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I.  Introduction

Philosophers, and to a lesser degree historians, have paid much less attention to the discipline of ecology than to other areas of science (e.g. physics, chemistry, biology) as a focus for addressing issues in the philosophy of science.  There are several reasons for this lack of attention.  First, ecology comprises a wide variety of subfields, with different approaches to theorizing and experimentation.  This variety can make it difficult to generalize in a way that is familiar to philosophers.  Second, the relative youth of ecology as an identifiable scientific discipline, dating roughly from the end of the nineteenth century, means that many of the issues of concern to philosophers of science have long been understood in relation to the physical sciences and the more developed fields of biology.  Third, ecologists themselves have been less engaged with the philosophy of science community than scientists in other disciplines.

In this paper, I hope to begin to address this imbalance.  There is much to be learned from ecology about some of the current issues in the philosophy of science.  Because ecology is a relatively young discipline, it is possible to trace significant changes in the relative importance of concepts such as laws, theories, models and mechanisms in historically short periods of time.  In many ways, the history of ecology serves as a microcosm of the larger history of science.  

My focus is on the origins of population ecology in the 1920’s and 30’s (see Kingsland, 1985, for a good overview).  This period was characterized especially by the influence of three people.  The first was Raymond Pearl, who worked at the Maine Agricultural Experimental Station from 1907 to 1918, then moved to Johns Hopkins University, where he spent the rest of his career.  Pearl was heavily influenced by Karl Pearson, who he met on a trip to Europe in 1906.  Pearl became an advocate of the use of mathematical and statistical methods in biology, and with Lowell Reed, developed and promoted the so-called logistic equation as a law of population growth.

In addition to Pearl were two non-biologists, Alfred Lotka and Vito Volterra, who brought the perspectives of mathematics and the physical sciences to the study of biological populations.  The combined work of Pearl, Lotka, and Volterra helped to provide a mathematical background for the developing discipline of ecology in the early decades of the twentieth century.  (It is worth noting that R.A. Fisher similarly developed mathematical and statistical approaches to population genetics in his book The Genetical Theory of Natural Selection in 1929.)  My thesis is that in this early period in the development of population ecology, for some ecologists (especially Pearl), the development of mathematical and statistical methods was integral to the search for laws in ecology. However, I will argue that while mathematical models continue to play a central role in ecology, the importance of generalizable ecological laws is less prevalent today.  In the early history of population ecology, emphasis was placed on the discovery of laws in the development of general theories.  In contemporary ecological research, the emphasis is on modeling, with a corresponding search for underlying ecological mechanisms.  Philosophers of science working in other areas have recognized a similar shift, from laws and theories to models and mechanisms.  The context of ecology provides a new arena in which to examine this shift.

II.  The Origins of Mathematical Population Biology

The origins of mathematical population biology in the United States can be identified with the work of Raymond Pearl.  In addition to pursuing his own work, Pearl was instrumental in providing Lotka with some institutional support from Johns Hopkins University, eventually providing a fellowship that allowed Lotka to write his major work, The Elements of Physical Biology.  Pearl’s early work on growth patterns involved the use of the methods of statistical analysis developed by Karl Pearson.  Here we find Pearl suggesting that there are laws to be found governing the growth of organisms:  “By the application of appropriate biometric methods two fundamental laws of growth of wide generality in both the plant and animal kingdoms have been established.  The first of these relates to absolute growth increments, and states that as an organism increases in size the absolute increment per unit of time becomes progressively smaller, in accordance with a logarithmic curve . . . .  The second law of growth, which, like the first, appears to be of wide generality, relates to the variability of the growing organisms, and states that relative variability tends to decrease progressively as growth continues” (Pearl, 1914, p. 45).

In his own work on growth patterns in the plant Ceratophyllum, Pearl (1907) had found that the growth of individual plants could be represented mathematically by a logarithmic equation of the form

y = a + bx + cx2 + d log x



(1)

where y is the size of the organism (measured in some way, e.g. by mass) and x is time.  In 1920, Pearl and Reed published an analysis of population growth in the United States in which they calculated values based on census records gathered from 1790 to 1910.  As Pearl and Reed wrote:  “While the increase in size of a population cannot on a priori grounds be regarded, except by rather loose analogy, as the same thing as the growth of an organism in size, nevertheless it is essentially a growth phenomenon.  It, therefore, seems entirely reasonable that this type of curve should give a more adequate representation of population increase than a simple third-order parabola [used by Pritchett]” (Pearl and Reed, 1920, p. 277).  

Pearl and Reed showed that the logarithmic equation describes the actual growth of the population of the United States from 1790 to 1920 with great accuracy.  But as they admitted, “[s]atisfactory as the empirical equation above considered is from a practical point of view, it remains the fact that it is an empirical expression solely, and states no general law of population growth” (Pearl and Reed, 1920, p. 280).  Furthermore, if the growth of the population continued according to the equation, it would increase indefinitely, a biological impossibility recognized explicitly at least since the time of Malthus.  So not only does it fail to be a law because it is based on only the particular case in question, but it also fails to meet biological requirements.  Nevertheless, Pearl and Reed thought it worthwhile to search for a law:  “It has seemed worth while to attempt to develop such a law, first by formulating a hypothesis which rigorously meets the logical requirements, and then by seeing whether in fact the hypothesis fits the known facts”  (Pearl and Reed, 1920, p. 281).  It is not clear exactly what the “logical requirements” are; perhaps Pearl and Reed meant that the law must take the form of a logarithmic equation.  The biological requirements include that there be an upper bound on the size of the population that the population will approach asymptotically (the “carrying capacity of the environment” in contemporary language).  Thus, Pearl and Reed offer the logistic equation as a law of population growth, and go on to show that the curve fits the observed values very well when the appropriate constants are calculated.
  The logistic equation is now typically presented as follows:

dN/dt = rN (1 - N/K)


(2)

where N is the size of the population, r is a parameter for rate of population growth, and K is the maximum sustainable population size (usually referred to as the “carrying capacity” of the environment; see Gotelli, p. 28).  Graphically, the logistic equation shows that a population initially increases slowly, progressively growing faster and faster, reaching a point at which growth again begins to slow, and finally approaching asymptotically the maximum population size, K (see Figure 1).
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Figure 1 (from https://www.msu.edu/course/isb/202/ebertmay/2004/drivers/
freeman_52_6a.jpg

Pearl and Reed’s presentation of the logistic equation as a law of population growth sparked significant debate at the time.  However, we need to figure out what Pearl’s understanding of a “law” was in this context.  A good starting point is the view of Karl Pearson, whose views were very influential in science and the philosophy of science in the late 19th and early 20th centuries.  Pearl had read Pearson’s The Grammar of Science when it was first published in 1900 and had spent time in England during a trip to Europe in 1905-06, where he met Karl Pearson (Kingsland, p. 56).  Although Pearson is sometimes remembered for his promotion of eugenics in Great Britain, his primary scientific reputation is based on his significant contributions to the field of statistics and its application to the many different scientific disciplines.  In his remembrance of Pearson, Pearl writes that “[b]ecause [Pearson] lived and worked virtually every branch of science, pure and applied, is different today from what it was when he began.  The differences are permanent and irrevocable.  Biology, anthropology, psychology, agriculture, physics, mathematics, engineering, education – to take only the more conspicuous examples – will bear in perpetuity the indelible impress of Karl Pearson’s mind”  (Pearl, 1936, p. 653).  His philosophical writings, particularly in The Grammar of Science, had a strong impact on later philosophers of science, especially the logical positivists.  Pearson’s general philosophy of science can be described as empiricist and inductivist.  It is an empiricist philosophy of science in that the facts of science are ultimately based on sense-impressions.  As Pearson puts it in The Grammar of Science, “it is very needful to bear in mind that an external object is in general a construct – that is, a combination of immediate with past or stored sense-impressions.  The reality of a thing depends upon the possibility of its occurring in whole or part as a group of immediate sense-impressions” (Pearson, 1911 [1957], p. 41, footnote omitted).  The inductivist aspect of his philosophy of science will be made clear in the following discussion of his view of scientific laws.

Natural laws, or scientific laws, for Pearson are simply conveniences for summarizing many scientific facts.  Because the facts of science are themselves phenomenological, natural laws are similarly dependent upon the “perceptive and retentive faculties” of humans (Pearson, p. 82).  He gives as an example of the “relativity” of laws to human perceptual experience the second law of thermodynamics:  “A good instance of the relativity of natural law is to be found in the so-called Second Law of Thermodynamics.  This law resumes a wide range of human experience, that is, of sequences observed in our sense-impressions, and embraces a great number of conclusions not only bearing on practical life, but upon that dissipation of energy which is even supposed to foreshadow the end of all life. . . . Now the Second Law of Thermodynamics resumes with undoubted correctness a wide range of human experience, and is, to that extent, as much a law of nature as that of gravitation”  (Pearson, pp. 83-84).  Finally, regarding the law of gravitation, Pearson says: “The law of gravitation is not so much the discovery by Newton of a rule guiding the motion of the planets as his invention of a method of briefly describing the sequences of sense-impressions, which we term planetary motion. . . . We are thus to understand by a law in science, i.e. by a “law of nature,” a resume in mental shorthand, which replaces for us a lengthy description of the sequences among our sense-impressions”  (Pearson, pp. 86-87).
We might expect that Pearl would follow Pearson in his empiricist understanding of laws of nature.  But the criticism that followed Pearl’s presentation of the law of population growth, and Pearl’s response to that criticism, suggest that he had a more robust view than Pearson.  

The second of the two important figures in early mathematical population biology I am considering here is Alfred Lotka.  Lotka is remembered among ecologists for the Lotka-Volterra model of competition and predation (see Gotelli 1998).  However, he did not have a strong interest in what we now think of as ecology.  Rather, Lotka’s background was in physical chemistry and he envisioned founding a new science based on the application of thermodynamic principles to living systems.  Lotka’s work was supported and encouraged by Pearl, who provided him a research position at Johns Hopkins University (although Lotka never became a permanent academic).  In 1925, Lotka published Elements of Physical Biology (later reprinted by Dover as Elements of Mathematical Biology) in which he laid out a program for the study of biological systems based on the concepts and mathematical methods of physical chemistry.  So, while Lotka is now well known in ecology (at least by name), the project he envisioned was much broader than would be encompassed by any of the sub-disciplines of contemporary ecology.   Nevertheless, his efforts were strongly influential in stimulating the eventual incorporation of the outlook and methods of the physical scientist into ecology.

Of interest here is the attitude that Lotka took toward the concept of a law in connection with biological systems as expressed in Elements of Mathematical Biology.  Because he came to biology from the perspective of physical chemistry, Lotka was predisposed to understand his project in terms of finding the laws of physical biology.  His model was the laws of thermodynamics in physical chemistry.  From earlier on in his book, it is clear that Lotka sees the two disciplines in the same terms.  After discussing the importance of the geometry and mechanics of structured chemical systems (as opposed to unstructured systems), Lotka says that the “laws of the chemical dynamics of a structured system of the kind described will be precisely those laws, or at least a very important section of those laws, which govern the evolution of a system comprising living organisms” (Lotka, p. 16, italics in original).   He then goes on to define ‘evolution’ in general terms that apply equally to physical and biological systems:  “Evolution is the history of a system undergoing irreversible change” (Lotka, p. 24).  Here, Lotka is not thinking about evolution in a Darwinian sense, as the evolution of a population or species, but of a system as a whole, of which populations or species might be parts.  This reflects in part his different perspective on biology; his discussion of evolution bears little relation to the Darwinian theory of evolution by natural selection that was being successfully developed at the time.  Lotka envisioned mathematical biology as treating of entire biological systems, rather than giving an account of the evolution of units such as species.  The definition of ‘evolution’, then, applies equally to pendulums, chemical reactions, organisms, and communities. 

Because he is moving from the realm of physical science to biological science, Lotka carries over the concept of a law appropriate to the physical sciences to his understanding of physical biology.  Thus, he tells us that 

we at once recognize also that the law of evolution is the law of irreversible transformations; that the direction of evolution (which, we saw, had baffled description or definition in ordinary biological terms), is the direction of irreversible transformations.  And this direction the physicist can define or describe in exact terms.  For an isolated system, it is the direction of increasing entropy.  The law of evolution is, in this sense, the second law of thermodynamics”  (Lotka, p. 26, fn. omitted).

Of course, we still don’t have anything that might be considered a law of ecology, nor even a law of evolution, where the latter term is understood in a strictly biological sense or a Darwinian sense.  But after discussing the general form of the differential equation for an evolving system (actually a set of n equations), Lotka turns his attention to the simplest case, one where there is a single variable X.  As Lotka puts it, “[t]he fundamental system of equations then reduces to a single equation

dX/dt = F(X)



(3)

Lotka presents equation (3) in a chapter entitled “The Fundamental Equations of Kinetics of Evolving Systems” under the heading “Law of Population Growth” (Lotka, 1925, p. 64ff.).  Thus, after his preceding general discussion of the mathematical representation of any evolving system (physical, chemical, or biological), he is now turning his focus to specifically biological applications.  He tells us that one case in which this equation will be relevant is “when for any reason one particular biological species or group grows actively, while conditions otherwise remain substantially constant” (Lotka, 1925, p. 64).  Thus, in such a case the size of the population (measured in numbers or mass) is simply a function of time.  When there is an upper limit to growth (as is assumed with biological populations), equation (3) becomes the logistic equation (see equation (2) above).

One of my main theses is that in this early period in the development of ecology, when we find the integration of mathematical and statistical methods into the study of biological systems, there was a search for fundamental laws.  So it is important to figure our how Lotka understood the notion of a law.  Unfortunately, Lotka does not explicitly discuss his conception of laws; he was more interested in doing science than philosophy of science.  Nevertheless, I think that we can identify an accurate picture of the relevant conception of a law operative in the work of Lotka.  From what we have seen so far, it appears that Lotka’s conception of laws in biology are the same as those in physical chemistry.

Considering a further discussion by Lotka of the relationship between the laws of chemistry and the laws of evolution will be of some help here.  In his discussion of chemical equilibrium (“Chapter XII:  Chemical Equilibrium As An Example of Evolution Under a Known Law,” pp. 152ff), Lotka discusses “the equilibrium resulting from a pair of balanced or opposing chemical reactions” (p. 152).  He considers the simplest case, a balanced reaction at constant temperature and pressure, in which a “substance S1 undergoes a transformation into S2, and S2 in turn is converted back into S1, one molecule alone taking part, in each case, in the transformation” (Lotka, p. 152).  Lotka proceeds to work out the equations representing the rates of increase in each substance and the ratios at equilibrium, but the equations themselves are not my interest here.  What is interesting is Lotka’s characterization of the process leading to equilibrium:  “There is thus an obvious analogy between the course of events in such a population of different species of molecules, on the one hand, and a mixed population of different species of organism on the other. . . . The analogy is not a meaningless accidental circumstance, but depends on identity of type in the two cases”  (Lotka, p. 154).  Finally, it is worthwhile to quote at length Lotka’s further discussion of this analogy:

While the details of the manner of the “birth” and “death” of the molecules in chemical transformation are, as yet beyond the range of the observation of the physicist, the fundamental laws of energetics, which hold true generally, and independently of particular features of mechanisms, are competent to give substantial information as to the end product, at any rate, of the evolution of such a system as considered in the simple example above.  The final equilibrium must accord, as regards its dependence on temperature, pressure and other factors, with the second law of thermodynamics, which may thus be said to function as a law of evolution for a system of this kind.  This is a point worth dwelling on a little at length, inasmuch as our knowledge of the form and character of the law of evolution for this special type of system may be expected to serve as a guide in the search for the laws of evolution in the more complicated systems, belonging to an essentially different type, which confront us in the study of organic evolution.  (Lotka, p. 157)

Lotka clearly takes seriously the notion that there are laws of nature that apply to physical systems, chemical systems, and biological systems and these appear to be “fundamental laws” that “hold true generally.”

Both Lotka and Pearl seem to hold what might be called a “pre-positivist” attitude toward scientific laws, in contrast to Pearson, where laws embody a kind of necessity and universality found in nature.  It is exactly these notions of necessity and universality that will be relevant in looking at contemporary attitudes toward laws in ecology.  As I will show, the prevailing view among contemporary ecologists has moved away from viewing ecology as focused on the discovery of underlying laws of nature.  Rather, much of the work in ecology is better understood as the search for more local knowledge, reflected in the emphasis put on the use of models in ecology and the search for underlying mechanisms.

III.  Mathematics, models, and mechanisms:  contemporary approaches in ecology

Because my goal is to look at the current status of laws in ecology in the light of this historical background, I’m not going to be able to consider the intervening decades.  The impact of the application of mathematical techniques in ecology increased gradually over time.  Initially, very few ecologists had the mathematical background to use or even appreciate the mathematical approaches developed by Lotka, Volterra, Pearl, and others.  Even today, there is a divide between theoretical mathematical ecology and field ecology.  However, virtually all field ecologists make use of statistical methods of analysis and there are many ecologists who integrate mathematics and field work, usually in the form of employing mathematical models in field studies.  I will focus on several such examples to demonstrate the current focus on models and mechanisms in population and community ecology.

The issue of whether or not there are laws in ecology is still the subject of some discussion among ecologists and philosophers alike.  Although I want to emphasize the role that models and mechanisms play in contemporary ecology, it is worth considering briefly those that argue for the presence of ecological laws.  The case for laws in ecology is made by ecologists on the one hand (Murray, 2000, 2001; Schoener, Turchin) and by philosophers on the other (Lange, 2005; Cooper 1998) and sometimes even a combination of both (Colyvan and Ginzburg, 2003; Ginzburg and Colyvan, 2004).  Among the ecologists, one finds explicit comparisons made between laws in ecology and Newtonian laws of motion.  In Murray’s case, for example, he contends “that biologists and philosophers of biology are wrong when they say that Newtonian-like universal laws and predictive theory are inappropriate in biology. . . . I accept the views of Newton, Einstein, Feynmann, and Popper as the way of doing science, not because I suffer from ‘physics envy’ [references omitted], but because I think that logic transcends subject matter.  Physics simply provides excellent illustrative examples of the method [of science].  I use these methods because, as a theoretical biologist, I see no other way of proposing and testing predictive, explanatory theories” (Murray, 2001, p. 262).  Similarly, Ginzburg and Colyvan structure their understanding of population biology and ecological laws by direct analogy to physics and physical laws, especially those of Newton and Kepler (see Ginzburg and Colyvan, 2004, esp. Chap. 2).

Lange (2005), on the other hand, proceeds from a more philosophical standpoint, developing a notion of law that is based on invariance under counterfactual conditions, and applies this to ecology to argue that ecology does have laws and that this indicates a degree of autonomy of ecology from physics.  Cooper (1998) views the generalizations in ecology as having varying degrees of nomic force.  Thus, he modifies the concept of a law of nature to accommodate the differences between ecology and the physical sciences.

Nevertheless, for the most part, the early emphasis on interpreting the equations of population ecology as the fundamental laws of ecological theory has given way to mathematical modeling and references to ecological mechanisms.  Much (perhaps the overwhelming majority) of the work of ecologists takes place in the absence of any explicit concern with uncovering ecological laws.  Ecologists are typically interested in developing mathematical models that can be used to characterize and predict the behavior of ecological systems of study.  This applies both to the fields of population ecology (initiated by Lotka, Volterra and others) and ecosystem ecology (an area of ecology which focuses on functional assemblages of populations of different species).  The shift away from laws in ecology is replaced with a shift toward “mechanistic” models, models that capture in a mathematical form the underlying mechanisms driving the behavior of ecological systems.  As evidence of this shift, I focus on the work of Paine and Levin (1981) on intertidal communities and Tilman et al. (2003) on plant communities.  Even as they are developing models, however, many ecologists recognize the difficulties in generalizing beyond the particular systems that they are studying, suggesting that models are not thought to capture any broad underlying laws.  The shift from thinking about mathematics in terms of laws and thinking about mathematics in terms of mechanisms highlights the need for a satisfactory understanding of the concept of a mechanism as it applies to ecological systems (see Machamer, Darden, and Craver, 2001, for a starting point).  Ecologists use the term ‘mechanism’ regularly to characterize their research; thus, ecology provides a useful forum for evaluating and perhaps extending recent work by philosophers in developing a useful concept of a mechanism.

Paine is well known for his work on intertidal communities, predominately in the Pacific Northwest.  In an early paper (Paine, 1966) that is now a classic in experimental field ecology, Paine studied the structure of food webs in intertidal communities on the coast of Washington State, the Gulf of California and Costa Rica.  He developed a hypothesis that predation increases food web diversity by maintaining opportunities for organisms to occupy spaces opened by predation on organisms lower in the food web.  In the absence of top-level predators, the space becomes occupied by a virtual monoculture of the final stage in the ecological succession.  Predation keeps the species that constitutes the climax phase in the succession from occupying all available space and excluding other organisms.  Paine demonstrated support for this hypothesis by setting up a field experiment in which the dominant predator, the starfish Pisaster ochraceus, was excluded from portions of the intertidal coast, while a control area was maintained nearby.  In the absence of the predator, one of the prey species, the mollusk Mytilus californianus, essentially dominated the intertidal region.  Paine concluded that, at least under the conditions represented in the intertidal coastal regions, predation led to higher community diversity.  However, while Paine suggested that the results might be generalized, he also pointed out that “[t]wo aspects of predation must be evaluated before a generalized hypothesis based on predation effects can contribute to an understanding of differences in diversity between any comparable regions or faunistic groups”  (Paine, 1966, p. 73).  In all of this, there is no discussion of general underlying ecological laws.  Furthermore, Paine also makes references to the possible underlying mechanisms that give rise to increased faunal complexity (p. 73).

While this study of Paine’s is helpful in seeing something of a transition away from the concept of laws as organizing ecological studies, it is still a bit distant in time to highlight the role that mathematical models currently play in the practices of ecologists.  To see this more clearly, I want to examine more recent work by Paine and Levin on intertidal communities.

Paine collaborated with Simon Levin in further research on intertidal communities in the Pacific Northwest.  In Paine and Levin (1981), they make use of a mathematical model that they had previously developed (Levin and Paine, 1974) to understand and predict the change of patch (unoccupied space) in mussel beds consisting predominantly of the mussel Mytilus californianus.  In their own words, their paper “documents, then, in greater detail than available for other communities, the feasibility of modeling a spatially dynamic landscape, and illustrates a productive partnership between a nonequilibrium model custom-tailored to the dynamics of the system and interpretation of many of the intimately associated biological events” (Paine and Levin, 1981, p. 146.)  While it is obviously impossible to identify a single example as a “typical” ecological investigation, the paper by Paine and Levin is representative of a great deal of ecological work.

The experimental work of Paine and Levin is based on mussel beds on rocky shores along the Pacific Ocean in the Pacific Northwest that are affected by tides and wave action.  In places, the mussel Mytilus californianus forms a virtual monoculture, covering all of the available space.  They believe that such would be the case along the entire shoreline, if not for ongoing disturbances that take place along the shore, due to wave action and possibly battering from logs.  Rather than being dominated completely by Mytilus californianus, the intertidal shore supports a large diversity of organisms, owing to the appearance of patches of varying sizes within the mussel beds.  These patches serve as places where organisms of other species can establish themselves, if only for a relatively short period of time, until the mussels eventually re-grow and reoccupy the patch.

The paper by Paine and Levin is useful here for several reasons.  First, it makes explicit use of mathematical models to model the disappearance (death) of patches over time.  Second, because they rely on both field experiments and observations, the model is connected to an ecological system in nature.  Third, their work throughout is concerned with identifying and modeling the underlying mechanisms that produce the patterns of patch appearance and disappearance.  Paine and Levin believe that their approach enables us to understand how a diverse community is maintained along the rocky intertidal region.  Finally, while they make no reference to laws of ecology, they do discuss the possibility of generalizing beyond the community on which they have based their research.

The intertidal region along the Pacific Northwest coast is dominated by extensive mussel beds, predominately consisting of the mussel Mytilus californianus.  However, the mussel beds form the basis for a diversity of other organisms, including another species of mussel (Mytilus edulis), numerous barnacles (Balanus glandula, B. cariosus, Pollicipes polymerus), red and brown algae (Lessioniopsis, Porphyra pseudolanceolata, Alaria nana, Halosaccion glandiforme, Corallina vancouveriensis), and carnivorous animals (Thais sp., Pisaster).  The diversity arises in patches that form in the mussel beds, owing to the wave action on the mussels that dislodges them, creating open areas on the substrate that can be colonized by other organisms.  The patches gradually disappear, due to the movement of mussels from the periphery and the recruitment of mussel larvae to the patch, which subsequently grow to adults.  However, the growth of larva to adults takes several years, and large patches can support a variety of other species in the interim.

Paine and Levin were interested in developing a model that would allow them to understand the processes that lead to the disappearance of patches and to predict, based on age, the relative percentage of patch in the total area of the mussel beds.  Patch appearance and disappearance was understood in terms of concepts that apply to populations of organisms in population biology:  the birth and death of patches is analogized to the birth and death of organisms.  Similarly, patches go through a developmental process, resulting in different age classes of patches.  Utilizing these ideas from population biology, Paine and Levin utilized variants of models that have been developed for studying population growth, with different age classes.  With variable sizes of patches, patch size will also be factored into their model.  The basic equation they begin with will be somewhat familiar to most ecologists (Paine and Levin, p. 149):

dM/dt = B(t) – D(t)M,





(4)

where M(t) is the fraction of the total area that is patch at time t, B(t) is the birth rate (i.e. disturbance rate) and D(t) is the rate of disappearance of patch.  Equation (4) is a variant of the logistic equation discussed earlier, with the exception that the birth rate is independent of the patch size, M, at any given time (in the equation for population growth, the growth rate, r, is a function of population size, N).

Based on the idea that there are three factors, or mechanisms, that determine the disappearance of patches, Paine and Levin are able to formulate equations to model the disappearance of patches.  The three factors are: migration of mussels from adjacent areas, recruitment of young mussels, and loss of patch due to the appearance of new larger patches of which the initial patches are a part.  This last factor will be balanced out in the patch birth rate part of equation (4).

Having developed a basic model for patch disappearance, Paine and Levin go on to test the applicability of their model to the coastal region they are studying.  Using the model requires estimating parameters of the model, such as the rate at which the patch disappears due to the factors of migration and invasion by juvenile mussels.  Paine and Levin estimate these parameters by using an experimental population in a nearby region, distinct from the natural population to which they want to apply the model.  Paine and Levin then use data gathered over a period of ten years of measuring patches to test the model.  They find that their model accurately predicts the amount of patch at different times, based on the rate of disturbance (patch appearance) and patch disappearance based on age.

Paine and Levin use data gathered from observations to estimate the parameters needed to make predictions based on their model.  To understand their view of model-testing, it is worth quoting them at greater length:

Theoretical ecology is rife with models, mathematical and nonmathematical; rarely, however, are those models put to the experimental test.  Without validation, we cannot know whether our assumptions capture the essence of the dynamics of the system, or whether there are additional critical factors which we have ignored.  If our approach can be shown to be valid, it may then be calibrated and used for prediction, for explanation of interregional differences, as a management tool, and as a framework within which evolutionary questions can be addressed (p. 148).

This quotation reflects Paine and Levin’s understanding of the value of models, at least models that have been successfully tested:  they can be used for prediction, explanation, and as a research framework.  How then does their model fare in terms of its ability to make predictions?

Paine and Levin consider several different predictions.  The first involves a projection of the age-structured model one year into the future (it should be noted that their model is a discrete model based on one-year intervals).  The aim here is to predict the survival of patches from year x to year x + 1 (as a fraction of total area), based on the age of the patch in year x.  Here they find that the “agreement between prediction and observation is excellent”; twelve sites at one region had an average error of 0.5%, the sites at a second region were even better, except for two anomalies attributed to “sampling error” (Paine and Levin, p. 166).  They then consider predictions further into the future:  based on age structure in year x and birth rate in year x + 1, what is the predicted age structure in later years?  Again, they find the model to do “remarkably well” (p. 167).  Finally, Paine and Levin consider the predictions of their age-size structured model to predict patch area into the future.  Here the model is less successful, especially when making predictions about initially small patches.  However, Paine and Levin conclude that since “the larger patches hold the key to survival for most species of interest because they are longer lived . . .   the high degree of accuracy [for large patches] is a very encouraging first step towards the development of a dependable predictive model” (Paine and Levin, p. 170).

Thus, if we accept their analysis of the predictive ability of their models, we find that on the face of it, Paine and Levin have developed a model that can be used for further prediction, explanation and research.  The question that we are focusing on has to do with whether, and to what extent, the use of an explicit model, and the verification of that model, make it possible to generalize beyond the system studied, in this case the intertidal community on the coast of Washington State.  What do Paine and Levin think about this possibility?  Their comments are interestingly ambiguous:  “Although we make no claim that our model is literally applicable to any systems other than that for which we developed it, we feel that our approach is” (Paine and Levin, p. 176).  They mention numerous other studies in which disturbance is an important phenomenon in understanding the structure of the relevant community:  fire disturbances in temperate forests, tornadoes and hurricanes in both temperate and tropical forests, earthquakes and landslides, mammal activity in grasslands.  Finally, they say that “[m]any marine or terrestrial landscapes are subject to disturbances of either physical or biological origins.  Most are there patchy.  The strength of models such as ours is that they provide the missing link between disturbance and diversity, and thus can connect the dynamics of the continually changing pattern to intimate biological detail” (Paine and Levin, p. 176).

So here we have a situation where mathematical models are used to make predictions, they are fairly accurate in doing so, but we are still very reluctant to generalize beyond using of the model only with the system being studied, except insofar as the “approach” used might be extended to other systems.  Given their statements, it doesn’t seem that Paine and Levin are advocating the use of the same model in connection with other systems.  What they seem to be advocating is the use of mathematical models generally for understanding the ways in which disturbance can affect the structure of a community.  Furthermore, as they put it, the models may be helpful in conceptualizing the connections between disturbance and system diversity.

IV.  Lessons to be learned from ecology

I want to highlight three lessons to be learned for philosophers of science from focusing on ecology, starting with more specific lessons and moving to more general ones.  I will conclude with a reflection on the status of ecology as the study of the contingent.

A.  Importance of mechanisms in ecology

The introduction of mathematical and statistical methods into ecology contributed greatly to its development as a distinct scientific discipline, moving beyond primarily descriptive and classificatory activities to the development of more general theories.  As ecology has developed in the twentieth century, the role of mathematical models has become more closely tied to the identification of underlying mechanisms whose behavior is captured by the models.  The use of mathematical models in any science presupposes that there is something to be modeled.  For many ecologists, the mathematical models represent underlying causal mechanisms.  This attitude is expressed well by Leibold and Tessier (1989):

The key component of the mechanistic approach is identification of a critical set of causal relations responsible for a particular result. . . . The primary goal . . . is to postulate clearly focused and operationally defined, albeit not comprehensive, models.  Experiments are then employed sequentially to test the important assumptions and predictions from the model and separate studies conducted to extrapolate their application to a broader, more natural context. . . . [A] mechanistic approach retains the notion that the causal bases of patterns must themselves be understood before a hypothesis can be accepted as an explanation and presumes that an understanding of causal relations is an important element that allows extrapolation of results beyond the set of previously studied conditions.  (Leibold and Tessier, 1989, pp. 97-98.)

Understanding the underlying mechanisms is crucial to the value of models for providing explanations in ecology.  Where mechanisms are not well understood, the models become “purely theoretical,” disconnected from ecological reality.

Thus, the concept of mechanism is fundamental to much of contemporary ecology, especially among those who are involved in experimental ecology.  In other areas of science, especially such areas as molecular biology and neuroscience, there has been a great deal of attention recently to the concept of mechanism (Machamer, Darden and Craver, 2000; Darden and Craver, 2007; Craver 2007).  While this is not the place for an extended discussion of the concept of mechanism in ecology, I want to point out that the approach taken by Machamer, Darden, and Craver is intriguing for ecology.  The emphasis put on mechanisms is consistent with difficulties in developing general theories in ecology, a point that I will discuss momentarily.

B.  Mathematical Models and Idealized Systems

The second lesson from our study of ecology deals with the relation between mathematical models and the systems that they model.  It is a truism that nature is complex, whether we are focusing on physical, chemical, biological, or ecological systems.  The use of mathematical models to represent real systems inevitable involves a high degree of idealization and simplification.  In fact, the systems represented by mathematical models do not exist in nature, at least not as described by the models, in that there are always factors involved in the behavior of a natural system that are not captured by the model.

To see this point, consider the logistic equation for population growth.  The logistic equation is obviously a simplification, in that it deals with a single population in a stable environment not affected by changes in other populations.  By looking at the equation, we can see that it presupposes that for any given population, there is a parameter, r, that represents the intrinsic rate of increase, or the maximum rate of increase.  But there is no such thing in a natural population.  Given the variability among the organisms of any natural population with respect to reproductive capacity, we can only expect there to be an average of the individual differences in the population.  This is captured by the parameter r.  But even this average will vary over time, so the parameter r is itself a fiction or idealization that applies to an idealized population; it applies, at best, only approximately to any actual population in nature.

This relationship between mathematical models and real systems has long been recognized by philosophers of science working in other disciplines (e.g., Nancy Cartwright, Margaret Morrison, Mary Morgan), so I’m not claiming to have made any new discoveries here.  However, some of the ways that others have addressed the relationship between mathematical models, idealized systems, and real systems do not work well in ecology.  For example, in her early work, Nancy Cartwright distinguished between theoretical laws and phenomenological laws.  Theoretical laws are traditionally understood to be part of the general underlying theory, from which phenomenological laws can be derived.  On Cartwright’s view, phenomenological laws are the laws that apply to actual physical systems; they describe the causes at work within a physical system.  Theoretical laws, strictly speaking, don’t explain much (see Cartwright, 1983, esp. Essays 2 and 6).  To apply Cartwright’s view to ecology, we need to find correlates of the theoretical laws and the phenomenological laws.  I don’t believe that we can find either.  In the first place, the presence of theoretical laws in ecology has been questioned by the first part of my paper.  In the next section, I will focus on this in more detail.  As for phenomenological laws, I could simply claim that because there are no laws in ecology, there are no phenomenological laws.  But this is too easy.  What Cartwright describes as phenomenological laws bear a close resemblance to the models that ecologists use when studying particular systems, models that have been tailored to fit the system under investigation.  But this leads back to my original point in this section.  The models themselves do not describe the actual system, but rather an idealized system, and it is only to the extent that we have a grasp of the underlying causal mechanisms that the model is of value.  The models serve to focus attention on the mechanisms at work in particular systems, and do not function independently of an understanding of mechanisms.

C.  Lack of general theory in ecology 

This brings us to the last lesson from the preceding discussion.  If we consider the recognition of laws in a science as intimately connected with the presence of explicit theories in that science, then the absence of laws in ecology can be seen as a reflection of the absence of theories, at least theories that have a general acceptance within the community of practicing ecologists.  While this may sound like a controversial claim on the face of it, I think that it can be supported in several ways.

First, ecology lacks an overarching unifying theory in the way that, say, biology has the theory of natural selection.  While it is debatable whether there are “laws” underlying the theory of natural selection, there is clearly a set of central ideas and principles that serve to organize and unify much of biology.  In ecology, there are many different approaches to studying ecological systems.  In fact, there are many different ways of identifying ecological systems.  The three most common ways of identifying systems of study are population ecology, community ecology, and ecosystem ecology.  The first focuses on individual populations and interactions between a small number of populations.  The second looks at stable groups of populations that form functional units, termed “communities,” and typically studies the effects of disturbances on communities.  Finally, ecosystem ecologists tend to focus on large scale systems, looking at how energy moves through the system.  These three approaches typically focus on different scales of systems, but there is a great deal of overlap, and methods and concepts of any one area can be used in connection with another.  Thus, it is difficult to identify a shared theoretical framework among ecologists practicing different approaches.  To the extent that there are theories in ecology, they tend to be local or restricted, e.g, niche theory, or the theory of island biogeography.

The second, and I think more compelling, reason for thinking that ecology lacks general theories stems from the difficulty in finding empirically-supported generalizations in ecology.  We saw an example of this in the research by Paine and Levin, where they developed a model that predicted well the disappearance of patch in the system that they were studying, and was based on an understanding of the causal mechanisms that lead to patch disappearance, but they were reluctant to generalize beyond the system that they were studying.  The difficulties in generalizing from experimental results in ecology are widespread and widely recognized (see, among others, Dunham and Beaupre, 1998; Morin, 1998; Shrader-Frechette, K. S. and E. D. McCoy, 1993).  Even where similar mathematical models might be employed, the differences in the underlying causes make it difficult to treat the models as capturing general truths about ecological systems.  We are left with seeing ecology, at least at this point in its development as a discipline, as a science of the contingent, where laws are not to be found, and understanding the operation of mechanisms in restricted domains is the measure of success.

V.  Conclusion

The early proponents of a mathematical and statistical approach to population biology envisioned the discovery of fundamental laws that govern the growth of, and interactions between, populations of organisms.  While the methods that Pearl, Pearson, and Lotka developed were very influential in the development of ecology, the search for laws did not exert a long term influence.  As ecologists sought to develop ecological concepts and understand the behavior of diverse and complex ecological systems, mathematics became a tool for developing models, statistics a tool for evaluating them, and the search for mechanisms the basis for gaining a better understanding of ecological processes.
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� The equation proposed by Pearl and Reed predicted that the population in the United States would reach its maximum of 197,000,000 somewhere in the vicinity of the year 2000.


� The logistic equation was first formulated by Pierre-François Verhulst in 1838, but went unnoticed at the time; Pearl apparently arrived at it independently. 





