearance of superpositions 

to conscious observers (problems 1–3), in the next section I will discuss his claims about 

probability (problems 4–6).   

 The fundamental question about the consistency of Everett's theory with our 

experience is:  If I am the observer who has performed an observation as described in eqs. 

(4.2) and (4.3), is there a contradiction between my belief that I have observed an outcome 

€ 

α f , and the description of me as an observer given by the state Ψ1 in eq. (4.3)?  It is at this 

place that the consciousness of the observer comes into play.  We have to assure that our 

"belief states" can also be described by Everett's quantum mechanical model.  The novel 

feature in our discussion (compared to discussions of self-knowledge in the philosophy of 

mind) is the possibility of superpositions of conscious states.  The question we have to answer 

is, put somewhat sloppily:  "What does it feel like to be in a superposition?"63  

 First, it is necessary to precisely formulate the notion of supervenience of mental 

states for a quantum mechanical system.  The traditional definition is that for a conscious 

subject, every mental state corresponds to a set of physical states of that subject (or her 

brain—this distinction need not worry us here), so that whenever the subject is in one of the 

physical states from the set, the corresponding mental state obtains.64  Mental states are not 

states in the physical (mechanical) sense of the word, because they don't give a complete 

description of the system.  It is perfectly consistent that I see a tree and feel a pain and have a 

longing for pickled herring.  Therefore, mental states are properly speaking properties of the 

                                                
63Albert 1992, 112 
64See, e.g., (Kim 1984).  Note that I don't assume that this correspondence be the same relation for different 
subjects.  In the terminology of the philosophy of mind, I do not assume a type-type identity of mental and 
physical states, just a token-token identity.  It is often contended that the definition of mental states also depends 
on matters of fact about the environment ("wide content").  But what is meant with that is the definition of types 
of mental states across individuals.  It may very well be that the physical constitution of different individuals 
varies enough to make the definition of mental state types by purely intrinsic properties impossible, i.e. different 
mental states might supervene on the same physical state in different individuals.  But this is not relevant for our 
discussion.  I do take it as implied by the assumption of supervenience that my belief "This is a glass of water" 
does not become a different mental state if a mischievous naturalist, without me noticing, replaces the water with 
vodka. 
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subject and supervenience means that they are physical properties. I will also refer to them as 

mental qualities.  An important condition for the present purposes is the requirement that 

mental states supervene on the present physical state of the system, not on its whole history.  

If we were to give up this requirement, there would be no need for a physical memory, 

because a remembrance of a past event could supervene on this event directly, without any 

physical memory.  Then the core element of Everett's formulation, the physical model of 

memory would lose its function. 

 In quantum mechanics, the analogous statement of supervenience is that to every 

mental state corresponds a subspace of quantum mechanical states of the subject, so that 

whenever the state of the observer is within that subspace, the corresponding mental state 

obtains.  As I mentioned in section 2.4, the reason for identifying properties with subspaces 

instead of subsets is the linearity of quantum mechanics:  this amounts to the postulate that if 

two states have a property 

€ 

L , then any linear combination of these states also has the property 

€ 

L .   Therefore, one has to identify the subsets of the classical state space with subspaces of 

the Hilbert space in quantum mechanics.  

 Now consider the following thought experiment, a variation of a thought experiment 

devised by David Albert and Barry Loewer (Albert and Loewer 1988):  we have an 

observation modeled by equations (4.2) and (4.3).  We prepare the observed system so that its 

initial state is an eigenstate 

€ 

ϕ i  of the observed observable 

€ 

A .  Then the observation process 

happening approximately at some time 

€ 

t0 will in our model look like this: 

 
  

€ 

φi ⊗ω …[ ]→φi ⊗ω …α i[ ] , (5.1) 

where 

€ 

α i is the eigenvalue corresponding to 

€ 

ϕ i , and, naturally, in the final state there will be 

a well-defined result 

€ 

α i for the observation of 

€ 

A .  The observer's state 
  

€ 

ω …α i[ ] corresponds 

to the observer's belief "I have made an observation at 

€ 

t0 (as noted earlier, this information is 

not explicit in our notation) and observed a unique and well-defined outcome of 

€ 

α i."  

Equivalently, we can say that the observer's belief is characterized by the following qualities:  

(1)  It is a belief that the observer 

€ 

O has made an observation at 

€ 

t0. 

(2) It is a belief that 

€ 

O has observed a unique and well-defined measurement outcome. 

(3) It is a belief 

€ 

B α i( ) that the outcome was 

€ 

α i. 

 According to our supervenience assumption, each of these qualities defines a subspace 

of the space of possible quantum mechanical states of 

€ 

O, and 
  

€ 

ω …α i[ ] is an element of each 

of these subspaces.  This, of course, is true for any 
  

€ 

ω …α i[ ].  Let us call the subspaces 



78 

corresponding to qualities (1), (2), and (3), 

€ 

S1, 

€ 

S2 , and 

€ 

S3
i  respectively, where 

€ 

S3
i  depends on 

the value of 

€ 

α i.   

 Now, assume that the initial state of the system is a superposition of eigenstates 

€ 

ciϕi∑ .  Then, the final state will be the state Ψ1 from eq. (4.3), which, of course, is not 

contained in any of the subspaces 

€ 

S3
i , so on the standard account of superpositions, there is no 

matter of fact about the belief 

€ 

B α i( ).  Nevertheless, because Ψ1 is a linear superposition of 

the outcomes that would have resulted if the initial state had been an eigenstate, it still is an 

element of the subspaces 

€ 

S1 and 

€ 

S2 .  This means:  Even in state Ψ1, the observer believes 

that she has made an observation and found a definite outcome.  The importance of the 

thought experiment is that it questions an assumption that most interpreters of quantum 

mechanics have made implicitly: that it is impossible that an observer be in a superposition of 

conscious states, because she would surely notice if she was.  But the thought experiment 

shows that there can be no feeling of fuzziness (or blankness, or what have you) that comes 

with being in a superposition of conscious states if we require that feelings (as mental states) 

supervene over physical states.  Nevertheless, the fact that Ψ1 is an element of 

€ 

S2  leaves us 

with a puzzle:  how can we attribute a belief to 

€ 

O that she has observed a unique and well-

defined measurement outcome if we don't attribute any one of the beliefs 

€ 

B α i( ) to her? 

 Albert and Loewer take the paradoxical result as an argument against supervenience.  

They use the thought experiment to justify their "many-minds" interpretation, the dualist 

picture of the brain as physical system (which is in a superposition) and different minds 

(corresponding to the different subjective beliefs about the measurement outcome).  They take 

the objective state Ψ1 to describe an ensemble of real minds which somehow coexist in the 

physical brain of a conscious observer.  Every mind has a well-defined belief 

€ 

B α i( ), i.e. the 

beliefs supervene on the state of the mind, not the physical state.  This is how statement (2) 

can be understood despite the fact that overall, there is no matter of fact about which 

€ 

B α i( ) is 

true.  This picture suggests that the outcome of the experiment is caused by a special relation 

between mental states and brain states (hence the failure of supervenience).  

 I do not think that the experiment forces us to this conclusion.  Note that the result is 

not due to any special property of consciousness or introspection (all we assumed was 

supervenience), but to the nondistributivity of quantum logic:  An object can have the 

property 
  

€ 

S1∩ S2 ∩ S3
1 ∪ S3

2 ∪…∪ S3
n( )  without having the property 

 
  

€ 

S1∪ S2 ∪ S3
1( )∩ S1∪ S2 ∪ S3

2( )∩…∩ S1∪ S2 ∪ S3
n( ). 
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We would have arrived at a similarly paradoxical result if we had used a mechanical 

measuring apparatus and measured a set of exclusive measurement results and their 

disjunction.  For example, assume we wanted to build an apparatus that measures whether the 

spin of a spin-

€ 

1
2  particle is a pure eigenstate of spin in a certain direction or a superposition of 

these: it only beeps if the particle is in a spin eigenstate with the eigenvalue of either +

€ 

1
2  or -

€ 

1
2  

in the given direction.  If we feed this apparatus with a particle in a superposition of these two 

spin states (i.e., not an eigenstate), we can conclude by an analogous argument that the 

apparatus will beep, anyway.  This means:  the inability to distinguish a superposition from 

the logical disjunction of its components is not a special property of consciousness, but 

applies to all quantum mechanical measurements.  Rather, it is based on the fact that 

properties are represented by subspaces of the Hilbert space (from which it follows that there 

can be no property that two states have but a superposition of them doesn't have). 

 I agree with Dennis Dieks who argues against Albert's and Loewer's interpretation that 

if we were to accept that the state after measurement is a superposition, 

it would not be obvious a priori that this would be in conflict with a physical 

description in terms of one single recorded spin value.  Everything depends on 

the precise link between the mathematical formalism on the one hand and 

physical properties on the other; on what it means on the physical level to be 

represented by a superposition in the theoretical formalism (Dieks 1991). 

Rather than an argument against supervenience, the thought experiment is an argument for the 

interpretation of superpositions as describing ensembles of properties.  Again, the analogy 

with time is instructive: there is nothing mysterious in claiming that a (classical) particle 

always has a well-defined position, even when it doesn't have the same position at all times.  

Equivalently, we can say that an observer in state Ψ1 has a definite belief (everywhere in her 

logical extension, i.e. in all her possible states) without having the same belief in all her 

possible states.  Notice that this argument does not work if we take the superposition as 

describing an ensemble of objects (as in the many-worlds interpretation), because it doesn't 

make sense to claim that an ensemble of objects has a well-defined property because the 

property is well-defined for each of its elements:  Properties of physical ensembles are 

different from the properties of their elements. 

 Interpreting superpositions as describing logical ensembles, then, is justified because it 

can explain the nondistributivity of quantum logic.  The formal similarity between quantum 

logic and modal logic has been noted for a long time (Dalla Chiara 1986).  The interpretation 



80 

shows a way to understand this similarity.  Of course, this argument is an inference to the best 

explanation:  It doesn't follow from quantum logic that superpositions are descriptions of 

logical ensembles.  But an inference to the best explanation, I believe, is as good as we can 

do.  As I discussed in the introduction, the task of the interpretation of quantum mechanics is 

finding a metaphysical model for quantum mechanics.  And like any theoretical model, this 

will not be a logical consequence of the data, but merely a consistent way to account for 

them.65   

 Notice, though, that the thought experiment by itself does not give us reason to accept 

the second part of Everett's interpretation, namely the modal realism about the logical 

ensemble.  We can explain its result just as well if we assume that all but one possibility is 

counterfactual.  Then the fact that Ψ1 is an element of 

€ 

S1 and 

€ 

S2  but not of the 

€ 

S3
i  is simply 

due to its incompleteness: like a statistical state, it is not a full description of the physical 

situation.  Of course, this assumption leads us to the hidden variable theories described in 4.3. 

 We still have to address Albert and Loewer's conclusion from the thought experiment:  

If we claim that to an observer in state Ψ1 this state can have the appearance of a definite 

measurement outcome, does this not contradict the assumption of supervenience?  This 

question can be answered if we consider the definition of supervenience.  As I remarked in 

the last section, mental states are, properly speaking, properties of the subject and 

supervenience means that these properties supervene on the subject's physical properties.  

What the thought experiment shows is not that supervenience breaks down, but that the 

relation between quantum mechanical states and properties is more complex than in the 

classical case.  While in classical physics, every state either has a certain physical property or 

does not, in quantum mechanics there is the possibility that a state is neither in the subspace 

corresponding to the property or in its orthogonal complement (corresponding to the negation 

of the property).  Commonly, it is said that in this case there is no matter of fact about the 

system's having the property or not.  The thought experiment gives us a reason to qualify this 

statement:  We can understand it by representing such a state as a statistical ensemble of a 

state in which the system has the property and a state in which it doesn't.  What the no-

hidden-variable proofs show is that such an ensemble representation is not sufficient to 

determine other properties of the system (and hence also not to predict its evolution).  But this 

only means that there is more to a quantum mechanical state than its being an ensemble state, 
                                                
65If we were to have more than one model that does this job equally well, then all the better.  But I don't think 
that the measurement problem is still with us because too many satisfying interpretations for quantum mechanics 
have been found. 
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not that it cannot be understood as an ensemble state at all.66  This interpretation helps to 

understand the peculiar nature of improper mixtures:  The formal equivalence between proper 

and improper mixtures is not a superficial coincidence.  Improper mixtures, like proper 

mixtures, describe logical ensembles, and they have exactly the same form because the 

nonclassical nature of the total state does not affect properties that are defined on one 

subsystem alone. 

 Let us return to question (2) about the consciousness of being in a superposition.  As I 

have argued, Albert and Loewer's thought experiment does not teach us anything new about 

consciousness itself.  Nevertheless, it shows that if we assume supervenience, the logical 

ensemble interpretation has an important consequence for mental states:  Being in an 

ensemble of mental states does not imply that we are conscious of being in such an ensemble.  

It might seem (at least as long as we think of the ensembles as counterfactual ensembles like 

in a hidden variable interpretation) that this is all we need to answer question (2).  But this is 

not the case as long as we haven't shown that all our mental states supervene over commuting 

subspaces:  While the thought experiment tells us that a superposition of mental states would 

not by itself carry consciousness of the fact of the superposition, it leaves open the possibility 

that this superposition (which is, after all, just another pure quantum mechanical state) could 

be a mental state in its own right, i.e. belong to the subspace that some other mental state 

supervenes over. 

 Consider the following example: assume a conscious (but not very bright) being 

whose brain consists of a single spin-

€ 

1
2  particle, and its belief "It is raining" supervenes on 

some state 

€ 

ϕ1 while its belief "It is not raining" supervenes on the state 

€ 

ϕ2 orthogonal to 

€ 

ϕ1.  

From the argument so far it follows that if this being is in any superposition of these states, it 

will perceive itself as having a definite belief about the weather outside.  Nevertheless, it 

could be the case that its brain state 

€ 

1
2ϕ1 + 1

2ϕ2 comes with a belief "I am hungry."  

Whatever it would be like to be such a creature, it would be radically different from what we 

know:  Its beliefs definitely cannot follow a Boolean logic like ours do (at least as long as our 

beliefs follow any logic).  This means: our mental states are classically describable only if 

they supervene on commuting subspaces (and if they weren't classically describable, we 

wouldn't be mystified by quantum mechanics).  But if we are serious about the assumption 

that an observer is a quantum mechanical system, how can there be anything that singles out a 
                                                
66This is the intuition behind the path integral method in quantum mechanics:  We can represent the evolution of 
a superposition of states by the evolution of the ensemble of these states if we allow for interference between the 
different states.   
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particular basis (or a particular set of orthogonal subspaces) as the relevant memory states, 

while superpositions of these states have no meaning? 

 There is a simple answer to this question which does not work: the observer in state 

Ψ1 is not in a superposition, she is in an objective mixture.  And this mixture is diagonal in 

the memory states, therefore it singles out these states as the relevant possible states.  We 

have already discussed why this answer is not sufficient in section 3.3: in general, we cannot 

expect the mixture being exactly diagonal in the memory states if the observation process is 

not ideal; and, more importantly, the fact that the mixture is diagonal in one basis does not 

mean that the quantum mechanical state can only be understood as a measure over that basis: 

the objective mixture (as any quantum mechanical state) attributes a probability to any state in 

the Hilbert space.   

 But we have also found a remedy for this problem in 3.3: the assumption of 

decoherence.  If we assume that an observer is a decoherent system, then any superposition of 

states from different coherent subspaces will quickly evolve into a mixture of these states and 

therefore cannot have any independent functional role in the dynamics of the observer system.  

But it is plausible to assume that a state that has no independent functional role will also not 

have an independent conscious quality.  (This does not amount to the assumption of 

functionalism, i.e. that mental states are defined by their functional properties, but merely to 

the assumption that consciousness itself is some kind of dynamical process that supervenes on 

a physical process.)  This means that all mental states will supervene over the decoherence 

basis (defined by the interaction with the environment) and all the subspaces representing 

mental qualities will commute.  And that justifies Everett's assumption that the memory states 

supervene over a set of pairwise orthogonal states and completes our answer to question (2):  

Our mental states obey a Boolean logic, not because of some special status of consciousness, 

but because our conscious processes supervene over processes of a decoherent physical 

system. 

 Of course, the assumption of decoherence also answers question (3):  Decoherence 

ensures that the transition to a mixture of observer states is irreversible in practice (although 

the overall state is still a superposition) and therefore the different components will evolve 

completely independently of each other in the future.  Notice also that all no-collapse 

interpretations of quantum mechanics have to find an answer to this question and that 

decoherence so far has emerged as the only plausible and physically realistic scenario to give 

such an answer.  (See the discussion in section 4.3.)  The reference to decoherence for the 

purpose of interpreting quantum mechanics here is in no way unique. 
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 Why should we assume that memory states decohere?  As I remarked already in 3.3, it 

is very plausible to assume that all macroscopically different position states decohere, unless 

we very carefully shield the system from its environment.  A more substantial argument for 

the decoherence of memory states of course depends on how the memory is physically 

realized.  In the case of inanimate recording devices, the same argument as for measurement 

apparatus holds:  the requirement that records are easily discernible already implies that 

different memory states interact differently with their environment.  In the case of conscious 

observers we would need to assume some functionalist theory of mental states to make the 

same argument.  But this is not necessary, if we have a more detailed theory of memory in 

conscious beings:  The physical processes in the brain that are most probably relevant for our 

conscious processes, the firing of neurons in the case of perception and the building of 

synaptic connections in the case of memory,67 both involve irreversible exchanges of energy 

and matter with the environment that are large on a quantum mechanical scale.  Therefore, 

classically defined neurophysiological states should decohere just like classically defined 

pointer states of a measuring instrument.  Decoherence therefore can address the question of a 

preferred set of conscious states without invoking a nonphysical "phenomenal perspective" 

(Lockwood 1989)  or the existence of nonphysical minds (Albert and Loewer, 1988). 

 Notice that given our supervenience assumption, there is no need that the decoherence 

of observer states be perfect, that is that the set of subspaces that decoherence singles out is 

exactly defined, because supervenience itself need not be defined absolutely exactly.  It is 

certainly more realistic to assume that a mental state is defined not by some specific variable 

on our brain (or whatever the mental state supervenes over) having an exact value, but that it 

has a certain 'fuzziness around the edges', i.e. that it is defined by a characteristic density 

operator that approximates a projection operator of a subspace, especially if we are dealing 

with continuous operators.  This is analogous with von Neumann's treatment of continuous 

variables like position: Particles never have an exact position, but always a certain spread in 

position: their states are to be represented by wave packets, not by delta functions. 

 Decoherence, therefore, plays an important role in the justification of Everett's model.  

But the relevant assumption is not decoherence in the objects , but decoherence in the subject  

(the observer).  Even if the state of the rest of the world was quantum mechanically coherent, 

a decoherent observer would find definite measurement outcomes (only the dynamical law 

                                                
67According to the theory of neural networks, which is the standard neurophysiological model of memory 
(Lockwood 1989). 
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describing the outcomes would not be classical mechanics, but quantum mechanics.)  Of 

course, this doesn't change the fact that the assumption of decoherence in macroscopic objects 

explains their classical behavior.  (This issue is logically independent from the question 

discussed here.)  But critics of the decoherence approach have remarked, the mere fact that 

the states of macroscopic systems decohere does not guarantee that observations lead to 

determinate results.68  We need an argument that tells us how the objective mixtures that 

result from decoherence relate to our experience.  It is such an argument that I have attempted 

to give in this section. 

 

5.2  The Subjective State 

 Let us return to the situation of the thought experiment.  The argument so far was 

supposed to show that an observer's belief 

€ 

B α i( ) that she has found a definite measurement 

outcome is consistent with the fact that she objectively is in the superposition 

€ 

Ψ1.  But this is 

not enough to make any predictions about the future, because it follows from the argument 

that the belief is consistent with a great number of different states of the observer.  In von 

Neumann's formulation, it is postulated that the state after the measurement is an eigenstate of 

the measurement.  If we want to show that Everett's model can replace the reduction 

postulate, we have to show that the observer could consistently ascribe to herself the quantum 

mechanical state 
  

€ 

ω …α i[ ]  corresponding to the belief 

€ 

B α i( ) and that this state ascription can 

be used to give correct (probabilistic) predictions for future observations.  In the rest of this 

section I will argue that this is indeed the case. 

 Because the state ascription is based on a belief of the observer, I will call the state 

  

€ 

ω …α i[ ] the subjective state.  Note that "subjective state" here does not simply mean "state of 

the subject," but that the state ascription is based on a belief of the observer (and is therefore 

epistemologically subjective).  Let us furthermore, for the moment, assume the realist position 

that the state (2) is the true state of the observer and the object and call this state the objective 

state, because it represents an objective matter of fact about observer and object.  (I will say 

more about the issue of realism and the reality of quantum mechanical states later.) 

But so far, we do not have the means to check equivalence:   

(A) The objective state has a well-defined equation of motion (the Schrödinger equation), 

so we can predict future objective states.  But so far, we do not know how an objective state 

                                                
68(Healey 1995).  See also (Zurek 1991)   
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describes events , because we do not have a rule that analyzes superpositions like state Ψ1 in 

terms of empirical events.  (We know from the thought experiment, that there is no distinct 

subjective quality connected to being in state Ψ1.) 

(B) The subjective state, on the other hand, gives us a well-defined empirically accessible 

event, namely having the corresponding belief.  But we do not have a dynamical law for 

subjective states which would enable an observer to predict her future from her present 

subjective state.  Even worse: we don't even have a notion of identity over time for these 

states:  What does it mean for an observer in some subjective state to claim that another 

subjective state was her past state of will be her future state, if a multitude of such states 

objectively exist?69 

Let us consider problem (A) first:  As we already found in section 4.2, the objective state 

describes a range of possible subjective states for an observer.  Because the subjective states 

describe events, that implies that the objective state describes a range of possible events.  

Therefore, the obvious way of interpreting Ψ1 in terms of actual events is understanding Ψ1 

as giving a probability measure for the observer having a belief 

€ 

B α i( ).  Notice that 

probability, so introduced, is not part of the dynamics of the theory (which is still given by the 

unitary evolution of Hilbert space states), but of the interpretation of the theory, and logically 

independent of the theory itself.   

 But because the probability measure relates the theory to observation, we are not free 

in our choice of the measure if the interpretation is to be empirically equivalent with von 

Neumann's interpretation of quantum mechanics.  The Born rule predicts that in the process of 

our example the probability for a measurement outcome 

€ 

α i is 

€ 

ci
2.  Because in our 

interpretation the measurement outcome is not part of the objective description but is 

represented by the belief 

€ 

B α i( ), we have to postulate the following correspondence rule: 

If the objective quantum mechanical state of an observer is a superposition  

€ 

cIΦ I ⊗ω AI[ ]
I
∑  ,  

where 

€ 

AI  is any memory sequence, 

€ 

I  a collective index, and 

€ 

cIΦ I  the product 

of the corresponding states of the observed objects, then the probability that 

the observer is in the subjective state 

€ 

ω AI[ ]  is 

€ 

cI
2 .  

                                                
69This problem has been widely discussed in the literature for the case of future states, see e.g. (Healey 1984).  
Healey refers to Bell noticing that the same is true about the past. 
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Notice that it is not trivial that we can use the quantum mechanical state to define a 

probability measure for the subjective states.  A quantum mechanical state generally defines a 

measure on the subspaces of its Hilbert space.  But, as we remarked earlier, the subspaces do 

not form a Boolean algebra (but a so-called partial Boolean algebra).  Therefore the measure 

is not a probability measure in the usual sense (i.e. fulfills the Kolmogorov axioms).70  I our 

case, though, the subspaces 

€ 

S3
i  defined  by the observer's beliefs are pairwise orthogonal 

(according to the orthogonality postulate of Everett's model).  But a set of pairwise orthogonal 

subspaces forms a Boolean subalgebra of the partial Boolean algebra of subspaces of the 

Hilbert space71  Therefore, if we restrict the measure on this subalgebra, it does fulfill the 

Kolmogorov axioms and forms a traditional probability measure for the beliefs 

€ 

B Ai( ) .  But as 

we have seen from our discussion of projected density matrices in section 3.1, the 

probabilities 

€ 

cI
2  are simply the probabilities given by the objective state Ψ1 for the basis 

€ 

ω AI[ ]  of observer states.  Therefore, we have answered questions (5) and (6):  we can take 

Ψ1 itself as defining the probability measure for the possible subjective states.  This means 

that the correspondence rule is simply: 

The probability for a subjective state is given by the measure that the objective 

state defines on the subspace (of the observer's Hilbert space) corresponding to 

the subjective state. 

Of course, this rule is perfectly natural, because, first of all, quantum mechanical states are 

defined as measures on the state space.  Further, the rule explains the formal equivalence 

between the two kinds of mixtures we get in von Neumann's interpretation:  the objective 

mixture of measurement outcomes attained by unitary evolution and the ignorance mixture of 

outcomes after the reduction process.  Notice again that all of this is completely independent 

of the issue of modal realism:  The probability measure is simply defined on a set of possible 

subjective states.  Whether on of them is actual as an objective matter of fact or whether all of 

them equally exist is perfectly irrelevant.  Lastly, notice again that the reason why the 

objective state defines a classical measure on the subjective states is not because it is diagonal 

in these states (although this is the case for our simple model of an exact measurement).  

Rather, it is because the subjective states form a set of orthogonal subspaces defined by the 

requirement of stability under decoherence. 

                                                
70(Suppes 1966) 
71(Hughes 1989 192-96) 



87 

 As the objective state evolves, it defines a time-dependent probability distribution on 

the subjective states.  Consider this in a simple example: a two-dimensional system with 

eigenstates 

€ 

ϕ1, 

€ 

ϕ2 and eigenvalues 

€ 

α1, 

€ 

α2  of the observable 

€ 

A , and a "model observer" with a 

three-dimensional state space:   

€ 

ω …[ ] (the "ready" state), 
  

€ 

ω …α1[ ], and 
  

€ 

ω …α2[ ] (the states 

corresponding to a definite outcome for the observation of 

€ 

A).  Then, in Everett's model, the 

observation process is described by a unitary transformation  

 
  

€ 

c1ϕ1 + c2ϕ2( )⊗ω …[ ]→ c1ϕ1⊗ω …α1[ ] + c2ϕ2 ⊗ω …α2[ ] (5.2)  

A simple time-dependent unitary evolution with the initial and final states as in (9) is given 

by:  

 
  

€ 

Φ t( ) = c1ϕ1⊗ cos t ⋅ω …[ ] + sin t ⋅ω …α1[ ]( ) +

+c2ϕ2 ⊗ cos t ⋅ω …[ ] + sin t ⋅ω …α2[ ]( )
 (5.3) 

where   

€ 

t  is a time parameter with 

€ 

0 ≤ t ≤ π 2 . 

 The probability distribution induced by (5.3) on the subjective states of the observer 

is: 

 

  

€ 

cos2 t for ω …[ ]
c1

2 sin2 t for ω …α1[ ]
c2

2 sin2 t for ω …α2[ ]
 (5.4)  

This means:  the continuous unitary evolution (5.3) of the objective states induces a time-

dependent probability distribution (5.4) on the possible subjective states.  This distribution is 

consistent with the observer originally being in state   

€ 

ω …[ ] and at some point of time   

€ 

t   

changing into state 
  

€ 

ω …α1[ ] or 
  

€ 

ω …α2[ ] (with the probability 

€ 

dP = 2ci
2 sin t dt ) in which 

state she remains from there on.72  

 But notice that neither the evolution of the objective state nor the time-dependent 

probability distribution defined by it suffice to define a unique time evolution of subjective 

states (as in statistical mechanics at time-dependent distribution does not define an equation 

of motion for the micro states):  All we have is a definition of global transition probabilities.  

The subjective state could as well flip-flop many times between the possible states.  This is 

our problem (B).  It is at this point that the ways part between a relativist (modal realist) and 

                                                
72Notice in this example the coexistence of the objective, continuous, and deterministic process of unitary 
evolution, and the discontinuous and probabilistic transitions between subjective states.  It is interesting to 
compare this model to the discussion of the temporal structure of experience in the philosophy of mind, for 
example with William James's lucid remarks on substantive and transitive parts of the 'stream of thought.' in 
(James 1981, 236-40) 
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an objective realist interpretation:  For an objective realist, the actuality of one subjective state 

must express an objective matter of fact very much like the value states discussed in 4.3.  

Hence she has to construct objective dynamics for these states and compare the dynamics to 

the evolution of the objective state.  As in the modal interpretations discussed in 4.3, this 

leads to rather intractable problems (besides the nonlocality imposed by the Bell inequalities).  

A relativist on the other hand only needs to show that the beliefs of an observer about her 

history are consistent with the evolution of the objective state.  This means that it must be 

possible to conditionalize the objective probabilities (i.e. the probabilities given by the 

objective state) on a given subjective state and arrive at the probabilities given by von 

Neumann's theory.73  This means that the objective probabilities conditionalized on an earlier 

subjective state are the Born probabilities for later measurements calculated on the basis of 

the subjective state. 

 Let us consider this in an example, too:  Take an observer performing two subsequent 

observations on an object system.  First, she observes an observable 

€ 

A  with eigenstates 

€ 

ϕ1 to 

€ 

ϕn  and eigenvalues 

€ 

α1 to 

€ 

αn , then she observes another observable 

€ 

B with eigenstates 

€ 

ψ1 to 

€ 

ψ n  and eigenvalues 

€ 

β1  to 

€ 

βn .  

€ 

A  and 

€ 

B in general will not commute, the transformation 

between the 

€ 

ϕ i  and the 

€ 

ψ j  is given by the unitary transformation 

 

€ 

ϕ i = bijψ j
j
∑   with  bij

*b jk = δ ik
j
∑ . (5.5) 

If the initial state of the object is 

 

€ 

η0 = ciϕ i
i
∑ , (5.6) 

then the objective state develops according to Everett's model: 

 
  

€ 

η0 ⊗ω …[ ] → ciϕ i ⊗ω …,α i[ ]
i
∑ → cibijψ j ⊗ω …,α i,β j[ ]

ij
∑  (5.7) 

 First of all, there is the question of how we can say that any subjective state given by a 

component in the final state of (5.7) has a history, i.e. has unique predecessors under the 

earlier subjective states.  The subjective state, being a memory state, makes definite claims 

about past events.  Specifically, being in a memory state 
  

€ 

ω A1,A2,…An[ ] implies the belief that 

I was in any of the states 
  

€ 

ω A1,A2,…Ak[ ] with 

€ 

k < n  at some earlier time.  But this means that 

for any subjective state there is a well-define sequence of predecessor states that represents 

the "subjective history" of this state.  On the other hand, any subjective state has several 
                                                
73Of course, an objective realist needs this argument, too, if she does not want to arrive at the conclusion that we 
are typically misguided about our objective history. 
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possible successors and the probability for each of these should be given by the Born rule.  

The following diagram shows the possible successor relations (as arrows) for the subjective 

states in our example: 

  

ω …[ ]

ω …α1[ ], ω …α2[ ] … ω …α n[ ]

ω …α1,β1[ ] … ω …α1,βn[ ], ω …α2 ,β1[ ] … ω …α2 ,βm[ ] … ω …α n,β1[ ] … ω …αn ,βn[ ]

(5.8)

 
In this case, according to the Born rule, the probability for the transition  from   

€ 

ω …[ ] to 

  

€ 

ω …α i[ ] is 

€ 

ci
2, the probability for the transition from 

  

€ 

ω …α i[ ] to 
  

€ 

ω …α i,β j[ ] is 

€ 

bij
2
.   

 The question of consistency in this case is whether the measures given by objective 

states at different times lead to a conditionalization which agrees with the transition 

probabilities given by the Born rule.  The transition probabilities can then be understood as 

conditional probabilities determined by the objective probability measure.  Although the 

answer to this question seems rather obvious, it is important to see that it is not trivial.  It is 

well known that in general conditionalization is not possible in quantum mechanics at all, 

because of interference between different "histories" or "paths" of a system.74  The reason 

why conditionalization is possible in our case is because every subjective state has a unique 

predecessor in the hierarchy.  Therefore, between any two states, there is maximally one path 

connecting the two, and there are no interference effects.  Hence, we only need to check 

whether the transition probabilities agree with the quotients of the total probabilities.  For 

example, in the case of the states 
  

€ 

ω …α i[ ] and
  

€ 

ω …α i,β j[ ], we have for the transition 

probability 

€ 

P β j |α i( ): 

 
  

€ 

P ω …α i,β j[ ]( )
P ω …α i[ ]( ) =

cibij
2

ci
2 = bij

2
= P β j |α i( )  (5.9) 

Hence, the dynamics defined on subjective states in terms of transition probabilities given by 

the Born rule are consistent with the dynamics defined on the objective state given by unitary 

                                                
74The standard textbook example for this is the double slit experiment.  See e.g. Hughes (1989), 232-237 
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evolution.  The different cases of observation on several systems and by several observers that 

Everett discusses75 are straightforward applications of the model from equations (5.5-8) to 

composite systems.  We have already mentioned the two most salient examples in section 4.1:  

the repeatability of measurement and the agreement of different observers about the value of 

the same observable. 

 We can see now that Everett's argument for the introduction of probability (section 

4.1, equations 4.7-4.9) is just another example of this argument.  As we have seen, Everett 

does not (as he seems to claim) derive the probabilistic dynamics from his model.  Rather, he 

shows that if we interpret the measure defined by the objective state as an absolute 

probability, we get the usual Born probabilities as conditional probabilities for transitions 

between subjective states.  This also clarifies the status of his argument about the law of large 

numbers: it shows that if we interpret the measure defined by the objective state as 

probability, we can say that it is probable that observed frequencies approximate the Born 

probabilities, because of all the subjective states possible under the objective state, such states 

that represent frequencies close to the Born probabilities will have the greatest objective 

probability. 

 Together, these arguments show that any future observation (including observations of 

other observers) will be consistent with the original assignment of the subjective state and the 

assumption of a probabilistic evolution according to von Neumann's reduction postulate state.  

This concludes our argument for the consistency of subjective state assignments.  An observer 

can always represent her quantum mechanical evolution by a probabilistic transition law on a 

hierarchy of subjective states.  But notice that the consistency argument relies on restricting 

the interactions of the observer to one specific type, namely observations as modeled by 

Everett's theory.  For any other interaction (except those that leave the subjective states 

invariant) the dynamics of subjective states are not defined, nor is the notion of their identity 

over time.  Such interactions also would allow an outside observer to measure superpositions 

of subjective states and show that the subjective description is incorrect.  But notice that a 

measurement of an observable on subjective states which does not commute with the memory 

states would mean interfering with the function of the memory, that is, it would change the 

content of the memory.  Therefore, it is not surprising that a consistent subjective state 

ascription based on the observer's memory is not possible.76 

                                                
75(Everett 1973, 68-83). 
76Such interactions are discussed in (Albert 1992) and (Albert and Putnam 1995).  
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 Lastly, let us return to question (4):  It should have become sufficiently clear by now 

that the worry whether a concept of probability can even be defined in Everett's interpretation 

results from the confusion about the concept of reality in this interpretation.  The fact that all 

measurement outcomes are described by the objective state does not mean that they are all 

actual (much less certain).  I will discuss the meaning of modal statements in the next chapter, 

but we have already seen in the last section that all the interpretation implies about 

components of the objective state is that they are all possible as subjective states and that 

(when an observer performs a measurement) there is no objective matter of fact about which 

of these possibilities is actual for her.  This does not mean that we cannot have a concept of 

probability, just that this concept (like all modal concepts) will have to be defined differently 

than in an objective realist framework:  Probability is simply defined as a measure on a set of 

possible events (subjective states).  What we don't have is the stipulation that one of these 

events is eventually going to be real not just as a phenomenon to me, but as a matter of 

objective truth—but this stipulation is completely unnecessary to understand a concept of 

probability.  What we do need is that probabilities so defined hook up in the right way with 

the frequencies of events (which are the only observable element).  And that this is so is 

shown by Everett's argument about the law of large numbers.  Apparently, an important 

reason for the confusion about probabilities is that Everett himself did not make sufficiently 

clear what constitutes an event in his model (and that events are not part of the objective 

description).  It is this gap that the introduction of subjective states is supposed to close. 

 We can now understand the difference between the interpretation discussed here and 

Albert's many-minds interpretation.  Albert postulates a new kind of theoretical entities, 

namely minds, as  correlates to our subjective appearances.  These minds are substances in 

the sense of our discussion of section 2.1: they have individual histories through time.  In this 

sense, Albert's interpretation is quite similar to the hidden-variable interpretations discussed 

in 4.3: as they do, Albert attempts to solve the measurement problem by introducing new 

theoretical entities that are thought to exist objectively.  And, like in their case, my main 

argument against Albert's interpretation is that we can do without such new entities.  (And of 

course, the introduction of non-physical substances into a physical theory is not a move that 

many philosophers would want to do lightly.)  Furthermore, as in the case of hidden-variable 

interpretations, the introduction of individual minds as carriers of subjective perceptions 

necessitates postulating dynamical laws for these minds that are consistent with the overall 

probability distributions given by the objective state and with the no-hidden-variable 

theorems.  Albert, like the defenders of modal interpretations, doesn't offer such a theory; and 
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while it is easy to postulate an appropriate dynamical evolution for normal von-Neumann type 

observations (this is what the consistency argument of this section has shown), it is not clear 

at all what its general form should be.   

 In contrast, the subjective states discussed here are not new individual substances, but 

physical properties of observers.  Hence there is no objective matter of fact about their 

identity over time, i.e. they do not have objective histories in all cases.  Nevertheless, we can 

ascribe histories to subjective states if the overall evolution allows us to do so consistently.  

As we have seen in this section, this is the case for von-Neumann type observations.  But also 

for a much wider class of interactions will it be possible to ascribe histories to subjective 

states if we invoke the assumption that such states are decoherent, because decoherence 

ensures the existence of consistent histories (Zurek 1993).  Under the assumption of 

decoherence, Albert's and my interpretation will therefore not disagree in practice about the 

existence of histories, only about their status. 

 

5.3  The Empirical State 

 So far, we have given an argument that Everett's formulation of quantum mechanics is 

empirically adequate by showing that it is consistent with a subjective appearance of well-

defined measurement outcomes.  It would of course by possible to claim that this is all that 

needs to be said about the model.  But there is a central feature of the model that is 

unsatisfactory from a philosophical point of view:  it seems natural to think of the objective 

state as the element of the model that describes the physical system "as it is" independent of 

any observation, while the subjective state is merely an erroneous description of the system 

brought about by the physical limitations of the process of observation.  This picture leads us 

to the conclusion that we can never have knowledge about the state of a physical system:  any 

observation will only create a new illusion but can never reveal the real state.77  While 

Everett's argument shows that we necessarily agree in our illusions, this only means that the 

illusion is collective. 

 Notice that the argument about the observability of the objective state resembles a 

classical sceptical argument.  We give a model of observation within our theory and from that 

conclude that we cannot have knowledge about objective matters of fact.  I propose to deal 

with this problem in a way that is analogous to Kant's answer to the sceptical argument.  To 

                                                
77A consideration of the hierarchy (5.8) shows that every subsequent subjective state will be "further away from 
the truth", if we take the scalar product between subjective and objective state as the measure of distance. 
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put it in the simplest possible way, the answer is that the absolutely unobservable objective 

state cannot be what we mean by reality.  Reality is what corresponds to our observations in 

the object, not the absolutely objective cause of our observations.   

 Kant distinguishes two concepts of reality:  transcendental reality, that is, the existence 

of things in themselves, absolutely independent of our perception, and empirical reality, that 

is, the lawful existence of things as we perceive them.78  Transcendental reality cannot be 

perceived although we have to assume it to explain our perceptions.  What we mean by reality 

in our normal use of the word is empirical reality.  Far from being a lawless aggregate of 

illusions, it is ordered by the conceptual framework that our mind imposes on it.  We will 

return to the comparison with Kantian metaphysics in the next section.  For now, regard this 

allusion to Kant merely as an analogy supposed to motivate the search for a correlate of 

empirical reality other than the objective state (which is obviously unsuitable for this 

purpose).   

 The sceptical problem is reflected in our interpretation by the fact that the transition 

probabilities (5.9) of the subjective state are given by the objective state.  The question 

therefore is:  can the observer in a given subjective state ascribe a quantum mechanical state 

to the object that leads to the correct probabilities for future observations conditional on the 

observer's subjective state?  If there is such a state, we can regard it as representing empirical 

reality for an observer in the given subjective state.  We have already found this state in 

section 3.1:  It is the relative state to the subjective state.  For any subjective state 

€ 

ω  of the 

observer, the objective state 

€ 

ψ  uniquely defines a relative state of the object.  This relative 

state gives the correct conditional probabilities for future observations (that is, their resulting 

subjective states) under the condition that the observer initially was in the subjective state 

€ 

ω .  

Let us call this state of the object that corresponds to the subjective state of the observer the 

empirical state.   

 Notice that the correspondence is a purely physical and objective relation and is 

independent of any notion of meaning of the subjective state.  This is important in the case of 

an imperfect measurement when the belief 

€ 

B α i( ) can be false.  Then the empirical state is not 

simply the eigenstate of 

€ 

α i, but a state of the object that gives the objectively correct 

predictions for future measurements.  Consider the model of an approximate measurement 

with a decoherent measuring apparatus from section 3.3:  The pointer basis 

€ 

′ ψ i  there now is to 

                                                
78For a discussion of this distinction, see Allison (1983), especially chapter 1. 
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be understood as the subjective states 
  

€ 

ω …α i[ ].  An observer in the subjective state 

  

€ 

′ ψ i =ω …α i[ ] has found the measurement result 

€ 

α i and hence (implicitly) believes that the 

object is in the corresponding eigenstate 

€ 

ϕ i .  But because the measurement is not exact, the 

relative state to 
  

€ 

ω …α i[ ] (the empirical state) is not 

€ 

ϕ i  but 

€ 

′ ϕ j = N j cibiji∑ ϕ i  (eq. 3.21) which 

is a "wave packet" of finite width (depending on the error of the measurement) around 

€ 

ϕ i .  

(And if the observer performs a second measurement of the same variable, we can show by 

using the empirical state that there will be a finite probability that the second measurement 

does not agree with the first, just as it follows from the objective state.)  This means: the 

empirical state does not represent an absolutely objective matter of fact independent of the 

process of observation, but it does not merely reflect the belief of the observer, either.  As we 

would expect from a notion of reality, the empirical state gives us a stable criterion that the 

truth or falsity of an observer's beliefs can be judged by. 

 The dynamics of the empirical state are given by the evolution of the subjective state 

and the relative state formalism.  This leads to a well-known picture of the evolution of the 

empirical state:  as long as object and observer don't interact, the state undergoes the usual 

unitary evolution given by the Hamiltonian of the object.  When object and observer interact, 

the subjective state changes indeterministically, and therefore the same happens to the 

empirical state:  it changes into one of the eigenstates of the measured observable; the 

transition probabilities are given by the transition probabilities of the subjective state.  In the 

example of equations (5.3-4):   the initial empirical state 

€ 

ϕ0 in this example is 

€ 

c1ϕ1 + c2ϕ2  (the 

relative state to   

€ 

ω …[ ]).  When the subjective state changes at   

€ 

t , also the empirical state 

changes to either 

€ 

ϕ1 or 

€ 

ϕ2.  The total probability for a change to 

€ 

ϕ1 is 

€ 

c1
2, for a change to 

€ 

ϕ2, 

it is 

€ 

c2
2 .  The evolution can be represented in the following diagram: 

empirical state subjective state evolve into: entangled state

 

equivalent to (5.10)

  

empirical state subjective state

ciϕ i∑ ⊗   ω …[ ] →
  
ciϕ i ⊗ ω …αi[ ]∑

⇓

ϕ f ⊗
  
ω …α f[ ]

 The dynamical rules for empirical states obviously are von Neumann's two processes 

of quantum mechanical evolution:  as long as no observation happens, the evolution is unitary 

(governed by the Schrödinger equation); if an observation takes place the evolution is 
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probabilistic (von Neumann's reduction process).  Hence, the empirical state is equivalent to 

the quantum mechanical state as given by von Neumann's theory.  This shows the equivalence 

of Everett's theory (in the interpretation offered here) and von Neumann's.   

 But as we can see from diagram (5.10), the empirical states themselves do not form a 

closed model: in any measurement interaction they evolve into an entangled state which is 

only subjectively equivalent to the reduced state.  Therefore, we cannot simply treat them as 

objective states or our account of the observation process will be incomplete:  it does not give 

us a physical model of the observation process, nor does it tell us how our subjective 

experience relates to quantum mechanical states.  This is the most fundamental deficit of von 

Neumann's model.  It is a deficit on his own postulate of psycho-physical parallelism that it 

must be possible to describe the process of subjective perception as a physical process.79  But 

the process of reduction he postulated is not a physical process in the strict sense: it differs 

fundamentally from the usual unitary evolution of quantum mechanics.  The project of this 

interpretation can be seen as a completion of von Neumann's unfinished project of psycho-

physical parallelism in quantum mechanics.   

 The new and seemingly paradoxical feature of this interpretation is that probabilities 

here have a fundamentally different epistemological role than in a traditional ignorance 

interpretation of statistical physics:  there, the values of the observables are objective, and it is 

the probability distributions that are subjective, resulting from incomplete knowledge of the 

objective state of the system.  In our case, the probability distribution is objective (given by 

the objective state), and the possessed values are subjective.  But the attempt to salvage a 

more traditional metaphysical model results in one of the hidden variable theories discussed 

in 4.3.  And, as the argument in the present chapter should have shown, their additional 

theoretical entities (the value states of hidden variables) serve no explanatory purpose:  We 

can account for our experience of single measurement outcomes without them.  This means: if 

one wants to, one can of course introduce these additional variables and struggle with the host 

of theoretical problems they bring with them: the nonlocality, contextuality of measurement, 

obscure dynamics, and dualism of the physical and mental.  But then one should admit the 

fact that their introduction does not serve any theoretical purpose (i.e. the explanation of 

empirical phenomena) but solely is motivated by metaphysical prejudice: the unwillingness to 

accept that the world could be the way Everett's model describes it. 

 

                                                
79(Neumann 1932, 223).  See the discussion in section 3.4 
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Chapter 6 

Reality in Quantum Mechanics 
 

 

6.1  Kantian Epistemology 

 As we have seen, there are different possible readings of Albert's thought experiment.  

While Albert himself takes it as an argument against supervenience of mental states on 

physical states, I propose to understand it as an argument against the possibility of complete 

introspective knowledge of our objective physical state.  In this reading, Albert's thought 

experiment therefore can be seen as a sceptical argument:  starting from an analysis of how 

we arrive at beliefs about certain objects, it concludes that our beliefs are not truthful 

representations of these objects.80  In the interpretation offered here, I use this argument in a 

way that is similar to Immanuel Kant's use of the sceptical arguments of eighteenth-century 

epistemology:  Kant uses skepticism as a reason to reject a traditional model of epistemology 

which often is called the Cartesian model and to replace it with his model, which he calls 

transcendental idealism.  With 'similarity' I mean an analogous fundamental conceptual 

structure, which I will sketch in this section. 

 It is often said that the central point of Kant's metaphysics is the distinction between 

appearance and the thing in itself:  our knowledge is not about things in themselves, but about 

things as they appear to us under the conditions of our forms of intuition, space, and time, and 

of the pure concepts of understanding, the categories.  While this point is generally well 

known, another equally important point is frequently misunderstood:  the distinction between 

appearance and thing in itself does not only hold for external objects in space but also for our 

own representations.  Also these are not known as they are in themselves but only as they 

appear to us.  Whereas they are not subject to space as the form of outer intuition, they still 

fall under the condition of time because we only perceive them as they are represented by our 

'inner sense,' the Kantian term for consciousness.  Therefore, we also perceive ourselves as 

appearances and not as we are independent of our form of sensibility.   

 Kant discusses this distinction less prominently than the distinction for external 

objects but there are several places in the Critique of Pure Reason  (Kant 1929) where it is 

stated unambiguously:  quite obviously, in the discussion of time in the transcendental 
                                                
80This is actually stronger than most classical skeptical arguments in epistemology, like Descartes' or Hume's, 
which only assert that we cannot know whether representation and object agree. 
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aesthetic, especially B66-69 but maybe even more pointedly in his discussion of 

transcendental idealism within the Antinomy of Pure Reason (B518-525) where he says:   

Even the inner and sensible intuition of our mind (as object of consciousness) 

which is represented as being determined by the succession of different states 

in time, is not the self proper, as it exists in itself—that is, is not the 

transcendental subject—but only an appearance that has been given to the 

sensibility of this, to us unknown, being.  This inner appearance cannot be 

admitted to exist in any such manner in and by itself; for it is conditioned by 

time and time cannot be a determination of a thing in itself (Kant 1929, B520). 

This shows that the distinction between appearance and thing in itself is independent of the 

distinction between object and subjective representation.  The former distinction can be 

applied on either side of the latter.  Henry Allison calls the failure to distinguish between 

these two distinctions the 'standard picture' of Kant interpretation.  It results in a confusion of 

Kant's transcendental idealism with a subjective idealist position like Berkeley's (which Kant 

calls empirical idealist) and therefore disputes Kant's claim that he can salvage empiricism.81  

 The distinction between representation and object is an empirical distinction between 

different kinds of things whereas the distinction between appearance and the thing in itself 

distinguishes the mode of our knowledge of objects:  an appearance is an object known 

through the representation of our senses (be this object external or an internal representation 

itself), and therefore according to Kant subject to the conditions a priori of our sensibility; a 

thing in itself is the object thought of as independent of our sensibility and its conditions.  

While it is impossible to know anything about the object independent of these conditions, it is 

still possible to think of an object in this way (even necessary, as Kant claims, once we realize 

that we know objects only as appearances).82  This means, appearance and thing in itself are 

not two different objects (like representation and its object), but two ways of considering an 

empirical object.   

 Kant's double distinction can be applied to any epistemological model even if it does 

not attempt to be a priori, i.e., formulated without the use of empirical knowledge about 

objects, representations, and their relation.  Any epistemological theory will model objects on 

one side and epistemic subjects and their beliefs or representations on the other side.  The 

interpretation of such a theory is more complex than the interpretation of a theory that does 
                                                
81(Allison 1983, 4-5 and 247-254).   
82(Kant 1929, B306). 
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not contain a model of the observing subject.  First of all, the model of the subject and its 

states (or representations) is not identical to us as the 'true' subject—as little as in any theory 

the model of an object is identical to the actual object.  Therefore, the theoretical description 

of the subject is in need of an interpretation, which relates the description to our actual 

experience.  But this interpretation in turn determines the interpretation of the model for the 

objects in the theory, because according to the theory, the objects are given through their 

relation to subjective representations as modeled by the theory.  Especially, once the 

interpretation of the subjective representations determines which representations are 

observable, then this will in turn determine which features of the model for objects are 

observable.  We therefore generally have a distinction between observable (phenomenal) and 

non-observable (noumenal) elements of the model, which is given by the interpretation of the 

model and is independent of the distinction between objects and their subjective 

representations given by the theory itself.   

 In Kant's case, the theory concentrates almost exclusively on the faculties of reason.  

This, of course, has to be understood from the anti-sceptical intention of his argument.  Kant 

tries to justify the assumption of a fundamental logical structure of nature under the categories 

and therefore cannot start with any substantial assumptions about this structure.  On the other 

hand, he assumes that we can have knowledge about our mental faculties by means of logical 

analysis, which is not vulnerable to sceptical arguments.  This is not the place to assess 

whether Kant's theory of faculties is immune to sceptical questioning.  The interesting point in 

our context is his version of what I call the interpretation of the epistemological theory.  This 

argument is given in the transcendental deduction of the categories.  In the following brief 

outline of the argument, I will not attempt to analyze this famously difficult argument, but 

merely compare its overall structure with the general schema given in the last paragraph.83   

 Kant starts with a fundamental principle (his 'principle of interpretation') that for a 

representation to be conscious it is necessary that it be unified by an act (the synthesis) of our 

mental faculties, because any conscious representation must carry the consciousness of its 

unity which cannot be part of what is given through the senses.  Therefore, any conscious 

representation will obey certain formal conditions imposed by these functions of unity.  These 

criteria are represented by a set of formal concepts, the categories.  The second step of Kant's 

argument translates these formal conditions on conscious representations into conditions on 

                                                
83This structure can be seen more clearly in the version of the transcendental deduction given in the second 
edition.  At the same time, my reading of this version adds plausibility to the peculiar two-step argument offered 
there, which many commentators have found puzzling. 
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objects of our experience.  This step is described by Kant's famous statement:  'the conditions 

of the possibility of experience in general are likewise conditions of the possibility of the 

objects of experience.'84  An object can only be observable if its subjective representation 

fulfills the conditions of unity of consciousness, therefore any observable object will fall 

under certain universal rules that represent the conditions of possible experience.  We can 

think an object independent of these conditions, but because we don't have a universal theory 

(ontology) of objects that would describe objects independent of the conditions of our 

experience, we can know nothing about such an object.   

 In the interpretation of Everett's theory, other than in Kant's case, we start with an 

empirical model of the observation process.  Albert's thought experiment forces us (at least in 

the interpretation given here) to distinguish the state of the observer as given by the model 

(the true state) from its appearance to us as conscious observers of ourselves (the phenomenal 

state).  This distinction is not part of the 'bare' theory but of its interpretation, and is analogous 

to Kant's transcendental distinction between appearance and thing in itself.  Unlike in Kant's 

case, there is a formal way to represent the noumenon, because the theory is not a priori, but 

starts with empirical assumptions about the character of its objects.  But like in Kant's case, 

the argument from the interpretation shows that the noumenon (the true state of the observer) 

cannot be known.  And, like in Kant's case, the theory itself gives us the means to infer from 

the phenomenal state of the subject to a phenomenal state of the object (the empirical state).  

The dynamical rules inferred for the empirical state are the familiar von Neumann rules.  This 

demonstrates the empirical adequacy of Everett's model, assuming that the von Neumann 

rules reflect our empirical knowledge about quantum mechanical systems.   

 The parallels between Kant's and my conceptual distinctions can be represented in the 

following two diagrams:   

Interpretation of Everett: 

   

€ 

phenomenal state
      of subject

relation given by
quantum mechanics← →      

empirical state
of object

     distinction given by the interpretation      distinction given by the interpretation

true state of subject
not fundamentally

distinct← →      true state of object  

                                                
84(Kant 1929, B197).  
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Kant's metaphysics: 

 

  

€ 

representations under the
conditions of consciousness

empirical relation← →     
object under the

conditions of experience

transcendental distinction     transcendental distinction     

transcendental subject
not materially

distinct← →     transcendental object

 

Here, the columns describe the distinction within the theory between subject and object while 

the rows describe the distinction given by the interpretation of the theory (in Kant's case, the 

transcendental distinction) between appearance and thing in itself.   

 There is an important remark to be made about the lower row:  the distinction between 

subject and object is itself part of the level of appearances and cannot be maintained as a 

fundamental distinction on the noumenal level.  In quantum mechanics, this is reflected by the 

fact that if we assume an absolutely true state, it will be an immensely complex state of the 

whole universe, not a state of distinct subject and object systems.  Presumably, both the 

observer and the object exist only in certain components of this state (certain 'branches of the 

wave function of the universe').  This point has been stressed in the discussion of the many-

histories interpretation of quantum mechanics.85  Here, it is interesting to see the parallel with 

Kant's assertion in 'The Paralogisms of Pure Reason' that on the transcendental level we 

cannot assume a material distinction between transcendental subject and transcendental 

object:   

The something which underlies the outer appearances and which so affects our 

sense that it obtains the representations of space, matter, shape, etc., may yet, 

when viewed as noumenon (or better, as transcendental object), be at the same 

time the subject of our thoughts.86 

 

6.2  Reality in Quantum Mechanics 

 A Kantian epistemology in the sense sketched in the last section necessitates a 

reformulation of the concept of reality.  Obviously, once we accept an epistemology that 

implies that the form of our knowledge is fundamentally determined by the way how we 

experience objects and not simply by the form of the objects of our experience in themselves, 
                                                
85See, for example,(Zurek1993, 307-8). 
86(Kant 1929, A358).  
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we cannot anymore identify phenomenal reality (the totality of facts of our immediate 

experience) and objective reality (the totality of facts independent of our experience).  The 

question is if we can have in such a theory a concept of empirical reality which is both 

epistemically accessible (which the transcedentally objective reality is not) and epistemically 

objective (unlike phenomenal reality which is merely an aggregate of subjective experiences).  

We expect epistemic objectivity to imply that empirical reality is stable over time, 

intersubjective, and suitable to predict future events. 

 Kant defines his concept of reality in the analytic of principles (B272-74) and 

discusses it in detail in the A version of the paralogisms (A366-80).  He defines:  "That which 

is bound up with the material conditions of experience, that is, with sensation, is actual."  This 

means: the reality of an object is not its (noumenal) existence as a thing in itself, i.e. its 

independence of the conditions of our knowledge, but the fact that it is given through an 

actual perception.  With 'bound up' Kant means that the object does not have to be the 

immediate object of the perception: 

What we do, however, require is the connection of the object with some actual 

perception, in accordance with the analogies of experience, which define all 

real connection in an experience in general.87 

The analogies are the principles a priori of persistence of the substance, of causality, and of 

interaction of the simultaneous.  They allow us to infer the reality of objects indirectly from 

our perceptions through empirical laws (of stability, causality, or interaction) which are 

granted objective validity by the a priori principles they stand under.  Reality, therefore, is not 

given by disconnected subjective perceptions either, but is the objective correlate to the whole 

of our experience (the totality of perceptions through time), united by general laws.  

 The epistemic accessibility of reality is ensured by the fact that it is constituted of 

appearances and therefore given directly to our perception (A370-71), its epistemic 

objectivity on the other hand is to be guaranteed by the necessity of its general laws (which 

reflect the necessity of the synthesis of objects in the transcendental apperception, A106-10).  

Kant's argument for epistemic objectivity of his concept of reality is problematic:  It remains 

questionable whether the argument in the transcendental deduction can give us a sufficient 

notion of objectivity or, more general, whether such an argument can be given on purely 

internalist grounds at all. 

                                                
87(Kant 1929, B272).   
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 In the interpretation of quantum mechanics, we don't have this problem.  The model 

itself comes with a concept of objectivity (at the cost of not being a priori in Kant's sense), so 

we can have an externalist argument for the epistemic objectivity of the empirical state, and 

this argument was given in chapter 5:  The empirical state is independent of the content of the 

beliefs of the observer, it is intersubjectively defined, it has a well-defined dynamics and it 

gives objectively correct predictions for future observations.  On the other hand, we have not 

shown yet that the empirical state is epistemically accessible.  Given that it is not necessarily 

the state the observer believes the object to be in, how can the observer know what the 

empirical state of an object is?  According to our definition of the empirical state as a relative 

state, it depends both on the subjective state and on the objective state (eq. 3.2)  But the 

objective state cannot be perceived: this follows directly from Albert and Loewer's thought 

experiment.  It seems that our knowledge will be forever confined to our own subjective 

states and our interpretation leads to the subjective idealism that realists have seen as the 

inevitable consequence of the Kantian program.   

 Let us consider the problem in our earlier example from equations (4.2-3) and diagram 

(5.10): There, the objective state Ψ1 develops out of the state Ψ0 that is a conjunction of the 

state of the observer before the observation and the initial state of the object.  But this means:  

if we know the initial state of the object and have a physical description of the observation 

process (or at least some general information of the form:  if the initial state of the system 

is..., then the state of the observer after the observation is...), then we can infer the objective 

state Ψ1 (although it cannot be perceived).  Hence, we can know the empirical state from an 

earlier observation if we know its initial empirical state.  Because then, our consistency proof 

has shown that we can consistently use the initial empirical state for any predictions of the 

future behavior of the system.  This means, we can use the prior empirical state in place of the 

objective state, and, through unitary evolution, arrive at a composite state Ψ1, which, although 

it is not the true objective state, is an empirically adequate stand-in for it and especially allows 

us to infer the final empirical state.  But now we are led to a regress:  How are we to know the 

initial empirical state? 

 Somewhere we must reach a point where we don't have any prior information about 

the observed system.  Von Neumann has shown (1932, p. 179-84), that in this case we can use 

the identity operator as the prior density operator of the object system, representing the fact 

that we have no information about its state (this is the so-called von Neumann rule).  Here, the 

identity operator represents a mixed state that is equally distributed over the whole Hilbert 
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space.  Because the identity operator is invariant under any unitary transformation, the notion 

of equidistribution is independent of the basis we choose to express it in.  Von Neumann 

shows that if the observation is exact (i.e., there is no error) and complete (i.e., the eigenstates 

of the observed observable are non-degenerate), the relative state after the observation will be 

the same as the relative state obtained from the objective state.  This means: an exact and 

complete measurement fully determines the empirical state—the objective state plays no 

epistemic role. 

 If the measurement is approximate, we can use our model from section 3.3 again.  

Instead of a wave packet 

€ 

′ ϕ j = N j cibiji∑ ϕ i  as in our discussion in section 5.3 we now obtain 

a mixed state 

€ 

′ P j = biji∑
2
ϕ i ⊗ϕ i

† .  This state represents a statistical distribution that (like the 

wave packet) approximates the exact state     

€ 

ϕ i ⊗ϕ i
† .  If, on the other hand, the observation is 

not complete (that is, if the observed eigenvalue only specifies a subspace, not a single 

eigenstate), the relative state is an equidistributed density matrix over that subspace.  In this 

case the relative state describes how the measurement has narrowed down the possibilities for 

the empirical state. 

 Von Neumann's argument has been criticized in the case of incomplete observation 

(Lüders 1951).  It is true that if we assume a pure state as the objective initial state of the 

system, then the von Neumann rule does not yield the true empirical state.  But remember that 

there is no way of having knowledge about the objective state independent of acts of 

observation.  We can express this fact by postulating that the objective state is represented 

generally by the identity operator.  The issue here is closely related to the question in 

statistical mechanics about the status and the justification of a maximum entropy principle.88  

Note that unlike in the classical case where we don't have a unique notion of equidistribution 

over the phase space (which makes the concept ill-defined as an a priori measure), the Hilbert 

space structure allows for a unique definition of this concept (because the identity operator is 

invariant under any unitary basis transformation).  

 We can interpret these results in two ways:  The straightforward reading is that the 

empirical state gained through the von Neumann rule is a reflection of our ignorance of the 

objective state (and hence of the true empirical state):  There is one true objective state of the 

universe, incredibly complex and completely unknown to us, that determines the correct 

empirical state.  The empirical state gained from the von Neumann rule is an approximation 

                                                
88Guttmann, forthcoming: chap. 1 
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to the true empirical state of the object which we can improve by refining our measuring 

instruments of by repeated measurements.  The von Neumann rule then describes (basically 

like the Bayesian method in statistics) a way of updating our description when we gain new 

information.  The true empirical state is still epistemically accessible, although only 

approximately in real-life situations.  But a realist would not expect more than that, anyway. 

 But there is a second, more radical interpretation that is more in the spirit of the 

Kantian analogy:  We can renounce the realism about the objective state altogether.  As there 

is no absolutely objective matter of fact about the reality of one possible state of affairs, there 

is also no absolutely objective matter of fact about the probabilities of possible states of 

affairs.  Then the empirical state given by the von Neumann rule simply is the empirical state 

of the object.  Any quantum mechanical state ascription is not the description of some "fact in 

itself," but a description of where in the logical space of possibilities I (the conscious subject) 

am situated.  Notice that also on this interpretation, the empirical state is epistemically 

objective, because its relation to the subjective state is still physical and objective, only that 

now the empirical state is fully defined by this relation and does not depend at all on a prior 

probability distribution (represented by the objective state).  Borrowing from Kant's 

terminology, we can call the absolutely objective state a transcendental state.  Like Kant's 

transcendental object, we can think of it as describing the absolutely objective matters of fact 

standing behind every concrete process of observation, but we are never able to determine it.  

On our first (realist) interpretation, this state is some unknown pure state of the object, on the 

second (idealist) interpretation it is an equidistributed density matrix representing our 

ignorance of the state prior to any measurement. 

 For any practical predictions we make, the choice of interpretation is completely 

irrelevant because the most we can ever know is the empirical state gained by the von 

Neumann rule, which, as we have seen, is independent of the choice of the prior 

(transcendental) state of the object..  The difference only shows in contexts like cosmology, 

where the non-realist interpretation forces us to abandon the notion of the objective state of 

the universe as a basis for explanations in cosmology.  Rather, we can only speak about the 

state of the universe "from our point of view," i.e. conditional on the matters of fact here and 

now.  This is analogous to the methodological approach advocated in cosmology as the 

anthropic principle (Harrison 1981):  It has been noted that complex biological processes and 

hence consciousness in the universe seems only possible if certain cosmological constants 

have narrowly defined values.  The anthropic principle postulates that the values of these 

constants should be explained by the fact that conscious beings like us exist. Similarly, on a 
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non-realist interpretation we cannot explain our present observations from a (transcendental) 

total state of the universe.  Rather, we deduce an empirical state of the universe from our 

present observations (which is all we do in practice, anyway).  It is interesting to note that our 

interpretation could be a basis for the anthropic principle, if dynamical processes could be 

found that determine the values of cosmological constants. 

 Let us return to the concept of empirical reality:  Reality should be more than a 

momentary empirical state: it should comprise a notion of history that is as epistemically 

objective as the present empirical state of the world.  We have already seen that because 

subjective states are memory states, they contain information about past subjective states of 

an observer.  This means that they represent a subjective history of the observer.  For each 

stage of this history, there is a corresponding empirical state of some object.  But this is still 

not all there is to empirical reality:  We also consider facts as real that we have only inferred 

knowledge of.  But this means that we extrapolate the empirical state from our knowledge 

about the dynamics of a system.  This is just Kant's definition of reality quoted in the 

beginning of this section:  Real is every fact that is lawfully connected to our observations.   

 The new phenomenon in quantum mechanics is that these extrapolations will not 

always match seamlessly:  If we measure noncommuting observables, we will have a 

situation as in diagram (5.10), where the state inferred from an earlier observation and the 

state inferred from a later observation are not identical.  This means that in quantum 

mechanics, reality is not a seamless whole: there can be breaks between the "patches of 

reality" defined by different observations.  These seams are nothing but the instances of state 

reduction in von Neumann's formulation.  Now we can understand von Neumann's 

observation (which we discussed in section 3.4) that the point in time at which reduction 

happens can be moved at will:  this reflects the fact that the different states (before and after 

reduction) don't represent an objective change in the object, but merely a change in 

perspective, namely which subjective state the description is made from.  Von Neumann's 

proof for the mobility of the time of reduction is identical to our argument that we can 

conditionalize on subjective states.89 

 Everett's model therefore does not only reproduce the empirical predictions of non 

Neumann's.  It leads to exactly the same concept of empirical reality.  The difference is that in 

Everett's model this reality is intertwined with countless possibilities that exist beside it.  And 

this brings us back to the question about Everett's model that probably has vexed philosophers 

                                                
89Sect. 5.2 
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the most:  How can it be said that possibilities exist?  I believe that the answer to this has to 

be pragmatic:  They are (so I have tried to show) necessary elements of a highly successful 

theory of nature.  Neither the attempt to cut them out of the picture (by postulating a physical 

process of reduction) nor the attempt to make them part of reality (for example, by 

reinterpreting them as a field as in Bohm's theory) leads to satisfying results.  In either case, 

we will cone into conflict with the no-hidden-variable proofs of quantum mechanics.  

Although these conflicts can be solved by brute force, the resulting theories have an air of 

desperation:  They need a huge theoretical apparatus with unobservable and unphysical 

interactions, variables, and states.  On the other hand, as I have tried to argue in this chapter, 

admitting possibilities into existence does not mean that we lose a coherent concept of reality.  

So why should we not admit them into our scientific ontology, just as we have admitted 

atoms, fields, or the curvature of spacetime? 

 

6.3  Conclusion 

 Let me briefly recapitulate the assumptions made in the argument of this thesis that 

Everett's theory can account for the phenomena of quantum mechanics: 

(1) The metaphysical model. 

Quantum mechanical states describe coexistent ensembles of possible facts.  

Moreover, there is no objective matter of fact which of these possible states is actual.  

Actuality is only defined relative to a given possible state. 

(2) The decoherence assumption. 

Conscious observers, like all other macroscopic objects under normal circumstances, 

are decoherent systems.  They are in constant interaction with their environment.  This 

interaction singles out a set of (pairwise orthogonal ) subspaces which contain the only 

dynamically stable states of the system. 

(3) The memory assumption. 

Conscious observers have memories, i.e. physical systems whose states contain stable 

records of past states. 

(4) The supervenience assumption. 

The mental qualities (mental states) of conscious observers supervene over their 

physical properties. 

 As I discussed in the introduction, the metaphysical model gives an interpretation of 

the mathematical formalism of quantum mechanics.  This interpretation implies an 
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interpretation in terms of observations (namely, the Born rule), but it is more general than 

such an interpretation:  It gives an interpretation in terms of "what the world is like", i.e. in 

terms of a set of fundamental (metaphysical) entities.  The model may seem rather 

extravagant.  But it is interesting to note that it is not really new in physics.  A model of 

interfering possibilities is implicitly contained in the path integral method.  In this method, the 

quantum mechanical amplitude of a state is calculated by adding contributions from all 

possible paths (histories) leading to that state (Feynman 1948).  Historically, the intuition 

behind the many histories interpretation was based on this method.  This is a good example 

for the claim from the introduction that a metaphysical model grows out of the application of 

the theory.  One might conjecture that, if Feynman had not been so afraid of getting drawn 

into metaphysics, he could have seen that the intuition behind the development of his path 

integral method leads to a radically new interpretation of quantum mechanics. 

 Assumption (4), on the other hand, is an embedding assumption:  It shows how to 

embed the metaphysical model of classical mechanics into the metaphysical model (1).  But 

(4) uses a fundamentally new concept of subjective appearance.  Therefore, it does not simply 

reduce classical mechanics to quantum mechanics.  (4) has a similar status as the ergodic 

principle in statistical mechanics or the supervenience assumption in philosophy of mind:  All 

these principles make us understand how two different theories can be consistent with each 

other by constructing models of the theoretical entities of one theory out of the theoretical 

entities of the other.   

 The decoherent histories interpretations have concentrated on criterion (2), and to 

lesser extent, on criterion (3).  But this is not sufficient for an interpretation of quantum 

mechanics.  Without assuming a metaphysical model like (1) it is not clear why and how 

decoherent mixtures of states should be understood as probability distributions.  Assumption 

(4) is necessary to establish a concept of reality.  Describing measurement outcomes as 

mixtures is not sufficient for this end, as I discussed in section 3.3.  Zurek acknowledges the 

insufficiency of (2) and (3): 

This issue of the "collapse of the wave packet" cannot be really avoided: ... we 

perceive outcomes of measurements and other events originating at the 

quantum level alternative by the alternative, rather than all of the alternatives 

at once. 

An exhaustive answer to this question would undoubtedly have to involve a 

model of "consciousness", since what we are really asking concerns our 
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(observers) impression that "we are conscious" of just one of the alternatives.  

Such model of consciousness is presently not available (Zurek 1993, 310). 

Zurek addresses the problem by assuming that consciousness is to be understood as a kind of 

information processing; and in physical information processing devices the physical state 

must in some way reflect the information content.  He sees these assumptions as 

"considerably more speculative than the rest of the paper" (ibid.), which is concerned with 

decoherence.  In section 5.1 I have attempted to show that speculation on the nature of 

consciousness is not necessary for the purpose at hand:  The supervenience assumption is all 

we need.  (Notice that supervenience is also hinted at by Zurek's account.)  And it had better 

be this way:  for if our concept of reality depended on a substantive assumption about the 

nature of consciousness, there would be little hope of extending it beyond the state of the 

subject, and we would be left with a subjective idealism of Albert's kind. 

 This concludes my argument that the metaphysical model for quantum mechanics 

offered in this thesis can give an account of measurement.  But of course, this is not all that 

needs to be done.  On the account of a metaphysical model given in the introduction, the 

decisive criterion for a metaphysical model is its usefulness for concrete applications of the 

theory.  Lewis makes a similar argument for his modal realism:  "Why believe in a plurality 

of worlds?—Because the hypothesis is serviceable, and that is a reason to think that it is true 

(Lewis 1986, 3)."  I will hold off the issue of truth until later, but usefulness should all the 

more be the decisive criterion for the worth of a model.  Although a theory of measurement is 

one such application and although it has played a prominent role in our attempts to understand 

quantum mechanics, it certainly is not the only application of quantum mechanics we want.  

The exploration of other possible uses for my model is beyond the scope of this thesis.  But 

we have encountered one substantial example here:  The research about decoherence, which is 

based on the intuitions of this model.  The theory of decoherence has practical impact that is 

independent of any metaphysical model, and which goes far beyond a model for the 

measurement process.   

 I believe that the kind of "modal realism"90 advocated here has many more fruitful 

applications.  This is a promissory note, not more.  It should be plausible, however, that if 

                                                
90I would rather not use this label, which even Lewis himself considers somewhat of a misnomer (Lewis 1986, 
viii).  For one it seems to imply the categorical mistake to assume that possibilities are real objectively where I 
want to say that reality is not an objective matter.  Secondly, this position has nothing to do with scientific or 
metaphysical realism which assumes that it is facts about the world "in itself" that make scientific theories true 
or false (Lewis's opinion notwithstanding).  Therefore, I much prefer the association with transcendental 
idealism described in section 5.4. 
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Lewis's possible worlds are "a paradise for philosophers (ibid., 4),"  the assumption of causal 

efficacy of possibilia implied in our model will make this paradise all the more relevant to our 

world.  We may expect consequences for our accounts of causality, intentionality, and the 

like.  The discussion of section 5.2 hints at an account of our experience of time that is much 

richer than what can be had from the classical model. 

 Lewis admits that the attractivity of his metaphysics depends crucially on the 

impossibility of getting its benefits "more cheaply elsewhere (ibid., 136-91)."  For this I 

believe to have a good case:  The persistence of the measurement problem itself shows that 

already the modest benefit of having a well-defined reality in quantum mechanics is not to be 

had cheaply elsewhere.  Nevertheless, one might be reluctant to let go of a metaphysics so 

deeply engrained in our thinking.  Against that I can only hold that there are good reasons not 

to feel all too nostalgic about the classical model.  It surely has had its many good uses.  But it 

also has had quite a few failures.  In Chapter 2, we encountered some examples: the problems 

of a classical account for probability or for the tense structure of time.  Mere metaphysical 

conservatism should not stop us from trying new roads exploring such issues. 

 And finally, what about truth?  Does the usefulness of our model entail its truth?  We 

have seen that Lewis thinks so.  But, one might object, metaphysics is not (like science may 

be) about the construction of useful models, it is about how the world truly is.  And the 

usefulness of a model has no bearing on whether it is true of the world.  The reader may 

expect by now that I align myself with Kant and consider this dispute as misguided, in science 

as well as in metaphysics.  Neither metaphysics nor science are about how the world is in 

itself, but about how it appears to us.  And we cannot anymore in metaphysics than in science, 

step outside of any conceptual framework to decide whether a conceptual framework is true 

or not.  I do not share Kant's optimism that we can turn this limitation into a method to settle 

the problems of metaphysics once and for all by constructing a metaphysics from the inside, 

i.e. from the conditions of our experience.  But this, I believe, means that metaphysics, like 

other sciences, is about constructing models of what the world is like. 
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