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1. Introduction: Renewing Foundations

Foundations of mathematics, historically speaking, is the least stable part of this science. Pythagorean 

theorem, for example, stands firm since its early discovery while foundations of geometry (and in particular 

foundations of Pythagorean theorem) several times fall down and then have been totally renewed during the 

same historical period.  Although these changes in foundations affected the theorem there is still a sense in 

which the Pythagorean theorem always remained the same. (In the Conclusion of this paper I'll make this 

sense more precise). But foundations of mathematics underlying different versions of this theorem did not 

remain the same. The traditional view that mathematics is about number and magnitude and the modern view 

that mathematics is about sets and structures differ radically. Actually saying that different foundations differ 

radically is pleonastic since one describes a difference as radical exactly when it concerns foundations rather 

than anything else. The above observation shows that the popular architectural metaphor of science, which 

describes science as an edifice with a solid foundation, is completely misleading when one talks about 

science in a long-term historical perspective. The renewal of foundations is not only compatible with the 

progress of science but also helps to make this progress possible, as we shall now see. 

The notion of progress in science assumes that once certain knowledge is acquired it later remains preserved 

and publicly available. It happens, of course, that certain beliefs, which at some point of history are generally 

seen as elements of current scientific knowledge, are later refuted and disqualified. However the notion of 

scientific progress concerns knowledge itself, not our current beliefs about what does and what does not 

qualify as knowledge. Blurring the difference between the true knowledge and the related beliefs would 

make the notion of progress incoherent. So let me now ignore the issue of belief revision and ask a different 

question:   Where and how the ready-made knowledge is preserved and endures through human history? 

According to Popper (1978) scientific knowledge and other products of human intellect live in a special 

metaphysical domain that he calls the Third World. The First world on Popper's account is that of physical 

processes and physical objects while the Second world is that of mental states. Popper's rationale behind his 

notion of Third Worlds is to avoid reducing knowledge to either mental states or physical processes:

Knowledge in the objective sense consists not of thought processes but of thought contents. It consists of the content of 

our linguistically formulated theories; of that content which can be, at least approximately, translated from one 

language into another. The objective thought content is that which remains invariant in a reasonably good translation. 

Or more realistically put: the objective thought content is what the translator tries to keep invariant, even though he 

may at times find this task impossibly difficult. (Italic is Popper's, underlining mine)

What is relevant to our present discussion here is not Popper's metaphysical argument but the way in which 

Popper thinks about thought contents in general and the content of scientific theories in particular. As a 

matter of course Popper doesn't identify the content with its linguistic expression. He describes the content 

as an invariant of linguistic translations of a given expression from one language into another. Using today's 

popular mathematical jargon we can say that Popper thinks here of the thought content as a linguistic pattern 

taken "up to translation". 



I claim that Popper's notion of thought content fails to account for the long-term endurance of scientific, and 

in particular mathematical, knowledge. His theory better applies to the content of a religious doctrine rather 

than the scientific content. A teacher of religion may indeed translate a sacred text of his religion to his less 

educated pupils doing his best for keeping the original sense invariant. Even if the spirit of a religion 

generally doesn't reduce to its letter most developed religions use sacred texts as a means of preserving their 

identities through generations. But science proceeds very differently. A mathematical teacher - or at least a 

good mathematical teachers - doesn't try to transmit to her students the invariant content of some canonical 

text. Teaching the Pythagorean theorem today she doesn't "try to keep invariant" what Euclid has written 

about it some 2300 years ago but relies upon modern textbooks. If the notion of canonical text can make a 

sense in science at all it should be stressed that canonical scientific texts get quickly outdated, are revised, 

updated and periodically wholly rewritten (Note 1). 

Notice the difference between this latter kind of revision and the belief revision I mentioned earlier. The 

Euclid's book in its original form is no longer in use in schools not because some of Euclid's propositions 

have been judged false by education authorities. The fact that Euclid fails to meet today’s standard of 

mathematical rigor is not the reason for it either because elementary textbooks anyway do not meet and are 

not supposed to meet such a standard. The principle reason why Euclid’s Elements are no longer used in 

school is this: this book no longer provides a satisfactory basis for a study of more advanced and more 

specific branches of mathematics. It perfectly did this job for quite a while but lost this capacity when 

mathematics essentially changed its shape. This dynamics is closely related to mathematical progress but it 

cannot be described itself as a progress. Kids learning mathematics are hardly cleverer today than they were a 

century ago. Their learning capacities hardly essentially increased. But today's kids should be prepared to use 

and further develop mathematics that has been significantly progressed during the passed century. This is 

why they need a new curriculum. 

This new curriculum cannot be just an extension of an older curriculum because this would require an 

increase of pupils’ learning capacities. So they should study a different mathematics to begin with. This is 

why the evolution of elementary mathematical curricula is not progressive in the precise sense of the term. 

True, older and newer elementary mathematics textbooks typically share some material. For example older 

and newer geometry textbooks usually include the Pythagorean theorem. Here is the Pythagorean theorem as 

it appears in Euclid’s Elements (Proposition 1.47) 

(1) In right-angled triangles the square on the side subtending the right angle is equal to the squares on the sides 

containing the right angle.

And here is how the same theorem appears in a modern textbook (Doneddu 1965, p.209, slightly modified as 

explained in Note 2)

(2) If two non-zero vectors x and y are orthogonal then (y - x)2 = y2 + x2.

A care is needed in order to interpret the two propositions correctly. Euclid speaks here not about the areas of 

the squares but about the squares themselves: saying that the two smaller squares (taken together) are equal 



to the bigger square he means, roughly, that the bigger square can be composed out of pieces of the smaller 

squares.  The minus sign on the left side of  (y - x)2 = y2 + x2 and the plus sign on its right side don't stand for 

mutually inverse operations since the former operation applies to vectors while the latter applies to real 

numbers. Vectors, numbers and operations with these things are construed here as structured sets. In order to 

interpret correctly not only the two statements but also their proofs much more should be said about their 

corresponding theories. In particular, a lot is to be said about structuralist set-theoretic foundations of 

mathematics developed in Doneddu’s book and foundations of Greek (and more specifically Euclid’s) 

mathematics. But even without going into these details it is clear that the difference between (1) and (2) is not 

that of linguistic surface. The two versions of Pythagorean theorem differ in their foundations, i.e. differ 

radically.  And yet they express the same theorem!

In the Conclusion of this paper I’ll come back to this example and say more about it. But what has been 

already said already suffices for showing that Popper’s account of thought content doesn’t apply to 

mathematics as far as this science is observed at large historical scales. Whatever the mathematical content 

might be it cannot be described as an invariant of linguistic translation; the notion of linguistic translation 

doesn’t help one to account for the long-term endurance of mathematical knowledge. The same is true for 

science in general. Unlike religious doctrines, poems, musical symphonies and some other inhabitants of 

Popper's Third World scientific knowledge endures in a long run through a permanent revision rather than a 

mere repetition of linguistic patterns or a mere retention of translational invariants as Popper suggests. Above 

I described this revision as a pedagogical necessity. But it has also a philosophical aspect. I claim that the 

continuing questioning, revision and renewal of foundations is a distinctive way in which science  endures 

through time and performs a progress. This “unended quest” (to use Popper’s word) concerns not only new 

yet unexplored domains of reality; it also concerns what is already known and well established. 

The renewal of foundations amounts to the dialectical refutation of older foundations and the dialectical 

positing of new foundations. This activity belongs to philosophy rather than to science itself. In this latter 

respect my view is traditional and qualifies as a form of foundationalism. But I also think that the notion of 

foundation does not make sense in abstraction from what it is (or supposed to be) foundation of. The 

historical performance of dialectically posited foundations crucially depends on what scientists (including 

mathematicians) do with these foundations. So my scientific foundationalism implies the need of a close 

cooperation between philosophy and science but definitely not the subordination of one of the two parties to 

the other. I subscribe under the following strong claim about the nature of scientific foundations:

A foundation makes explicit the essential general features, ingredients, and operations of a science, as well as its 

origins and generals laws of development. The purpose of making these explicit is to provide a guide to the learning, 

use, and further development of the science. A "pure" foundation that forgets this purpose and pursues a speculative 

"foundations" for its own sake is clearly a nonfoundation. (Lavwere 2003)

2. Claims and Slogans

The above generalities help me to formulate the principle purpose of this paper. I shall discuss Mathematical 

Structuralism considering it as a particular project in foundations of mathematics but not as a speculative 

view on mathematics developed for its own sake. To proponents of Mathematical Structuralism in this latter 

sense I have nothing more specific to say except that I disagree with them on more general grounds explained 

in the above Introduction. I claim that Structuralism has been extremely successful in mathematics of 20th 



century but now is already worked out and should be abandoned. Recent developments in mathematics call 

(as ever) for renewal of foundations. My more specific claim concerns Category theory. This theory emerged 

in the mid-twenty century within the structural mathematics (Note 3). Many proponents of Category theory 

believe that this theory is capable to provide better foundations for structural mathematics than the standard 

set-theoretic foundations used in the structural mathematics earlier (see Section 7 below).  I share with these 

people their enthusiasm about making Category theory into new foundations of mathematics but I don't 

believe that mathematics built on these these new foundations can or should be structural. I claim, on the 

contrary, that Category theory brings about a new understanding of mathematics, which is connected to 

Structuralism historically and dialectically but which is itself quite different. In what follows I shall try to 

present and develop this new view. I shall occasionally call this new view “categorical” but leave it to others 

to invent a new ism for it. However following a fashion I shall propose a polemical slogan. In the end of his 

(1996) Awodey puts forward the following structuralist slogan:

The subject matter of pure mathematics is invariant form, not a universe of mathematical objects consisting of logical 

atoms.

I counter this slogan with the following one:

The subject matter of pure mathematics is covariant transformation, not invariant form.

The rest of this paper is organized as follows. First, I briefly discuss Mathematical Structuralism, its 

historical origins and its relation to Set theory and Category theory. Here I explain reasons why MacLane, 

Awodey and some other people believe that Category theory provides a support for Mathematical 

Structuralism. Then I provide my critical arguments against this view arguing that the notion of category 

should be viewed as generalization of that of structure rather than as a specific kind of structure. Further I 

analyze Lawvere's paper (1966) on categorical foundations and show that the author begins this paper with a 

version of structuralist foundations but then proceeds with a very different project that still waits to be 

accomplished.  I conclude with an attempt to outline the new categorical view on mathematics explicitly. 

3. Mathematical Structuralism

This is how a mathematical structure is described by a working mathematician for a philosophical reader:

All infinite cyclic groups are isomorphic, but this infinite group appears over and over again - in number theory, in 

ornaments, in crystallography, and in physics. Thus, the "existence" of this group is really a many-splendored matter. 

An ontological analysis of things simply called "mathematical objects" is likely to miss the real point of mathematical 

existence. (MacLane "Structure in Mathematics" 1996) 

For a philosophical reader who doesn't know what is the infinite cyclic group (and also for the sake of my 

argument) I propose a modification of MacLane's example that amounts to replacement of the words "infinite 

cyclic group" by the words "number three" and the word "isomorphic" by the word "equal":

All threes are equal but this number appears over and over again - in number theory, in ornaments [...]. Thus 

the "existence" of this number is really a many-splendored matter. [...]

 



Indeed the familiar number three is just as promiscuous as the infinite cyclic group or perhaps even more 

promiscuous. It equally "appears" (to use MacLane's word) both inside and outside mathematics: in a triple 

of apples, a triple of points, a triple of groups, a triple of numbers or a triple of anything else. Just like in 

MacLane’s example there is a systematic ambiguity in our talk about numbers between the plural and the 

singular forms of nouns. (Notice MacLane's talk about "all infinite cyclic groups" and "this infinite group" in 

the same sentence; in my paraphrase I talk similarly about a number.)  This analogy reveals a traditional 

aspect of Structuralism, which often remains unnoticed when people stress the novelty of this approach. Of 

course, this analogy doesn’t allow for reduction of Structuralism to earlier views. But it allows one to see 

clearer what was really new in Structuralism. It was not the notion of "many-splendored existence" stressed 

by MacLane in the above quote but a more specific notion of isomorphism, which plays in the structural 

mathematics roughly the same role as the notion of equality (as distinguished from identity) plays in the 

traditional mathematics. 

This point has been made clear by Hilbert in his often-quoted letter to Frege of December 29, 1899. Stressing 

the "many-splendored" nature of structural theories (as we would call them today) Hilbert says: 

"[E]ach and every theory can always be applied to the infinite number of systems of basic elements. One merely has to 

apply a univocal and reversible one-to-one transformation [to the elements of the given system] and stipulate that 

the axiom for the transformed things be correspondingly similar (quoted by Frege 1971, underlining mine)  

We see that Hilbert explicitly mentions here the reversibility condition, which implies that the given 

transformation is an isomorphism. Heller (forthcoming) quite rightly, in my view, recognizes Hilbert as a 

founder of Structuralism; however in his official definition of Mathematical Structuralism Heller doesn't 

mention isomorphisms explicitly:  

Structuralism is a view about the subject matter of mathematics according to which what matters are structural 

relationships in abstraction from the intrinsic nature of the related objects. Mathematics is seen as the free exploration 

of structural possibilities, primarily through creative concept formation, postulation, and deduction. The items making 

up any particular system exemplifying the structure in question are of no importance; all that matters is that they satisfy 

certain general conditions—typically spelled out in axioms defining the structure or structures of interest - 

characteristic of the branch of mathematics in question.

The reason why Heller doesn't mention the notion of isomorphism here becomes clear from his remark 

concerning "axioms defining the structure or structures [notice the plural - A.R.] of interest". Take axioms 

defining the notion of group for example. A group is any "system" (to use Heller's word) which consists of 

certain "items" a , b, ... and binary operation ! associating with every ordered pair of such items (possibly 

identical) a third item (possibly identical to one of those) from the same system such that the following 

axioms hold:

G1: operation ! is associative

G2: there exist an item 1 (called unit) such that for all a  a!1 = 1!a = a 

G3: for all a there exist a' (called inverse of a) such that a!a' = a'!a = 1 

These axioms are satisfied by many different groups. The infinite cyclic group mentioned above is just one 



example (Note 4) but there are many others. Consider, for another example, a group of permutations of three 

letters A,B,C  with the composition of permutations as group operation. This group comprises six different 

permutations (including the identical permutation). Since this latter group is finite it  cannot be isomorphic to 

the infinite cyclic group. So these two groups are different in the structural sense. This example shows that  

the above axioms  G1-3 describe structures of a particular type, not a particular structure. 

In order to give a sense to the expression "type of structures" one needs to have the notion of structure 

beforehand. Axioms G1-3 or any other system of axioms determining some type of structure cannot help one 

to grasp the notion of structure unless one is already aware about the fundamental role of isomorphism. For 

the idea of a general description satisfied by different mathematical objects is obviously not specific for 

Structuralism; Euclid's axioms do the same job with respect to numbers and magnitudes. Stressing the higher 

importance of structures with respect to "systems", the irrelevance of "intrinsic nature" and relevance of 

"structural relationships" cannot clarify the notion of mathematical structure by itself. 

4. Isomorphisms and "Invariant Forms"

A non-structuralist may observe that axioms G1-3 are satisfied by a number of "particular systems" (not 

structures so far!) called groups. Let now G be a class of such systems (i.e. groups),... and consider the 

situation when some of these, say G and G',  are isomorphic. This actually means two things: 

I1: elements of G are in one-one correspondence with elements of G' and 

I2: for all elements a, b, c from G such that a ! b = c the corresponding elements a', b', c' from G'  satisfy 

a' " b' = c'  where ! is the group operation in G and " is the group operation in G'. 

A one-one correspondence between elements of two given groups which satisfies I2 is called (group) 

isomorphism. Groups are isomorphic if and only if there exist an isomorphism between them. Notice that 

given two isomorphic groups there are, generally, many different isomorphisms between them. One should 

not confuse isomorphism as a particular correspondence between elements of two groups and isomorphism 

as an equivalence relation defined on some class of groups. Isomorphism in the latter sense holds between 

two given groups if and only if there exists an isomorphism in the former sense between these groups. As we 

can see this terminology is slightly confusing but it is too common to try to change it.   

Since  isomorphism is an equivalence relation it divides class G into sub-classes containing only isomorphic 

groups. One may ignore differences between isomorphic groups and get through this act of abstraction 

various notions of groups-qua-structures (not to be confused with the general notion of group as a type of 

structure!), in particular, the notion of infinite cyclic group. To facilitate the language and provide this 

reasoning with some intuitive support one may talk and think about any particular structure as a thing 

"shared" by all members of the corresponding isomorphism class. On this basis one may claim that "[t]he 

items making up any particular system exemplifying the structure in question are of no importance" (as does 

Hellman in the above quote).  This claim describes the aforementioned abstraction, which can be called 

structural abstraction.  However one cannot forget about these exemplifying systems completely because 

this would destroy the whole reasoning bringing about the notion of mathematical structure. Noticeably 

Hellman needs the auxiliary notion of system in order to describe what is a mathematical structure. One 



might think that this additional notion (no matter how one calls it) plays a role in a philosophical talk about 

structural mathematics but plays no role in the structural mathematics itself. In the next Section I shall argue 

that this is not the case.    

There is yet a different way of thinking about isomorphism (this will be already the third meaning of the term 

by our account!), which is common in the current mathematical practice and particularly pertinent for 

categorical mathematics as we shall later see.  One may think about a one-one correspondence between 

elements of groups G and G', which satisfies condition I2, as a transformation  i : G ! G' of one group into 

another group. Since a one-one correspondence is a symmetric construction the choice of G as the source and 

G’ as the target of this transformation is in fact arbitrary. In other words one and the same isomorphism-qua-

correspondence gives rise to two isomorphisms-qua-transformations i : G ! G' and i : G'  ! G , which go in 

the opposite directions and cancel each other on both sides. This later property means precisely the 

following:  the composition transformation i°i' resulting from the application of transformation i' after 

transformation i (Note 5) sends every element of G  into itself and composition transformation i'°i sends 

every element of G' into itself (beware that none of the two conjuncts implies the other). Given these 

conditions each of transformations i and i' is called the inverse of the other. Hence this definition: a 

transformation is called an isomorphism when it has an inverse. See (Note 9) for a more precise categorical 

version of this definition. 

Thinking about an isomorphism as a reversible transformation allows one to think of a structure shared by 

given transformed systems as an “invariant form”, i.e. a form invariant under the given transformation. 

Hence Awodey's structuralist slogan quoted in the end of Section 2.  This slogan describes the structural 

abstraction in these alternative terms: only the invariant form matters, transformed systems don’t.  As we 

shall see in what follows the notion of isomorphism-qua-transformation, which may seem redundant in the 

context introduced so far, becomes indispensable in categorical mathematics. Noticeably Hilbert in the above 

quote (Section 3) talks about isomorphism as transformation, not as a symmetric one-one correspondence.   

5. Structures versus Abstract Objects; Collections versus Transformations

Given an equivalence relation defined on a class of mathematical objects Frege (1884) considered a 

possibility of replacing each obtained equivalence class by a single object through an act of abstraction (Note 

6). Frege calls the result of this procedure an abstract object, not a structure, and indeed he doesn't think 

about this outcome as a structure. So we need a further effort for distinguishing structural  abstraction from 

other types of mathematical abstraction. For this end let us first consider this question: What are elements of 

a group-qua-structure? For the reason that I have already explain we don't want these elements to have 

anything like "intrinsic nature". So they should be just "items" or "abstract elements"; the predicate "abstract" 

refers here to the act of abstraction through which the notion of group-qua-structure is obtained. However we 

still need to make some assumptions about these things. We want them to be many and form (or belong to) 

well-distinguishable collections. Since we want to use the same notion of collection for different purposes we 

don’t want the collected elements to hold relations. This will give us the freedom to stipulate any relation 

between elements by a fiat using the same notion of collection.    

This is an important point where Structuralism meets Set theory. Having a notion of set in our disposal we 

are in a position to give the standard structural definition of group as a “structured set”, namely a set 



provided with a binary operation satisfying axioms G1-3 given above. (There is a standard way to account 

for algebraic operations as relations that I shall not explain here.) 

As we have seen the notion of isomorphism plays a crucial role in the structural abstraction. However one 

might expect that since an act of such abstraction is accomplished this notion will no longer play any role in 

the structural mathematics. But evidently this is not the case. Mathematicians think about abstract groups and 

other abstract structures as given in an indefinite number of isomorphic copies, not as unique objects. As I 

have already stressed, people think similarly about numbers in the traditional arithmetic (see Section 3). This, 

in my view, is the principle point where Frege's notion of abstraction fails to account for the structural 

abstraction as this latter notion has been developed in mathematics of 20th century. Reasoning "up to 

isomorphism" doesn't amount to the strict identification of isomorphic structures; it rather amounts to 

relaxing the notion of identity up to that of isomorphism in appropriate contexts. From a mathematical (as 

distinguished from logical and philosophical) viewpoint the question whether or not two structures are 

identical is just as pointless as the question whether or not two equal numbers are identical. A sound 

mathematical question about two given numbers is whether or not they are equal. A sound mathematical 

question about two given structures is whether or not they are isomorphic (Note 7). 

Set theory makes the talk of isomorphism as transformation redundant because the notion of one-one 

correspondence may be analyzed set-theoretically in terms of pairs of elements. However in many important  

mathematical contexts the notion of transformation is widely used anyway: groups of (reversible) 

transformations are abundant and geometry and also in physics. As far as foundations of mathematics are 

concerned we have an important choice here: either to (i) consider the notion of collection as more 

fundamental than that of transformation and reduce the latter to the former or to (ii) consider the notion of 

transformation as more fundamental and reconstruct the notion of collection on this basis. The former option 

brings (some version of) set-theoretic foundations of mathematics. The idea of categorical (i.e. category-

theoretic) foundations amounts to taking the latter option. However the project turns to be non-viable unless 

one takes into the account other transformations than isomorphisms.  

6. Homomorphisms

Given a type of structures there is a standard way to define a general notion of map between structures of the 

given type. The term "homomorphism" is traditionally reserved for groups (apparently because this case has 

been studied first) although, as its etymology suggests, it could also be used for structures of different types 

like the term "isomorphism". In what follows I shall discuss only the case of groups but what I am going to 

say generalizes straightforwardly to structures of any other type.   

The notion of group homomorphism generalizes upon that of group isomorphism in the following way: 

instead of one-one correspondence between elements of groups G, G' one considers a more general kind of 

correspondence that is allowed to be many-one but not one-many. In other words one consider a function

(in the set-theoretic sense of the term) f: S!S' from the set S of elements of G to the set S' of elements of G'. 

Condition I2 from Section 4 remains the same; notice that it can be satisfied when elements a, b are different 

but elements a', b' are the same.     

Group homomorphism and similar general maps between structures of other types are colloquially called 



"structure preserving". This is somewhat misleading because if such maps preserve anything at all this is a 

type of structure but not a particular structure. Think about this trivial example: for all groups G, G' there 

exist a homomorphism h :G!G' , which sends every element of G to the unit of G'.  This homomorphism 

"destroys all information" about G reducing its image to a single element;  it doesn't provide any information 

about G' either. I shall now argue that homomorphisms, generally, don't allow for invariants in anything like 

the same sense, in which isomorphisms do so. This shows, in my view, that the usual way of thinking about 

homomorphisms as "imperfect isomorphisms" is based on a wrong analogy, which easily leads to serious 

conceptual mistakes.

Let us try to replace isomorphisms by homomorphisms in the process of structural abstraction described in 

Section 4 and see what happens. One might expect to get in this way a generalized notion of structure but this 

doesn't work. Remind the first step: given class G of groups we have divided it into equivalence subclasses of 

isomorphic groups. Two groups are isomorphic if and only if there exist an isomorphism (i.e. a reversible 

transformation) between them; clearly this is an equivalence relation. Let me (for the sake of the argument) 

call two groups homomorphic if and only if there is a homomorphism between them. Although this latter 

relation is also an equivalence one can see the difference: since all groups are homomorphic (see the above 

example of group homomorphism) one cannot use this equivalence for dividing G into equivalence 

subclasses! Saying that two given groups are homomorphic is tantamount to saying that the given groups are 

groups. So the relation of homomorphism just introduced (not to be confused with the standard notion of 

homomorphism as transformation) doesn't make sense.  

In order to see the reason of this failure observe that the existence of homomorphism of the form h :G!G'  

doesn't imply the existence of homomorphism of the form h :G'!G. This means that in the case of 

homomorphism (unlike that of isomorphism) the difference between the source and the target of the given 

transformation matters. But the relation of homomorphism tentatively introduced above doesn't take this 

difference into the account. It forgets the difference between isomorphic and non-isomorphic groups and thus 

confuses their structural properties offering no replacement.  

A more reasonable choice of relation associated with a given homomorphism h :G!G' would be that of non-

symmetrical relation > such that G>G' holds just in case there is a homomorphism of the form h :G!G'. 

However since > is asymmetric it is not an equivalence and so doesn't allow one to proceed further with the 

structural abstraction or anything similar. 

We see that homomorphisms cannot do the same job as isomorphisms: the reversibility condition mentioned 

by Hilbert in the above quote (Section 3) turns to be crucial for the structural abstraction. One cannot reason 

"up to homomorphism" in anything like the same way in which people reason up to isomorphism doing 

structural mathematics. Since "invariant" in the given context is just another word for structure it is clear that 

homomorphisms, generally, don't have invariants in anything like the same sense, in which isomorphisms and 

groups of isomorphisms do so (Note 8).  

7. Structuralists Motivations behind Category Theory

The emergence of Category theory in 1940-ies and its further development in the context of structural 

mathematics was related to a growing awareness of the role of general maps (not only isomorphisms). I shall 



not explain here the precise mathematical context in which this theory first proved useful but only mention 

that the notion of category generalizes upon such examples as the class of all sets and all functions, all groups 

and all group homomorphisms, all topological spaces and all continuous maps (not only reversible ones!) 

between topological spaces. This is a simple theorem (MacLane 1996) that a class of structures of any fixed 

type provided with the corresponding notion of general map form a category. Generally a category comprises 

a class of objects and a class of composable maps (called in Category theory morphisms) for every ordered 

pair of objects, which are subject to few natural axioms. Given two different categories one defines a notion 

of map between categories. Such maps are called functors;  the usual definition of functor is based on the 

same idea as the definition of group homomorphism given in the previous Section: a functor sends each 

object of the source category into an object of the target category and each morphism of the source category 

into a morphism of the target category in such a way that composition of morphisms is "preserved" in the 

same sense in which the group operation is said to be preserved by a group homomorphism. Using the notion 

of functor one may consider various categories of categories, i.e. categories such that their objects are 

themselves categories. One may also consider categories objects of which are functors. The above standard 

description of basic categorical concepts is structuralist in its spirit. In Section 11 I shall describe functors 

and categories anew from a foundational and “more categorical” viewpoint. 

The idea of categorical foundations as viewed from a structuralist perspective amounts to recovering of all 

the relevant properties of any structure of any given type through properties of the category of (all) structures 

of this given type. In the case of the category of sets this provides an alternative (category-theoretic) Set 

theory: one first conceives of sets as abstract objects and stipulates that they form a category; then one 

stipulates desired properties of this category, which make this category "into" the intended category of sets. 

This result (see Lawvere 1964) shows that a reasonable notion of collection (set) can be developed on the 

basis of that of transformation (morphism of sets) but not only the other way round. 

 

The growing popularity of Category theory as a common (albeit certainly not unique) "language" of today's 

mathematics as well as the continuing efforts of building categorical foundations of mathematics are 

generally seen as a further step of the structuralist project briefly described above. I agree with this view as 

far as it does not require to preserve the basic principles of Mathematical Structuralism in the new categorical 

setting. In my understanding these developments diverge from Mathematical Structuralism and tend towards 

a very different view on mathematics and science in general. Before I shall describe this new view let me 

explain reasons why categorical foundations appear to many as a version of structural foundations. In the 

next Section I shall show that this appearance is wrong.       

As I have already explained in Section 5 the notion of set plays a special role in the structural mathematics. 

This explains why Set theory itself is rarely seen as a structural theory on equal footing with, say, Group 

theory. As Hellman rightly remarks:

[D]espite the multiplicity of set theories (differing over axioms such as wellfoundedness, choice, large cardinals, 

constructibility, and others), the axioms are standardly read as assertions of truths about “the real world of sets” rather 

than receiving a structuralist treatment. (op. cit.) 

The structural notion of group explained above is usually construed as a "set with a structure" or "structured 



set" rather than a pure structure (whatever this might mean); the underlying set of a given group is thought of 

as a background supporting the structure rather than a part of this structure. This way in which 

mathematicians think about structures reminds of Aristotle's metaphysics of Matter and Form. The need of 

the set-theoretic Matter for doing structural mathematics becomes clear from our analysis given in the 

Section 5 but the presence of this ingredient doesn’t fully comply with the philosophy of Mathematical 

Structuralism, which purports to make mathematical objects into pure forms (structures) and leave anything 

like the “background” outside mathematics. The desired "purely structural" mathematics would deal only 

with the “invariant Form” and require no set-theoretic Matter. Here is a historical evidence of such attitude. 

Talking about set-theoretic difficulties Dieudonne (under the name of Bourbaki) says in his structuralist 

manifesto (Bourbaki 1950):

The difficulties did not disappear until the notion of set itself disappears <...> in the light of the recent work on the 

logical formalism. From this new point of view mathematical structures become, properly speaking, the only "objects" 

of mathematics.

I don't believe that Dieudonne’s claim concerning the alleged "disappearance" of sets is justified but the 

quote clearly demonstrates such intention. 

In this context the idea of accounting for relevant properties of mathematical structures only in terms of 

structure-preserving maps between these structures independently of any set-theoretic background, i.e. the 

idea of categorical foundations, indeed looked like a further step in the structuralist direction. Hence the 

popular view according to which the categorical mathematics is the desired purely structural mathematics. 

Remarkably Category theory did never make it into Bourbaki's Elements (1939 - 1983), which is the most 

systematic attempt to develop structural mathematics ever undertaken. This is in spite of the fact that both 

founders of Category theory, Eilenberg and MacLane, were eventually involved into the Bourbaki group, so 

all the principle members of this group were well aware about their work.  This fact is often seen as a 

historical puzzle but in my view it is not. For categorical foundations of mathematic are not and cannot be 

anything like the structural foundations developed by Bourbaki in his fundamental work. The purpose of the 

following Sections is to justify this claim and suggest an alternative. 

8. Categories versus Structures; Embodiement of Mathematical Concepts

Categories of structures like the category of groups, topological spaces, etc. capture the notion of type of 

structure, not the notion of singular structure. Particular structures (identified up to isomorphism) may be 

often also rendered as categories but in this case their morphisms are no longer structure-preserving maps. 

For example, a particular group (like the infinite cyclic group mentioned above) can be presented as a 

category with just one object such that all of its morphisms (going from this object to itself) are 

isomorphisms. The group operation is given by composition of morphisms; the existence of unit follows 

from the definition of a (general) category and the existence of inverse elements follows from the fact that all 

morphisms of the given category are reversible (Note 9). This construction can be pictured as follows:



                                    

This simple example shows that categorical morphisms can but should not be structure-preserving maps. 

Moreover the above categorical presentation of group unlike its standard set-theoretic presentation is not 

structuralist in its character. For the standard structuralist presentation involves this idea: an abstract group 

can be "exemplified" by what Hellman calls "particular systems" like systems of numbers, systems of 

geometrical motions and so on and so forth. Of course, when one pictures elements of a given group as loops 

rather than dots this does produce any conceptual change by itself. But given the above categorical 

presentation of a group and using standard category-theoretic means one can do somethings different than 

keep saying that morphisms of the given category (i.e. the given group) stand or may stand for something 

else than themselves. Namely, one may consider functors from the given group-category into some other 

categories, which in their turn present (rings or fields of) numbers, geometrical spaces, etc. This provides a 

much more precise idea of “standing for” in each particular case than the general structuralist rhetoric. In the 

structuralist setting the notion of exemplification remains meta-theoretical and escapes a precise 

mathematical treatment. But in the categorical setting this notion becomes a proper part of the given 

mathematical construction. Instead of saying that A stands for B one considers functors of the form A!B and 

treats these functors on equal footing with 'internal" morphisms of A and B (Note 10). 

In my understanding this latter type of mathematical thinking has little if anything to do with the structural 

abstraction. A principle epistemic strategy of Structuralism is to capture what various "particular systems" 

share in common, namely their "shared structure". The corresponding categorical strategy can be described in 

this way: look how "particular systems" translate into each other. Unlike the structuralist strategy this 

categorical strategy doesn't make the particular systems less important. Given morphism A!B there is, 

generally, no reason to think of A and B  "up to" some equivalence and dispense with A and B  in favor of 

their shared structure or anything else.  As I have already shown in Section 6 the notion of thinking “up to 

homomorphism” is plainly unsound. 

Let us now consider the case when a category presents a type of structure rather than a singular structure. To 

analyze this case I shall use the notion of embodiement, which I have introduced elsewhere (see Rodin, 

forthcoming). As we have seen in Section 5 a mathematical structure cannot be identified with its 

corresponding abstract concept: something else is needed in order to make a given concept into a 

mathematical object. Kant would call this additional element an intuitive construction; I use the word 

"embodiement" for a similar purpose but in a different mathematical context. We have seen how the notion of 

structure allows for making a concept describing different "particular systems" into a single mathematical 

object (single up to isomorphism, of course). As we have seen in Section 6 this structuralist method of 

embodiement doesn't work for types of structure. While the concept "infinite cyclic group" can be embodied 

into a single structure, the concept "group" cannot; "the group" unlike "the infinite cyclic group" is not a 



name of unique (up to isomorphism or otherwise) mathematical object. However the category of (all) groups 

is a single mathematical object like number 3, the infinite cyclic group or, say, the Euclidean plane. Each of 

these objects has a "many-splendored existence" (to use MacLane's word), so its singleness must be 

understood appropriately. But I want now to stress a different point: the way in which all isomorphic cyclic 

groups are made into a single object with the notion of structure and the way in which all groups are made 

into a single object with the notion of category are essentially different. While the former involves the 

structural abstraction the latter involves a different kind of abstraction, which I shall call categorical. 

Roughly, the categorical abstraction amounts to the following: one forgets about the fact that groups have 

elements and consider only how they map to (i.e. transform into) each other with appropriate morphisms; a 

relevant notion of element is recovered in this categorical setting only later on. Obviously the two kinds of 

abstraction are quite different. I shall say more on the categorical abstraction in the Conclusion.  

A category in which morphisms (including identity morphisms) form a set (in the technical sense of the term) 

is called small. Small categories can be thought of as structures on their own. The corresponding type of 

structures is defined straightforwardly: one takes a set of of elements called morphisms, introduces 

appropriate primitive relations on this set and spells out the needed axioms (see the next Section for more 

details). Thus small categories like groups can be thought of as structures of a specific type. Noticeably this 

straightforward approach doesn't go through in the case of large categories corresponding to types of 

structures - think again of the category of groups or the category of all small categories. Since morphisms of 

such categories form classes which are not sets they cannot be described as structured sets. Although this 

may look like a minor technical difficulty, which can be resolved by an appropriate generalization of the 

usual notion of structure, this difficulty provides an additional evidence that the structural approach, 

generally, doesn't work in Category theory. Instead of thinking of categories as structures (or generalized 

structures) of a particular type it seems me more reasonable to reverse the order of ideas and think of 

structures as categories or categorial constructions of a particular type. An immediate suggestion would be to 

identify structures with small categories. A more elaborated suggestion due to Lawvere (a personal talk) is to 

identify a structure with a functor from a small category to a large "background" category, say, that of sets. 

To conclude this Section let me stress that categories don't always represent particular structures or particular 

types of structure. Examples of this latter kind are today so popular only because they connect the new 

categorical mathematics with the older structuralist mathematics, which is nowadays widespread and well-

established. But the categorical mathematics also involves concepts and constructions that have been first 

developed in a categorical setting, for example that of Grothendieck topology. One may expect that the 

further development of categorical mathematics will make such "purely categorical" concepts better known 

and more useful in various branches of mathematics; then the link between the categorical mathematics and 

its structural predecessor will become a historical and philosophical rather than mathematical issue.   

9. “The category of categories” 

The idea of categorical foundations amounts to taking the notions of category, functor and/or some other 

related categorical notions as primitive and recovering the rest of mathematics on this basis. What are 

possible ways of realizing this project? In which precise sense one can consider category-theoretic notions as 

primitive? A way to do this, which immediately suggests itself, is to use in categorical foundations a modern 

version of Hilbert-style axiomatic method after the example of standard set-theoretic foundations. 



Consider a class of things called morphisms and three primitive relations: one that associates with every 

given morphism its source, one that associates with every given morphism its target and, finally, one that 

associates with some (ordered) pairs of morphisms a third morphism called the composition of the given two 

morphisms. Then we need axioms to ensure that sources and targets of morphisms behave as identity 

morphisms (i.e. as objects), that two given morphisms are composable if and only if the target of the first 

morphism coincides with the source of the second morphism, and some other similar axioms. Finally we 

should assume that the composition of morphisms is associative. For the full list of such axioms I refer the 

reader to (Lawvere 1966). The axiomatic theory  just described this author calls the elementary theory of 

abstract categories.

This Lawvere's paper begins as follows:

In the mathematical development of recent decades one sees clearly the rise of the conviction that the relevant 

properties of mathematical objects are those which can be stated in terms of their abstract structure rather than in terms 

of the elements which the objects were thought to be made of. The question thus naturally arises whether one can give 

a foundation for mathematics which expresses wholeheartedly this conviction concerning what mathematics is about, 

and in particular in which classes and membership in classes do not play any role. 

We see that Lawvere embraces Mathematical Structuralism here but at the same time rejects set-theoretic 

(and even more general class-based) foundations of mathematics. Since the Hilbert-style axiomatic method is 

essentially structural (see Section 3 above) Lawvere's method of building his elementary theory of abstract 

categories perfectly  fits his announced purpose. After the introduction of the axioms of the elementary 

theory and providing some definitions on their basis Lawvere says:

By a category we of course understand (intuitively) any structure which is an interpretation of the elementary theory of 

abstract categories, and by a functor we understand (intuitively) any triple consisting of two categories and a rule T 

which assigns, to each morphism x of the first category, a unique morphism xT of the second category in such a way 

that ...   [follow the conditions of being "structure-preserving" ]

A problematic aspect of this first part of the paper concerns Mayberry's argument  who claims that Lawvere's  

elementary theory like any other theory built with the Hilbert-style axiomatic method requires some primitive 

(non-axiomatic) notion of collection, which cannot be identified with that of category (Mayberry 2000). The 

argument implies that the elementary theory and the corresponding elementary notion of category cannot be a 

genuine foundation. I agree with Mayberry on this point (this follows from my understanding of the 

relationships between Structuralism and Set theory explained in the beginning of Section 5) but unlike 

Mayberry I think that such primitive notion of collection is dispensable in foundations of mathematics along 

with the Hilbert-style structural axiomatic method itself. In what follows I shall sketch a different version of 

axiomatic method that seems me more appropriate for categorical foundations. Let me now return to 

(Lawvere 1966).  

Lawvere's elementary theory is a preparatory step towards another theory of categories, which Lawvere calls 

basic theory. I claim that unlike the elementary theory the basic theory is not structural, at least not in a 

similar sense. If I am right this shows that the main content of (Lawvere 1966) in fact doesn't agree with the 

structuralist agenda announced by the author in the beginning of this paper: Lawvere begins his paper with a 



structural reasoning but then proceeds with a very different agenda, which can be described as genuinely 

categorical. 

The basic theory begins with a re-introduction of the notion of functor:

Of course, now that we are in the category of categories, the things denoted by the capitals will be called categories 

rather than objects, and we shall speak of functors rather than morphisms.

This may sound like a mere terminological convention (rather than an alternative definition) but in fact it 

signifies a sharp change of the viewpoint. The idea is now the following: given a preliminary notion of 

category (through the elementary theory) conceive of category C of "all" categories; then pick up from C an 

arbitrary object A (i.e. an arbitrary category) and finally specify A as a category by internal means of C 

stipulating additional properties of C when needed. More precisely it goes as follows (I omit details and 

streamline the argument). Stipulate the existence of terminal object 1 in C, i.e. the object with exactly one 

incoming functor from each object of C . Then identify objects (= identity functors) of A as functors in C of 

the form 1!A. Stipulate also the existence of initial object 0, i.e. the object with exactly one outgoing 

functor into each object of C .  Then consider in C object 2 of the form 0!1  and stipulate for it some 

additional properties among which is following: 2 is universal generator which means that

G (generator):  for all f, g:  A!B   and f " g there exist x such that x: 2!A!B and xf " xg

and

U (universal): if any other category N has the same property than there are y, z such that  y, z: 2⇄N  

and  yz = 2. 

This allows Lawvere to identify functors (morphisms) of A as functors of the form 2!A in C. The fact that 2 

is the universal generator (as follows from the above definition it is unique up to isomorphism) assures that 

categories are determined "arrow-wise": two categories coincide if and only if they coincide on all their 

arrows. This new definition of functor also allows one to make a sense of the notion of a component of a 

given functor of the form h: A!B , which in the elementary theory is understood as a map m sending a 

particular morphism f of A into a particular morphism g of B . In the basic theory m turns into this 

commutative  triangle (Note 11):

                                 

This, once again, significantly changes the whole perspective: categories and functors are no longer built 



"from their elements" but rather "split them into" their elements when appropriate. Although the notion of 

functor as a structure-preserving map can be recovered in this new context it no longer serves for defining the 

very notion of functor. Rule T used by Lawvere for defining functors in the elementary theory disappears in 

the basic theory without leaving any trace.   

Further consider this triangle which Lawvere denotes 3 :      

(it should satisfy a universal property which I omit.)

3 serves for defining composition of morphisms in our "test-category" A as a functor of the form 3!A in C. 

Finally, in order to assure the associativity of the composition Lawvere introduces category 4 that is pictured 

as follows:

(The associativity concerns here the path  0!1!2!3 )

This construction provided with appropriate axioms makes A into an "internal model" of the elementary 

theory in the following precise sense: If F is any theorem of the elementary theory then "for all A, A satisfies 

F" is a theorem of the basic theory (Note 12).

10. Functorial semantics and Sketch theory

In order to see that Lawvere's basic theory unlike his elementary theory is not based on structuralist 

principles, and then to get an idea of non-structuralist principles behind this theory, it is instructive to take 

into consideration two similar approaches: functorial semantics developed by the same author elsewhere 



(Lawvere  1963-2004) and Sketch theory founded by Ch. Ehresmann in 1960-ies and later developed by other 

people (see Wells 1993 for an overview and further references).  

Functorial semantics involves the presentation of mathematical theories as categories of a special sort;  

models of a given theory are functors from the theory to the background category of sets or another 

appropriate topos. The very idea of "interpretation" or "realization" of a given theory in a set-theoretic 

background obviously comes from the standard (due to Tarski) Model theory.  Lawvere's functorial semantic 

can be seen as a category-theoretic version of the same basic construction. However as we shall now see this 

technical update comes with  a significant revision of the structuralist background behind Tarski’s Model 

theory, which this later theory inherits from Hilbert’s notion of axiomatic method. 

In order to determine a theoretical structure an axiomatic theory should  be categorical , i.e. to have models 

that are all isomorphic. (Beware that this older sense of the term "categorical" has nothing to do with 

Category theory!). True, not all axiomatic theories built by the standard method satisfy this requirement; also 

true, non-categorical theories are usually not disqualified solely on this basis. Anyway in the standard setting 

the categoricity of axiomatic theory is commonly (and usually as a matter of course) viewed as an epistemic 

gain while the lack of categoricity is viewed as a problem. As far as one commits oneself to Structuralism 

such attitude is understandable:  when a set of axioms fails to specify a model up to isomorphism it fails to 

specify a structure. Saying that a non-categorical theory determines many structures rather than one structure 

is somewhat misleading because such a theory, strictly speaking, doesn’t specify any structure at all (cf. 

Section 3 above).  

In the case of Lawvere's functorial semantics the structuralist pursuit of categoricity turns into an absurdity. 

For the purpose of this construction is to produce a workable category of models rather than just one model 

up to isomorphism. In the functorial setting  a theory determines a category, not a structure. This makes the 

structuralist thinking behind the axiomatic method as expressed by Hilbert in the above quote (Section 3) 

irrelevant. In the new setting 

The theory appears itself as a generic model. (Lawvere 1963 - 2004, Commentary of 2004)

This means that the older structuralist distinction between abstract "formal" axiomatic theories, on the one 

hand, and their semantic, on the other hand, doesn't apply; what distinguishes a theory form its (other) 

models is its generic character rather than formal or abstract character.  

The setting of Sketch theory is similar to that of Lawvere’s functorial semantics but in the former case 

generic categories are designed as "generic shapes" or "generic figures" rather than axiomatic theories. 

Unlike the case of functorial semantics such generic categories are not supposed to have logical properties; in 

some approaches sketches are not even categories but directed graphs with an additional structure. It seems 

natural to think of sketches as "proto-structures" but this is somewhat misleading as far as the usual notion of 

structure is concerned. A  sketch doesn't represent a bunch of isomorphic systems but generates non-

isomorphic systems (its models). These generated systems share their shape not  in in the same sense, in 

which different systems are told to share the same mathematical structure.  In fact they share a shape in a 

more straightforward sense: the given sketch is their common source. To "have the same source" is obviously 



an equivalence relation but this particular equivalence relation doesn't support anything like the structural 

abstraction. Unlike a shared structure a shared sketch is  concrete (it is usually even supposed to be finite and 

easily pictured) while things generated by a sketch can be indeed described as abstract structures in the older 

sense because they are usually distinguished only up to isomorphism! Thus Sketch theory turns Structuralism 

upside down (Note 13) and in certain aspects reminds of more traditional ways of doing mathematics. 

Euclid's geometrical universe is generated by two generic figures, namely, the straight line and the circle, 

which is tantamount to saying that every geometrical object is constructed  by ruler and compass. The 

analogy seems me straightforward.

11. Categorical foundations

Whether or not the new categorical approach to theory-building differently realized in functorial semantics, 

Sketch theory and the basic theory of (Lawvere 1966) can compete with the standard Hilbert-style structural 

approach depends on whether or not the categorical approach is self-sustained. The considered constructions 

doesn't allow one to claim that this is indeed the case: we have seen that Lawevere's  basic theory depends on 

the structural elementary theory, functorial semantics is developed by this author similarly in two steps, and 

Sketch theory in its existing form uses Set theory and usually doesn't make foundational claims at all. I shall 

not present here an accomplished version of (non-structural) categorical foundations but try to specify what 

remains to be done in order to accomplish this project. 

Let's see what the first structural layer of (Lawvere's 1966) serves for. First of all it helps Lawvere to 

introduce the notion of category, on which the basic theory further elaborates. In order to see that the notion 

of category can be first introduced without the structural elementary theory remind the following feature of 

the standard set-theoretic foundations: to build an axiomatic theory of sets like ZF one needs a pre-theoretical 

notion of set or collection to begin with (cf. Mayberry’s argument in Section 9 above). Axioms of Set theory 

make this pre-theoretical notion of collection more specific and more precise saving it from known 

paradoxes. But they don’t produce sets ex nihilo. Categorical foundations can and should, in my view, be 

built similarly: one begins with an informal intuitive notion of category and then use it for making this very 

notion more precise and better behaved. Such circularity is not vicious in the case of sets and it is not vicious 

in the case of categories either.   

It may be argued that unlike the notion of collection that can be illustrated with everyday examples like that 

of a set of chairs the notion of category requires a much higher level of mathematical abstraction. I think this 

is a wrong impression due to the fact that popular examples of categories involve topological spaces, vector 

spaces and similar things about which a beginner cannot possibly know. As far as categories are supposed to 

provide foundations of mathematics they should be certainly introduced differently. Remind that the notion 

of set also first emerged in rather involved mathematical contexts; the idea that a set of chairs falls under the 

same concept came about later with the project of set-theoretic foundations of mathematics (Note 14). The 

development of so-called “naive” notion of set was as much important for this project as the development of 

axiomatic theories of sets like ZF; the latter part of the project wouldn’t be possible without the former. 

Categorical foundations of mathematics require a similar job. Let me now make an attempt to develop a 

primitive notion of category. It may happen that pushing the project of categorical foundations further 

forward will bring primitive categorical notions other than the standard notions of functor and category. Here 

I shall stick to the standard notions and only hint to some possible alternative developments, which in my 



view are worth studying.  

Our  basic concept will be that of transformation otherwise called functor. Spatial motion is an important 

example of transformation but it should be stressed that this case is special because any such motion (except 

a travel into a black hole) is reversible while a categorical functor is generally not (Note 15). So talking about 

transformations we shall also think about non-reversible transformations like that of a caterpillar’s egg into a 

caterpillar into a butterfly. This example is helpful because the transformation in question is repeatable albeit 

irreversible. We need this sort of repeatability of our transformations since otherwise one cannot do with 

them anything like mathematics! (I’ll say more about this in the Conclusion.) We shall use arrows for 

picturing transformations. 

The next basic notion we need is that of composition of transformations: we postulate that some (but not all) 

transformations are composable (in a given order) and that their composition (when it exists) brings about 

another transformation. This operation can be equally thought of in terms of a decomposition of a given 

transformation into elements. For example, the transformation h of a caterpillar’s egg into a butterfly is 

composed of the transformation f of the egg into the caterpillar and the transformation g of the caterpillar into 

the butterfly, in symbols h=fg. This composition can be represented by the following self-explanatory 

diagram:

Obviously one cannot compose f and g in the opposite order or compose any of  f, g with h: such 

compositions are not available in the given example. Beware that the above description of composition is 

preliminary and incomplete as well as the description of the notion of functor given so far. A suggestive 

possibility, which I shall not explore here, is to treat the categorical  composition as a transformation rather 

than introduce it as a separate primitive.   

Next we introduce the notion of stop or “zero transformation”; we shall call stops identity functors, objects or 

categories interchangeably. We shall use dots to represent stops.We postulate that any transformation begins 

and ends with a stop, possibly the same. This strong assumption makes all our transformations in a sense 

discrete.  Perhaps lifting this assumption may give us generalized notions of functor and category but as I 

have promised I shall stick here to its usual well-established version.    

Transformation f from the above example begins with stop e (the egg) and ends up with stop c (the 

caterpillar). However pointing to the source and the target of a given transformation, generally, does not 

determine this transformation: given two stops there are, generally, more than one transformation between 

them in a chosen direction:



What matters is not only where a given transformation begins and where it ends but also how it goes.  To 

read the above diagram correctly one shouldn’t introduce into it additional points for free. The two arrows 

shown at this diagram are not supposed to be determined point-wise; they share all their points, namely their 

source and their target, and yet they are different. 

The notion of composition introduced earlier helps us to give this more precise definition: A stop i as a  

transformation such that fi = f and ig = g whenever compositions fi and ig exist.  Now we are in a position to 

formulate the condition of composability of transformations more precisely: transformations f and g are 

composable if and only if one of these transformations begins exactly where the other transformation ends; 

“where” refers here to a particular stop. To complete this intuitive introduction of basic categorical concepts 

one needs only to add that the composition of transformations is associative. A category is just another word 

for a stop. Notice that in the proposed setting the notion of functor is more fundamental than that of category.

Usually a category is defined as a class of objects provided with a class of classes of maps (“map” is another 

word for transformation) corresponding to all ordered pairs of objects. Then follow examples of categories 

like the category of all sets, all groups, etc. (I have described the notion of category in this way in the 

beginning of Section 7.) This approach is not appropriate for categorical mathematics for two reasons: first, 

because the primitive notion of class is both unwanted and unnecessary here and, second, because in the 

categorical mathematics all categories are categories of categories rather then categories of anything else. 

The following analogy with the set-theoretic mathematics helps to clarify this important point. As far as the 

notion of set is not supposed to provide a foundation for mathematics one thinks of sets after examples of sets 

of numbers, sets of points and the like. But in a foundational axiomatic theory of sets like ZF there is no other 

sets but sets of sets and every mathematical object like a number or a point is supposed to be a set. Similarly 

in a foundational axiomatic theory of categories there is no other categories but categories of categories and 

every mathematical object is supposed to be a category. Interestingly in my proposed setting there is no place 

for anything like  “the” category of categories, i.e. the totality of all categories. In fact Lawvere’s basic 

theory doesn’t require such a thing. It is sufficient for it to stipulate the existence of categories  0, 1, 2, 3, 4 

and the corresponding functors using the preliminary intuitive notions of category and functor introduced as 

suggested above. 

The reader may have noticed that I avoid using the term “morphism” in this part of the paper. I do this for 

two reasons. First, because this term suggests thinking of transformations as structure-preserving map, which 

is irrelevant in the given context. Second, because the term “functor” is commonly used to denote a 

transformation of categories and all the transformations I am talking about are indeed transformations of 

categories.   

We see that the notion of category can be introduced informally just like the notion of collection, and that the 



former notion doesn’t require the latter for its introduction. However this preliminary step doesn’t complete 

the task of building categorical foundations. We still need Lawvere’s basic theory or something similar for 

making our notions of functor and category more explicit. At this crucial step we cannot any longer proceed 

with purely intuitive considerations but need some logical means for making precise definitions and proving 

basic facts. I shall not try to complete this technical part of the job in this paper but only describe some 

possible strategies of doing this. One possible strategy is to push the informal considerations further forward 

and get the notion of cartesian closed  category or topos, so one may use its internal logic for specifying the 

categories  0, 1, 2, 3, 4 and developing the rest of the basic theory.  Another possible solution that seems me 

more promising is to develop  the “language of diagrams” used by Lawvere in his basic theory into a genuine 

logical syntax in the vein of (Wells&Bagchi, forthcoming) and  (Diskin&Wolter, forthcoming). Both these 

strategies involve a new understanding of the role of logic in foundations of mathematics. In categorical 

foundations logic is conceived as a machinery of inference strongly dependent on the underlying 

mathematical setting, not as a self-standing system of universal laws of reasoning. This change of the 

traditional conception of logic is analogous to the change of the traditional conception of geometry occurred 

in 19th century when people stopped thinking about “the” geometrical space as a universal container of 

geometrical objects and learned to think about spaces as geometrical objects and about geometrical objects as 

spaces (with the notion of intrinsic geometry of a given geometrical object).  In the first half of 20th century 

people learned to think about systems of logic as objects living in larger meta-logical frameworks. Category 

theory showed how one can think about objects (i.e. appropriate categories) as systems of logic (with the 

notion of internal language of a given category, see Lambek&Scott 1986 for details). This reciprocal move 

that allows one to avoid the bad infinity of meta-meta.....-logic and met-meta....-mathematics in foundations 

of mathematics has a great philosophical importance.   

To conclude this brief discussion of categorical foundations I would like to stress once again that the success 

of any particular foundation of mathematics crucially depends on its contribution to the progress of 

mathematics and more generally to the progress of science. Saying this I don’t count the renewal of 

foundations as a part of this progress (see the Introduction) but consider effects of this renewal on the rest of 

mathematics and science. Set-theoretic structural foundations of mathematics performed very well in this 

sense before they became an obstacle for further progressive developments. It is perhaps too early to judge 

categorical foundations from this viewpoint but the abundance of categorical methods in the today’s research 

mathematics apparently promise categorical foundations a good future.  

In eyes of a working mathematician the claim that every mathematical object is a category may sound like a 

philosophical absurdity just like the often repeated claim that every mathematical object is a set. In the 

following Conclusion I shall make a step toward the common sense of the working mathematician by 

showing how the categorical viewpoint in and on mathematics allows for seeing beyond the categorical 

foundations per se. 

12. Conclusion: a categorical viewpoint in and on mathematics

I hope having convinced the reader that the project of categorical foundations requires a new philosophical 

view on mathematics, which the traditional Structuralism cannot possibly provide. Let me now try to 

summarize this new categorical view by contrasting it against the structuralist view.  What matters in the 

categorical mathematics is how mathematical objects and constructions transform into each other, not what 



(if anything) remains invariant under these transformations.  So categorical mathematics is a theory of 

abstract transformation, not a theory of abstract form. A  theory in categorical mathematics is a generic model 

(Lawvere) rather than a scheme (Hilbert). 

The categorical view on mathematics - as distinguished from categorical foundations of mathematics in the 

sense of the previous Section - suggests a new understanding of the role of history of mathematics in 

mathematics itself. In the above Introduction I have argued that older and recent formulations of Pythagorean 

theorem cannot be identified through a merely linguistic translation. Here I strengthen this claim as follows: 

different versions of this theorem don’t share any invariant content; such invariant content is not necessary in 

order to qualify these formulations as formulations of the same theorem. For the reader’s convenience I quote 

here this example again:

(1) In right-angled triangles the square on the side subtending the right angle is equal to the squares on the sides 

containing the right angle. (Euclid’s Elements, Proposition 1.47)

(2) If two non-zero vectors x and y are orthogonal then (y - x)2 = y2 + x2. (Doneddu 1965, p.209, slightly modified 

as explained in Note 2)

Since there is no linguistic translation between (1) and (2) one may look for a translation of a different sort. 

Such translations certainly exist but (and this is crucial for my argument) they all go into one direction, 

namely from (1) to (2)! There are many ways in which Euclid’s geometry can be interpreted in modern terms, 

(Doneddu 1965) is just one way of doing this among many others. But there is evidently no way to spell 

modern geometry in Euclid’s terms. (As I have explained in the Introduction we must talk here about 

translation between corresponding theories, not only about translation between separate propositions.) Our 

history in general and our intellectual history in particular is oriented: there is no symmetry between the past 

and the future. Since sound translations between (1) and (2) go in one direction none of them is reversible. 

According to the argument given in the Section 6 this implies that no such translation allows for the 

identification of an invariant. Thus the existence of sound translations between theories doesn’t imply that 

these theories share anything like an invariant content.  There is no essence, no conceptual core preserved by 

the translation of (1) into (2). But why in this case we count them as different versions of the same theorem?

My answer is this: the Pythagorean theorem (as distinguished from its formulations by Euclid and Doneddu) 

is a particular component of the translation of Euclid’s geometry into modern terms proposed by Doneddu, 

which takes (1) into (2). I have in mind the categorical notion of component of functor explained above in the 

Section 9. Mutatis mutandis a similar criterion of identity can be applied to theories and to particular 

mathematical objects. As far as we are talking about translations like (Doneddu 1965), which are made with 

the intent to modernize older mathematical contents, my proposed understanding of the identity of this 

content amounts, roughly, to the identification of this content with its conceptual history. From this point of 

view different versions of the Pythagorean theorem produced at different times with different foundations can 

be described as different temporal stages of the same conceptual entity (i.e. the same collective intellectual 

process) persisting through time. Noticeably this persisting entity doesn’t reduce to the set of its temporal 

stages because such reduction forgets about translations between these stages, which from my categorical 

viewpoint are the most essential. A mathematical notion is not a set of its temporal stages but a category of 



translations between these stages. I would like also to stress that in spite of the tendency to consensus 

alternative foundations of mathematics and alternative theories based on these different foundations can be 

well developed by contemporaries. So what has been just said about translations between mathematical 

theories produced at different epochs also applies to alternative contemporary approaches (Note 16). 

The reader may wonder if promoting categorical foundations of mathematics and insisting on the importance 

of the pedagogical aspect of foundations (in the above Introduction) I suggest another radical reform of 

school mathematics similar to that suggested by enthusiasts  of set-theoretic structural mathematics in 

1960ies. This  latter reform undertaken simultaneously in many countries and known in the US under the 

name of New Maths was an attempt to comply the elementary mathematical education with the current views 

on foundations: kids were supposed to learn about sets and elementary structures rather than solve traditional 

geometrical problems with compasses and ruler and the like (Adler 1972). Later this reform was commonly 

recognized as a pedagogical failure (Kline 1973). 

Although basic elements of Category theory just like elements of Set theory can be learned at early stages of 

mathematical education (see Lawvere&Schanuel 1997) the categorical view on mathematics outlined above 

suggests a different pedagogical strategy. An average today’s elementary mathematical textbook presents a 

mixture of patterns of mathematical reasoning coming from various historical epochs: it usually contains 

some elements of Euclid-style synthetic geometry, some Cartesian-style elementary symbolic algebra, some 

oldish analytic geometry, some elements of Set theory. In my view such a diversity of styles and contents is 

quite justified because older approaches continue play a role in today’s mathematical practice. Pupils 

definitely need to learn something about older ways of doing mathematics, not just learn older mathematical 

contents presented in a recent fashionable form. In other words today’s foundations of mathematics must 

have a historical dimension and include most significant older foundations. Remind Lawvere’s words quoted 

in the Introduction concerning the role of foundations in clarifying  the “origins and generals laws of 

development” of a science. 

A major problem with such historical approach in mathematics education is that it appears to be incompatible 

with the usual notion of axiomatic method. Facing this problem today’s textbooks written after the failure of 

the New Maths often compromise severely against the classical standard of systematicity without suggesting 

any replacement.  

My proposed solution of this problem is this: a modern mathematical textbook should provide few different 

versions of axiomatic method rather than one. Basic patterns of Euclid-style, Cartesian-style, Hilbert-style 

and Bourbaki-style theory-building should be definitely included. Radical differences between these 

approaches should be articulated rather than hidden. The controversial dialectical nature of foundations of 

mathematics should be stressed rather then kept as a Pythagorean secret. Categorical foundations should be 

treated not only as a basis of an important part of recent mathematics but also as a means of organization the 

above diverse contents into a systematic whole. Teaching different ways of doing mathematics the teacher 

should show how to translate between mathematical contents developed on different foundations without 

trying to smooth the differences between these foundations.  Given today’s overwhelming flow of rapidly 

updating information such a translation skill is crucially needed in any domain of activity including 

mathematics.   A coherent translation is possible even when no invariant structure is available.



   

Endnotes:

Note 1: 

Euclid's Elements are often referred to as a typical example of canonical mathematical text. It is often said 

that until recently people used this book as a Bible of geometry. In fact this alleged dump habit never existed. 

To see this it is sufficient to look more precisely into book titled Euclid's Elements, which have been 

published before 19th century. One finds a surprisingly diverse literature under this title. Early publishers and 

translators of Euclid's Elements tried to produce a sound mathematical textbook rather than reproduce a 

canonical text. They didn’t hesitate to improve on earlier editions of the Elements when they judged this 

appropriate. According to today’s common standard the existing early editions of the Elements don’t qualify 

as different versions of the same text. Any of these people could get today a copyright as the author of his 

Euclid's Elements. The notion of being an author is certainly changed since then.    

Today's canonical Greek edition of Euclid's Elements has been produced  by Heiberg and his assistant Menge 

only in the end of 19th century (see Euclides 1883-1886); noticeably these people were philologists, not 

mathematicians. So the idea to reproduce Euclid's text literally and translate it into modern languages 

"keeping its content invariant" is relatively recent; it is relevant to history of mathematics rather than to 

mathematics itself.

It should be also stressed that since 17th century (a modernized version of) Euclid's Elements was no longer 

the only geometry textbook on the market. Arnauld and some other authors produced their own original 

textbooks.   

Note 2: 

The original version reads

Two non-zero vectors x and y are orthogonal if and only if (y - x)2 = y2 + x2.

I use for my example only the "only if" part of the statement. Euclid counts the converse of his 1.47 as a 

separate Proposition 1.48. Doneddu makes both propositions into one theorem. I have modified Donnedou's 

theorem because this obvious difference is irrelevant to my argument.   

Note 3:

By structural mathematics I understand mathematics build on foundations complying with principles of 

Mathematical Structuralism. A canonical example of structural mathematics is given by (Bourbaki 1939 - 

1983). 

 

Note 4:

We are now ready to spell the precise definition: an infinite cyclic group is a group with an infinite number of 

elements and such that any of its elements is generated  by some distinguished element g and its inverse g'. A 

group is said to be generated by a set of its distinguished elements called generators when every element of 



this group is a product of the generators. A canonical example of infinite cyclic group is the additive group of 

whole numbers, which is generated by 1 and -1.       

Note 5:

Notice that the order, in which transformations are composed, matters. I use here the so-called geometrical 

notation where the composition is written in the "direct" order. According to another notation called 

algebraic the composition is written in the inverse order.

Note 6:

Frege's example is the concept of direction build as follows. One considers the class of all straight lines on 

Euclidean plane and the equivalence relation "is parallel". Then one associates a single abstract  concept 

called direction with each isomorphism class of parallel lines.   

Note 7:

I elaborate on this issue in (Rodin 2007)

Note 8:

I mention here groups of isomorphisms (not to be confused with isomorphisms of groups!) because they are 

very important in geometry and physics. I mean  groups of geometrical transformations of a given space. 

Only reversible geometrical transformations, i.e. geometrical isomorphisms, of a single object (the given 

space) form groups (with the composition of transformations as group operation) because in this case the 

reversibility is equivalent to the existence of inverse elements. So the talk of invariants of groups, which is so 

important for structural approaches in physics, concerns only reversible transformations and doesn’t apply to 

geometrical (or other) transformations in general. A non-mathematical reader may skip the reference to 

groups of isomorphisms in this part of the paper. I shall explain the idea of group of isomorphisms more 

clearly in categorical terms in Section 8.  

Note 9:

Categorical definition of isomorphism resembles the definition of reversible transformation given in the end 

of Section 4. However it doesn't involve a reference to elements. Think about groups G, G' as objects of a 

category and modify the definition of Section 4 in this way: ii' = 1G and i'i = 1G' where   1G is the identity 

morphism of G and 1G'  is the identity morphism of G'. The rest of the definition remains the same. 

Note 10:

A further step of such categorical analysis amounts to considering the full category of functors of the given 

form; such a functor category provides a precise information about how A translates into B.

Note 11:

A categorical diagram is said to commute or be commutative when the compositions of all morphisms shown 

at the given diagram produce other morphisms shown at the same diagram in appropriate places, so that any 

ambiguity about results of the compositions is avoided. For example, saying that the triangle 



is commutative is simply tantamount to saying that fg = h.  

Morphisms resulting from composition of shown morphisms can be omitted at a commutative diagram when 

this doesn’t lead to an ambiguity. For example, saying this this square 

is commutative is tantamount to saying that fg = hi. 

Note 12:

Isbell in his review (1967) of (Lawvere 1966) points to a technical flaw in Lawvere’s proof of this theorem . 

This flaw is fixed, in particular, in (McLarty 1991).   

Note 13:

Does this mean that Ehresmann misconceived of his own invention when he thought of Sketch theory as a 

general theory of structure? I don't think so. A general theory of structure should not be necessarily a 

structural theory and should not provide a support for Structuralism as a philosophical view about 

mathematics.   

Note 14:

Cantor’s first publication related to Set theory (1872) concerned trigonometric expansions. There are also 

strong reasons to trace the history of Cantor’s set concept back to Riemann’s concept of manifold, see 

(Ferreirós 1999).    

Note 15:

Any trajectory in space can be followed in both directions; any spatial motion has a reverse motion. This is 

how we think about spatial motions no matter which mathematical notion of space (Euclidean space, 

Riemanean manifold, ...) if any supports this thinking.  The case of a black hole involves a space-time, not 

merely a space, and points to a deep problem in foundations of physics, which I cannot discuss here.



Note 16:

A more precise criterion of identity of mathematical content developed along these lines would require a 

more precise account of what counts as a sound translation of one piece of mathematics into another. I cannot 

provide it in this paper and leave for a future work.
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