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When two systems, of which we know the states by their respec-
tive representatives, enter into temporary physical interaction due
to known forces between them, and when after a time of mutual
influence the systems separate again, then they can no longer be
described in the same way as before, viz. by endowing each of them
with a representative of its own. . . . By the interaction the two
representatives have become entangled. Schrödinger (1935, 555;
our emphasis)

1. Entanglement exchange

One of the surprises that the study of quantum entanglement has revealed is
that it is not necessary for systems to interact causally in order to evolve from
an unentangled state into an entangled one. As the phenomenon of entanglement
exchange (Bennett et al, 1993; Zukowski et al, 1993) shows, it is not required at all;
and nor is the effect purely theoretical, since it has been realised in the laboratory
(Zeilinger at al, 1998). The purpose of this paper is to analyze the process within the
framework of Bohmian mechanics, to see how the non-causal ‘interaction’ involved
is modeled by its unique account of the ‘connectedness’ of quantum particles. We
hope in this way to illuminate the way in which the ‘pilot wave’ affects particles.

However, the first job is to review entanglement exchange within the ‘standard’
quantum framework, to explain the phenomenon for those who are unfamiliar with
it, and to begin to introduce the notation that we will use in this paper.

Consider a system of four identical particles, each of which has a 2-dimensional
‘internal’ state space H1, with the orthonormal basis {|a〉, |b〉}; their joint state
space is the 16-dimensional tensor product H4 = H1

⊗
H1

⊗
H1

⊗
H1. In order

to keep our expressions manageable and readable, we will not use the full bra-
ket notation, instead we just use the state labels to indicate states; thus a will
represent the state |a〉. Additionally, and for the same reason, we will not write out
full tensor products; to keep track of which single particle state belongs in which
‘slot’ of the tensor product, we will use subscripts. Thus, for example, the state
|a〉⊗ |b〉⊗ |b〉⊗ |a〉 may be written a1b2b3a4, or a1a4b2b3, or any other permutation.

Now, consider H2 = H1

⊗
H1. The most familiar bases for this space are (in

the notation we have adopted) probably {a1a2, a1b2, b1a2, b1b2} and {a1a2, a1b2 +
b1a2, a1b2 − b1a2, b1b2} but, as can be easily checked, it is also spanned by

(1.1) {a1b2 + b1a2, a1b2 − b1a2, a1a2 + b1b2, a1a2 − b1b2},

Thanks to the audience at Jon Jarrett’s Spring 2009 seminar – especially Jon.
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the unnormalized ‘Bell basis’. For slots i and j (i 6= j) of H4, we define normalized
Bell states1:

αi,j ≡ 1/
√

2(aibj + biaj) γi,j ≡ 1/
√

2(aiaj + bibj)

βi,j ≡ 1/
√

2(aibj − biaj) δi,j ≡ 1/
√

2(aiaj − bibj).(1.2)

With the basic notation in hand, we can quickly describe what it means to
exchange entanglement. Suppose that the system is in a state in which particles 1
and 2, and 3 and 4 – but no others – are entangled; specifically let the initial state
be

(1.3) Ψ = 1/2(a1b2 + b1a2)(a3b4 + b3a4) = α1,2α3,4.

Ψ can be decomposed using the Bell basis:

Ψ = 1/4 ·
{

(a1b3 + b1a3)(a2b4 + b2a4)
− (a1b3 − b1a3)(a2b4 − b2a4)
+ (a1a3 + b1b3)(a2a4 + b2b4)
− (a1a3 − b1b3)(a2a4 − b2b4)

}
= 1/2 · {α1,3α2,4 − β1,3β2,4 + γ1,3γ2,4 − δ1,3δ2,4}.(1.4)

We emphasize that in this state neither 1 nor 2 is entangled with 3 or 4, as
can clearly be seen by the factorization of Ψ in (1.3). But now suppose that a
measurement of the Bell state of 1 and 3 is carried out (i.e., a measurement to
determine whether the Bell state of 1 and 3 is α1,3, β1,3, γ1,3 or δ1,3). As a result Ψ
will be projected onto one of the four terms of (1.4), corresponding to the outcome:
Ψ → {α1,3α2,4, β1,3β2,4, γ1,3γ2,4, δ1,3δ2,4}. But whatever the outcome, particles 2
and 4 will end up in a Bell state, and hence be entangled. The measurement of 1
and 3 alone induces the entanglement of 2 and 4; no interaction, either unitary or
involving their measurement, occurs between 2 and 4.

In their paper on the experimental realization of entanglement exchange, Zeilinger
et al (1998) remark that entanglement exchange ‘cause[s] no conceptual problems
[for the Copenhagen interpretation of quantum mechanics] if one accepts that in-
formation about quantum systems is a more basic feature than any possible “real”
properties these systems might have.’ The cynic about this interpretation might
respond that if nothing is ‘really’ happening then very little is likely to cause con-
ceptual problems – except the underlying problem of what the physical world is
like. But of course, that is the problem of physics. One may not like them, but one
should surely understand why alternative interpretations – such as Bohm’s – that
tell a story about ‘real’ properties need to be pursued.

2. Bohmian Mechanics

In this section we’ll introduce the basic principles of Bohmian mechanics (BM),
in part for those unfamiliar with the theory, but also to develop the notation and
tools needed for the following section. In so doing we will closely follow the approach

1Since we are considering only the internal degrees of freedom here, the ‘Symmetrization Pos-

tulate’ does not rule out identical particles possessing all these states. It only constrains the total
state, which involves all degrees of freedom.
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developed by Albert (1992) and Barrett (e.g., 2000), to the formulation of the theory
by Dürr, Goldstein and Zanghi, (1992) (see also Goldstein, 2006). Let’s start by
analyzing what it means in this account to describe a physical system’s state at a
certain time and its temporal evolution, by comparison with familiar theories.

In classical mechanics it can be done by describing the positions of the particles
forming the system and the momenta they carry. For example, the state at a time
of one particle in ordinary space, is described by a point (q, p) in a six-dimensional
phase space homeomorphic to R6, so q in fact represents a point (x, y, z) in 3-
space, and p a momentum vector. (In general, for notational ease, we will only
explicitly indicate vectors when it is important to recognize their vectorial nature.)
The future evolution of that state in this vector space will be guided by Newton’s
equations.

In quantum mechanics (QM), the state space is a Hilbert space, and the wave
function ψ representing the state of the system is a ray in this space. This function
encodes all the information about the particle’s state and its evolution through time.
More precisely, the wave function ψ(x, t) is solution of the Schrödinger equation

(2.1) − ~2

2m
∇2ψ + V ψ = i~

∂ψ

∂t
.

While the wavefunction is a function of position, in no obvious way does it
specify a point in physical space as the position of the particle; moreover, there
is no dependence on such a position in (2.1). Indeed, the position variable in ψ
does not, according to the standard interpretation, refer to a definite position at
all. Instead all the theory delivers is the probability of finding the particle in some
definite position at a time, provided we perform a measurement at that time: the
Born Rule tells us that the probability (density) for a particle’s position at any time
t is given by |ψ(x, t)|2. So, unlike the q of classical mechanics, x does not refer to
a particle’s actual position at a time, but merely ranges over its possible positions,
in a probability function (or better, probability amplitude).

However, if it is true that when we measure a particle’s position we get a def-
inite outcome, why can’t we just assume that the particle would have been there
anyway, even if we did not perform any measurement? The problem of course is
the characteristic quantum phenomenon of interference, which involves an extended
wavefunction, not one localized at the observed position. So where was the par-
ticle before we performed the measurements? The conventional interpretation of
QM would reply: the particle wasn’t really in any place. It ended up in a definite
position only because our measurement compelled the particle to have a position.

The crucial feature of the Bohm theory is that it assigns definite particle positions
at all times. We want emphasize this point: a particle’s position, q(t), assumes a
definite value at any time, because particles have definite positions in this account,
whether or not we measure them. For this reason it is often misleadingly thought
of as just a revision of classical mechanics. But let’s say something more about
that later, after we give a more complete description of the theory.

From the wavefunction we get the usual statistical predictions of QM. The
Distribution Postulate, one of the main principles of BM, states that the probabil-
ity that a particle occupies the position x at the time t = t0 is equal to |ψ(x, t0)|2.
To recover the Born Rule we need to ensure that the probability remains |ψ(x, t)|2
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at times t 6= t0. Imagine that we have an ensemble of N particles all with wave-
function ψ, and the same single-particle Schrödinger equation, initially distributed
so that ρ(x, t0) = N · |ψ(x, t0)|2 gives the number (density) of particles at x. We
want them to move so that ρ(x, t) = N · |ψ(x, t)|2 gives the density at any time,
in agreement with the Born Rule. Now, a standard textbook result is that the
quantum probability current is given by

(2.2) ~j(x) =
~
m

Im(ψ?(x)~∇ψ|x)

(Merzbacher, 1970, pp. 35-9). So if the particle density remains N · |ψ(x, t)|2 as
the wavefunction evolves, then N · ~j must be the particle current. But a current
is just ρ · ~v(x), where ~v(x) is the velocity of the system (at x). In our ensemble,
ρ(x) = N · |ψ(x)|2, so the Born Rule will be satisfied if, when a particle in the
ensemble has position q, its velocity is given by

(2.3) ~V [ψ(x)](q) =
~j(q)
ρ(q)

=
~
m

Im(ψ?(q)~∇ψ|q)
|ψ(q)|2

.2

~V [ψ(x)](q) is then the ‘velocity field’ for a single particle system, its postulation
by BM as the dynamics for the particle position entails (in conjunction with the
Schrödinger equation and Distribution Postulate) the Born Rule, and hence all the
predictions of QM. (Note that although we derived (2.3) by considering N particles,
it is the equation for a single particle; the N particles are merely a statistical
ensemble, used to treat the probabilities of a single particle being located at this
or that place.)

The central role played in Bohm’s account by the notion of particle’s position
provides us with a concept of system’s state that is different in many aspects from
the standard interpretation of QM. Although the two accounts have the same sta-
tistical predictions, probabilities are used in a different ways. In Bohm’s perspective
probability is an epistemic tool. The particles always have definite positions – from
which they evolve in an entirely deterministic way – and the use of probability is
a measure of our ignorance of how they really behave. Of course the probabilities
are objective, in the sense that it follows from the distribution postulate that en-
sembles of identically prepared particles will be statistically distributed according
to |ψ(x)|2.

Moreover, the wavefunction ψ contributes to the dynamics of the system in
configuration space (in contrast to the standard interpretation of QM in which
there are no such degrees of freedom). The equation for the velocity field (2.3)
clearly illustrates this point. It determines the velocity of a particle located at q
at any time t, and so the position at any other times. But ~V (q) is given in terms
of ψ and its derivative, and so ultimately it is the wave function that tells us how
a particle evolves to another definite position. (In fact the velocity field is a local

2Note that ~V is a ‘functional’ of the wavefunction and a function of the particle position: that
is, a map from a function on space, ψ(x), and position, q, to a velocity. The notation of (2.3)

indicates this formal distinction by using different brackets.

That every particle has a well-defined position and velocity does not imply that the Hermitian
operators representing position and velocity (or position and momentum) commute in BM. Such

operators do not correspond directly to the definite quantities of BM, such as the particle’s q and
p. See Daumer et al (1997) for an account of quantum observables from a Bohmian perspective.
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function of ψ and its derivative, i.e. ~v(q) depends only on the value of ψ(q) and
~∇ψ|q, a point to which we will return later in this section.) Therefore, the particles
are in some sense “pushed” around by the wave function on the configuration
space – hence BM is sometimes referred to as the ‘pilot wave’ theory, using de
Broglie’s expression from the 1927 Solvay Conference (see Goldstein 2006). It is
worth emphasising that the onlyway BM offers the experimentalist to interact with
particles is through the wavefunction and velocity field: by a choice of Hamiltonian
or (equivalently) unitary dynamics, not by any direct forces or other influences on
the particle.

At this point something more should be said about the relation of Bohm’s Theory
to classical and quantum mechanics. Our position is that BM, rather than a refor-
mulation of classical concepts, should be seen as a particular interpretation of QM,
even though the state of a particle is given not just by specifying its wavefunction,
but also by describing the particle position, q(t). First, the particle’s wavefunction
evolves according to the standard Schrödinger equation (2.1), and particles’ defi-
nite positions neither appear in ψ nor feature in the Schrödinger equation, so the
position variable of the wavefunction has much the same significance as before –
a variable in a probability function. Second, since ψ and q fix the velocity of the
particle, the linear momentum p is not an independent degree of freedom, unlike
any of the approaches to classical mechanics. It is true that Bohm’s original formu-
lation dresses BM in the guise of a Hamiltonian theory, with a ‘quantum potential’,
but that only serves to obscure the crucial innovations of BM. For these reasons, it
seems at least as accurate to see BM as an alternative interpretation of QM: it adds
structure to the bare bones of QM rather than to classical mechanics. We empha-
size this point to stress that BM is not a ‘reactionary’ stance, somehow throwing
away crucial insights of QM; how could it if it incorporates QM (as opposed to a
philosophically loaded interpretation of QM)?

Now, entanglement exchange, as presented in §1, involves ‘internal’ degrees of
freedom, such as spin, so we need to explain how they are treated in BM. (As a
matter of fact, we see no reason that entanglement in spatial degrees of freedom
should not be exchanged, but we will stick to the more familiar situation.) Such
degrees of freedom are treated exactly as in familiar approaches to QM. That is,
the state of a particle is taken to be the (tensor) product of an appropriate internal
state and its wavefunction, and the product state evolves according to the usual
unitary dynamics.

The only novel feature involving internal degrees of freedom is the dependence
of the velocity field on the internal degrees of freedom. The modification to (2.3) is
the simplest possible: the wavefunction is replaced by the product of the internal
state and wavefunction, and complex conjugation of the internal state is interpreted
as Hermitian conjugation. Thus for an orthonormal set of internal states χi (i =
1, . . . , n) we have χ∗i · χj = δi,j .3

Let’s work through a simple example to illustrate the function of internal degrees
of freedom in BM. So suppose that a system has a Hamiltonian that produces the
following evolutions:

χ1ψ0(x)→ χ1ψ1(x) and χ2ψ0(x)→ χ2ψ2(x)(2.4)

3In this one case δ is the Kronecker delta, not that defined in (1.2).
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where ψ1 and ψ2 have disjoint supports4. For example, such a system is a simple
model of a Stern-Gerlach apparatus: χ1 and χ2 represent spin up and down, ψ0

represents the initial position (as the particle enters the apparatus, say), and ψ1

and ψ2 represent final locations to the North and South of the apparatus’ poles.
Such an interaction amounts to a measurement of the internal state, with the result
recorded in the position of the particle (which could itself be measured after the
experiment). The Born Rule yields zero chance of finding a particle in the region
where the wavefunction vanishes, so if the particle starts with internal state χ1 it
will with certainty end up in the support of ψ1, and hence not in the support of
ψ2, because they are disjoint (similarly if the initial state is χ2ψ2).

The linearity of the quantum dynamics fixes the evolution for a superposition:

(2.5) Ψ(x) = 1/
√

2(χ1 + χ2)ψ0(x)→ 1/
√

2
(
χ1ψ1(x) + χ2ψ2(x)

)
.

Once again, the probability for the particle to end up in a region in which the
wavefunction vanishes is zero, so it must be in the support of either ψ1 or ψ2 – by the
logic of the previous paragraph, the measurement of the internal degrees of freedom
still has an outcome! Now, whether the outcome is 1 or 2 does not depend on the
initial internal state, since that is expressed by the LHS of (2.5), whatever the result.
For the same reason, neither does it depend on the spatial wavefunction. Therefore
the result must depend on the initial position, q(t = 0), of the particle; but as long
as ‘half’ the possible initial positions (i.e., all initial positions in a region over which
the integral of |Ψ(x)|2 is 1/2) end up in the support of ψ1 (ψ2) then the theory
will be in agreement with the statistical predictions of QM. (And we re-emphasize
that the initial position plus time-dependent wavefunction suffice to determine the
motion of the particle.) We won’t prove that this is the case, or extend the point
to correlations between measurements, but refer the reader to the references of
this section to demonstrate that BM reproduces the statistical predictions of QM
regarding internal degrees of freedom as well as position measurements.

Finally, consider the velocity field of the particle in the final state; according to
(2.3) and its modification for internal degrees of freedom discussed above

~V [ψ(x)](q) =
~
m

1/2 · Im
[(
χ1ψ1(q) + χ2ψ2(q)

)∗ · ~∇(χ1ψ1 + χ2ψ2

)
|q
]

1/2 · |
(
χ1ψ1(q) + χ2ψ2(q)

)
|2

=
~
m

Im
[(
χ∗1ψ

∗
1(q) + χ∗2ψ

∗
2(q)

)
·
(
χ1
~∇ψ1|q + χ2

~∇ψ2|q
)]

(χ∗1ψ
∗
1(q) + χ∗2ψ

∗
2(q)

)
(χ1ψ1(q) + χ2ψ2(q)

)
=

~
m

Im
[
ψ∗1(q)~∇ψ1|q + ψ∗2(q)~∇ψ2|q

]
|ψ1(q)|2 + |ψ2(q)|2

,(2.6)

where the orthonormality of the internal states, χi, is used in the final step (e.g.,
χ∗1χ2 = 0 and χ∗1χ1 = 1). Notice that since ψ1 and ψ2 are disjoint q must lie in the
support of just one; if, say, q ∈ Supp[ψ1] then ψ2(q) = 0 and

4Supp[ψ1]
T
Supp[ψ2] = ∅. Supp[f ] ≡ {x : f(x) 6= 0}, i.e., the region in which the function is

non-zero. We will make such stipulations about wavefunctions throughout for simplicity, but it is

an idealization that makes no essential difference to our results.
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(2.7) ~V [ψ(x)](q) =
~
m

Im
[
ψ∗1(q)~∇ψ1|q

]
|ψ1(q)|2

,

(and analogously if q ∈ Supp[ψ2] instead). That is, the particle will have the
velocity field of a particle with the wavefunction ψ1 (see 2.3).

Next, the Bohmian algorithm can be generalized to the case of an N particle sys-
tem in three dimensions. First, the dynamics for the wavefunction is the standard
N -particle Schrödinger equation, and second, the velocity field becomes

(2.8) ~VQ[Ψ](qi) =
~
mi

Im
(
Ψ?(Q, qi)~∇iΨ|Q,qi

)
|Ψ(Q, qi)|2

.

~VQ[Ψ](qi) represents the velocity of the ith-particle, located at qi, given that the
N -particle wavefunction (including any internal degrees of freedom) is Ψ and the
locations of the other particles are Q.5 This form amounts to an expression for
the velocity field for the ith particle given the positions of the others (and the
wavefunction), and we intend the LHS to be read that way. Note that the derivative
is only taken with respect to the coordinates of the ith particle (hence the subscript
on ~∇i).

Finally, before we give a Bohmian analysis of entanglement exchange, it will be
helpful to introduce the idea of the effective wavefunction; indeed, this idea will
be central to our discussion. For simplicity, suppose that we have a system of two
identical particles (mass m) moving in one dimension; however, it is easy to see
that the same conclusions hold for any number of particles or dimensions. Let the
state of the first particle be ψ(x), and that of the second be 1/

√
2(ϕ1(y) + ϕ2(y)),

where ϕ1 and ϕ2 have disjoint supports. Thus,

(2.9) Ψ(x, y) = 1/
√

2 · ψ(x)(ϕ1(y) + ϕ2(y)).

Of course, under these suppositions the two components of Ψ(x, y) have disjoint sup-
ports in configuration space: there are no values of (x, y) for which both ψ(x)ϕ1(y)
and ψ(x)ϕ2(y) are non-zero.

Now consider the velocity field (according to the 1-dimensional version of 2.8)
for the ψ-particle, conditional on the ϕ-particle being located at a position Q,

VQ[Ψ(x, y)](q) =
~
m

Im(Ψ?(q,Q) · ∂xΨ|Q,q)
|Ψ(q,Q)|2

(2.10)

=
~
m

Im{[ψ(q)(ϕ1(Q) + ϕ2(Q))] · ∂x[ψ(q)(ϕ1(Q) + ϕ2(Q))]|Q,q}
|[ψ(q)(ϕ1(Q) + ϕ2(Q))]|2

.(2.11)

By the Born Rule, the particles must have positions in the support of one of the
two components of Ψ: the probability of their being in region where Ψ is zero is
of course |Ψ|2 = 0. Suppose that Q ∈ Supp[ϕ1], hence by the disjointness of the
packets, Q /∈ Supp[ϕ2] and ϕ2(Q) = 0. So the expression immediately simplifies to,

5Ψ(Q, qi) is of course a suitable permutation of the wavefunction that makes the final argument
qi.
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(2.12) VQ[Ψ](q) =
~
m

Im{ψ(q)ϕ1(Q) · ∂x[ψ(q)(ϕ1(y)]|Q,q}
|ψ(q)ϕ1(Q)|2

.

But inspection of (2.8) reveals that this is precisely the velocity field that would
obtain if the entire wavefunction were ψ(x)ϕ1(y). That is, if Q ∈ Supp[ϕi], i = 1, 2,
then

(2.13) VQ[Ψ](q) = VQ[ψϕi](q).

Effectively, only the packet in whose support the system lies contributes to the
velocity field.

It’s easy to see why this result should hold: the velocity field is a local functional
of the wavefunction in configuration space, since its value at (q,Q) depends only on
Ψ and its derivative at (q,Q).6 So, conditional on a system being located inside the
support of a wavepacket, the velocity field is independent of any wavepackets with
disjoint supports, because they are necessarily not local to the position of the sys-
tem.7 So, quite generally, if the wavefunction of a system is the sum of components
with disjoint supports in configuration space, then only the one in whose support
the system is located will contribute to the velocity field; that component is hence
termed the effective wavefunction.

The effective wavefunction is central to the Bohmian interpretation of wavefunc-
tion ‘collapse’. Suppose a system decomposes into a measurement apparatus (A)
and measured subsystem (S), and that the different outcomes of a measurement
correspond to disjoint wavepackets for the apparatus. For instance, suppose S has
possible states ψS |+〉 and ψS |−〉, and measurements of the former leave A in the
state ψA+, while measurements of the former leave A in ψA−, where ψA+ and ψA−
have disjoint supports – they correspond to distinct positions for a pointer, say.
Then (by linearity) a measurement of S in state ψS(|+〉 + |−〉) will yield a state
ψA+ψ

S |+〉+ ψA−ψ
S |−〉. But the pointer particles can only be in the support of one

of the wavepackets. That packet is thus the effective one, and, for the reasons
discussed, the system will behave as if that were the entire wavefunction – as if
the wavefunction had collapsed into the wavepacket corresponding to the observed
outcome!

It is worth noting (with Albert, 1992, 164-9) that BM has an implicit supposition
to the effect that all that can be directly observed about the position of a parti-
cle is its effective probability distribution |Ψeff |2.8 It follows – since the effective
wavefunction is identical with the collapsed wavefunction of the conventional inter-
pretation of QM – that that is all that can be known by any means, implying that

6To see what we mean, compare (2.8) with an example of a non-local functional such as

f [ψ(y)](x) =
R
∞ dy ψ(y) · e−(x−y)2 , which depends on values of ψ everywhere.

7Note that in addition to locality, part of the point is that if the system is located in some
region, then only the velocity field in that region is relevant to the position dynamics. We will be

concerned with how the particle does move, not how it would if it were in a different packet.
8That the effective wavefunction can be determined is certainly correct – suitable measurements

will show in which packet a particle ends up – but why we should directly observe no more is less

clear. One hypothesis is that the mind’s belief states supervene on effective brain states, not on
the exact configuration. We will not pursue this issue here, as it is not relevant for the treatment
of entanglement exchange.
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the only empirical consequences of the theory are the usual statistical predictions
of QM, not statements about exact positions.9

3. Entanglement Exchange in the Bohm Theory

Not surprisingly, given the discussion of the previous section, the formal treat-
ment of this problem in Bohm’s conceptual framework shows different features from
those presented in §1. These formal differences are actually the vehicle of the differ-
ent physical insights behind the two interpretations of quantum phenomena. First,
the definition of a physical system in BM does not include just the particles whose
behaviour is under observation, but also the measurement apparatus – in the case
of entanglement exchange, a device that we’ll call the “Bell-ometer”. Second, as we
explained in the previous section, in BM every particle has a determinate position,
whether or not we have measured it. Moreover, the position of a particle has a
temporal evolution guided by the ‘pilot wave’ through (2.3). Hence we have to
take the spatial wavefunction explicitly into account in the treatment, not just the
internal degrees of freedom.

This section will give a full formal treatment of entanglement exchange (in a
simple model at least). The calculations are elementary, though the expressions
are a little unwieldy (we have five subsystems to consider). In the following section
we will analyse the treatment further in a more intuitive, pictorial manner, focussing
on the most essential features.

Consider the initial state of the system. In addition to the ‘internal’ part of the
state given in (1.3), we suppose that the four particles (i = 1−4) have associated
wavefunctions, φi(~xi), with mutually disjunct supports. The initial state of the
Bell-ometer is in turn represented by a wavefunction ψ0(x) whose argument is a
one-dimensional variable representing the possible positions of the pointer. (Of
course the pointer is composed of many atoms, but they are in a bound state,
so we suppose that they only have one relevant degree of freedom: x represents
the position of the centre of mass.) See figure 1. Thus (suppressing unambiguous
arguments for simplicity of expression) the total initial state is given by:

Ψ(t = 0) =
1
2

(a1b2 + b2a1)(a3b4 + b3a4)φ1φ2φ3φ4ψ0

=
1
2

(α1,3α2,4 − β1,3β2,4 + γ1,3γ2,4 − δ1,3δ2,4)φ1φ2φ3φ4ψ0,(3.1)

by (1.2).
Now consider the operation of the Bell-ometer in more detail. In addition to ψ0,

the ‘ready state’ of the device, there are four other possible wavefunctions for the
pointer: ψα ,ψβ , ψγ and ψδ. Each is centered at a different point along a scale, and
the location of the pointer at any such point indicates the outcome of the experiment
(for convenience, we take all five pointer wavefunctions to have mutually disjoint
supports). The supports of the wavefunctions are indicated against their scale in
figure 1.

9To be more precise, that agreement is only ‘for all practical purposes’; since the collapse is only

effective, there is always the in-principle possibility of the ‘empty’ parts of the wavefunction causing
interference effects, something ruled out by a true collapse. However, decoherence essentially

guarantees that such effects will not be seen. See Albert (1992, 161-4).
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Bell-ometer
ψ0(x) ψα(x) ψβ(x) ψγ(x) ψδ(x)

α β γ δ0

x

Initial wavefunctions 
of particles

Initial wavefunction 
of pointer

{ {

ϕ1(x1) ϕ2(x2)

ϕ3(x3) ϕ4(x4)

ϕ´1(x1)
ϕ´3(x3)

Figure 1

The Bell-ometer then works by feeding in a pair of particles, i and j (particles 1
and 3 are shown entering the device). The operation of the joint system of particles
and Bell-ometer is then such that – i.e., has a Hamiltonian such that – if the internal
part of the joint state of the particles is αi,j and the system, including the pointer,
is in its ready state, then the unitary Schrödinger evolution will lead to a final state
for the whole system of αi,jϕ′iϕ

′
jψα, and so on:

αi,jϕiϕjψ0 → αi,jϕ
′
iϕ
′
jψα βi,jϕiϕjψ0 → βi,jϕ

′
iϕ
′
jψβ

γi,jϕiϕjψ0 → γi,jϕ
′
iϕ
′
jψγ δi,jϕiϕjψ0 → δi,jϕ

′
iϕ
′
jψδ.(3.2)

ϕ′i/j(~x) can be thought of as wavefunctions located in a particle ‘dustbin’. They
simply indicate that the measured particles are discarded after the experiment and
their locations are not relevant for the remainder of our discussion. In reality, the
outcome of the experiment may be recorded in the location of the particles as well
as the pointer, but in our model the position of the Bell-ometer’s pointer represents
all the spatial differences that might result from different measurement. Since, by
the Born Rule, the particles have zero probability of being outside the support of
the wavefunction, they will certainly be located in the dustbin, as the figure shows.

Because the device has the dynamics specified by (3.2), if the particles are ini-
tially in the state αi,j (βi,j , . . . ) , then with certainty the final state for the pointer
will be ϕα (ϕβ , . . . ). That is, the device indeed measures the Bell state of the
particles. This device is clearly theoretically possible, in the sense that there exists
a unitary operator with the desired action. But we wish to emphasize again that
Zeilinger et al (1998) built and operated a device that effectively operates in just
this way in their experiments: the Bell-ometer is a laboratory reality, not just a
theoretical possibility.
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Finally, since the dynamics is of the standard, unitary, Schrödinger kind, it is
linear. Thus if the initial state of the particles is a superposition of Bell states, then
the outcome will involve a superposition of pointer wavefunctions:

(cααi,j + cββi,j + cγγi,j + cδδi,j)ϕiϕjψ0 →(3.3)

(cααi,jψα + cββi,jψβ + cγγi,jψγ + cδδi,jψδ)ϕ
′

iϕ
′

j .

However, the pointer can only end up in one position, which must be inside the
support of its wavefunction. The Born Rule gives zero probability for being else-
where: it must yield a definite outcome even in this case. As we discussed in the
previous section, that location will pick out a term from the RHS of (3.3) as the
effective wavefunction, and there will thus be an effective collapse.

So back to our analysis of entanglement exchange. Suppose that at t = 1 particles
1 and 3 are fed into the device and their Bell state measured (as shown in figure
1). Then by our discussion of the Bell-ometer’s operation,

(3.4) Ψ(t = 1) =
1
2

(α1,3α2,4ψα − β1,3β2,4ψβ + γ1,3γ2,4ψγ − δ1,3δ2,4ψδ)φ
′

1φ2φ
′

3φ4.

Suppose that the result of the Bell measurement is α (it should be clear that
no loss of generality is involved, because exactly symmetric considerations follow
in the case of the other possible outcomes). In this case, x ∈ Supp[ψα] (where x is
the definite position of the pointer), and

(3.5) ψβ(x) = ψγ(x) = ψδ(x) = 0

because of the mutually disjoint supports of possible pointer wavefunctions. (Note
that to avoid a proliferation of variables we are letting x, etc, do double duty, both
as the wavefunction variable, and as the definite position, which we previously
denoted q. The context and role in the various expressions disambiguates; we trust
that the discussion of the previous section makes the two roles for position clear.)
It follows that none of the terms involving those wavefunctions contribute to the
velocity field of the system, and so the effective wavefunction is

(3.6) Ψeff (t = 1) = α1,3α2,4ψαφ
′

1φ2φ
′

3φ4.

Next (at t = 2) a measurement of the spin of particle 2 is made. The device used
is very simple, the Stern-Gerlach apparatus we modeled in the previous section:
if a particle with spin a (respectively, b) enters the device, it leaves to the North
(respectively, South) of the device, and ends with wavefunction φa(~x) (φb(~x)); once
again these wavefunctions have disjoint supports. Thus the spin is recorded in the
position of the particle. At the end of this measurement the effective state will be

(3.7) Ψeff (t = 2) = α1,3(a2b4φ
a
2 + b2a4φ

b
2)ψαφ

′

1φ
′

3φ4.

Finally, (at t = 3) the spin of particle 4 is measured, using a second spin mea-
surement device. This procedure exhibits the entanglement of 2 and 4 (produced
by the measurement of the Bell state of 1 and 3) because the outcome is perfectly
anti-correlated with that of the spin measurement of 2, as we shall now see.

The post-measurement state will be
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(3.8) Ψeff (t = 3) = α1,3(a2b4φ
a
2φ

b
4 + b2a4φ

b
2φ
a
4)ψα(x)φ

′

1φ
′

3.

Now we use the equation for the velocity field (2.8) to determine the velocity
of particle 4 as a function of its position, given the outcome of the Bell-ometer
experiment and for a specified position of particle 2, x2.

V~x2 [Ψ](~x4) =

Im
{
α∗13

(
a∗2b
∗
4 · (φa2)∗(φb4)∗ + b∗2a

∗
4 · (φb2)∗(φa4)∗

)
ψ∗α · (φ

′

1)∗ · (φ
′

3)∗ ·

∂x4

[
α13

(
a2b4φ

a
2φ

b
4(x4) + b2a4φ

b
2φ
a
4(x4)

)
ψαφ

′

1φ
′

3

]}
∣∣α13

(
a2b4φa2φ

b
4 + b2a4φb2φ

a
4

)
ψαφ

′
1φ

′
3

∣∣2(3.9)

Using the orthonormality of a and b and the fact that only φa/b4 are functions of
x4 (so, e.g., ∂x4φ

a
2 = 0) the above expression simplifies to,

V~x2 [Ψ](~x4) =
|α13|2|φ

′

1|2|φ
′

2|2|ψα|2Im
{
|φa2 |2(φb4)∗∂x4φ

b
4 + |φb2|2(φa4)∗∂x4φ

a
4

}
|α13|2|φ

′
1|2|φ

′
2|2|ψα|2(|φa2 |2|φb4|2 + |φb2|2|φa4 |2)

=
Im
{
|φa2 |2(φb4)∗∂x4φ

b
4 + |φb2|2(φa4)∗∂x4φ

a
4

}
|φa2 |2|φb4|2 + |φb2|2|φa4 |2

(3.10)

Now suppose that the outcome of the measurement of particle 2’s spin was a (again,
clearly symmetric results obtain if we suppose it was b). That is to say that the
position of 2, ~x2, is outside the support of φb2: hence φb2(~x2) = 0. In that case we
find that

(3.11) V~x2 [Ψ](~x4) =
Im[(φb4)∗∂x4φ

b
4]

|φb4|2
.

In other words, the velocity field of particle 4 is the same as if its state were

(3.12) ψ = b4φ
b
4(~x4)

namely that of a b-spin particle – even though it is in fact in an entangled state.
Thus it is anti-correlated with the spin of 2 –namely a – as advertised. Moreover,
that it behaves as a spin-b particle is determined completely by the outcome of the
two previous measurements.

4. How do the Particles Get Entangled?

Our system, composed of four particles and a pointer in 3-space, lives in a 15-
dimensional configuration space (in addition there are of course the internal degrees
of freedom). However, to visualize what happens in the interactions we need only
really picture particles 2 and 4 (those that become entangled by the Bell-ometer
measurement) and the pointer; in addition, we can simplify by just looking at their
movements in one, representative, dimension each. Thus in figure 2, the vertical axis
represents the line along which the pointer moves. The horizontal axis represents
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x2

x4

x

α

β

γ

δ

ba
a

b
Supp{Φ2(x2)× 
Φ4(x4)×ψ(x)}

t=0 → t=1

Ψeff

x2

x4

x

ba

a

b

t=2 → t=3

α

β
ba

x2

x4

x

a

b

t=1 → t=2

α

β

Figure 2

the motion of particle 2 parallel to a line through the magnetic poles of the Stern-
Gerlach spin measurement device; motion to the left represents a measurement
of spin a, that to the right of spin b. Similarly for the axis perpendicular to the
page and particle 4. The three transitions treated, t = 0→ t = 1 (the Bell-ometer
measurement), t = 1→ t = 2 (the measurement of the spin of 2), and t = 2→ t = 3
(the measurement of the spin of 4), are all shown. In each case both the evolution
of the wavefunction (or effective wavefunction) and the location in configuration
space of the system are shown, the former by shading the region(s) in which the
wavefunction has support, and the latter by a dot. It will be convenient to think
of the whole system as a particle – the ‘system particle’ – moving (along with its
wavefunction) in (x, x2, x4)–space.

As in the conventional interpretation of QM, entanglement is exchanged by the
Bell state measurement (t = 0 → t = 1). Afterwards, the system particle is guar-
anteed (by the Born Rule) to be located in the support of a wavepacket associated
with an internal state in which particles 2 and 4 are either perfectly anticorrelated
(for outcomes α or β) or perfectly correlated (γ or δ) – in our example, we con-
sidered α. But under such circumstances the packet within which the system is
located is the effective wavefunction; in our example, a state in which 2 and 4 are
in the entangled internal state α2,4. As we showed, the system will now behave ex-
actly as if it were in the effective state, and so 2 and 4 will exhibit the appropriate
correlations.

Indeed, the second two steps pictured simply show how the correlation is mani-
fested: the measurement of the spin of 2 splits its wavepacket into two, according
to the possible outcomes. The subsequent measurement of 4 splits its packet, but
the split is anticorrelated with the wavepackets of 2, so that the result has supports
only around (x2 = a, x4 = b) and (x2 = b, x4 = a). Of course the system particle
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can only be located within the support of one disjoint packet, so the result of the
measurements is one of the two possible anticorrelated outcomes. However, it is
important to stress that these second two steps follow directly from the entangle-
ment between 2 and 4 in the effective state; as such they simply illustrate how any
pair of particles in the state α would behave. So they are not a novel feature of en-
tanglement exchange, but just a standard quantum correlation in BM, as discussed
for instance in Albert (1992, pp. 155-63).

So let us focus on the first step. As we said, particles 2 and 4 end up entangled
because the wavefunction splits into packets, each of which corresponds to an en-
tangled internal state, and because the system must lie within the support of one
of the packets – making it the effective wavefunction. We wish to make a couple
of remarks about this process, which we hope shed some light on the Bohmian
interpretation of QM.

First, consider the full wavefunction immediately after the Bell measurement
(i.e., at t = 1): (3.4). The internal state of particles 2 and 4 is unentangled; in
fact, they are completely uncorrelated. For instance, according to the standard QM
algorithm both the unconditional probability that 4 has spin a and the probability
it does conditional on 2 having spin a are 1/2.10 So 2 and 4 are not entangled in
the full state, only in the effective state. Moreover, the nature of the entanglement
– whether 2 and 4 are correlated or anticorrelated – also depends on the effective
wavefunction. But of course that depends not only on the wavefunction, but on
the position of the system particle. That is, in BM entanglement is not simply a
feature of wavefunctions, but of wavefunctions and positions.

Second, note that no change occurs in either the wavefunctions or internal states
of 2 and 4 during the Bell measurement: compare (3.1) with (3.4), and inspect
figure 2. And yet after the Bell measurement, 2 and 4 are correlated. This feature
is a reflection of the non-locality (with respect to physical space) of the theory –
of course, according to standard QM also the 2-4 entanglement can arise from an
arbitrarily distant measurement of 1 and 3. More interesting, it demonstrates that
the entanglement should be thought of as a property of the whole system, because
it arises only through changes in the rest of the system, especially the evolution of
the pointer, whose wavefunction and position does change. To make the point even
more vivid, suppose that the Bell-ometer measurement was carried out on Mars,
and in such a way that the apparatus was screened off from all external degrees of
freedom, to prevent any decoherence. Then the correlations of 2 and 4 on Earth
could be destroyed by merely recombining the wavepackets of the pointer. Suppose
1/2(ψα + ψβ + ψγ + ψδ)→ ψ0, so that

Ψ(t = 1) → 1
2

(α1,3α2,4 − β1,3β2,4 + γ1,3γ2,4 − δ1,3δ2,4)φ′1φ2φ
′
3φ4ψ0

= α1,2α3,4φ
′
1φ2φ

′
3φ4ψ0(4.1)

10The internal state of 2 and 4 is the reduced density matrix, ρ2,4 obtained by tracing over
all other degrees of freedom, for all the particles and pointer. If ρα is the density matrix for state
α, etc, then ρ2,4 = 1/4(ρα + ρβ + ργ + ρδ). A simple calculation shows that the RHS is equal

to 1/4(ρaa + ρab + ρba + ρbb), where ρaa is the density matrix for the state aa, etc. Since each
of the matrices in this final expression is unentangled, the statistics are those of a mixture of
unentangled particles.
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(using 1.4), which is a state in which 2 and 4 are unentangled. That is, the particles
are not simply correlated with each other, but with respect to the whole system;
the correlations depend on the state of the distant pointer. Similar points hold in
other theories in which there is no wavefunction collapse; what is unique to BM is
the way that the positions are also relevant.
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