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evolutionwill naturally result in the dynamical collapse process of the wave function
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| ntroduction

As we know, what classical mechanics describes is continuous motion of
particles. Then a natural question appears when we turn to quantum mechanics, i.e.
which motion of particles does quantum mechanics describe? But unfortunately this
IS not an easy question. In fact, it is a hard problem, and people have been arguing
with each other about its solution since the founding of quantum mechanicd™®). In this
paper, we will try to solve this problem along a clear logical way. A convincing
solution will be found in the end of the road.

The plan of this paper is as follows: In Sect. 2 we first denote that what quantum
mechanics describes is not continuous motion of particles. As an example, we
re-analyze the famous double-dlit experiment. In Sect. 3 we present a theory of
discontinuous motion of particles in continuous space-time. We show that the
simplest evolution law of discontinuous motion is just the Schrodinger equation in
guantum mechanics. This further implies what quantum mechanics describes is
discontinuous motion of particles. In Sect. 4 we try to interpret the theory of
discontinuous motion. Two alternatives are given, and we demonstrate that the
existence of collapse of wave function may be inevitable. In Sect. 5 we point out that
gpace-time may be essentially discrete when considering the proper combination of
guantum mechanics and genera relativity, and give a simple demonstration. In Sect. 6

we discuss the influences of discreteness of space-time to the evolution of

1 In this paper we assume the only existence of particles.



discontinuous motion. The possible evolution law of the discontinuous motion of
particles in discrete space-time is worked out, and we demonstrate that it will
naturally result in the dynamical collapse process of the wave function. In Sect. 7 we
further show that continuous motion and its evolution law can be consistently derived
from the evolution law of the discontinuous motion in discrete space-time.
Conclusons are given in Sect. 8.
What quantum mechanics describesis not continuous motion of
particles

Even though people haveni t known what does quantum mechanics describe yet,
they indeed know what does quantum mechanics not describe. It is well known that
guantum mechanics doesri t describe continuous motion of particles, or we can say,
what quantum mechanics describes is not continuous motion of particles. Here as an
example, lef s have a look at the well-known duble-dit experiment, and see why
quantum mechanics does t describe continuous motion of particles.

In the usua double-dlit experiment, the single particle such as photon is emitted
from the source one after the other, and then passes through the two dlits to arrive at
the screen In this way, when a large number of particles reach the screen, they form
the double-dlit interference pattern. Now we will demonstrate that this experiment
clearly reveds what quantum mechanics describes is not continuous motion of
particles. Using apagoge, if the motion of particle is continuous, then the particle can
only pass through one of the two dlits, and it is not influenced by the other dlit in each

experiment. Thus it is evident that the double-dlit interference patternwill be the same



as the direct mixture of two one-dlit patterns, each of which is formed by opening
each of the two dlits, since the passing process of each particle in double-dit
experiment is exactly the same as that in one of the two one-dlit experiments. But
guantum mechanics predicts that there exist obvious differences between the
interference patterns of the above two situations, and al known experiments coincide
with the prediction Thus the motion of particle described by quantum mechanics
can' t be continuous, and the particle must pass through both dlits in some unusual way
during passing through the two dits.

Now there appears a simple but subtle question, i.e. if the motion of the particles
described by quantum mechanics is not continuous, then which form is it? If only the
objective motion picture of the particles can't be essentially rejected, then the motion
of particles must be discontinuous. This is an inevitable logical conclusion. As we
think, this answer is more direct and natural, since classical mechanics describes
continuous motion, then correspondingly quantum mechanics will describe another
different kind of motion, namely discontinuous motion But the answer seems very
bizarre, and we have never learned the discontinuous motion. Now let s be close to it
and grasp it.

A theory of discontinuous motion of particles

In this section, we will present a theory of discontinuous motion of particles. Our
analyses will show that the simplest evolution law of discontinuous motion of
particles is just the Schrédinger equation in quantum mechanics. This strongly implies

what quantum mechanics describes is discontinuous motion of particles.



A general analysis

First, we will srictly define the discontinuous motion of particles using three
presuppositions about the relation between physical motion and mathematical point
set. They are the basic conceptions and correspondence rules needed before we
discuss the discontinuous motion of particles in continuous space-time.

(1). Time and space in which the particle moves are both continuous.

(2). The moving particle is represented by one point in time and space.

(3). The discontinuous motion of particle is represented by the dense point set in
time and space.

The first presupposition defines the ntinuity of space-time. The second one
defines the existent form of particle in time and space. The last one defines the
discontinuous motion of particle using the mathematical point set. For simplicity but
without losing generdlity, in the following we will mainly analyze the point set in
two-dimensional space-time, which corresponds to one-dimensional motion in
continuous space-time.

We first introduce what is dense point set. As we know, the point set theory has
been deeply studied since the beginning of the 20th century. Nowadays we can grasp
it more easily. According to this theory, we know that the general point set is dense
point set, whose basic property is the measure of the point set. Its visualizing picture
is like amass of fog or cloud. While the continuous point set is the familiar curve, one

kind of specia dense point set, and its basic property is the length of the point set. It is



indeed a wonder that so many points bind together to form a continuous curve by
order.

Enlightened by the theory of fluid mechanics we can find the description of the
dense point set, which corresponds to the discontinuous motion of particles in
continuous space-time. The mathematical analysis shows that the proper description
of the dense point set, or the motion state of a particle undergoing the discontinuous
motion is position measure density r (x,t) and position measure flux density j(x,t),

and they satisfy the measure conservation equation
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above correspondence rules we can clearly see the physical meaning of the
description quantities r(x,t) and j(xt) . As to the position measure density
r(xt) , it represents the relative frequency of the particle appearing in the
infinitesmal space interval dx near the position x during the infinitesimal interval
dt near the instant t, and we can measure it through directly measuring the
appearing probability of the particle in the above situation Thus r (x,t) possesses a
direct physical meaning. However, the position measure flux density j(x,t)
possesses no direct physical meaning, and we can only measure it through indirect
mesasurement.

It is very natura to extend the basic descriptions of the motion of a single
particle to the many particles situation As to the motion state of N particles, we can
define their joint position measure density r (x;,X,,...Xy ,t) according to the theory
of point set, it represents the appearing probability of the situation, in which particle 1

is inposition x,, particle 2is in position X,, ..and particle N is in position X, . In



asimilar way, we can define the joint position measure flux density (X, X,,...Xy ,t) .

It satisfies the joint measure conservation
. r(X,X,,.Xg,t) & y Xy e Xyt ,
equation: fir (, X‘l?t Xy )+§_ X, );ZX Xy ):0. We can easily see that, the
i=1 i

descriptions of the motion of many particles, namely the joint position measure
density r(x,,X,,...Xy,t) and joint position measure flux density j(X;,X,,...Xy,t)
are naturally defined in the 3N dimensional configure space, not in the real space.
Besides, when the N particles are independent, the joint position measure density

r(x,,X,,..Xy,t) can be reduced to the product of the position measure density of
A

eachpartide namely r (x,,X,,..%,t)=Qr (X,1) .
i=1

Theevolution law
In the following, we will try to find the possible evolution equations of the
discontinuous motion of particles. Here we mainly analyze one-dimensional motion,
but the results can be easily extended to the three-dimensond Studtion.
First, we need to find the simplest solution of the evolution equation, in which
we can find the first motion principle similar to Newtori s first principle. It is evident

that the smplest solution of the motion equetion is:
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usng the relation j=rv we can further get the solution: r(xt) =1,
j(x,t) =v=p/m, where m isthe mass of the particle, and p is defined as the
momentum of the particle.

Now we get the first motion principle, i.e. during the free motion of particle, the
momentum of the particle is invariant. It can be easily seen that, contrary to
continuous motion, for the free particle with one constant momentum, its position will
not be limited in the infinitesimal space interval dx, but spread throughout the whole
gpace with the same posgition measure dengty.

Similar to the quantity position, the natural assumption in logic is aso that the
momentum (motion) state of a particle in infinitesmal interval dt is still a genera
dense point set in momentum space. Thus we can aso define the momentum measure
density f(p,t), which satisfies the normalization relation (‘Sj f(p,t)dp=1%, and the
momentum measure flux density J(p,t). Their meanings are similar to those of

position, and satisfy the dmilar measure  conservation  equation
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Then we have two kinds of description quantities---one is postion, the other is
momentum. Position descriptions r(x,t) ad j(xt) provide a complete loca
description of the motion state. This we may call the local description of the

discontinuous motion Similarly momentum descriptions f(p,t) and J(p,t)

+¥ +¥
! For some ideal situations where the integrals Q r (x,t)dx and Q f(p,t)dp turn to be infinite,

the generd normalization relation will bedj r(xt)dx= dj f(p,t)dp.



provide acomplete nonlocal description of the motion state. For a particle with any
constant momentum, its position will spread throughout the whole space with the
same position measure density. This we may call the nonlocal description of the
discontinuous motion Since at any instant the motion state of a particle is unique,
there should exist a one-to-one relation between these two kinds of descriptions, i.e.
there should exist a one-to-one relation between position description r (x,t) ,j(x,t)
and momentum description f (p,t), J(p,t), and this relation is irrelevant to the
concrete motion state. In the following we will find the one-to-one relation, and our
analysis will also show that this relation essentially determines the possible evolution
of motion.

It is evident that there exists no direct one-to-one relation between the measure
density functions r(xt) and f(p,t), since even for the constant momentum
dtuation, we have r(xt)= 1and f(p,t)=d’(p- p,), ad there is no one-to-one
relation between them. Then in order to obtain the one-to-one relation, we have to
construct a new kind of integrative description on the basis of the above position
description r(x,t), j(x,t) and momentum description f(p,t), J(p,t) . Here we
only give the main dues and the detailed mathematica demongrations are omitted.

First, we disregard the time variable t or let t=0. Asto the above free evolution
dtate with one momentum, we have r(x0) =1, j(x0)=p,/m and
f (p,0)=d*(p- p,), J(p,0)=0. Thus we need to synthesize a new position state

function y (x,0) using 1and p,/m, and a new momentum state function j (p,0)



using d*(p- p,) and O, and find the one-to-one relation between these two gate
functions. We generdly writeit asfollows:

y (%0) = 3,i (POT(p.X)dp ------ (5)
where T(p,X) is the transformation function and is generally continuous and finite
forfinte p and X.

Since the function j (p,0) will contain some form of the basic eement

¥
d’(p- p,), normaly we may expand it as j (p,0) = é ad (p- p,). Besides, the

i=1
function y (x,0) will contain the momentum p,, and be generally continuous and
finite for finitex. Then it is evident that the function j (p,0) can only contain the
term d(p- p,), because the other terms will result in infiniteness. Furthermore, the
result j (p0) = d(p- p,) implies that there exists the simplest
relationf (p,0) =j "(p,0)j (p,0)%, and owing to the equality between the position
description and momentum description, we aso have the similar relation
r (x,0) =y " (x,0)y (x,0).

Then we may let y (x,0) =e'®™» and have T(p,x)=¢€"°"* . Considering the

symmetry between the properties position and momentum?, we have the genera

! Evidently, another simple relation f (p,0) =j *(p,0) permits no existence of a oneto-one
releion.
2 This symmetry essentially stems from the equivalence between these two kinds of descriptions, and

the direct implication isthat weaso have f (p,0) =1 for thesituationwhere I (X,0) =d*(x- X,).



¥
extension G(p,Xx) = é b (px)'. Furthermore, this kind of symmetry also results in

i=1
the symmetry between the transformation T(p,x) and its reverse transformation
T *(p,X),where T *(p,X) satisfies the relation:
i (pO) = QY (XOT *(p,¥)dx ------ (6)
Thus there should exist only one term  px in the function G(p, X), and this permits
the existence of the symmetry relation between these two transformations, which will
be T *(p,X)=T (p,x)=€™. Welet b=1/#%,where % is a constant quantity with
dimension J xs. For simplicity we let 7 =1 in the following discussions unless state
otherwise.
Now we get the Smplest one-to-onerdation, it is:
y (x0) = i (pO)e™dp - (7)
where y (x,0) =€™ and j (p,0)=d(p- p,). Thisrelation mainly results from the
essentid symmetries involved in the discontinuous mation itsdf.

In order to further find how the time variable t is included in the functions

y (x,t) and j (p,t), we may consider the superposition of two single momentum

states, namdy
y (X,1) :%[eiplx-icj_(t) +eip2x—ic2(t)] ______ ©)

The corresponding position measure density is r(x,t) :%[1+ cos(Dc(t) - Dpx)] ,
where Dc(t) =c,(t) -c,(t), Dp=p,-p,. Now we let Dp® 0, then we have
r(xt)® 1 and Dc(t) ® 0. Using the measure conservation relation we can get

2
dc(t) = det , then asto the nonrelativistic situation we get c(t) = Et = 2p—t , Where
m m



2
=P , is defined as the energy of the particle in the nonrelativistic domain. Thus as

2m

to any single momentum state we have the time-included formula y (x,t) =™ '®,
and the complete one-to-one reaion is
y (1) =i (p.E™ Edp ------ (9)

Since the one-to-one relation between the position description and momentum
description is irrelevant to the concrete motion state, the above one-to-one relation for
the free motion state with one momentum should hold true for any motion sate.

In fact, there may exist more complex forms for the state functions y (x,t) and
j (p,t) , for exanple, they are not the above simple number functions but
multidimensional vector functions such as y (x,t) = (y,(Xt), y.(xt), ...,
yyxt) ad j(pt)= (G.(pt), ., (pt), ..., ] (pt)). However, the above
one-to-one relation ill exists for every component function, and these vector

functions «ill  satisfy the above modulo square relations, namely

N N
rox)=aly xtF ad f(p,)=81j (pt)Ff . These complex forms will

i=1 i=1
correspond to the particles with more complex structure, say, involving more inner

properties such as charge and spin etc, for example, as to the particle with spin 1/2

4
such aseectron, wehaveN =4, r(x,t) = é ly . (x,t) .

i=1
Now we can finally work out the smplest nonrelativistic evolution law of the
discontinuous motion First, as to the free motion state with one momentum, namely

the single momentum state y (x,t)=e™'® | using the above definition of energy



2
=§— and including the constant quantity # we can easily find its nonrelativistic
m

evolution law:

Y G RS
qt 2m X

Owing to the linearity of this equation, this evolution equation also applies to the
linear superposition of the single momentum states, that is al possible free motion
states. Alternatively we cansay that it is the free evolution law of the discontinuous
moation.

Secondly, we will consider the evolution law of the discontinuous motion under
an outside potential. When the potential U (x,t) is a constant U, the evolution

eguation will be

Ty (xt) _ 22Ty (XD e
IhT_ 2m—‘|12x +Uy (x,1) (11

Then when the potential U (x,t) is related to x and t, the above form will still

hold true, namdly:

STy () _ BTV ey v (e )
IhT_ o +U (Xt (x,t) (12)

For three-dimensona stuation the equation will be

Ty (R0 - 17 Qo (s.0) +U R,y (X 8) —onv (13)
1t 2m

i

Thus we get the simplest nonrelativistic evolution law of the discontinuous motion
using the smplest one-to-one relation We find that it is just the form of Schrédinger

equation in quantum mechanics.



At last, we want to denote that the state function y (x,t) provides a complete
description of the discontinuous motionof particles. On the one hand, according to the
above evolution equation the state function y (x,t) can be expressed by the position
measure density r(xt) and position measure flux density j(x,t) , namely

y (x)=r Y2550 where S(xt)=mg) %dx#C(t) 1. On the other hand, the
r(x,

position measure density r (x,t) and position measure flux density j(x,t) can aso

be expressed by the state function y (x,t) , namey r(xt) Iy (xt)]* .

j(x1) :%(y*m—y-yﬂﬂi) . Thus there exists a one-to-one relaion between
[ X X

r(xt),j(x,t) and y (x,t) when omitting the absolute phase. Since the position
measure density r(xt) and position measure flux density j(x,t) provide a

complete description of the discontinuous motion of particles, the state function
y (x,t) aso providesacomplete description of the discontinuous motion of particles.
The meaning of the theory of discontinuous motion
The sameness between the simplest nonrelativistic evolution equation of the

discontinuous motion and the Schrddinger equation in quantum mechanics strongly

! When in threedimensional space, the formula for S(X,y,z,t) will be

_ X j(Xl,y,Z,,t) ! + _ N j(X,y',Z,,t) ! + —
B T R S T e

m\z J(X! yyz)t)dz‘

, + C(t) , since in generd there exists the relation
r(xvy,z,t)

N {j(x.y,zt)/r(xYy,zt)} =0.



suggests what quantum mechanics describes is discontinuous motion of particles. But
before reaching the definite conclusion, we need to understand the meaning of the
theory of discontinuous mation. This means we mugt talk about measurement.

One subtle problem is what happens during a measuring process? There exist
only two possibilities: one is that the measuring process still satisfies the above
evolution eguation of discontinuous motion or Schrédinger equation, the linear
superposition of the wave function can hold al through. This possibility corresponds
to the many worlds interpretation of quantum mechanics; the other is that the
measuring process doesrit satisfy the above evolution equation of discontinuous
motion or Schrédinger equation, the linear superposition of the wave function is
destroyed due to some unknown causes. The resulting process is often called the
collapse of wave function Certainly, the above two possibilities can be tested in
experiments, but unfortunately it is very difficult to distinguish them using present
technology. In the following we will mainly give some theoretical considerations
about them.

As to the first possibility, the discontinuous motion of particles provides the
corresponding physical readlity in real space-time for many worlds interpretation The
particle discontinuously moves throughout all the parallel worlds during very small
time interval, or even infinitesmal time interval, and this objectively and clearly
shows that these parallel complete worlds exist in the same space-time. At the same
time, the measure density of the particle in different worlds, which can be strictly

defined for the discontinuous motion of particle, just provides the objective origin of



the measure of different worlds. Thus the visualizing physical picture for many worlds
isone kind of subtle time-division existence, in which every world occupies one part
of the continuous time flow, and the occupation way is discontinuous in essence, i.e.
the whole time flow for each world is a dense and discontinuous instant set, and all
these dense time sub-flows constitute a whole continuous time flow. In this meaning,
the many worlds are the most crowded in time!

Although the above many worlds picture of particles or measuring devices can
exist in a consistent way, a hard problem does appear when considering the observer,
i.e. why does the observer only continuously perceive ore definite world while he is
still discontinuously moving throughout the many worlds? This seems to be
inconsistent with one of our scientific views, according to which our perception is one
kind of correct reflection of the objective world. Besides, we must solve the above
observer problem in order to have a satisfying many worlds theory. This may need to
resort to atheory of consciousness, but we have none up to now.

Now we turn to the second possibility. We will first find whether there exist
some possible evidences for the existence of dynamical collapse in present theoretical
framework. If there indeed exist some, we will then construct a preliminary theory of
dynamica collapse.

The discrete space-time and the possible origin of collapse
We have been discussing the motion of particlesin continuous space-time, but it
should be clearly realized that the continuity of spaced-time is just an assumption. In

the nonrelativistic and relativistic domain this assumption can be applicable, and we



find no essentia inconsistency or paradox. But in the domain of general relativity, the
motion of particle and the space-time background are no longer independent, and
there exists one kind of subtle dynamical connection between them. Thus the
combination of the above evolution law of discontinuous motion (or guantum
mechanics) and general relativity may result in essential inconsistency, whichrequires
that the assumption of continuous space-time must be rejected and further results in
the appearance of collapse. Now let’ shave acloselook &t it.

According to general relativity, there exists one kind of dynamical connection
between motion and space-time, i.e. on the one hand, space-time is determined by the
motion of particles, on the other hand, the motion of particle must be defined in
space-time. Then when we consider the superposition state of different positions, say
position A and position B, one kind of basic logical inconsistency appears. On the one
hand, according to the above evolution law of the discontinuous motion of particles
(or quantum mechanics), the valid definition of this superposition requires the
existence of a definite space-time structure, in which the position A and position B
can be distinguished. On the other hand, according to general relativity, the
gpace-time structure, including the distinguishability of the position A and position B,
can’ t be pre-determined, and it must be dynamically determined by the superposition
state of particle. Since the different position states in the superposition state will
generate different space-time structures, the space-time structure determined by the

superposition date is indefinite. Thus an essentia logica incongstency does appear!



Then what are the direct inferences of the logical inconsistency? Fird, its
appearance indicates that the superposition of different positions of particle can’ t exist
when considering the influence of gravity, since it can’ t be consistently defined in
principle. 1t should be stressed that this conclusion only relies on te vdidity of
general relativity in the classical domain, and is irrelevant to its validity in the
guantum domain. Thus the existence of gravity described by general relativity will
result in the invalidity of the linear superposition principle. This may be the origin of
dynamica collapse.

Secondly, according to the definition of the superposition state of different
positions of particle, its existence closely relates to the continuity of space-time, since
it is required that the particle in this state srould move throughout these different
positions during infinitesimal time interval. Thus the nonexistence of this
superposition means that infinitesimal time interval based on continuous space-time
will be replaced by finite time interval, and accordingly he space-time where the
particles move will display some kind of discreteness. In this kind of discrete
space-time, the particle can only move throughout the different positions during finite
time interval, or we can say, the particle will stay for finite time interval in any
position.

Besides, it can prove that when considering both quantum mechanics and general
relativity, the minimum measurable time and space size will no longer infinitesimal,
but finite Planck time and Planck length Here we will give a simple operational

demonstration. Consider a measurement of the length between points A and B At



point A place a clock with mass m and size a to register time, at point B place a
reflection mirror. When t =0 a photon signa is sent from A to B, at point B it is
reflected by the mirror and returns to point A. The clock registers the return time. For
the classical situation the measured length will be L :%ct, but when considering
guantum mechanics and genera relativity, the existence of the clock introduces two
kinds of uncertainties to the measured length. The uncertainty resulting from quantum
mechanics is: d.g,, 3 (%)”2, the uncertainty resulting from general relativity is:

d, 3 Gm then the total uncertainty is: dL = d.,, +d ;3 (L ><Lp2)1’3, where

c?
LP:(G—?)“Z, is Planck length. Thus we conclude that the minimum measurable
c

length is Planck length L. . In a similar way, we can also work out the minimum

<]

messurable time, it isjust Planck time T, =( e )2,

Lastly, we want to denote that the existence of discreteness of space-time may

also imply that the many worlds theory is not right, and the collapse of wave function

does exist. Since there exists a minimal time interval in discrete space-time, and each

paralel world must solely occupy one minimal time interval at least, there must exist

a maximal number of the parallel worlds during any finite time interval. Then when

the number of possible worlds exceeds the maximal number, they will be merged in
some way, i.e. the whole wave functionwill collgpse to asmaller state space.

A theory of dynamical collapse in discrete space-time
In this section, we will further analyze the discontinuous motion of particles in

discrete space-time, and present a theory of dynamical collapse in such discrete

Space-time.



A general analysis

As we know, in the discrete space-time, there exist absolute minimum sizes T,
and L., namely the minimum distinguishable size of time and position of the particle
isrespectively T, and L. Thusin physicsthe existence of a particle is no longer in
one position a one instant as in the continuous space-time, but limited in a space
interval L, during afinitetimeinterval T,. It can be seen that this state corresponds
to the instantaneous state of particle in continuous space-time, and it evidently
contains no mation, but only the existence of particle. We define it as the
instantaneous Sate of particle in discrete space-time.

Now we can get the motion state of a particle in discrete space-time from that in
continuous space-time. In continuous space-time, the particle, which instantaneous
date is the particle being in one position a one instant, moves throughout the whole
space during infinitesimal time interval. I n discrete space-time, the instantaneous state
of particle turns to the particle being in a space interval L, during a finite time
interval T,, then the motion state of particle will naturally be that, during a finite
time interval much larger than T, the particle moves throughout the whole space,
which proper description is still the measure density r(x,t) and measure flux
density j(x,t), but time-averaged. The visua physical picture of such motion will be
that during a finitetimeinterval T, the particle staysin alocal region withsize L.,
then it will still stay there or appear in another local region, which may be very far

from the original region, and during a time interval much larger than T, the particle



will move throughout the whole space with a certain average position measure density
r(xt).
The evolution of discontinuous mation in discrete space-time

In the following, we will try to find the evolution law of discontinuous motion in
discrete space-time. From the above arelysis, it can be anticipated that the evolution
equation will be arevised Schrodinger equation, which may automatically contain the
dynamical collapse process of wave function. But how should the Schrédinger
equation be revised? We must find some possible cluesrules.

First, since the particle does stay in a loca region for a finite nonzero time
interval, and appears stochastically in another local region during the next time
interval, the position measure density r (x,t) of the particle, when changed due to
the invalidity of the linear superposition principle, will be essentially changed in a
stochastic way, which closely relates to the concrete stay time in different stochastic
regiont, and the corresponding wave function will be also stochastically changed.
Thus the evolution of discontinuous motion in discrete space-time may be the
combination of the deterministic linear evolution and stochastic nonlinear evolution

Secondly, we need to further find the concrete cause resulting in the stochastic

change of the position measure density r (x,t) . As we know, the evolution of wave

function is determined by the Hamiltonian of the system, or the energy distribution of

1 Asto the discontinuous motion in continuous space-time, the stay time of the particle in any position

is zero, thusits position measure density I (X, t)  isnot influenced by the stochastic motion.



the system. Thus the stochastic change of the evolutionmay also relate to the energy
distribution of the system. Now consider a simple two-level system, which dtate is a
superposition of two static states with different energy levels E, and E,, and its
position measure dersity r (x,t) will oscillate withthe period of T =7/DE , where
DE =E, - E, is the energy difference. Then if the energy difference DE is so large
that it exceeds the Planck energy E , the position measure density r(xt) will
oscillate with a period shorter than the Planck time T,. But as we know, the Planck

time T, is the minimum distinguishable size of time in the discrete space-time, and

there should be no changes during this minimal time interval. Thus the energy

superposition state, in which the energy difference is larger than the Planck energy
E,, can't hold al through, and must gradualy collapse to one of the energy
eigendtates. It can be further inferred that the dynamical collapse process must happen
for any energy superposition state due to the general validity of the natural law
incuding the collgpse law.

Now wewill work out the concrete evolution law of the discontinuous motion in
discrete space-time. At first, the position of the particle will satisfy the position
measure density r (x,t) in the sense of time average, namely the stochastic stay
position of the particle satisfies the digtributiort

P(x,t) =ly (X,t) [* -=---- (14)
Thisisthe first useful rule for finding the evolution lawv of DSTM.

Secondly, we consider the change of position measure density r (x,t) after the

particle stays in a local region L, for a time interval T . In the first rank



approximation the change of r(x,t) in this region can be written as follows after
normdlization:

1

r(xt+T) = [r(xt)+T/T,] ------ (15)

'm

where A(T,T,) is the normdization factor, T, is a certain time size to be

determined, which may relate to the concrete motion state of the particle. It can be
seen that the dynamical collapse process doesri t exist if T, is infinite. This formula
will be the second useful rule.

Considering the influence of energy difference and dimensional relation, we
assume T,.= kin/DE, where DE is the total difference of energy of the particle
between the loca region containing x and al other regions, k is a dimensionless

congtant. Then the above formula can be written asfollows,

r(x,t+T) =ﬁ[ r (x,t)+TDE/ k#n] ------ (16)

Now we further consider two extreme Stuations:

(1). WhenT=00rDE=0, wehave r(xt+T)=r(xt).Thenweget:

A (0, DE} =1, A(T, 0) =1,

(2.WhenT® ¥ or DE® ¥, wehave r(xt+T) ® 1. Thenweget:

A (¥ ,DE) ® TDE/ki,A (T,¥) ® TDE/Kh.

Thus we can get the formulaof A(L T, DEJ, namely A( T, DE ) = 1+TDE/kA.
Then the above formula can be written asfollows:

r (x,t) + TDE/ ki

r(xt+T)= o a7

when T =T, we have:



r(x,t)+T, XDE/kn
AU I N (18)
p

or it can be written asasmpler fornt

Dr (x,1) =%{1- A p— (19)

where E =7/T, is Planck energy. This formula describes the change of position

measure density r (x,t) after aminimal time interval T, in the discrete space-time.

It is the second useful rule for finding the evolution law of the discontinuous motion
in discrete space-time,

Now we can give the simplest nonrelativistic evolution equation of the
discontinuous motion in discrete space-time. According to the above analysis, it will
be essentially one kind of revised stochastic nonlinear equation based on the
Schrodinger equation. Here we assume the form of stochastic differential equation

(SDE), it can be written as follows:

DE (Xy , Xy )

1[ dy,
KE, +DE(Xy, Xy )

- 1]
2 r(xt)

dy (x,t) :% Hgy (x,t)dt + Yy (x,t)_?—t ------ (20)

where the first term in right side represents the linear evolution element, H, isthe

corresponding Hamiltonian, the second term in right side represents the stochastic
nonlinear evolution element resulting from the stochastic change of the position
measure dendity r(xt). d, is the discrete d-function, k is a dimensionless
constant, r(x,t) =]y (x,t)|?, is the position measure density, DE(xN,Z) is the
total difference of energy of the particle between the local Planck cell containing X,

and all other regiors X, , X, is a stochastic position variable, whose distribution is

P(xy., 1) =y (%, 1) I*.



Certainly, the stochastic differential equation is essentially adiscrete evolution
equation in physics All of the quantities are defined relative to the Planck cells T,
and L., and the equation should be also solved in adiscrete way.

Some further discussions

Now we will give some physical analyses about the above evolution equation of
the discontinuous motion in discrete space-time,

First, the linear item in the evolution equation will result in the spreading process
of wave function similar to the norma evolution of wave function in quantum
mechanics, while the nonlinear stochastic item in the equation will result in the
localizing process of particle or collapse process of wave function This can also be
seen qualitatively. On the one hand, in the region where the position measure density
is larger the accumulative stay time of the particle will be longer. On the other hand,
according to the nonlinear stochastic item, the longer stay time of the particle in one
region will further increase the position measure density in that region much more.
Then this process is evidently one kind of positive feedback process, the particle will
finaly stay in a local region, and the wave function of particle will also collapse to
that region when taking no account of the spreading process. Thus the evolution of the
discontinuous motion in discrete space-time will be some kind of combination of the
gpreading process and locdizing process.

Secondly, the relative strength of the spreading process and localizing process is
mainly determined by the energy difference between different branches of the wave

function If the energy difference is so small, then the evolution will be mainly



dominated by the spreading process. This is just what happens in the microscopic
world. While if the energy difference is so large, then the evolution will be mainly
dominated by the localizing process, and its display will be more like that of
continuous motion This is just what happens in the macroscopic world. The boundary
of these two worlds can aso be approximately estimated. The following example
indicates that the energy difference in the boundary may assume DE » 7Gev, and the
corresponding collapse time will beinthelevel of 10°°s.

Thirdly, if the particle finaly stays in a local region during the evolution, the
localizing probability of the particle, or the collapse probability of the wave function
in a local region is just the initial position measure density of the particle in that
region, i.e. the collapse probability satisfies the Born rule in quantum mechanics In
fact, the stochastic evolution of the discontinuous motion in discrete space-time
satisfies the Martingale conditiort”). This can be seen from the following fact, i.e.
during every step the position measure dengty r satisfies the equation:

P(r)=rP(r +a)+(@- r)P(r - b) ------ (21)

where P(r) is the probability of r turning into one in one local region, namely

DE
th bability of th ticle locdizing i local regi =——@1-7r),
e probability of the particle localizing in a local region a E, +DE( r)

DE

b =———r . Moreover, the solution of this equation is P(r )=r . This means
KE, + DE

that the localizing probability of the particle in one region is just the initial position

measure dengty of the particle in thet region.



Lastly, the existence of the discontinuous motion in discrete space-time may help
to tackle the well-known time problem in quantum gravity'®, and a complete theory of
guantum gravity may be formulated based on it. Since as to the discontinuous motion

in discrete space-time, the local position state of a particle will be the only proper

state and real physical existence. During a finite time interval T, the particle can
only be limited in a local space interval L, thus there does not exist any essential
superposition of different positions at all. The superposition of the wave function can
only be found in the meaning of time average, thus the essentia inconsistency of the
superposition of different space-time in some theories of quantum gravity, which
results from the existence of the essential superposition of the wave function, will
naturally disappear. The physical picture based on the discontinuous motion in
discrete space-time will be that at any instant (during a finite time interval T,) the
structure of space-time determined by the existence of the particle (in a local space
interval L, ) is definite or "classical”, while during a finite time interval much larger
than T, but still small enough, it will be stochastically disturbed by the stochastic
appearance of the particle. This kind of stochastic fluctuation may be the real quantum
nature of space-time and matter.
An example

In the following, as an example we will analyze the evolution of a ssimple
two-level system, and quantitatively show that the evolution of the discontinuous
motion in discrete space-time will indeed result in the dynamical collapse process of

wave function.



Suppose the initial wave function of the particle is y (x,0) =a(0)"?*y ,(x) +
b(0)"?y ,(x), which is a superposition of two static states with different energy
levels E, and E,. These two dtatic states are |located in separate regions R and
R, withthesamesize.

Since the energy of the particle inside the region of each static state is the same,
we can consider the spreading space of both static states as a whole local region i.e.
we can directly consider the difference of theenergy DE=E, - E, between these two
states. Besides, we only consider the nonlinear stochastic item in the evolution
eguation of the discontinuous motion in discrete space-time, since the linear item only
results in a phase factor, and doesrit influence our conclusion. Through some
mathematical calculations we can work out the density matrix of the two-level
system:

ru(t) =a() - (22)

r o) @1- Z(E?E ] Ja(0)b(0) ------ (23)

(D) @1 z(kDI;?E ] Ja(O)b(0) - (24)

r(t)=b(0) ------ (25
It is evident that these results confirm the above qualitative analysis definitely,
i.e. the evolution of the discontinuous motion in discrete space-time indeed results in

the collapse of the wave function, and the distribution of the collapse results satisfies



the Born rule in quantum mechanics Besides, we also get the concrete collapse time

hE
for two-level systent t, » 2k* —"-*.
(DE)

The appear ance of continuous motion in the macr oscopic world

The above analysis has indicated that, when the energy difference between
different branches of the wave function is large enough, say, for the macroscopic
situatior?, the linear spreading of the wave function will be greatly suppressed, and
the evolution of the wave function will bedominated by the localizing process. Thus a
macroscopic object will be always in a local position, and it can only be still or
continuously move in space in appearance. This is just the display of continuous
moation in the macroscopic world.

Furthermore, we can show that the evolution law of continuous motion can aso
be derived from the evolution of the discontinuous motion in discrete space-time. In
fact, some people have strictly given the demonstration based on the similar revised
quantum dynamicg® % Here we only give a simple explanation using the Ehrenfest
d<x>_1 d<p>__ U

=—<p> and =<-—>. As we have
dt m dt X

theorem, namely

demonstrated, for a macroscopic object its wave function will no longer spread, thus

the average items in the theorem will represent the effective description quantities for

! The similar result has also been obtained by Perciva™®, Hughston™? and Fivel*® from different
points of views, and discussed by Adler et all*.
2 The largeness of the energy difference for a macroscopic object results mainly from the

environmenta influences such asthermd energy fluctuations.



the continuous motion of the macroscopic object. Then the evolution law of

continuous motion can be naturally derived in such away, the result is: & B, the
m
_— dp _ U : ,
definition of the momentum, and P ﬂ_ , the motion equation.
X
Conclusions

In this paper, we present a new interpretation of quantum mechanics, according
to which what quantum mechanics describes is discontinuous motion of particles. We
formulate a theory of discontinuous motion of particles in continuous space-time, and
demonstrate that its simplest nonrelativistic evolution equation is just the Schrédinger
eguation in quantum mechanics. Whereas space-time will be essentially discrete when
considering gravity, we further present a theory of discontinuous motion of particles
in discrete space-time. We show that the evolution of such motion will naturally result
in the dynamical collapse process of the wave function and this collapse will finaly
bring about the appearance of continuous motion in the macroscopic world. This gives

aunified redigtic picture of the micrascopic and macroscopic world.
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