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We present a theory of discontinuous motion of particles in continuous space-time. 

We show that the simplest nonrelativistic evolution equation of such motion is just the 

Schrödinger equation in quantum mechanics. This strongly implies what quantum 

mechanics describes is discontinuous motion of particles. Considering the fact that 

space-time may be essentially discrete when considering gravity, we further present a 

theory of discontinuous motion of particles in discrete space-time. We show that its 

evolution will naturally result in the dynamical collapse process of the wave function, 

and this collapse will bring about the appearance of continuous motion of objects in 

the macroscopic world. 
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Introduction 

As we know, what classical mechanics describes is continuous motion of 

particles. Then a natural question appears when we turn to quantum mechanics, i.e. 

which motion of particles does quantum mechanics describe1? But unfortunately this 

is not an easy question. In fact, it is a hard problem, and people have been arguing 

with each other about its solution since the founding of quantum mechanics[1-6]. In this 

paper, we will try to solve this problem along a clear logical way. A convincing 

solution will be found in the end of the road.  

The plan of this paper is as follows: In Sect. 2 we first denote that what quantum 

mechanics describes is not continuous motion of particles. As an example, we 

re-analyze the famous double-slit experiment. In Sect. 3 we present a theory of 

discontinuous motion of particles in continuous space-time. We show that the 

simplest evolution law of discontinuous motion is just the Schrödinger equation in 

quantum mechanics. This further implies what quantum mechanics describes is 

discontinuous motion of particles. In Sect. 4 we try to interpret the theory of 

discontinuous motion. Two alternatives are given, and we demonstrate that the 

existence of collapse of wave function may be inevitable. In Sect. 5 we point out that 

space-time may be essentially discrete when considering the proper combination of 

quantum mechanics and general relativity, and give a simple demonstration. In Sect. 6 

we discuss the influences of discreteness of space-time to the evolution of 

                                                 

1 In this paper we assume the only existence of particles. 



discontinuous motion. The possible evolution law of the discontinuous motion of 

particles in discrete space-time is worked out, and we demonstrate that it will 

naturally result in the dynamical collapse process of the wave function. In Sect. 7 we 

further show that continuous motion and its evolution law can be consistently derived 

from the evolution law of the discontinuous motion in discrete space-time. 

Conclusions are given in Sect. 8.  

What quantum mechanics describes is not continuous motion of 

particles 

Even though people haven’t known what does quantum mechanics describe yet, 

they indeed know what does quantum mechanics not describe. It is well known that 

quantum mechanics doesn’t describe continuous motion of particles, or we can say, 

what quantum mechanics describes is not continuous motion of particles. Here as an 

example, let’s have a look at the well-known double-slit experiment, and see why 

quantum mechanics doesn’t describe continuous motion of particles. 

In the usual double-slit experiment, the single particle such as photon is emitted 

from the source one after the other, and then passes through the two slits to arrive at 

the screen. In this way, when a large number of particles reach the screen, they form 

the double-slit interference pattern. Now we will demonstrate that this experiment 

clearly reveals what quantum mechanics describes is not continuous motion of 

particles. Using apagoge, if the motion of particle is continuous, then the particle can 

only pass through one of the two slits, and it is not influenced by the other slit in each 

experiment. Thus it is evident that the double-slit interference pattern will be the same 



as the direct mixture of two one-slit patterns, each of which is formed by opening 

each of the two slits, since the passing process of each particle in double-slit 

experiment is exactly the same as that in one of the two one-slit experiments. But 

quantum mechanics predicts that there exist obvious differences between the 

interference patterns of the above two situations, and all known experiments coincide 

with the prediction. Thus the motion of particle described by quantum mechanics 

can’t be continuous, and the particle must pass through both slits in some unusual way 

during passing through the two slits. 

Now there appears a simple but subtle question, i.e. if the motion of the particles 

described by quantum mechanics is not continuous, then which form is it? If only the 

objective motion picture of the particles can't be essentially rejected, then the motion 

of particles must be discontinuous. This is an inevitable logical conclusion. As we 

think, this answer is more direct and natural, since classical mechanics describes 

continuous motion, then correspondingly quantum mechanics will describe another 

different kind of motion, namely discontinuous motion. But the answer seems very 

bizarre, and we have never learned the discontinuous motion. Now let’s be close to it 

and grasp it. 

A theory of discontinuous motion of particles 

    In this section, we will present a theory of discontinuous motion of particles. Our 

analyses will show that the simplest evolution law of discontinuous motion of 

particles is just the Schrödinger equation in quantum mechanics. This strongly implies 

what quantum mechanics describes is discontinuous motion of particles. 



A general analysis 

First, we will strictly define the discontinuous motion of particles using three 

presuppositions  about the relation between physical motion and mathematical point  

set. They are the basic conceptions and correspondence rules needed before we 

discuss the discontinuous motion of particles in continuous space-time.  

    (1). Time and space in which the particle moves are both continuous. 

    (2). The moving particle is represented by one point in time and space. 

    (3). The discontinuous motion of particle is represented by the dense point set in 

time and space. 

    The first presupposition defines the continuity of space-time. The second one 

defines the existent form of particle in time and space. The last one defines the 

discontinuous motion of particle using the mathematical point set. For simplicity but 

without losing generality, in the following we will mainly analyze the point set in 

two-dimensional space-time, which corresponds to one-dimensional motion in 

continuous space-time. 

We first introduce what is dense point set. As we know, the point set theory has 

been deeply studied since the beginning of the 20th century. Nowadays we can grasp 

it more easily. According to this theory, we know that the general point set is dense 

point set, whose basic property is the measure of the point set. Its visualizing picture 

is like a mass of fog or cloud. While the continuous point set is the familiar curve, one 

kind of special dense point set, and its basic property is the length of the point set. It is 



indeed a wonder that so many points bind together to form a continuous curve by 

order. 

Enlightened by the theory of fluid mechanics we can find the description of the 

dense point set, which corresponds to the discontinuous motion of particles in 

continuous space-time. The mathematical analysis shows that the proper description 

of the dense point set, or the motion state of a particle undergoing the discontinuous 

motion is position measure density ),( txρ  and position measure flux density ),( txj , 

and they satisfy the measure conservation equation 0
),(),( =

∂
∂+

∂
∂

x
txj

t
txρ

. From the 

above correspondence rules, we can clearly see the physical meaning of the 

description quantities ),( txρ  and ),( txj . As to the position measure density 

),( txρ , it represents the relative frequency of the particle appearing in the 

infinitesimal space interval dx  near the position x  during the infinitesimal interval 

dt  near the instant t , and we can measure it through directly measuring the 

appearing probability of the particle in the above situation. Thus ),( txρ  possesses a 

direct physical meaning. However, the position measure flux density ),( txj  

possesses no direct physical meaning, and we can only measure it through indirect 

measurement.  

It is very natural to extend the basic descriptions of the motion of a single 

particle to the many particles situation. As to the motion state of N particles, we can 

define their joint position measure density ),,...,( 21 txxx Nρ  according to the theory 

of point set, it represents the appearing probability of the situation, in which particle 1 

is in position 1x , particle 2 is in position 2x , … and particle N is in position Nx . In 



a similar way, we can define the joint  position measure flux density ),,...,( 21 txxxj N . 

It satisfies the joint measure conservation 

equation: 0
),,...,(),,...,( 21
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. We can easily see that, the 

descriptions of the motion of many particles, namely the joint position measure 

density ),,...,( 21 txxx Nρ  and joint position measure flux density ),,...,( 21 txxxj N  

are naturally defined in the 3N dimensional configure space, not in the real space. 

Besides, when the N particles are independent, the joint position measure density 

),,...,( 21 txxx Nρ  can be reduced to the product of the position measure density of 

each particle, namely ),,...,( 21 txxx Nρ =∏
=

N

i
i tx

1

),(ρ . 

The evolution law 

In the following, we will try to find the possible evolution equations of the 

discontinuous motion of particles. Here we mainly analyze  one-dimensional motion, 

but the results can be easily extended to the three-dimensional situation. 

    First, we need to find the simplest solution of the evolution equation, in which 

we can find the first motion principle similar to Newton’s first principle. It is evident 

that the simplest solution of the motion equation is:  

0
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 ------ (1) 

0
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 ------ (2) 
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using the relation vj ρ=  we can further get the solution: ),( txρ =1, 

mpvtxj /),( == where m  is the mass of the particle, and p  is defined as the 

momentum of the particle.  

    Now we get the first motion principle, i.e. during the free motion of particle, the 

momentum of the particle is invariant. It can be easily seen that, contrary to 

continuous motion, for the free particle with one constant momentum, its position will 

not be limited in the infinitesimal space interval dx , but spread throughout the whole 

space with the same position measure density. 

Similar to the quantity position, the natural assumption in logic is also that the 

momentum (motion) state of a particle in infinitesimal interval dt  is still a general 

dense point set in momentum space. Thus we can also define the momentum measure 

density ),( tpf , which satisfies the normalization relation ∫
+∞

∞−
dptpf ),( =11, and the 

momentum measure flux density ),( tpJ . Their meanings are similar to those of 

position, and satisfy the similar measure conservation equation 

0
),(),( =

∂
∂+

∂
∂

p
tpJ

t
tpf

. 

    Then we have two kinds of description quantities---one is position, the other is 

momentum. Position descriptions ),( txρ  and ),( txj  provide a complete local 

description of the motion state. This we may call the local description of the 

discontinuous motion. Similarly momentum descriptions ),( tpf  and ),( tpJ  

                                                 

1 For some ideal situations where the integrals ∫
+∞

∞−
dxtx ),(ρ  and ∫

+∞

∞−
dptpf ),(  turn to be infinite, 

the general normalization relation will be ∫∫
+∞

∞−

+∞

∞−
= dptpfdxtx ),(),(ρ . 



provide a complete nonlocal description of the motion state. For a particle with any 

constant momentum, its position will spread throughout the whole space with the 

same position measure density. This we may call the nonlocal description of the 

discontinuous motion. Since at any instant the motion state of a particle is unique, 

there should exist a one-to-one relation between these two kinds of descriptions, i.e. 

there should exist a one-to-one relation between position description ),( txρ , ),( txj  

and momentum description ),( tpf , ),( tpJ , and this relation is irrelevant to the 

concrete motion state. In the following we will find the one-to-one relation, and our 

analysis will also show that this relation essentially determines the possible evolution 

of motion. 

It is evident that there exists no direct one-to-one relation between the measure 

density functions ),( txρ  and ),( tpf , since even for the constant momentum 

situation, we have ),( txρ = 1 and ),( tpf = )( 0
2 pp −δ , and there is no one-to-one 

relation between them. Then in order to obtain the one-to-one relation, we have to 

construct a new kind of integrative description on the basis of the above position 

description ),( txρ , ),( txj  and momentum description ),( tpf , ),( tpJ . Here we 

only give the main clues and the detailed mathematical demonstrations are omitted. 

First, we disregard the time variable t  or let t =0. As to the above free evolution 

state with one momentum, we have  )0,(xρ =1, mpxj /)0,( 0=  and 

)0,(pf = )( 0
2 pp −δ , )0,( pJ =0. Thus we need to synthesize a new position state 

function )0,(xψ  using 1 and mp /0 , and a new momentum state function )0,( pϕ  



using )( 0
2 pp −δ  and 0, and find the one-to-one relation between these two state 

functions. We generally write it as follows: 

∫
+∞

∞−
= dpxpTpx ),()0,()0,( ϕψ  ------ (5) 

where ),( xpT  is the transformation function and is generally continuous and finite 

for finite p  and x .  

    Since the function )0,( pϕ  will contain some form of the basic element  

)( 0
2 pp −δ , normally we may expand it as )()0,( 0

1

ppap i

i
i −= ∑

∞

=

δϕ . Besides, the 

function )0,(xψ  will contain the momentum 0p , and be generally continuous and 

finite for finite x . Then it is evident that the function )0,( pϕ  can only contain the 

term )( 0pp −δ , because the other terms will result in infiniteness. Furthermore, the 

result )0,( pϕ = )( 0pp −δ  implies that there exists the simplest 

relation )0,()0,()0,( * pppf ϕϕ= 1, and owing to the equality between the position 

description and momentum description, we also have the similar relation 

)0,()0,()0,( * xxx ψψρ = .  

Then we may let ),( 0)0,( xpiGex =ψ  and have ),(),( xpiGexpT = . Considering the 

symmetry between the properties position and momentum2, we have the general 

                                                 

1  Evidently, another simple relation )0,()0,( 2 ppf ϕ=  permits no existence of a one-to-one 

relation. 

2 This symmetry essentially stems from the equivalence between these two kinds of descriptions, and  

the direct implication is that we also have )0,(pf =1 for the situation where )0,(xρ = )( 0
2 xx −δ . 



extension ∑
∞
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ibxpG ipx)( . Furthermore, this kind  of symmetry also results in 

the symmetry between the transformation ),( xpT  and its reverse transformation 

),(1 xpT − , where ),(1 xpT −  satisfies the relation:  

∫
+∞

∞−

−= dxxpTxp ),()0,()0,( 1ψϕ  ------ (6) 

Thus there should exist only one term px  in the function ),( xpG , and this permits 

the existence of the symmetry relation between these two transformations, which will 

be ),(1 xpT − = ),(* xpT = pxibe 1 . We let 1b =1/ h , where h  is a constant quantity with 

dimension sJ ⋅ . For simplicity we let h =1 in the following discussions unless state 

otherwise. 

    Now we get the simplest one-to-one relation, it is: 

∫
+∞

∞−
= dpepx ipx)0,()0,( ϕψ  ------ (7) 

where xipex 0)0,( =ψ  and )0,( pϕ = )( 0pp −δ . This relation mainly results from the 

essential symmetries involved in the discontinuous motion itself. 

In order to further find how the time variable t  is included in the functions 

),( txψ  and ),( tpϕ , we may consider the superposition of two single momentum 

states, namely  

),( txψ =
2
2

[ )(11 ticxipe − + )(22 ticxipe − ] ------ (8) 

The corresponding position measure density is )])(cos(1[
2
1

),( pxtctx ∆−∆+=ρ , 

where )()( 2 tctc =∆ - )(1 tc 2pp =∆ - 1p . Now we let 0→∆p then we have 

1),( →txρ  and 0)( →∆ tc . Using the measure conservation relation we can get 

t
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p

dptdc =)( , then as to the nonrelativistic situation we get == Ettc )( t
m

p
2

2

, where 



E =
m

p
2

2

, is defined as the energy of the particle in the nonrelativistic domain. Thus as 

to any single momentum state we have the time- included formula ),( txψ = iEtipxe − , 

and the complete one-to-one relation is: 

∫
+∞

∞−

−= dpetptx iEtipx),(),( ϕψ  ------ (9) 

Since the one-to-one relation between the position description and momentum 

description is irrelevant to the concrete motion state, the above one-to-one relation for 

the free motion state with one momentum should hold true for any motion state. 

    In fact, there may exist more complex forms for the state functions ),( txψ  and 

),( tpϕ , for example, they are not the above simple number functions but 

multidimensional vector functions such as ),( txψ = ( ),(1 txψ , ),(2 txψ , … , 

),( txNψ ) and ),( tpϕ = ( ),(1 tpϕ , ),(2 tpϕ , … , ),( tpNϕ ). However, the above 

one-to-one relation still exists for every component function, and these vector 

functions still satisfy the above modulo square relations, namely 

∑
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2|),(|),( ψρ and ∑
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=
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i
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2|),(|),( ϕ . These complex forms will 

correspond to the particles with more complex structure, say, involving more inner 

properties such as charge and spin etc, for example, as to the particle with spin 1/2 

such as electron, we have N = 4, ∑
=

=
4

1

2|),(|),(
i

i txtx ψρ .  

Now we can finally work out the simplest nonrelativistic evolution law of the 

discontinuous motion. First, as to the free motion state with one momentum, namely 

the single momentum state ),( txψ = iEtipxe − , using the above definition of energy 



E =
m

p
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2

 and including the constant quantity h  we can easily find its nonrelativistic 

evolution law: 

x
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∂ ψψ h
h  ------ (10) 

Owing to the linearity of this equation, this evolution equation also applies to the 

linear superposition of the single momentum states, that is all possible free motion 

states. Alternatively we can say that it is the free evolution law of the discontinuous 

motion. 

Secondly, we will consider the evolution law of the discontinuous motion under 

an outside potential. When the potential ),( txU  is a constant U , the evolution 

equation will be  
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Then when the potential ),( txU  is related to x  and t , the above form will still 

hold true, namely: 
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For three-dimensional situation the equation will be 
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 ------ (13) 

Thus we get the simplest nonrelativistic evolution law of the discontinuous motion 

using the simplest one-to-one relation. We find that it is just the form of Schrödinger 

equation in quantum mechanics.  



At last, we want to denote that the state function ),( txψ  provides a complete 

description of the discontinuous motion of particles. On the one hand, according to the 

above evolution equation, the state function ),( txψ  can be expressed by the position 

measure density ),( txρ  and position measure flux density ),( txj , namely 

),( txψ = h/),(2/1 txiSeρ , where ),( txS = '
'

'

),(
),(
dx

tx
txj

m
x

∫ ∞− ρ
+ )(tC 1. On the other hand, the 

position measure density ),( txρ  and position measure flux density ),( txj  can also 

be expressed by the state function ),( txψ , namely 2|),(|),( txtx ψρ =

)(
2
1

),(
*

*

xxi
txj

∂
∂−

∂
∂= ψψψψ . Thus there exists a one-to-one relation between 

),( txρ , ),( txj  and ),( txψ  when omitting the absolute phase. Since the position 

measure density ),( txρ  and position measure flux density ),( txj  provide a 

complete description of the discontinuous motion of particles, the state function 

),( txψ  also provides a complete description of the discontinuous motion of particles. 

The meaning of the theory of discontinuous motion 

The sameness between the simplest nonrelativistic evolution equation of the 

discontinuous motion and the Schrödinger equation in quantum mechanics strongly 

                                                 

1  When in three-dimensional space, the formula for ),,,( tzyxS  will be 
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suggests what quantum mechanics describes is discontinuous motion of particles. But 

before reaching the definite conclusion, we need to understand the meaning of the 

theory of discontinuous motion. This means we must talk about measurement.  

One subtle problem is what happens during a measuring process? There exist 

only two possibilities: one is that the measuring process still satisfies the above 

evolution equation of discontinuous motion or Schrödinger equation, the linear 

superposition of the wave function can hold all through. This possibility corresponds 

to the many worlds interpretation of quantum mechanics; the other is that the 

measuring process doesn’t satisfy the above evolution equation of discontinuous 

motion or Schrödinger equation, the linear superposition of the wave function is 

destroyed due to some unknown causes. The resulting process is often called the 

collapse of wave function. Certainly, the above two possibilities can be tested in 

experiments, but unfortunately it is very difficult to distinguish them using present 

technology. In the following we will mainly give some theoretical considerations 

about them.  

As to the first possibility, the discontinuous motion of particles provides the  

corresponding physical reality in real space-time for many worlds interpretation. The 

particle discontinuous ly moves throughout all the parallel worlds during very small 

time interval, or even infinitesimal time interval, and this objectively and clearly 

shows that these parallel complete worlds exist in the same space-time. At the same 

time, the measure density of the particle in different worlds, which can be strictly 

defined for the discontinuous motion of particle, just provides the objective origin of 



the measure of different worlds. Thus the visualizing physical picture for many worlds 

is one kind of subtle time-division existence, in which every world occupies one part 

of the continuous time flow, and the occupation way is discontinuous in essence, i.e. 

the whole time flow for each world is a dense and discontinuous instant set, and all 

these dense time sub-flows constitute a whole continuous time flow. In this meaning, 

the many worlds are the most crowded in time!  

Although the above many worlds picture of particles or measuring devices can 

exist in a consistent way, a hard problem does appear when considering the observer, 

i.e. why does the observer only continuously perceive one definite world while he is 

still discontinuously moving throughout the many worlds? This seems to be 

inconsistent with one of our scientific views, according to which our perception is one 

kind of correct reflection of the objective world. Besides, we must solve the above 

observer problem in order to have a satisfying many worlds theory. This may need to 

resort to a theory of consciousness, but we have none up to now.  

Now we turn to the second possibility. We will first find whether there exist 

some possible evidences for the existence of dynamical collapse in present theoretical 

framework. If there indeed exist some, we will then construct a preliminary theory of 

dynamical collapse.  

The discrete space-time and the possible origin of collapse 

We have been discussing the motion of particles in continuous space-time, but it 

should be clearly realized that the continuity of spaced-time is just an assumption. In 

the nonrelativistic and relativistic domain this assumption can be applicable, and we 



find no essential inconsistency or paradox. But in the domain of general relativity, the 

motion of particle and the space-time background are no longer independent, and 

there exists one kind of subtle dynamical connection between them. Thus the 

combination of the above evolution law of discontinuous motion (or quantum 

mechanics) and general relativity may result in essential inconsistency, which requires 

that the assumption of continuous space-time must be rejected and further results in 

the appearance of collapse. Now let’s have a close look at it.  

According to general relativity, there exists one kind of dynamical connection 

between motion and space-time, i.e. on the one hand, space-time is determined by the 

motion of particles, on the other hand, the motion of particle must be defined in 

space-time. Then when we consider the superposition state of different positions, say 

position A and position B, one kind of basic logical inconsistency appears. On the one 

hand, according to the above evolution law of the discontinuous motion of particles 

(or quantum mechanics), the valid definition of this superposition requires the 

existence of a definite space-time structure, in which the position A and position B 

can be distinguished. On the other hand, according to general relativity, the 

space-time structure, including the distinguishability of the position A and position B, 

can’t be pre-determined, and it must be dynamically determined by the superposition 

state of particle. Since the different position states in the superposition state will 

generate different space-time structures, the space-time structure determined by the 

superposition state is indefinite. Thus an essential logical inconsistency does appear!  



Then what are the direct inferences of the logical inconsistency? First, its 

appearance indicates that the superposition of different positions of particle can’t exist 

when considering the influence of gravity, since it can’t be consistently defined in 

principle. It should be stressed that this conclusion only relies on the validity of 

general relativity in the classical domain, and is irrelevant to its validity in the 

quantum domain. Thus the existence of gravity described by general relativity will 

result in the invalidity of the linear superposition principle. This may be the origin of 

dynamical collapse. 

Secondly, according to the definition of the superposition state of different 

positions of particle, its existence closely relates to the continuity of space-time, since 

it is required that the particle in this state should move throughout these different 

positions during infinitesimal time interval. Thus the nonexistence of this 

superposition means that infinitesimal time interval based on continuous space-time 

will be replaced by finite time interval, and accordingly the space-time where the 

particles move will display some kind of discreteness. In this kind of discrete 

space-time, the particle can only move throughout the different positions during finite 

time interval, or we can say, the particle will stay for finite time interval in any 

position.  

Besides, it can prove that when considering both quantum mechanics and general 

relativity, the minimum measurable time and space size will no longer infinitesimal, 

but finite Planck time and Planck length. Here we will give a simple operational 

demonstration. Consider a measurement of the length between points A and B. At 



point A place a clock with mass m  and size a  to register time, at point B place a 

reflection mirror. When 0=t  a photon signal is sent from A to B, at point B it is 

reflected by the mirror and returns to point A. The clock registers the return time. For 

the classical situation the measured length will be ctL
2
1= , but when considering 

quantum mechanics and general relativity, the existence of the clock introduces two 

kinds of uncertainties to the measured length. The uncertainty resulting from quantum 

mechanics is: 2/1)(
mc

L
LQM

h≥δ the uncertainty resulting from general relativity is: 

2c
Gm

LGR ≥δ , then the total uncertainty is: =Lδ QMLδ + GRLδ 3/12 )( pLL ⋅≥ , where 

PL = 2/1
3

)(
c
Gh

, is Planck length. Thus we conclude that the minimum measurable 

length is Planck length PL . In a similar way, we can also work out the minimum 

measurable time, it is just Planck time PT = 2/1
5

)(
c
Gh

. 

Lastly, we want to denote that the existence of discreteness of space-time may 

also imply that the many worlds theory is not right, and the collapse of wave function 

does exist. Since there exists a minimal time interval in discrete space-time, and each 

parallel world must solely occupy one minimal time interval at least, there must exist 

a maximal number of the parallel worlds during any finite time interval. Then when 

the number of possible worlds exceeds the maximal number, they will be merged in 

some way, i.e. the whole wave function will collapse to a smaller state space.  

A theory of dynamical collapse in discrete space-time 

In this section, we will further analyze the discontinuous motion of particles in 

discrete space-time, and present a theory of dynamical collapse in such discrete 

space-time.  



A general analysis 

As we know, in the discrete space-time, there exist absolute minimum sizes PT  

and PL , namely the minimum distinguishable size of time and position of the particle 

is respectively PT  and PL . Thus in physics the existence of a particle is no longer in 

one position at one instant as in the continuous space-time, but limited in a space 

interval PL  during a finite time interval PT . It can be seen that this state corresponds 

to the instantaneous state of particle in continuous space-time, and it evidently 

contains no motion, but only the existence of particle. We define it as the 

instantaneous state of particle in discrete space-time. 

Now we can get the motion state of a particle in discrete space-time from that in 

continuous space-time. In continuous space-time, the particle, which instantaneous 

state is the particle being in one position at one instant, moves throughout  the whole 

space during infinitesimal time interval. In discrete space-time, the instantaneous state 

of particle turns to the particle being in a space interval PL  during a finite time 

interval PT , then the motion state of particle will naturally be that, during a finite 

time interval much larger than PT , the particle moves throughout the whole space, 

which proper description is still the measure density ),( txρ  and measure flux 

density ),( txj , but time-averaged. The visual physical picture of such motion will be 

that during a finite time interval PT  the particle stays in a local region with size PL , 

then it will still stay there or appear in another local region, which may be very far 

from the original region, and during a time interval much larger than PT  the particle 



will move throughout the whole space with a certain average position measure density 

),( txρ .  

The evolution of discontinuous motion in discrete space-time 

In the following, we will try to find the evolution law of discontinuous motion in 

discrete space-time. From the above analysis, it can be anticipated that the evolution 

equation will be a revised Schrödinger equation, which may automatically contain the 

dynamical collapse process of wave function. But how should the Schrödinger 

equation be revised? We must find some possible clues rules. 

First, since the particle does stay in a local region for a finite nonzero time 

interval, and appears stochastically in another local region during the next time 

interval, the position measure density ),( txρ  of the particle, when changed due to 

the invalidity of the linear superposition principle, will be essentially changed in a 

stochastic way, which closely relates to the concrete stay time in different stochastic 

region1, and the corresponding wave function will be also stochastically changed. 

Thus the evolution of discontinuous motion in discrete space-time may be the 

combination of the deterministic linear evolution and stochastic nonlinear evolution.  

Secondly, we need to further find the concrete cause resulting in the stochastic 

change of the position measure density ),( txρ . As we know, the evolution of wave 

function is determined by the Hamiltonian of the system, or the energy distribution of 

                                                 

1 As to the discontinuous motion in continuous space-time, the stay time of the particle  in any position 

is zero, thus its position measure density ),( txρ  is not influenced by the stochastic motion. 



the system. Thus the stochastic change of the evolution may also relate to the energy 

distribution of the system. Now consider a simple two-level system, which state is a 

superposition of two static states with different energy levels 1E  and 2E , and its 

position measure density ),( txρ  will oscillate with the period of ET ∆= /h , where 

12 EEE −=∆  is the energy difference. Then if the energy difference E∆  is so large 

that it exceeds the Planck energy pE , the position measure density ),( txρ  will 

oscillate with a period shorter than the Planck time PT . But as we know, the Planck 

time PT  is the minimum distinguishable size of time in the discrete space-time, and 

there should be no changes during this minimal time interval. Thus the energy 

superposition state, in which the energy difference is larger than the Planck energy 

pE , can’t hold all through, and must gradually collapse to one of the energy 

eigenstates. It can be further inferred that the dynamical collapse process must happen 

for any energy superposition state due to the general validity of the natural law 

including the collapse law.  

Now we will work out the concrete evolution law of the discontinuous motion in 

discrete space-time. At first, the position of the particle will satisfy the position 

measure density ),( txρ  in the sense of time average, namely the stochastic stay 

position of the particle satisfies the distribution: 

2|),(|),( txtxP ψ=  ------ (14) 

This is the first useful rule for finding the evolution law of DSTM. 

Secondly, we consider the change of position measure density ),( txρ  after the 

particle stays in a local region PL  for a time interval T . In the first rank 



approximation the  change of ),( txρ  in this region can be written as follows after 

normalization:  

]/),([
),(

1
),( m

m

TTtx
TTA

Ttx +=+ ρρ  ------ (15) 

where ),( mTTA  is the normalization factor, mT  is a certain time size to be 

determined, which may relate to the concrete motion state of the particle. It can be 

seen that the dynamical collapse process doesn’t exist if mT  is infinite. This formula 

will be the second useful rule. 

Considering the influence of energy difference and dimensional relation, we 

assume mT = Ek ∆/h , where E∆  is the total difference of energy of the particle 

between the local region containing x  and all other regions, k  is a dimensionless 

constant. Then the above formula can be written as follows:  

),( Ttx +ρ = ]/),([
),(

1
hkETtx

ETA
∆+

∆
ρ  ------ (16) 

Now we further consider two extreme situations:  

(1). When T = 0 or E∆ = 0 we have ),( Ttx +ρ = ),( txρ . Then we get:  

A 0 E∆ =1 A T 0 = 1; 

(2). When T→ ∞  or E∆ → ∞ we have ),( Ttx +ρ → 1. Then we get:  

A ∞ , E∆ →  hkET /∆ , A T, ∞ →  hkET /∆ . 

Thus we can get the formula of A T E∆ , namely A T E∆ = 1+ hkET /∆ . 

Then the above formula can be written as follows:  

),( Ttx +ρ =
h

h

kET
kETtx

/1
/),(

∆+
∆+ρ

 ------ (17) 

when PTT =  we have:  



),( pTtx +ρ =
h

h

kET

kETtx

p

p

/1

/),(

∆⋅+
∆⋅+ρ

 ------ (18) 

or it can be written as a simpler form: 

)],(1[),( tx
EkE

E
tx

p

ρρ −
∆+

∆=∆  ------ (19) 

where pE =h / pT  is Planck energy. This formula describes the change of position 

measure density ),( txρ  after a minimal time interval PT  in the discrete space-time. 

It is the second useful rule for finding the evolution law of the discontinuous motion 

in discrete space-time.  

    Now we can give the simplest nonrelativistic evolution equation of the 

discontinuous motion in discrete space-time. According to the above analysis, it will 

be essentially one kind of revised stochastic nonlinear equation based on the 

Schrödinger equation. Here we assume the form of stochastic differential equation 

(SDE), it can be written as follows: 

pNNp

NNxx
Q T

dt
tx

xxEkE

xxE
tx

dttxH
i

txd N ),(
),(

),(
]1

),(
[

2
1

),(
1

),( ψ
ρ

δ
ψψ

∆+
∆−+=

h
 ------ (20) 

where the first term in right side represents the linear evolution element, QH  is the 

corresponding Hamiltonian, the second term in right side represents the stochastic 

nonlinear evolution element resulting from the stochastic  change of the position 

measure density ),( txρ . 
Nxxδ  is the discrete δ -function, k  is a dimensionless 

constant, 2|),(|),( txtx ψρ = , is the position measure density, ),( NN xxE∆  is the 

total difference of energy of the particle between the local Planck cell containing Nx  

and all other regions Nx , Nx  is a stochastic position variable, whose distribution is 

2|),(|),( txtxP NN ψ= .  



    Certainly, the stochastic differential equation is essentially a discrete evolution 

equation in physics. All of the quantities are defined relative to the Planck cells PT  

and PL , and the equation should be also solved in a discrete way. 

Some further discussions  

    Now we will give some physical analyses about the above evolution equation of 

the discontinuous motion in discrete space-time. 

    First, the linear item in the evolution equation will result in the spreading process 

of wave function similar to the normal evolution of wave function in quantum 

mechanics, while the nonlinear stochastic item in the equation will result in the 

localizing process of particle or collapse process of wave function. This can also be 

seen qualitatively. On the one hand, in the region where the position measure density 

is larger the accumulative stay time of the particle will be longer. On the other hand, 

according to the nonlinear stochastic item, the longer stay time of the  particle in one 

region will further increase the position measure density in that region much more. 

Then this process is evidently one kind of positive feedback process, the particle will 

finally stay in a local region, and the wave function of particle will also collapse to 

that region when taking no account of the spreading process. Thus the evolution of the 

discontinuous motion in discrete space-time will be some kind of combination of the 

spreading process and localizing process.  

    Secondly, the relative strength of the spreading process and localizing process is 

mainly determined by the energy difference between different branches of the wave 

function. If the energy difference is so small, then the evolution will be mainly 



dominated by the spreading process. This is just what happens in the microscopic 

world. While if the energy difference is so large, then the evolution will be mainly 

dominated by the localizing process, and its display will be more like that of 

continuous motion. This is just what happens in the macroscopic world. The boundary 

of these two worlds can also be approximately estimated. The following example 

indicates that the energy difference in the boundary may assume GevE 7≈∆ , and the 

corresponding collapse time will be in the level of s610− . 

Thirdly, if the particle finally stays in a local region during the evolution, the 

localizing probability of the particle, or the collapse probability of the wave function 

in a local region is just the initial position measure density of the particle in that 

region, i.e. the collapse probability satisfies the Born rule in quantum mechanics. In 

fact, the stochastic evolution of the discontinuous motion in discrete space-time 

satisfies the Martingale condition[7]. This can be seen from the following fact, i.e. 

during every step the position measure density ρ  satisfies the equation: 

)()1()()( βρραρρρ −−++= PPP  ------ (21) 

where )(ρP  is the probability of ρ  turning into one in one local region, namely 

the probability of the particle localizing in a local region, )1( ρα −
∆+

∆
=

EkE
E

p

, 

ρβ
EkE

E

p ∆+
∆

= . Moreover, the solution of this equation is )(ρP = ρ . This means 

that the localizing probability of the particle in one region is just the initial position 

measure density of the particle in that region. 



    Lastly, the existence of the discontinuous motion in discrete space-time may help 

to tackle the well-known time problem in quantum gravity[8], and a complete theory of 

quantum gravity may be formulated based on it. Since as to the discontinuous motion 

in discrete space-time, the local position state of a particle will be the only proper 

state and real physical existence. During a finite time interval PT  the particle can 

only be limited in a local space interval PL , thus there does not exist any essential 

superposition of different positions at all. The superposition of the wave function can 

only be found in the meaning of time average, thus the essential inconsistency of the 

superposition of different space-time in some theories of quantum gravity, which 

results from the existence of the essential superposition of the wave function, will 

naturally disappear. The physical picture based on the discontinuous motion in 

discrete space-time will be that at any instant (during a finite time interval PT ) the 

structure of space-time determined by the existence of the particle (in a local space 

interval PL ) is definite or "classical", while during a finite time interval much larger 

than PT  but still small enough, it will be stochastically disturbed by the stochastic 

appearance of the particle. This kind of stochastic fluctuation may be the real quantum 

nature of space-time and matter.  

An example 

    In the following, as an example we will analyze the evolution of a simple 

two-level system, and quantitatively show that the evolution of the discontinuous 

motion in discrete space-time will indeed result in the dynamical collapse process of 

wave function. 



    Suppose the initial wave function of the particle is )0,(xψ = 2/1)0(α )(1 xψ + 

2/1)0(β )(2 xψ , which is a superposition of two static states with different energy 

levels 1E  and 2E . These two static states are located in separate regions 1R  and 

2R  with the same size. 

Since the energy of the particle inside the region of each static state is the same, 

we can consider the spreading space of both static states as a whole local region, i.e. 

we can directly consider the difference of the energy E∆ = 2E - 1E  between these two 

states. Besides, we only consider the nonlinear stochastic item in the evolution 

equation of the discontinuous motion in discrete space-time, since the linear item only 

results in a phase factor, and doesn’t influence our conclusion. Through some 

mathematical calculations we can work out the density matrix of the two-level 

system:  

)0()(11 αρ =t  ----- (22) 

)(12 tρ ]
2

)(
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2

2

t
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E

ph

∆−≅ )0()0( βα  ------ (23) 

)(21 tρ ]
2

)(
1[

2

2

t
Ek

E

ph

∆−≅ )0()0( βα  ------ (24) 

)0()(22 βρ =t  ------ (25) 

It is evident that these results confirm the above qualitative analysis definitely, 

i.e. the evolution of the discontinuous motion in discrete space-time indeed results in 

the collapse of the wave function, and the distribution of the collapse results satisfies 



the Born rule in quantum mechanics. Besides, we also get the concrete collapse time 

for two-level system: 
2

2

)(
2

E

E
k p

c ∆
≈

h
τ 1. 

The appearance of continuous motion in the macroscopic world 

    The above analysis has indicated that, when the energy difference between 

different branches of the wave function is large enough, say, for the macroscopic 

situation2, the linear spreading of the wave function will be greatly suppressed, and 

the evolution of the wave function will be dominated by the localizing process. Thus a 

macroscopic object will be always in a local position, and it can only be still or 

continuously move in space in appearance.  This is just the display of continuous 

motion in the macroscopic world. 

    Furthermore, we can show that the evolution law of continuous motion can also 

be derived from the evolution of the discontinuous motion in discrete space-time. In 

fact, some people have strictly given the  demonstration based on the similar revised 

quantum dynamics[9][10]. Here we only give a simple explanation using the Ehrenfest 

theorem, namely ><=><
p

mdt
xd 1

 and >
∂
∂−=<><

x
U

dt
pd

. As we have 

demonstrated, for a macroscopic object its wave function will no longer spread, thus 

the average items in the theorem will represent the effective description quantities for 

                                                 

1 The similar result has also been obtained by Percival[11], Hughston[12] and Fivel[13] from different 

points of views, and discussed by Adler et al[14]. 

2  The largeness of the energy difference for a macroscopic object results mainly from the 

environmental influences such as thermal energy  fluctuations. 



the continuous motion of the macroscopic object. Then the evolution law of 

continuous motion can be naturally derived in such a way, the result is : 
m
p

dt
dx = , the 

definition of the momentum, and 
x
U

dt
dp

∂
∂−= , the motion equation. 

Conclusions 

In this paper, we present a new interpretation of quantum mechanics, according 

to which what quantum mechanics describes is discontinuous motion of particles. We 

formulate a theory of discontinuous motion of particles in continuous space-time, and 

demonstrate that its simplest nonrelativistic evolution equation is just the Schrödinger 

equation in quantum mechanics. Whereas space-time will be essentially discrete when 

considering gravity, we further present a theory of discontinuous motion of particles 

in discrete space-time. We show that the evolution of such motion will naturally result 

in the dynamical collapse process of the wave function, and this collapse will finally 

bring about the appearance of continuous motion in the macroscopic world. This gives 

a unified realistic picture of the microscopic and macroscopic world. 
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