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C. Hamilton's Principle and the realist case in physics

... the Lagrangian and Hamilton's principle together form a compact invariant way of implying the mechanical equations of motion. This possibility is not reserved for mechanics only …

H. Goldstein

... the fundamental equations which apply at the microscopic level always do seem to be derivable from an action. Why this should be so, I do not know.
I.D. Lawrie

Hamilton's Principle (HP) is satisfied by all corroborated foundational theories, including G.R.. HP may thus be regarded to encapsulate much of today's physics.
 We might therefore expect that if HP is relevant to the realist issue, then that relevance should pertain to all foundational theories. It turns out, however, that whilst that possible relevance is discernible in relation to the  foundational theories of inertial physics (discussed here), it is not at all clear how HP might bear on the realist issue in relation to G.R. (discussed in sect. F). We shall see that, as regards inertial physics, HP may be interpreted to lead to the stance proposed in section B, i.e. that in the context of the CC – Coherence, Parsimony, and HP - there is, or could be, a link, which may well be a necessary one, between the testable symmetricity of a foundational theory and its truthlikeness (Tr).

HP is regarded here to be a symbolic representation in an abstract configuration space (depicted with the aid of generalised coordinates) of the transition of the state of a physical system (subject to external forces and internal constraints) in a physical space (depicted with the aid of standard coordinates, in terms of which its metric is specified); with the transition occurring within an arbitrary time interval t = t2 – t1.
 The representation yields a convenient way of obtaining a theory (or its equations of motion), meant to describe and explain the transition in physical space, provided the transitional process is such that the variation of its "action" vanishes. Thus HP requires that processes it is meant to govern satisfy the demand:                                                         
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where I is the "action", L the Lagrangian for the system in transition, and t1 and t2 {the endpoints of the integral} are fixed.
 Since t generally implicates a space interval it may be taken to stand for the spacetime interval in which the system's transition occurs. {In this case L represents the Lagrangian density.}HP leads to the Lagrange equations from which the theory about the transition is derivable. The ensuing theory is thus meant to be descriptive, as well as explanatory, of dynamic phenomena, i.e. transitional processes. Stationary processes are treated as special cases of the general picture. (For a quantum version of HP, see Note 2)

The domain of a theory satisfying HP ought thus meet the demand imposed by the principle, i.e. a transitional process in that domain, for which the theory is to account for, must be such that the value of the action integral for the actual transition or "path" (of the system point in configuration space), is the same as what it would be for any neighbouring transition: for transitions which differ from the actual one only by an infinitesimal amount. HP is thus an expression of a hypothetical constraint on a system's transition from t1 to t2: the transition must be such that the magnitude of I is invariant under infinitesimal displacements of the independent variables of L - coordinates in the case of discrete particle systems, and field quantities (or the space and t coordinates of which they are functions) in the case of continuous mechanical systems, or in the case of the fields of field theories. If such displacements do occur, then it is supposed that they are sufficiently small so as to leave the value of the line integral I unchanged (to within first order infinitesimals). But this means that the actual transition must occur in circumstances such that there are no wild fluctuations of the independent variables across t. Any variation of the independent variables, should they occur, must, therefore, be both "small and slow" (in order to ensure that both first and second order derivatives in L are small); but "small and slow" relative to ambient conditions, since there is no restriction on the state of the system at t1, nor, apparently, is there a restriction on the "smallness" of t, so long as it is finite. In short, it is supposed that the process is adiabatic (in the sense indicated), where this adiabaticity is to be understood in relation to the state of the system at t1. However, the supposition that variations in the independent variables are "small and slow" amounts to the posit that the external forces (or fields) and internal constraints acting on the system in the course of t, thereby effecting its transition, are but those that were there at t1, and, moreover, that their magnitudes remain very nearly unchanged in the course of t. But for L, and consequently for the theory, to capture that posit, regarding the near invariance of the forces and constraints, they must be form invariant under the basic geochronometric transformations. Alternatively put: if the forces and constraints remain very nearly the same, then the theory - meant to describe the process by exhibiting the effect of those forces and constraints on the system - must be such that should it possess a degree of descriptive efficacy or performance; then as regards the dynamics of the process, this performance ought to be invariant across t. But if the theory is to capture the posit about the invariance of its performance, then it must be form invariant under the foundational space and time transformations. Thus, in its demand that the process be adiabatic, HP imposes the basic geochronometric symmetries on L, and consequently on the theory; symmetries that are but an expression of the posit that the theory requires no alteration as it is applied (projected) from point to point across the entire expanse of t, because the process involved is an adiabatic one. Alternatively put: those symmetries express the posit of the homogeneity and isotropy of the relevant spacetime in respect of the performance of the theory in question. It may be of interest to note here that should physical processes oblige the requirement imposed by HP - that their behaviour across t would be such that the value of their I is unaffected, or that they be adiabatic processes - and should we know that they meet this demand, then Jeffreys' underdetermination problem would not arise across t, the test-interval. The reason for that being the case is that we would then be in a position to know that only a spatio-temporal form-invariant theory could be descriptive of such  processes, across  t. Only such a theory would, therefore, be successfully projectable across its test-intervals. We can thus see how it is that HP could affect positive selection of such a theory from its apparently empirically equivalent aberrant alternatives, given that that theory embeds the relevant invariance hypotheses, and given that those hypotheses are distinctly testable - a topic discussed below. 

Thus the metaphysical content of HP - given the role of HP in physics that content is tantamount to being the fundamental supposition of physics - is that the behaviour of systems to which HP is applicable, i.e. the behaviour of systems that can be given a Lagrangian formulation satisfying HP, will be orderly across t, to the extent that it will conform to the same theoretical description in the course of t. This posit may also be expressed thus: (a) if a theory satisfying HP contains some truth about the dynamics of systems that meet the constraint imposed by HP, then (b) this degree of truth will be invariant, or uniform, across t. The posit is that if (a) holds then so must (b). Thus the fundamental posit of physics, encapsulated in HP and thus imposed by it, links any posited Tr of a theory with its spatio-temporal invariance, since it follows from (b) that the theory must be form invariant under the foundational space and time transformations. This linkage between Tr and spatio-temporal invariance, or spatio-temporal projectibility - i.e. that if a theory possesses Tr then that Tr is invariant across t - is clearly a necessity if the theory is to be able to depict an invariant truthlike relation, i.e. a relation, the Tr of which is invariant across the entire spacetime expanse - which could be t - implicated by the relation. The idea, suggested in section B, of a link between the Tr of a foundational theory and its entire symmetricity is thus traceable to HP. And the apparent distinct and valid empiric access to the symmetricity of such theories - access in which the attendant projection and model mediation problems could be resolved via deductive-empiric means - suggests that we may have good rationales for their projectibility or applicability within their respective domains, the bounds of which appears to be largely governed by that symmetricity, within the confines of the CC. It may be worth noting that (a) and (b) are linked to the two aspects of the domain of a theory, its integrative and projective generality, respectively, insofar as the projective generality associated with the basic geochronometric symmetries is concerned. And the link between (a) and (b) follows from HP. 

The significance of HP for the realist issue may also be seen thus: if the basic geochronometric symmetries a theory embeds mirror an objective symmetricity, or, alternatively, if  the spacetime points within t are empirically equivalent in respect of the theory - the theory is, therefore, projectable across t - then HP expresses the posit that this spatio-temporal projective generality pertains to the degree of truth the theory has to tell about the system in its transition across t. So if what the theory has to tell has some truth value then that value holds (is invariant) across t. Of course, a completely false theory may also be form invariant with respect to its particular spacetime - but such a theory could not reproduce the performance of the truthlike theory, it is not one of Jeffreys' alternatives; those are not spatio-temporally form invariant. Thus mere spatio-temporal form invariance is not even a sufficient condition for Tr. But for processes that can be given a Lagrangian formulation satisfying HP, the spatio-temporal form invariance of the ensuing theory appears to be a necessary condition for the theory to be truthlike. A completely false theory need not, of course, be form invariant. Such a theory could be false in different ways from point to point across its spacetime, which could even be the same spacetime as that of the truthlike theory - a situation that can account for the in principle possibility of constructing an infinity of Jeffreys' incompatible completely false theories of the same empiric adequacy as that of the truthlike theory.

Thus HP appears to be an expression of a posited necessary link between the Tr of a theory and its spatio-temporal invariance, or spatio-temporal projective generality, or spatio-temporal universality. HP may thus be interpreted to be expressing the realist posit (in the sense of Tr), and to linking that posit to the basic geochronometric symmetries, which it imposes on theories that satisfy it; symmetries that express continuous aspects of spatio-temporal generality of their embedding theory. The extended view (suggested in sect. B) - that testable physical symmetries in general could be linked to, and hence be indicative of components of the Tr of their embedding theory satisfying HP - is conditional on the link between spatio-temporal invariance and Tr obtaining. More generally, the idea that a theory must possess invariant traits if it is to be truthlike, and that such traits could be indicative of components of its Tr, is traceable to the adiabatic constraint on physical processes, which is presupposed when we make it a condition that the theories satisfy HP. The posit then is that within the ambit of the CC, a physical theory will embed as much of the invariant traits of physical reality as is relevant for its degree of Tr. (On this reading of HP, scientific realism is inextricably tied up with truth and Tr, not just with reference; see Aronson and Harré, 1995, pp. 124-127) 

The testability of the basic geochronometric symmetries, imposed by HP on theories satisfying it, follows from the following considerations. In the case of monogenic systems all of whose constraints are holonomic (note 3), L's satisfaction of HP '...is both a necessary and sufficient condition for Lagrange's equations...' (Goldstein, p. 36).
 Thus, in those cases, the ensuing theory clearly satisfies HP, and hence Noether's theorem (1918) pertains to it. And that theorem states that the basic distinct geochronometric symmetries of the theory are linked, in a necessary and sufficient manner, to distinct predictions of the theory, as regards distinct testable effects, in the form of conserved quantities. The symmetries are thus distinctly testable (refutable), on the condition - or realist posit - that the formal link, indicated by Noether's theorem, between a theory embedded symmetry and a theory predicted testable effect, obtains in the domain of the theory.
 

In apparent anticipation of the claim that the restriction to monogenic holonomic systems - which makes the application of HP particularly convenient - renders physics too restrictive as to the sort of systems it can handle, Goldstein (p. 16) observed: 'This restriction does not greatly limit the applicability of the theory, despite the fact that many of the constraints encountered in everyday life are nonholonomic. The reason is that the entire concept of constraints imposed in the system through the medium of wires or surfaces or walls is particularly appropriate only in macroscopic large-scale problems. But the physicist today is primarily interested in atomic problems. On this scale all objects, both in and out of the system, consist alike of molecules, atoms or smaller particles, exerting definite forces, and the notion of constraint becomes artificial and rarely appears.' 

Goldstein goes on to show the general applicability of the variational approach, in particular its applicability to nonmechanical field systems - which clearly satisfy the monogenic holonomic restriction: 'Within this larger context the Lagrangian density need not [even] be given as the difference of a kinetic and potential energy density. Instead we may use any expression for L that leads to the desired field equations.' (ibid, P. 554) Nonetheless, 'As with systems of a discrete number of degrees of freedom, the structure of the Lagrangian also contains information on conserved properties of the system.'. (ibid, p. 555) In all such cases the processes must meet the demand that I be invariant under infinitesimal displacements of the independent variables, hence the theories must be form-invariant under such displacements, and such invariances are linked to the '...conserved properties of the system [or process]...'; with Noether's theorem expressing the linkage. Thus given the realist posit in relation to Noether's theorem (as noted above), it is possible to obtain distinct and valid empiric indications as to whether the basic geochronometric symmetries obtain in the case of the dynamics of all such processes. Now given the distinct refutability of the basic geochronometric symmetries of a theory satisfying HP, and given that HP imposes a necessary link between those symmetries and the posited Tr of the theory, then the refutation of any one of those symmetries would also constitute a refutation of the possibility of the theory being truthlike. HP could thus clearly affect the positive selection of the truthlike theory from Jeffreys' hitherto empirically equivalent alternatives that are not spatio-temporally invariant.  

The close relation between HP and the apparent distinct and valid testability of the basic geochronometric symmetries it imposes may also be seen from the following consideration: HP says that if a process is accountable by a theory that satisfies it, then the process is an adiabatic one, or, alternatively, if the process is adiabatically invariant - if the variation in the parameters describing the process is both "small and slow" - then the variation of its action integral, which leads to the theory, vanishes. Now in many cases it can be shown that '...adiabatic invariance is merely a special case of Noether's theorem.' (Neuenschwander and Starkey, 1993, p. 1010) In such cases, therefore, HP is but a special case of this theorem. Thus, in such cases, HP would encapsulate the idea of a necessary and sufficient link between distinct continuous symmetries of a theory satisfying it, and distinct conservation laws that flow from the theory. In such cases, therefore, the symmetries ought to be testable via the conservation law predictions of the theory - given the posit that the symmetry-conservation link holds in the domain in question.

Accordingly, satisfaction of HP, on the part of a theory, imparts to it parsimonious foundational invariant traits that insure its parsimonious character. But HP could also insure the distinct and valid testability of those traits, and hence the apparent ability of HP to effect positive selection of the parsimonious theory via deductive-empiric means. Thus in our preference for theories embedding those traits, i.e. our preference for parsimonious theories, we are {choose?} theories via deductive-empiric means from their non-parsimonious, but hitherto empirically equivalent, alternatives. It is thus that HP could legitimate parsimonious complying with the demand of HP; a compliance that could effect positive selection of those practice - at least in so far as the rejection of Jeffreys' non-parsimonious alternatives is concerned.  
However, in imposing  HP on theories, we suppose that the physical processes they are to account for are adiabatic (variation of the independent variables, implicated in such processes, are "small and slow" across t); a restrictive supposition, to be sure, but perhaps not as restrictive as it looks, considering that what constitutes adiabatic change is relative to ambient conditions, i.e. to the unrestricted state of the system at t1, and to the unrestricted "smallness" of t, so long as it is finite. Nonetheless, it may indeed follow from this restriction that if, even on a quantum time scale, and a fortiori on a classical one, standard quantum measurements, as well as other discrete quantum events, constitute non-adiabatic processes (in the sense indicated), then we may expect that neither the standard quantum formalism, and a fortiori not classical theory, should be able to fully describe such events. This view is unaltered by the consideration that Q.T. satisfies a quantum version of HP, because that version does not remove the imposition of the adiabatic constraint referred to; it merely shows that satisfaction of HP on the part of the standard Q.T. formalism suggests that the path across t will be the one of maximum probability (see Note 2, and sect. E).

But even in cases where the adiabatic constraint is satisfied, theory testing and application necessitate a host of simplifying, and hence abstractive, physical assumptions: e.g. assumptions regarding the appropriate state description, the character of the forces and constraints acting on the system, etc. It is also implicitly supposed that the well behaved mathematical functions that are meant to express the content of these assumptions - including groups meant to express invariant traits - somehow "capture" the features of the system that are relevant in relation to the theory in question. Now if all this modelling and abstracting - which is clearly highly restrictive as to the sort of systems, or processes, physics can in practice handle - is used to infer that the theories are only about mental constructions, or theoretical models, then we deny the possibility of deep objective knowledge, and with it the possibility of a rational objectivist account of both our experiences of levels below and above the phenomenological one, and of the laws that codify our experiences of the phenomenological level. However, both theoretical and experimental modelling and abstracting, especially the quasi-isolation of relatively simple test-phenomena, are essential prerequisites for effecting contact, albeit only across some t, between a theory and its part of a very complex and diverse physical reality. And if in the case of simple phenomena within test-intervals such contact is achieved then the following considerations suggest that the empiric validity of knowledge tested and corroborated against such experimental set-ups is not confined just to them: (1) notwithstanding that for most actual systems for which Lagrangians can be formulated the ensuing theories cannot be solved exactly, not at any rate in terms of analytic functions - e.g. the 3-body system, atomic systems more complex than the hydrogen atom, etc. - methods of approximation yield approximate but highly successful testable solutions; (2) in principle, the Lagrangian formulation appears to be generally applicable to dynamical systems; and (3) our apparent distinct and valid empiric access - albeit generally only in the case of model test-phenomena, across test- intervals - to the form-invariance hypotheses embedded in foundational theories. This latter point suggests that we may be exercising critical empiric control over various aspects of the posited projective generality of those theories; a generality which, in the light of the hint from HP, could be linked to the Tr of those theories. If this is indeed the case then physics would have obviated the projection problem in relation to its hypotheses by discovering theories that embed empirically accessible representations of similar (in form) but also diverse (in content) parts of a physical symmetric-structure; parts that appear decisive in demarcating the domains of the theories. 

Thus in spite of all the modelling and abstracting that goes on in physics, which, prima facie, casts doubt on its contact with reality, the following possibilities cannot easily be dismissed: (1) deep objective, albeit fallible and approximate, knowledge of quasi-isolated simple test-phenomena, within some spatio-temporal test-interval; (2) possession of good reasons for supposing that the soundness of this knowledge is not confined to such phenomena within test-intervals, although it is indeed confined by the validity conditions attending that knowledge (see sect.1, part III.-2); and (3) that, in the context of the CC, the development of physics could have been empirically guided towards deep objective knowledge by the distinct and valid empiric control exercised over the symmetries of physical reality. 
To sum up: within inertial physics, HP can be interpreted to encapsulate the metaphysical realist posit that theories satisfying it are truthlike, and to linking that posit to the basic geochronometric symmetries, which it imposes on the theories; symmetries, which HP suggests could be distinctly testable. This situation leads to the possibility of distinct positive selection by deductive-empiric means of such theories, from a plethora of their aberrant, hitherto empirically equivalent, in principle alternatives. Thus we appear to have a situation where the metaphysical realist posit, in its abstract mathematical form, could affect a methodological desideratum: positive selection via deductive-empiric means. The idea of a link between the basic geochronometric symmetries of theories satisfying HP and the Tr of the theories, has been extended here to suggest the possibility that such theories could embed representations of as much of the symmetric-structure of physical reality as is relevant for the degree of Tr they may possess. And since we may have distinct and valid empiric access to relevant parts of that structure (sect. D), the possibility arises that testable symmetries could have empirically guided physics to deep truthlike theories.
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�The physics on which this section is based stems from Goldstein (1980). Any errors are entirely mine.    


� An account of the ability of HP to synthesize so much of physics is given by Collins (1966). Here is how Wheeler (1964, pp. 69-70) treats the problem: 'Why should the extremal route be the one favoured by nature?' Wheeler then uses Feynman's path-integral formulation of Q.T. to provide an answer. In that formulation, the quantum analogue of HP, or of stationary action (the standard version being presented in the text below), is stationary phase, yielding the path of maximum probability:   S/h, where S is the change of action along the path. It turns out that, 'The total amplitude in typical cases has practically the phase it would have had if the motion had followed exclusively the classical history [the transition across t]. To see how nature appears to select the classical history as preferred and yet, in reality, treats all histories on the same footing is the great achievement of quantum theory. It is at last clear why extremal principles - of which the demand for motion in a straight line or on a geodesic is a special case - occur throughout physics.' Wheeler's approach also suggests how classical physics could approximate quantum physics (but see sect. E). On a variety of views on action principles, see Maidens, A. (1998). 


� There is no 'necessary connection' between configuration space (expressed in generalised coordinates) and physical space (expressed in standard position coordinates); indeed the generalised coordinates need not even be position coordinates. Thus the trajectory of the transition of the system point in configuration space need have no '…necessary resemblance to the path in space of any actual particle;' (Goldstein, p. 35; and Chs. 1 nd 2.) But, of course, this truth does not vitiate the view that generally (in most cases of interest) - and even when there is no 'connection' between the two spaces - the abstract (imagined) transition of the system point in configuration space is (or could be) a representation of the transition of the system in physical space, because, firstly, there is a link between the generalised and position coordinates via equations of transformation (ibid. p. 13), and, secondly, because HP does lead deductively to equations of motion (transition) in physical space.


   The reason for constructing a configuration space in terms of generalised coordinates is as follows: HP is meant to hold for monogenic systems: '... mechanical systems for which all forces (except the forces of constraint) are derivable from a generalised scalar potential that may be a function of the coordinates, velocities, and time. ... Where the potential is an explicit function of position coordinates only, then a monogenic system is also conservative.' (ibid, p. 35.) The monogenic restriction can generally be met - in principle, at any rate. The particular advantage of the HP-Lagrangian formulation of mechanics in terms of generalised coordinates, is that if the forces of constraint are holonomic, then the generalised coordinates are independent, and the constraints do not appear explicitly in the ensuing equations. For in such cases it is possible to transform the standard 3N coordinates into independent generalised ones, and, in principle, vice versa; where the equations of transformation contain the constraints implicitly. Holonomic constraints are such that, '... the conditions of constraint can be expressed as equations connecting the coordinates of the particles (and possibly the time) having the form f (r1, r2, r3 ,..., t) = 0 ... .' (ibid, p. 12.) Thus, 'The variational principle formulation has been justly described as "elegant", for in the compact Hamilton's principle is contained all of the mechanics of holonomic systems with forces derivable from potentials. The principle has the further merit that it involves only physical quantities that can be defined without reference to a particular set of generalised coordinates, namely, the kinetic and potential energies. The formulation is therefore automatically invariant with respect to the choice of coordinates for the system. [my italics]' (ibid, p. 51.) Although it is possible to extend HP to nonholonomic systems its application is then more problematic. (ibid, p. 45.)


� The precise expression for L depends on the details of the system (discrete particles, continuous mechanical systems, fields, etc.), on the internal constraints and external forces thought to effect the transition across t, and on the theoretical context deemed appropriate for its description: classical, quantum, relativistic, or quantum-relativistic. For discrete particle descriptions L is generally an explicit function of the spatial coordinates, their first t-derivatives, and t. In the case of field descriptions, whether of continuous mechanical systems, or of the fields of field theories, it is generally an explicit function of the field quantities, their first spatial and t-derivatives, and the spatial and t variables. No higher than first derivatives are generally included. The variation in HP is on the independent variables - coordinates in the particle case, and field quantities, or the space and t coordinates of which they are functions, in field cases - and vanishes at the end points t1 and t2, as well as at any spatial end points, when spatial intervals are explicitly involved, as in field descriptions. 


� The necessary and sufficient link between HP and the Lagrange equations, hence also between HP and the ensuing theory, holds notwithstanding that '... the Lagrangian is always uncertain to a total time derivative of any function of the coordinates and time ...'. It holds because, 'The time integral of such a total derivative between points 1 and 2 depends only on the values of the arbitrary function at the end points. As the variation at the end points is zero, the addition of the arbitrary time derivative to the Lagrangian does not affect the variational behavior of the integral.' (Goldstein, p. 51.)


� It is true that Noether's theorem can be regarded to be, '... a principle of theory construction like the principle of equivalence...'. (Morrison, 1995, p. 163.) But the principle of equivalence is a distinctly testable hypothesis, whilst Noether's theorem is not. Thus if the theorem is to be used qua mathematical result for testing symmetries, then we need the metaphysical posit that the symmetry-conservation link indicated by the theorem holds in the domain of the theory in question. It could perhaps be held that the corroborated predictions of a theory, other than its symmetry engendered predictions of conservation effects, be regarded to be empiric indications that this realist posit is sound. But that view is open to the charge of reverting to an inductivist stance, by using success as a way of assessing the status of theories.  





