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F. General relativity and its general covariancePRIVATE 


The laws of physics must be of such a nature that they apply to systems of reference in any kind of motion.

             A. Einstein

... the theoretical search for non-linear equations is hopeless (because of too great variety of possibilities), if one does not use the general principle of relativity (invariance under general continuous co-ordinate-transformations).

A. Einstein

... if we admit non-inert systems we must abandon Euclidean geometry.

A. Einstein

The idea of general relativity is that the presence of a gravitational field is mathematically equivalent to the non-existence of Lorentz frames.

P.G. Bergmann 

It must be possible, however, to ascribe some significance to the postulates of relativity other than the purely formal mathematical one. 

E. Kretschmann

The difficulty with Einstein's escape from Kretchmann's objection is that it leads us towards a problematic metaphysics of simplicity.

J. D. Norton 

… the principle of general invariance … is, in fact, a very strong symmetry principle.

            J.L. Anderson

One does not yet know the relation between the extraordinarily rich model world of Einstein's theory and the real world. 

J.A. Wheeler

If the best available theory of the gravitational interaction has got it right (Will, 1974) then gravitational effects are accountable in terms of a metric that characterises the four dimensional general relativistic curved Riemannian spacetime manifold. This claim is based on Einstein's equation (see, e.g. Penrose, 2002): 

Rμν - 1/2 R gμν = - 8πGTμν 

where Rμν is the Ricci tensor (measures curvature averages), R, the scalar curvature (measures the overall curvature average), Tμν, the energy-momentum tensor (measures the mass density of matter), G, Newton's gravitational constant, and gμν is a symmetric tensor, the coefficient in the expression of the metric, ds2 = gμνdxμdxν.

Now the tensor expressions for curvature, metric and mass density, hence the entire equation, are generally covariant: invariant under arbitrary curvilinear coordinate transformations (it is presupposed that the manifold can be coordinatized using any coordinates); transformations which thus characterize not only the tensors and the equation but also the relation between coordinates of different reference systems, regardless of their state of motion (since the equation imposes no restriction on that state). Thus implicit in the general covariance of the equation are two equivalence posits, in respect of the applicability of the equation: the equivalence of the coordinates across the manifold (where "coordinates" stands in for neighbourhoods of coordinates)
, and the equivalence of all reference frames. The first posit expresses the invariance or uniformity, across the entire manifold, of the relation between G.R. and the manifold, the second expresses the generalized relativity principle, in the context of G.R.. The two posits clearly go hand in hand, one cannot have one without the other.                                 

  Now the equation indicates that the curvature, metric, and mass density  are all coordinate dependent, and that they are interrelated at each coordinate.
 Thus, in particular, the mass density distribution is interrelated with the metric field configuration, and given that mass density distribution may be expected to determine the gravitational field configuration, we can see how the gravitational field could be given a description in terms of the metric field: how the metric could both lead to and satisfy the field equations, as indeed it does - with gμν acquiring the role of gravitational potentials, a generalisation of Newton's gravitational potential. The metric turns out to be composed of two distinct but compatible structures: one chronogeometric, the other affine, with the latter being the source of the inertio-gravitational field (Stachel, 1993). Gravitation has thus been geometricized, with the following consequences: the metric is no longer global, as in inertial physics; it is now local, where the coordinates acquire metrical significance, which they don't otherwise have, and where the metric is well approximated by a Minkowski metric (see note 2); further, given that the metric gives rise to gravitation it may be conceived as being dynamic, i.e. non-absolute, can act and be acted upon; which is also suggested by the interrelatedness of the metric and mass density.
 (Significantly, the view that the metric could be local and dynamic remains unaltered if, as discussed below, general covariance is interpreted to be a "gauge-like" symmetry, leading to the idea that a whole class of metric fields could give rise to the same gravitational field.) The use in inertial physics of global absolute metrics and their associated affine flat spaces (Euclidean or Minkowski), is thus, apparently, an approximation, from the point of view that it neglects the interaction between mass density and metric, which can also be seen as neglecting the effect of the gravitational field on the metric.
 The approximation, however, is clearly a good one, in the light of the successes of inertial physics in its treatment of both gravitation and the other three interactions. We may thus attribute those successes to the consideration that the effect of the gravitational field on the metric could be significant only in a cosmological setting (given the relative weakness of the gravitational interaction)
; which would suggest that locally, where the curvature of spacetime can be neglected, the metric of G.R. should reduce to that of S.R., and in the Newtonian limit (v/c << 1) the theory should reduce to Newton's Theory of Gravity (N.T.G.); should, that is, if G.R. is to meet the external coherence constraint, which it does; indeed it meets all three constraints of the CC: Coherence (internal and external), Parsimony (theoretical economy), and Hamilton's Principle (HP).
 But perhaps a better understanding of the efficacy of the use in inertial physics of field-independent metrics may be linked to an interpretation of general covariance; an interpretation that makes it possible to include that symmetry within the present realist view on symmetries - as we shall see. On that view, the symmetric-structure of a theory satisfying the CC largely determines the extent of its domain, i.e. its projective generality. Hence, anticipating the discussion further on the pure domains of inertial physics, both gravitational and non-gravitational, may, for a good reason, not require the spacetime structure of G.R., and hence not require its metric; i.e. from the viewpoint that ceteris-paribus symmetric-structure largely conditions extent of domain, those restricted domains do not require the symmetry group that determines the spacetime structure of G.R.; a group larger than those governing the spacetime structures of pre-general-relativistic physics: the inhomogeneous Galilei and inhomogeneous Lorentz (or Poincaré) groups.    

Now the foundational theories of inertial physics, all of which satisfy HP, embed the basic chronogeometric symmetries: t-translation, and space translation and rotation invariance. Satisfaction of HP on the part of those theories leads to the relevance of Noether's theorem with respect to them; and thus to the apparent distinct and valid testability of those symmetries, across test-intervals of their embedding theories (sect. B}
. Given the relevant metaphysical posit, those symmetries could be so testable via measurable constants of the motion - energy, linear and angular momentum - to which they are respectively linked by Noether's theorem. Such tests could have had the effect of validating tests of only the theories that embed those symmetries, thereby positively selecting, via deductive-empiric means, those theories, from Jeffreys' aberrant but hitherto empirically equivalent alternatives; a positive selection that would have the effect of rationally underpinning the parsimonious practice of rejecting Jeffreys' alternatives. And the distinct and valid testability of the structure implied by a theory embedded symmetry, and of the invariance of that structure across test-intervals of the theory, were taken to be indicative of the (possible) objectivity of the symmetry within the domain of the theory. Extending this line of thought to other projective generality conferring, and distinctly and validly testable theory embedded, symmetries, led to the idea that in the context of the CC satisfied by a sequence of comparable theories, similarity relations between their respective symmetricity and that of the true theory could govern their comparative truthlikeness, qua symmetric-structure-likeness.
 This situation has been interpreted here to suggest that the projection problem across test-intervals of the foundational theories of inertial physics could have been circumvented to an extent appropriate for each theory; and that this inadvertent outcome could amount to a good rationale for the projection or application of the theories, within their respective domains, for either explanatory or pragmatic aims. The stance is in accord with the generally held view that the Galilei and Lorentz groups - of which the groups generating the basic chronogeometric symmetries are sub-groups - express authentic relativity principles: the physical equivalence of the relevant class of inertial reference frames with respect to the spacetimes associated with their respective theories; or, alternatively, given any point on the relevant spacetime then we could have any inertial reference frame at that point such that the spacetime structure in that frame conforms to the Galilei group in the Newtonian case, and to the Lorentz group in the special relativistic case. The equivalence of frames ensures the same form for properly formulated theories in different frames, and that results obtained from the same experiment performed in different frames, can be shown to be equivalent. In this context we could interpret the basic chronogeometric symmetries to be expressing aspects of the Principle of the Uniformity of Nature (PUN) in respect of the domains of their embedding theories, and in relation to a given inertial reference frame, i.e. to be expressing traits of homogeneity and isotropy of the relevant spacetime. 

But  this stance can no longer be held in relation to G.R., which satisfies three novel foundational constraints in addition to the CC, i.e. (1) the equivalence principle: the observational equivalence of the effects of gravitation and of acceleration; although this equivalence is not so novel, since it is already apparent in N.T.G. (see, e.g. Weinstein, 2001), taking its implication - that the metric could participate in the dynamics - seriously is novel; (2) general covariance: invariance under arbitrary curvilinear coordinate transformations; and (3) the requirement that the theory recover as limiting cases both N.T.G. and S.R..
 The stance can no longer be held in the general relativistic context because the constants of the motion associated with the basic chronogeometric symmetries of inertial physics are no longer unambiguously identifiable (Einstein, 1916a, sects. 17&18).
 It follows that what was interpreted here to be HP's relevance to the realist issue - linking the realist posit as regards the foundational theories of inertial physics, meant to be describing adiabatic phenomena, to the distinctly testable basic chronogeometric symmetries (sect. C) - may no longer hold in relation to G.R.. G.R.'s satisfaction of HP may still restrict its applicability to adiabatic phenomena, but it can no longer be held that HP links the realist posit in respect of G.R. to the basic chronogeometric symmetries of inertial physics. Now those symmetries were interpreted to express aspects of the PUN as regards the relation between their embedding theories and their respective spacetimes. Could there be some other symmetric constraint on G.R. that would express or implicate some form of the PUN as regards the relation of G.R. and its Riemannian spacetime? The obvious candidate for that role is general covariance, which, as indicated above, implicates two intertwined equivalence posits, in respect of the description of dynamics across Riemannian spacetime: the equivalence of coordinates (a uniformity hypothesis), and the equivalence of all reference frames (a symmetry hypothesis in the form of the generalised relativity principle); thus the equivalence of whatever coordinates are arbitrarily chosen, and the equivalence of whatever frame we care to consider, with respect to the applicability of G.R. across the manifold. This view is compatible with the view that coordinates acquire metrical significance only locally (note 2), because, in principle, any coordinate (i.e. coordinate neighbourhood) of Riemannian spacetime may become such a locality. We may thus consider general covariance, qua uniformity hypothesis, to suggest the posit of the equivalence of any coordinate neighbourhood of Riemannian spacetime with respect to the applicability of G.R.. In any such neighbourhood, therefore, we could have frames in any state of motion, in which the spacetime structure would conform to the general group. Thus, at any such neighbourhood, spacetime would look the same from any reference frame. But the two posits implied by general covariance go hand in hand. It follows that  if general covariance, qua uniformity hypothesis, is to have physical significance, then it must also have such significance qua symmetry principle, and vice-versa; thus its apparent extension of the relativity principle from inertial frames to accelerated ones, in the context of G.R., must be physically sound, as Einstein generally thought (Norton, 1993, esp. p. 836;).
 But even given this condition - that general covariance is an authentic symmetry principle - the form the PUN takes here differs from that in inertial physics, in that although this novel mathematical conception of spacetime is still one that is homogeneous, in the sense that the metric '... remains a homogeneous function of the differentials of the coordinates ...' (Einstein, 1934a, p. 288) [my italics], those differentials, unlike in inertial physics, have no metrical significance. Thus the admission of non-inert systems of reference, '... was inevitably fatal to the simple physical interpretation of the coordinates - i.e., that it could no longer be required that coordinate differences should signify direct results of measurement with ideal scales or clocks. ... The solution of the above-mentioned dilemma was therefore as follows: A physical significance attaches not to the differentials of the coordinates but only to the Riemannian metric corresponding to them.' (ibid, pp. 288-289). Thus Einstein appears to suggest that although coordinate differentials have no physical significance, the tensor expression for the metric, which is coordinate dependent, does have global physical significance. What this means, I think, is that the idea that the metric is local, hence non-uniform, is of uniform global physical significance, notwithstanding that coordinate differentials are not physically significant. The uniformity posit thus reads as follows: notwithstanding the formal non-uniformity of the metric, there is uniformity in the sense of the equivalence of all neighbourhoods of spacetime, from the point of view that G.R., along with its general covariance requirement (implicating an unrestricted class of reference frames), hold good at any neighbourhood.
 

But, as indicated, if this uniformity hypothesis is to have physical significance then general covariance qua relativity principle must also have such significance. Accordingly, the implication of general covariance regarding the equivalence of an unrestricted class of reference frames in respect of G.R. must not be physically vacuous. But, prima facie, the transformations envisaged by general covariance, appear to do no more than relabel coordinates, indicating no more than that labels have no physical significance.
 And if that is all it did, then it would have no restrictive physical force, and hence no physical content qua relativity principle; a point underscored by the consideration that any theory (expressed in the tensor-calculus) admits a generally covariant formulation (Kretschmann 1917).
 Einstein's (1918) response to Kretchmann reads: 'Although [or If] it is the case that any empirical law can be given a general covariant formulation, nonetheless, the Relativity Principle [general covariance] does posses an important heuristic power, which has already shown itself brilliantly in connection with the gravitational problem and rests on the following: of two theoretical systems that are in conformity with experience, the one to be preferred, is that which from the point of view of the absolute differential calculus [the tensor calculus] is simpler and more transparent. If Newtonian gravitational mechanics is given an absolute covariant formulation (four-dimensional), then one will most certainly be convinced that whilst the Relativity Principle does not theoretically exclude the theory, it does so practically.' Apparently, Einstein conceded to Kretschmann that 'any empirical law can be given a generally covariant formulation', and presumably also that therefore general covariance has no physical significance, but he goes on to suggest that in the context of his desiderata of simplicity and transparency in the light of the tensor calculus, general covariance can be an important guide in both the selection of theories (e.g. in leading to the rejection of a generally covariant formulation of Newtonian theory), and in the construction of theories, as it has successfully guided him towards G.R..
 Now G.R. uses Riemannian spaces, from among logically alternative possibilities. As Bergmann (1962, p. 210) points out: '... the choice of Riemannian spaces for the theory of gravitation is no more logically necessary than the choice of Minkowski spaces for electrodynamics. It suggests itself as the least radical departure from Minkowski spaces that offers us the possibility to abandon the special and privileged role of inertial frames among all conceivable frames of reference. Like many other constructs of theoretical physics, it may well require modification in the future.' Riemannian spaces are 'the least radical departure from Minkowski spaces', which lead to a generally covariant theory. Einstein could have come to realise this point about Riemannian spaces by noting that given the need to satisfy general covariance, in the light of the tensor calculus, the theory using Riemannian spaces has greater simplicity and transparency than alternative theories using other possible spaces.
 Thus, in principle, Einstein could have used an alternative geometry to arrive at the same novel predictions (see note 2), but such a course would not have conformed to his criterion of simplicity and transparency. Apparently, the heuristic power of general covariance consists in exhibiting the relative simplicity and transparency, in the light of the tensor calculus, of competing theories, given the use of alternative geometries in the construction of a theory, and given the other constraints referred to above. Thus, in the context of his metaphysic of simplicity and transparency, Einstein could have been guided in his choice of geometry by general covariance. Accordingly, Riemannian spaces turn out to be the best alternative if we want a theory that is simple and transparent in the light of the tensor calculus, and if we want to recover N.T.G. and S.R. And by submitting the entire package to the test of experience Einstein achieved the empiricization of physical geometry. Notably, however, this feat took place in the context of 'heuristic guidelines' (Post, 1971): the CC, the equivalence principle, general covariance, the need to recover N.T.G. and S.R. (the external coherence requirement of the CC), and Einstein's notion of simplicity. A realist stance on Riemannian space, and hence on G.R. as a whole (including general covariance), may thus be put as follows: in the context of our 'heuristic guidelines' we may regard physical geometry to be Riemannian, in so far as gravitational effects are concerned within the domain of G.R.. If we do so we can make integrated rational sense of our gravitational experiences so far (including those within the Newtonian domain). Admittedly, this realism has strong conventional components, as does a realist stance on the relativity of simultaneity in S.R., but these components - which end up admitting some specified and restricted degrees of free choices - are hardly arbitrary, and thus neither are the conventions.

Nonetheless, from the present standpoint, this stance is unsatisfactory, because the realism it suggests is linked solely to success. Nor does the stance meet Kretschmann's challenge effectively, because general covariance merely helps lead to that success, by acting as a heuristic device in the selection and construction of theories, in the context of Einstein's simplicity criterion. Thus judging from Einstein's remarks above, given G.R. and a generally covariant formulation of N.T.G., then we ought to prefer G.R., even if the two theories were to be empirically equivalent, because general covariance reveals that G.R. has the greater simplicity and transparency in the light of the tensor calculus. The stance clearly runs straight into the induction/apriorist dilemma.
 It is not all that surprising, therefore, to find it also historically contingent. For what we may regard to be more or less mathematically simple and transparent is a matter of historical contingency, depending on what sort of mathematics there happens to be around. As Norton (1995, pp. 111-112) aptly observed: 'Nature is not tuned into our mathematics. Our mathematics is adjusted painstakingly to fit nature as our understanding of nature deepens. Mathematics hardly seems to provide us with a fixed and elevated vantage point from which to direct the development of new physical theories. The vantage point mathematics provides is as mutable as our physics.' 

One of the most perspicacious responses to Kretschmann is that of Anderson (1964 & 1967, Ch.4).
 Anderson's approach is based on the distinction between the invariance group of a theory and its covariance group. The former defines the relativity principle of the theory - a particular equivalence class of frames - and determines the spacetime structure of the theory. The point Anderson makes is that it is formally always possible to enlarge the invariance group into a covariance group, without thereby adding physical content. Significantly, whether or not content is enhanced depends on whether the enlargement is linked to a result that flows from Noether's theorem, i.e. whether or not it leads to a testable conserved quantity. (Thus symmetries that come under the wing of Noether's theorem could indeed have something to do with the physical content of their embedding theories.) Anderson (p. 187) defines '... the relativity [invariance] group associated with the relativity principle as the subgroup of the covariance group of the theory which leaves the absolute elements of the theory invariant. If there are no absolute elements, the relativity group is identical with the covariance group.' Since only in G.R. are there meant to be no absolute elements (G.R. could at least be interpreted that way), the two groups are identical only in G.R..
 General covariance thus acquires physical content only in the context of that theory. Anderson's position is neatly expressed by Norton (1995, p. 239) - who thinks that although the position is the most promising approach to Kretchman's problem, it has its own problems: 'Anderson's "principle of general invariance" identifies the symmetry group of a spacetime theory with the symmetry group of its absolute structure. This is the group associated with its relativity principle. If the theory has no absolute objects, the symmetry group is the group of symmetries of the manifold itself. Under this principle, the symmetry group of special relativity is the Lorentz group; the symmetry group of general relativity is the general group.' Thus Anderson's view leads to the conclusion that general covariance captures the relativity principle, seen as physically significant, only in the general relativistic context, and that Galilean and Lorentz invariance uniquely capture the principle in the context of N.T.G. and of S.R., respectively. From the present vantage point, what is of particular significance in Anderson's approach is that it is based on parsimonious considerations. As Norton points out (1993, p. 844): 'He allowed that one can take a physical theory and generate successive formulations of wider and wider covariance. However there is a point in the hierarchy at which we are forced to introduce elements which are unobservable or transcend measurement. Since we are prohibited from proceeding to this point in the hierarchy, covariance requirements have physical force.'
 

However, the approach to the meaning of general covariance outlined by Stachel (1993) is perhaps more penetrating, but also founded on parsimonious considerations - in his terminology: on what is 'most naturally associated' with a physical theory, which turns out to be that which is within the bounds of the parsimony constraint.
 We are led to this view of general covariance by considering the dilemma posed by Einstein's hole argument: either generally covariant field equations and indeterminism (of the field, and hence of the dynamics), or determinism and abandonment of general covariance. Apparently, Einstein resolved the dilemma to his satisfaction, for he returned to general covariance after abandoning it for two years (Norton, 1989). In today's terminology, the resolution consists in taking general covariance to convey the invariance of the spacetime structure or metric structure or metric tensor field (and hence also of the gravitational tensor field), introduced on a bare coordinatized differentiable manifold (now generally regarded to be the 'most natural' setting for G.R.), under a group of diffeomorphisms, i.e. differentiable point transformations on the manifold. The apparently passive general covariant symmetry, qua invariance under arbitrary curvilinear local coordinate transformations, which appear only to relabel coordinates, thus becomes potentially an active global point transformation, which could be physically significant because it could turn one physical model into a non-equivalent other model.
 The restrictive force of the symmetry, so conceived, stems from the consideration that it does in fact not lead to such an exchange of models, at any point on the manifold. (Notably, however, the conceptual notion of "active" involved here, contrasts sharply with its greater physical sense in respect of traditional continuous symmetries to do with spacetime structure - Brown and Brading, 2002). The approach resolves the hole argument dilemma: general covariance and determinism (of the dynamics) are preserved, at the price of an indeterminism in the form of a licensed but also restricted particular convention as regards choice of metric. For this interpretation of general covariance allows it to be conceived as a "gauge-like" symmetry (albeit not in the sense in which the gauge concept is conceived in Q.F.T. - Weinstein, 1998), according to which the gravitational field is meant, '… to physically correspond to an entire equivalent class of metric tensor fields, related by arbitrary diffeomorphisms of the spacetime manifold, and not just to one of the members of this class.' (Christian, 2001, p. 312)
 Thus in contrast to Lorentz covariance singling out a preferred class of reference frames, general covariance, qua diffeomorphism invariance, singles out an equivalence class of metric tensor fields, thereby implicating an unrestricted class of reference frames. So understood, general covariance is compatible with determinism, because whilst a particular Tμν does not determine a unique metric field configuration, it does yield a unique gravitational field configuration, hence a single model for a given solution of the field equations. Stachel goes on to suggest that whilst the hole argument (at any rate, his version of it) leads to a non-substantivalist (or relationalist) view of the spacetime of G.R.,
 it is inappropriate against a substantivalist view of the spacetimes of pre-general-relativistic theories - but that does not mean that substantivalism is necessarily sound in respect of those spacetimes. The reason that the hole argument is inappropriate in the case of pre-general-relativistic theories is that their 'most natural' formulation does not require resort to a differentiable manifold; which is precisely what the parsimony constraint applied to those theories also suggests. At any rate, general covariance, qua diffeomorphism invariance, acquires potential physical significance only in the context of G.R. where it has a 'natural' role to play, whereas the most 'natural' symmetry groups of the pre-general-relativistic theories are their standard inhomogeneous Galilei and Lorentz groups.
 Note that this gauge-like interpretation of general covariance implicates two equivalence posits, as does the interpretation discussed above: a uniformity posit, suggesting that all neighbourhoods of spacetime are equivalent with respect to the applicability of G.R., and a symmetric posit. The important feature of the interpretation is that it shows how both posits could possess physical significance.

Given that the formal considerations or interpretations of both Anderson and Stachel - which lead to the possibility of interpreting general covariance to have physical significance solely in the context of G.R. - are based on parsimony considerations, then their approaches mirror practice, for practice too is so based: we do not use general covariant formulations of Newtonian and special relativistic theories on grounds of convenience or practicality, which leads to choosing the most parsimonious theory (given empiric equivalence). But does parsimony in this case, as regards both formal approaches and practice, have a rational deductive-empiric underpinning? The question leads back to the present stance regarding the status of theory embedded symmetries, which is that their physical significance depends on their distinct and valid testability. From this point of view the response to Kretschmann begins with the realisation that no testable consequences flow from generally covariant formulations of N.T.G. (whether for a flat or curved spacetime) and of S.R., over and above those stemming from their standard formulations (Havas, 1964). A general covariant formulation of N.T.G. is thus firstly, not empirically equivalent with G.R. - which  has an enhanced testability and is thus to be preferred from a critical rationalist point of view - and, secondly, it fails to satisfy the parsimony constraint. A generally covariant formulation of N.T.G. is laden with redundant surplus structure. As Havas (1964, p. 960) points out, 'The field equations are of course nonlinear in the Newtonian case as in Einstein's theory ...; however, for the Newtonian theory this nonlinearity must be spurious.' The parsimony constraint makes us take note of the fact that whereas general covariance is indispensable in G.R. - it was at least in its construction - it is redundant in Newton's theory. And the physical explanation of that point could be that whereas G.R. takes account of the effect of the field on the metric in a direct manner, a general covariant formulation of N.T.G. fails to do so. In the latter case the geometric significance of the field is unclear (Havas, 1964, p. 958). However, the parsimony constraint also runs into the induction/apriorist problem, notwithstanding that it is a sine qua non for any theory, and, like Einstein's simplicity and transparency, it is historically contingent, because the effect of its application depends on the sort of mathematics there happens to be around. The constraint is thus in need of a good rationale directed at the specific case of its application. Accordingly, provided one could rationally underpin the rejection of  general covariant formulations of N.T.G., on the ground that it fails to satisfy the parsimony constraint, then that underpinning would suggest that general covariance could have physical significance in the general relativistic context and not in the Newtonian one. Mutatis mutandis as regards a general covariant formulation of S.R. which also violates the parsimony constraint.
  

The indispensability of the parsimony requirement for an account of gravitation may be gauged from Havas' observation (1964, p. 963): 'The variety of ways, in part based on entirely different sets of concepts, in which we can express the fundamental laws for gravitating matter, all leading to identical physical predictions [and all satisfying Mathematical Coherence and HP], should caution us not to put undue stress on the supposed implication of a particular formulation of a theory, even if other formulations might not be available at any given time.' Clearly, physics cannot do without a distinct parsimony requirement being ensconced in its guiding context. However, empirically equivalent multiple formulations of a given theory are possible even within that context - e.g. the original, Lagrangian and Hamiltonian formulations of N.D., the multiple formulations of Q.M., etc. As indicated in sect. B., what matters in such cases (in the present context) is that the diverse formulations have equivalent symmetric-structures. 

Perhaps another way of seeing how parsimonious considerations lead to the view that general covariance could be physically significant in the general relativistic context and not in the Newtonian one - nor mutatis mutandis in the special relativistic one - is the following: The upshot of general covariance qua diffeomorphism invariance is that it leads us to understand how gravitational dynamics can be deterministic, notwithstanding the mathematically inequivalent class of metrics, which according to G.R. are available for making metrical sense of that dynamics. Now what the parsimony constraint indicates is that since in the Newtonian and special relativistic cases the important methodological desideratum of a deterministic dynamics is achieved within their respective standard covariance requirements, there is no need to consider their generally covariant formulations. Thus parsimony suggests the following in the Newtonian case: if it is possible to give a general covariant formulation of the theory in both flat and curved space-time, as well as a Galilean formulation in flat space-time, and if all these formulations are empirically equivalent, then we ought to choose the Galilean formulation, because in that formulation the Galilei group already achieves the determinist desideratum, in relation to the Euclidean flat spacetime of the theory. The general covariant symmetry is thus redundant in relation to Newton's theory - and mutatis mutandis in relation to S.R.;  an idea in line with Stachel's view that a differentiable manifold setting for pre-general-relativistic theories is superfluous (note 20). The following observation of Brown and Sypel is thus apt (1995, p. 240): 'The mere fact that a given physical theory can be formulated general-covariantly does not mean that all coordinate [reference] systems are assigned equal status in the theory. In the case of flat spacetime, for instance, the inertial coordinates [reference systems] are clearly privileged ...'. A generally covariant formulation of Newton's theory, and of S.R., is thus a theoretically superfluous way of expressing them. We should therefore not expect such  formulations to be content or prediction enhancing, nor should we expect general covariance to have physical significance in those contexts. But if within the overall constraints operating on a theory, including the constraint of general covariance, and including the demand that the theory yield novel testable consequences, one is compelled to the use of curved spacetime and a geometry that could express it, then general covariance could acquire physical significance. In that context there can be no preferential frames of reference, linked to a restricted symmetry group, except, of course, in some limiting context. (In respect of this way of seeing the implication of the parsimony constraint, it is irrelevant whether the geometry in question is uniquely determined by the initially imposed foundational constraints of the theory or whether it is in part conventional.) Thus given two theories both of which satisfy Coherence and HP, then the Parsimony constraint could suggest the theoretical context in which a particular covariance or invariance requirement may have physical content. And if such a requirement has physical content in one theoretical context and not in another, then we may expect it to render the theory in which it has content to be more parsimonious compared to the theory in which it has no content. This point is clearly borne out, in this case, judging from the succinct character of the formalism of G.R. compared to general covariant formulations of Newton's theory and of S.R.. We should also expect a symmetry of physical significance in one context but not in another, to be an aid in theory selection in the former case alone. Einstein's remarks above regarding the role general covariance had in his search for a theory of gravitation bear that out. 

Thus, underpinning the considerations of Anderson, Stachel, and of the above discussion - leading to the view that general covariance could be physically significant in the general relativistic context but not in the contexts of N.T.G. and of S.R. - is the parsimony constraint. Practice too is guided by parsimony, because convenience leads to parsimony. Hence the preference for G.R. over general covariant formulations of N.T.G. (although it also turns out that G.R. has an enhanced testability); the preference for the Galilean formulation of N.T.G. over its general covariant formulations; and the preference for the Lorentz formulation of S.R. over its general covariant formulation. All these practiced preferences turn out to be based on grounds of parsimony . As indicated above, this leads straight back to the induction/apriorist problem, and to the following question: could the parsimonious practice with respect to general covariant formulations of N.T.G. and of S.R., leading to their rejection - which amounts to accepting the view that general covariance has no physical significance in relation to the domains of N.T.G. and of S.R., whilst it may have such significance in relation to the domain of G.R. - have a good rationale, from the perspective of the present stance? The question may also be put thus: given that parsimonious practice vis-à-vis general covariant formulations of N.T.G. and of S.R., leading to their rejection, amounts to neglecting the effect of the gravitational field on the metric (on the posit that the general covariant formulations, unlike the standard formulations, do take some account of that effect), could there be deductive-empiric considerations - i.e. considerations other than those based on parsimony - that would lend rational legitimacy to this neglect, insofar as the domains of the standard formulations of N.T.G. and of S.R. are concerned? Recall that in inertial physics, parsimonious practice vis-à-vis Jeffreys' alternatives to the standard formulations of the foundational theories, leading to the rejection of those alternatives, could be rationally underpinned by the positive selection of the standard formulations, via deductive-empiric means, consequent to their satisfaction of HP - or so it was suggested in sect. B. Further, that positive selection turned out to be necessary if the projection problem in tests of the theories is to be overcome, thereby allowing for the possibility that the theories could be truthlike. But there is no possibility of such positive selection of general covariant formulations of N.T.G. and of S.R., from Jeffreys' alternatives to them, notwithstanding their satisfaction of HP. For unlike in the case of the standard formulations with their basic chronogeometric symmetries being linked, via Noether's theorem, to testable conserved quantities, there are no such clear-cut symmetry-conservation links in the case of the general covariant formulations, because in generally covariant theories the basic constants of the motion of inertial physics are no longer clearly identifiable - this observation is meant to hold in relation to any generally covariant theory, and not just in the case of G.R. (Anderson, note 10, and Havas, 1964, p. 955). There are, therefore, no clear-cut links, analogous to those in inertial physics, between the basic chronogeometric symmetries and testable conserved quantities. There is thus no clear-cut way of singling out - via deductive-empiric means - general covariant formulations of N.T.G. and of S.R. from Jeffreys' alternatives to them. There is thus no legitimate positive selection of the general covariant formulations. The projection problem in their would be tests is thus unresolved - i.e. they are not properly testable since their projectibility is untestable. Their rejection via the parsimony constraint is, therefore, rationally underpinned, from the viewpoint of the present stance. Positive selection, via deductive-empiric means, of the standard formulations of N.T.G. and of S.R., vis-à-vis Jeffreys' alternatives to them, also constitutes, in effect, their positive selection vis-à-vis their general covariant formulations, and I suspect vis-à-vis any non-parsimonious alternatives. Thus, given the link between general covariant formulations and taking account of the effect of the gravitational field on the metric, the neglect of that effect in standard N.T.G. and in standard S.R., may have an empiric warrant - i.e. the selection of those theories, via deductive-empiric means - insofar as the respective pure domains of those theories are concerned. This would suggest that general covariance, and its taking account of the gravitational field effect on the metric, should also be redundant in relation to the pure domain of Q.T., because Q.T. could also be positively selected, via deductive-empiric means, from Jeffreys' alternatives to it. Thus neglecting the effect of the field on the metric, or neglecting the interdependence of field and metric, could have an empric warrant in respect of the domains of inertial physics generally, and hence those domains may not require G.R.'s spacetime structure, nor its concomitant symmetric-structure. This conclusion is in line with the view that within the setting of the CC, symmetric-structure largely determines extent of domain.   
The apparent empiric legitimacy of the rejection of general covariant formulations of N.T.G. and of S.R. suggests that general covariance should have no physical significance in relation to the domains of the standard formulations of those theories, or equivalently, it suggests that those domains do not require the spacetime structure, and hence neither the metric nor symmetry group of G.R. That stance is in line with Anderson's and Stachel's views, deduced from formal interpretative considerations. The present perspective suggests that we may have good empiric grounds for that stance. But we are not out of the woods yet. For we still need to ask whether the potential physical significance of general covariance in G.R., as indicated by its "gauge-like" interpretation, could have a distinct empiric warrant, notwithstanding that the point - that in general covariant theories no clear-cut links obtain between the basic chronogeometric symmetries and testable conserved quantities - holds also for G.R. The point suggests that positive selection, via deductive-empiric means, from Jeffreys' alternatives, doesn't operate on any general covariantly formulated theory, including G.R. It would follow that the projection problem in tests of G.R. is unresolved, casting doubt on the truthlike character of the theory. How then could G.R. be singled out from Jeffreys' alternatives to it, given that no standard links between the basic chronogeometric symmetries of inertial physics and conserved testable quantities hold in it, notwithstanding its satisfaction of HP? Recall that in inertial physics the standard formulations could be singled out because Jeffreys' alternatives to them, whilst in principle able to reproduce the numerical predictions of the standard formulations, could not reproduce the structures indicated by the basic chronogeometric symmetries of the standard formulations. My posit here is that Jeffreys' alternatives to G.R., whilst in principle able to reproduce the numerical predictions of G.R., could not reproduce the structure indicated by general covariance qua diffeomorphism invariance, because the forms of those aberrant alternatives, would need to vary widely from point to point on the differentiable manifold if they were to reproduce the empiric base of G.R. The posit is that Jeffreys' alternatives to G.R. would not satisfy general covariance qua diffeomorphism invariance, because they are not well formed theories, which is analogous to the posit that his alternatives to the standard formulations of the theories of inertial physics do not satisfy the basic chronogeometric symmetries. Given this posit, G.R. could be empirically singled out from Jeffreys' alternatives to it, thereby resolving the projection problem in its tests, provided general covariance could be distinctly testable. Indeed, according to the present stance, the entire symmetric-structure of G.R. would need to be distinctly testable, if the possibility of the truthlike status of G.R. is to be granted. But whilst the distinct testability of the equivalence principle - which is clearly another uniformity hypothesis
 - is unproblematic (Dicke, 1964; Anderson, 1967; and Will, 1974 and 1993), the distinct testability of general covariance is in doubt. The problem of testing general covariance via Noether's theorem can be gauged from the following lines of Anderson (1964, p. 191): 'In general relativity the relativity [invariance] group of all coordinate transformations leads to an enlarged class of continuity equations [from which Noether invariants flow] as compared to the situation in special relativity, whether all these continuity equations are meaningful and can be tested, in principle at least, by observation is still an open question. A definite answer one way or the other would, of course, shed a great deal of additional light on the general relativity principle.' Anderson's observation suggests that there is no clear-cut Noether relation between general covariance and a testable conserved quantity. A recent study (Evans, 1995a and 1995b) which shows that the energy-momentum tensor is linked, via Noether, to a measurable magnetic flux density is of no help, since the question is whether the link between general covariance and the conservation of that tensor - even were that conservation to hold (Hoefer, 2000) - is of a Noether type.
 Thus whilst, in inertial physics, Noether's theorem suggests that we may have distinct and valid empiric access to the projectibility of a theory across its spacetime, we  appear to have no such access to the projectibility of G.R. across its Riemannian spacetime. Bergmann's (1962, p. 206) observation is apt here: 'This conjecture [i.e. general covariance, understood as the conjecture that inertial frames have no privileged status], just as all physical hypotheses, cannot be "derived" by a purely logical argument. It is based on certain experimental evidence, and on an interpretation of that evidence [i.e. evidence corroborating the equivalence principle]. It can be tested in terms of the predictions of a completed physical theory based on, or at least incorporating, the hypothesis. But this hypothesis of the fundamental equivalence of all frames of reference, known as the principle of (general) covariance, forms the cornerstone of Einstein's theory of gravitation...' [my italics]. Thus, prima facie, general covariance appears not to be testable distinctly from tests of G.R., qua integral unit, notwithstanding that the equivalence principle which leads to it, by suggesting that inertial frames may not be privileged in respect of gravitational effects, is distinctly testable.
 In the light of the present perspective, therefore, the objective character of general covariance, and if one grants its pivotal role in the theory, the objective character of G.R. itself, appear to be, prima facie, in doubt. 

Thus the present stance leads back to Kretschmann's query regarding the physical significance of general covariance in relation to G.R.. Kretschmann argued for its physical vacuity on formal grounds: that any well formed physical theory can be given a general covariant formulation. But this formal fact could be but an outcome of the formal structure of properly formulated theories. In contrast, the present stance brings the physical significance of general covariance in relation to G.R. into question not on formal grounds, but on the ground that, at least prima facie, it is not open to distinct and valid testability. In the present context, such testability is required if general covariance is to stand in for an objective feature of the domain of G.R., and,  consequently, that G.R. could be regarded truthlike. 

However, there are at least two considerations which may bear on the issue of the distinct testability of general covariance, qua both uniformity and symmetric posit, and on its unique relevance to G.R. 

(1) Independently of the equivalence principle, general covariance of G.R. - in either of its interpretations - distinctly rules out a preferential frame in respect of the gravitational interaction. But such a frame is detectable. The existence of such a frame is suggested by some theories of gravitation but none has as yet been detected (Will, 1974, p. 30). Although predictions of effects that would be indicative of the existence of a preferred frame stem from theories other than G.R. the corroboration of those effects would distinctly refute G.R.'s general covariance, which suggests the non-existence of such a frame; it would thus refute G.R. itself. The distinct detectability of a preferential frame indicates that general covariance could be distinctly testable (refutable); hence its physical significance. (The validity of such a test stems from the posit that its attendant projection and model mediation problems could be resolved, consequent to that Jeffreys' alternatives to the general covariant symmetry could not reproduce its diffeomorphic structure, in analogy to the situation as regards the basic chronogeometric symmetries of inertial physics.) But this possibility holds only in relation to G.R. and not in relation to a generally covariant formulation of N.T.G.. For if general covariance - which in the G.R. context points to the interrelatedness of geometry and the gravitational field - had physical significance in the domain of a general covariant formulation of N.T.G., then we would expect that theory to clearly indicate the geometric significance of the field, which, as pointed out earlier, it fails to do.
 This point reinforces the rejection of a generally covariant formulation of N.T.G. on the ground that it does not meet the parsimony constraint, the practice of which is, as suggested above, rationally underpinned by our inability to positively select that theory, via deductive-empiric means, from Jeffreys' alternatives to it. 

(2) Perhaps the most distinctive novel prediction of Einstein's geometrical formulation of G.R. is the existence of a gravitational wave, in the classical sense of that term - G.R.'s non-novel predictions are but in closer agreement with observations than the corresponding Newtonian ones. And the most distinctive formal trait of G.R. is its general covariance, which, as indicated above, is a necessary feature only of G.R., not of N.T.G. nor of S.R.; and which is interpreted to be a "gauge-like" symmetry, but with the gauge concept differing significantly from that in Q.F.T. (Weinstein, 1998). Thus we may perhaps posit that in the context of the various constraints operating on G.R. there exists a distinct formal link, which may have its objective correlate, between the distinct formal trait, i.e. general covariance, and the distinct prediction of a gravitational wave, notwithstanding that that prediction stems from the theory qua integral unit - in analogy to say the distinct link between the formal trait of t-translation invariance and the prediction of energy conservation on the part of a theory, which we find in pre-general relativistic physics. Conditional on that posit, the general covariance of G.R. could be distinctly testable, given the detectability of gravitational waves.
 (The argument regarding the validity of such tests is the same as that noted above, in relation to tests of a preferential frame in respect of the gravitational interaction.) 
 

If it is granted that general covariance is an integral part of G.R., then from the present standpoint its posited distinct and valid testability, along with such testability of the equivalence principle across test-intervals of G.R., could legitimate tests of G.R., i.e. it could resolve the projection problem in its tests, thereby ensuring the legitimacy of its corroborations and its possible falsifications. The distinct corroboration of both symmetries would provide good rationales for the projectibility of G.R. across its domain. And given that Jeffreys' alternatives to G.R. could not satisfy general covariance (they could not reproduce the "gauge-like" structure indicated by general covariance, qua diffeomorphism invariance), distinct and valid tests of general covariance would single out G.R., via deductive-empiric means, from those alternatives. But quite apart from the present stance, the question of the distinct testability of general covariance is important for the question of its status, particularly since this covariance requirement, unlike Lorentz covariance, and unlike the equivalence principle, cannot be linked directly to what an Einsteinian thought experiment could reveal about one's state of motion. 

Given the distinct testability of general covariance, and given that the implication of that testability would be relevant only to the gravitational interaction as exhibited by G.R., we would - from the perspective which links physical significance to testability - not expect it to have physical significance in relation to other theories of gravitation (including N.T.G.), nor in relation to S.R., which is a limiting case of G.R. in the absence of gravitation. This consideration reinforces the above view that we should not expect general covariance to be relevant to the pure domains of inertial physics generally. Given that general covariance appears to be intimately linked up with the effect of the gravitational field on the metric - at least according to G.R. - its apparent irrelevance to inertial physics lends legitimacy to the neglect of that effect in that physics. Of course, a complete account of non-gravitational phenomena (phenomena due to the effects of one or more of the non-gravitational interactions) would also require taking account of gravitational effects on such phenomena - and hence taking account of the effect of the gravitational field on the metric - since one cannot shield away such effects. So from that point of view, accounts of non-gravitational phenomena excluding gravitational effects, which amounts to treating non-gravitational phenomena against flat spacetimes, are approximations. However, in view of the relative weakness of the gravitational interaction, gravitational effects on non-gravitational phenomena are miniscule compared to effects of non-gravitational interactions on such phenomena (note 5). But leaving that aside, it does appear that, given that extent of symmetric-structure largely conditions extent of domain within the context of the CC, the pure domains of inertial physical theories, including that of N.T.G., do not require the spacetime structure of G.R., and that therefore treating the phenomena of those domains against flat spacetimes (where the effect of the gravitational field on the metric is neglected, and it is supposed that the other fields have no effect on the metric) is legitimate. Perhaps another way of seeing the matter is this: G.R. and its particular symmetric structure suggest that the gravitational domain requires a curved spacetime for its account. What the above analysis suggests is that, given the radically different symmetric structures of inertial physical theories (different from that of G.R.),  that curvature is legitimately neglected in the description of the respective domains of inertial physics, i.e. that those descriptions may legitimately regard spacetime as if it had no curvature, which amounts to the posit that the extent of spacetime regions involved in inertial physics is such that that as if holds. Alternatively put: the apparent link between extent of symmetric-structure and extent of domain, within the setting of the CC, could account for the successes of inertial physics (including the successes of N.T.G.), within its respective domains, notwithstanding G.R.'s indication that inertial frames (systems) do not exist, since they do not exist in the presence of gravitation, thought to be all pervasive. This view goes hand in hand with the idea that the pure domains of the non-gravitational interactions do not require general covariance because those interactions do not generate equivalence principles; hence there is no need to abandon the privileged status of inertial frames (even if they be fictional frames) in respect of their accounts, hence the legitimacy of the linearity of their accounts. It appears thus that it makes neither practical nor physical sense to describe dynamic processes in the domains of inertial physics against a manifold background that is coordinatizable in an entirely arbitrary manner, and the invariants of which necessitate tensors for their representation.

Scepticism regarding the empiric significance of spacetime symmetries, in particular of general covariance, has been expressed by Budden (1997, pp. 510-511): 'Might it not just be a matter of ingenuity to find ways of rewriting any spacetime theory based on any spacetime (with topology R4) in a generally covariant manner...'. But whilst the efficacy of ingenuity may indeed be largely responsible for the creation of theories, and for exhibiting their traits, it can, by itself, have no bearing on the status, one way or another, of either the theories, or of their traits. Thus although ingenuity may well be involved in our ability to rewrite spacetime theories in a general covariant manner, that consideration has no bearing on the status of general covariance. What has often been thought to bear on that status is that any spacetime theory, suitably expressed, admits a general covariant formulation. Kretchmann took that to mean that general covariance has no empiric significance in any theory, including G.R.. Einstein's immediate response was to concur with Kretchmann, but he went on to point out that, nonetheless, general covariance has great 'heuristic [selective] power'; for without it (as he later claimed), the search for non-linear equations of the gravitational interaction (i.e. the search for a theory that does not restrict its frames of reference to be inertial), is hopeless (Einstein, 1969, pp. 675-676). However, from a realist perspective (i.e. from Galileo's perspective that physical reality is mathematically structured - Drake, 1972, p. 264), it is not clear how general covariance could have heuristic power if it had no physical content. Notably, Einstein may have changed his mind on the issue. For, apparently (Angel, 1980, p. 189), '... there is ample textual evidence that, consciously or otherwise, he actually continued to treat the principle [of general covariance] as though it had factual content.' Be that as it may, the suggestion here is that Kretchmann's conclusion, based on the formal consideration that all spacetime theories admit general covariant formulations, naturally leaves out later conceptions, which restrict the physical significance of general covariance to G.R.; conceptions based on parsimonious considerations, which mirror practice, and which could perhaps be empirically underpinned.
 Accordingly, if the distinct testability of general covariance solely in relation to the gravitational interaction as given by G.R. is granted, then general covariance could be standing in for an objective feature of the domain of G.R. alone. The entire domain of G.R. could thus be such as to permit G.R. to have the same form in any frame we care to consider. 

General covariance, qua diffeomorphism invariance - which points to the Leibnitzian equivalence of a set of physically insignificant points of a differentiable manifold (the uniformity aspect of general covariance), and to a class of metrics which, although mathematically different, are nonetheless physically equivalent (hence linked to the symmetric aspect of general covariance) - like any other active symmetry, is potentially physically significant, because the domain in which it is meant to hold need not comply with its restrictive force; which in this case suggests that the predictions of G.R., and hence also its models, should remain unchanged under a diffeomorphic transformation on the manifold. G.R. can now be understood to be based on that posit, which is clearly not necessarily physically void, because it is at least conceivable that matters would be different in a great variety of ways. For example, should the points of the manifold not be equivalent then neither would all neighbourhoods of Riemannian spacetime be equivalent, with respect to the applicability of G.R., without requiring a compensating change in G.R.'s  form - a Riemannian spacetime obtained via a metric tensor field of G.R. being introduced on the bare coordinatized differentiable manifold. The possible distinct and valid testability of general covariance, in relation to the gravitational interaction as exhibited by G.R., lends some empiric legitimacy to its potential physical significance, in the context of G.R. And the consideration that all available alternative theories to G.R. are, for one reason or another, not viable (Will, 1974), reinforces the view that that significance is likely to pertain solely to G.R. That theory could thus be truthlike in virtue of a similarity relation its symmetricity could have with that of the true theory; a relation characterized by the term symmetric-structure-likeness (note 8).
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� It is worth considering here how Einstein may have understood "coordinates" and "metric" in the context of G.R. He (1922, pp. 33-39) agreed with what he took to be Poincaré's geometric conventionalism (or its consequence for physics): insofar as axiomatic geometry (G), is concerned, only (G) plus '...the purport of physical laws...' (P), '...is subject to the control of experience.' It follows that any axiomatic geometry can be maintained regardless of experience, because both (G) and parts of (P) are conventional. But Einstein goes on to suggest that, '...in the present stage of development of theoretical physics...' it is 'practical geometry', based on congruence relations provided by 'practically rigid' rods and 'ideal' clocks, that should matter. Thus, apparently, in so far as inertial physics is concerned, he regards such congruence relations to be spatio-temporally invariant, and hence invariant under transport, and he takes the sharpness of the wavelength of atomic spectra from distant objects to constitute evidence for this invariance. In the light of this practical geometry, therefore, the metric is uniform (or global) across spacetime in the inertial Newtonian and special relativistic domains, where it is Euclidean and quasi-Euclidean, respectively. However, once he admitted non-inert reference systems [as Lorentz contraction demands (ibid. p. 33), and the equivalence principle suggests; implicating a need to take account of the effect of the gravitational field on rods and clocks (see his, 1916, sect.22)], which led to the need of non-linear transformations between such systems, he (1934a, pp. 288-289) saw that that move, '... was inevitably fatal to the simple physical interpretation of the coordinates - i.e., that it could no longer be required that coordinate differences should signify direct results of measurement with ideal scales or clocks. ... The solution of the above-mentioned dilemma was therefore as follows: A physical significance attaches not to the differentials of the coordinates but only to the Riemannian metric corresponding to them.'. Einstein reiterates this point elsewhere (1936, p. 309), '... the new coordinates can no longer be interpreted as results of measurements on rigid bodies and clocks, as they could in the original system (an inertial system with vanishing gravitational field). ... Now the coordinates, by themselves, no longer express metric relations, but only the "closeness" of objects whose coordinates differ but little from one another.' - see also Norton (1989). 


   The contrasting meanings of the notion of "coordinate" in inertial physics and in G.R. may perhaps be understood thus: In the former case the concept of a rigid reference frame, equipped with a metric (conceived operationally with the aid of the concepts of ideal rods and clocks), allows us to conceive of coordinate differences  (or spacetime intervals) as physically significant, because such differences are, in principle, open to empiric access. The defined metric – which, given its linearity, holds globally (uniformly across spacetime) - thus acquires physical significance via the physically significant coordinate differences. Accordingly, in inertial physics "coordinates", or spacetime "points", may be assigned physical significance (even if they are not regarded real substantively); and this significance may be regarded to be underpinned by the apparent distinct and valid testability of the basic chronogeometric symmetries of inertial physics (sect. B). But this picture is clearly not transferable to the domain of G.R. because of the non-linearity of the metric. In that context, coordinate differences can no longer be empirically accessed, not even in principle. The "coordinates" thus lose their physical sense, and are no more than labels. Thus, '… the coordinates, by themselves, no longer express metric relations, but only the "closeness" of objects whose coordinates differ but little from one another.' (ibid); "coordinates" as given by a Gaussian system (Einstein, 1916c, sect. 28). Accordingly we may perhaps interpret the situation thus: whilst in inertial physics "coordinates" have global metrical significance, as does the relevant metric within reference frames restricted to being inertial, in G.R. "coordinates" have metrical significance only locally, in the immediate neighbourhood of observers where the metric is well approximated by a Minkowski metric, and thus where Lorentz transformations can be used for relating "coordinates" of different reference frames, thereby exhibiting the equivalence of those frames, but, significantly, the frames are no longer restricted to being inertial (see, e.g. Cook, 2004). This admission of non-inert reference systems compelled Einstein to abandon Euclidean geometry (Einstein, 1922, p. 33). But this move was specifically in respect of an account of gravitation, and it was taken in a context of several constraints, in particular his criterion of mathematical simplicity - as we shall see. Thus on Einstein's view of Poincaré's stand, Poincaré is right after all: it should in principle be possible to construct a theory that would be empirically equivalent to G.R. using any axiomatic geometry, if only because one is free to alter Einstein's criterion of mathematical simplicity. The preferred geometry is thus conventional, but hardly arbitrary. See also Bergmann (1962, esp. p. 210), from which I quote further in this section; and on a specific discussion of the realist vs. conventionalist view of physical geometry see Friedman (1983).


� Spacetime and matter are thus closely intertwined, suggesting that in so far as the domain of G.R. is concerned we may follow Einstein in holding that without matter or gravitational field there is no spacetime (Norton, 1993, p. 805). But even in inertial physics, where the domain specific spacetimes and matter are not theoretically intertwined, the physical meaning of the associated metrics does depend on the existence of matter, in the form of rigid rods and ideal clocks, which allow an operational definition of the metrics. Thus even there, understanding the relevant spacetimes is matter dependent. But neither in G.R. nor in inertial physics is one compelled to regard spacetime as substantive, as opposed to regarding it as but a concomitant feature of matter. 


� On the problematic character of the "absolute" notion, and on other issues regarding G.R., see (Maidens, 1998). 


� In both inertial physics and G.R. it is presupposed that there is no coupling between the non-gravitational fields and the metric of G.R., and hence no coupling between those fields and the affine or inertial effects encoded in that metric; which could perhaps account for there being no equivalence principles associated with those fields, i.e. for the charges involved in non-gravitational interactions not being equal to the inertial masses of the particles in question. But, of course, that does not mean that non-gravitational fields may not interact with the gravitational field, e.g. the posited interaction between the electromagnetic and gravitational fields can account for the observed red shift, one of the predictions of G.R. (Anderson, 1967, p. 403).


� If the intensity of the strong force is assigned a value of 1 then that of electromagnetism is 10-2, of the weak force 10-13, and of gravitation 10-38. This consideration could account for the successes of treatments of non-gravitational interactions in inertial physics, notwithstanding the neglect of the field-dependence of the metric in those treatments, because gravitational effects on the items (particles or fields) that figure in the dynamics of those interactions are, under the conditions in which those successes have been obtained, minute compared to the effects on those items of those interactions themselves. But the weakness of the gravitational interaction also suggests that the field effect on the metric should be significant only in a cosmological setting.


� G.R. satisfies the CC: it is mathematically coherent, it is parsimonious, and it can be derived from a variational principle. On the latter point see Einstein (1916b, and 1950, p. 353); Anderson (1967, p. 344); and Stephani (1985, pp. 91-95).


� The views expressed here were reached in sect. B, where a valid test was taken to be one that could bring into contact a singular hypothesis and its test-phenomenon, consequent to that its attendant projection and model mediation problems could be resolved, via deductive-empiric means. 


� For a sequence of comparable theories satisfying the CC, truthlikeness was characterized in terms of the expression symmetric-structure-likeness, in relation to the true symmetric-structure of a posited true target theory; with the likeness relation referring to likeness of common symmetric form (suggesting continuity), as well as to likeness of  uncommon symmetric content, i.e. of uncommon extent and kind of symmetricity (suggesting a discontinuous stepwise approach to the true symmetric-structure and thus to the true theory).


� The role of general covariance and of the equivalence principle in G.R. is in dispute today. [Anderson (1967, p.339) suggests that acceptance of general covariance - or in his terminology invariance - renders both Mach's principle, which also guided Einstein, and the equivalence principle, redundant.] Here I take them to be foundational constraints on G.R., as they were for Einstein in his construction of the theory, although his original version of the equivalence principle was restricted to the equivalence of uniform acceleration and a homogeneous gravitational field. Three other constraints, or desiderata, figured in the construction of the theory: that the theory yield conservation laws, as regards energy and momentum, and that N.T.G., and S.R., be recovered, in the limit of c(∞, and in the absence of gravitation, respectively (Norton, 1993 and 2000). Whilst a simple conservation law was not achieved (Hawking and Israel, 1979, Ch.1, sect.1.2; Hoefer, 2000), the two other desiderata were: 'Thus Einstein's general theory of relativity contains the special theory of relativity without gravitation and Newton's theory of gravitation in a four-dimensional generally covariant form as two distinct straightforward limits.' (Havas, 1964, p. 963).


   Notably, a flat space formulation of Einstein's theory is possible (Gupta, 1957), but such formulations are not thought to be viable on empiric grounds (Will, 1974).  


� Anderson (1964, pp. 175-176) makes the point thus: 


   'In 1918, Noether showed that there is a very close relation between the invariance properties of a given theory whose equations of motion are derivable from a variational principle and the conservation laws of that theory. Consider first a theory that is invariant with respect to a group whose elements are specified by a finite number of parameters, that is, a Lie group. In this case, for every parameter there is an equation of continuity that is satisfied by real motions of the system. Furthermore, if the system is in some sense closed, one can convert this equation of continuity into a conservation law, i.e., a statement that some dynamical variable is a constant of the motion.  


   If the invariance of the theory is with respect to a group whose elements are specified by one or more arbitrary space-time functions such as the gauge group of electrodynamics or the group of arbitrary coordinate transformations of general relativity, the relationship is not so clear. There is an equation of continuity corresponding to every arbitrary function. Now, however, these equations are identities; they are satisfied by the variables of the theory whether they describe a real motion of the system or not. Although it is possible to obtain from these identities a large number of continuity equations which are satisfied only for real motions of the system, they do not appear to lead to conserved quantities except in very special cases. A better understanding of the invariance properties of a theory may lead us to a better understanding of this type of conservation law.' 


   Anderson's lines suggest how it is that in general covariant theories generally (not just in the case of G.R.) the constants of the motion of inertial physics are no longer clearly identifiable, and hence how it is that there are no clear-cut Noether type links, analogous to those in inertial physics, between basic chronogeometric symmetries and testable conserved quantities. We may also discern from these lines how it is that in Q.F.T. the local gauge symmetries do not yield distinct Noether invariants over and above those that issue from their global sources - as noted in sect. D. (See also Fletcher, 1960, and Hoefer, 2000)          


� It may be of some interest to note here that, 'The idea that it is possible to find a symmetry principle powerful enough to dictate the form of the interactions seems to go back to Einstein and Minkowski, originating in their work on electromagnetism.' (Aitchison, 1982, p. 7) It is thus not surprising that Einstein turned to general covariance in the context of the other constraints, noted above, in his quest for a theory of gravity. However, whether this move should be seen as an authentic (or mere) extension of the relativity principle is still in dispute (Brown and Brading, 2002).


� This view is compatible with the ideas that locally, in coordinate neighbourhoods, where coordinate differentials do acquire metrical significance, the metric can be approximated by a Minkowski metric, and that any neighbourhood of Riemannian spacetime can, in principle, become such a locality; conditions which could be interpreted to suggest that the metric of G.R. is in effect uniformly the Minkowski one. But that is not, I think, the way it ought to be seen, given its formal coordinate dependence.


� We may appreciate this aspect of general covariance by noting that Einstein's ten field equations overdetermine the ten components of the metric coefficient gμν. Einstein (1950, p. 353)  himself makes that point very clear: ' ... the equations of gravitation are ten differential equations for the ten components of the symmetrical tensor gμν. In the case of a non-general relativistic theory, a system is ordinarily not overdetermined if the number of equations is equal to the number of unknown functions. The manifold of solutions is such that within the general solution a certain number of functions of three variables can be chosen arbitrarily. For a general relativistic theory this cannot be expected as a matter of course. Free choice with respect to the coordinate system implies that out of the ten functions of a solution, or components of the field, four can be made to assume prescribed values by a suitable choice of the coordinate system. In other words, the principle of general relativity implies that the number of functions to be determined by differential equations is not 10 but 10 - 4 = 6. For these six functions only six independent differential equations may be postulated. Only six out of the ten differential equations of the gravitational field ought to be independent of each other, while the remaining four must be connected to those six by means of four relations (identities). And indeed there exist among the left-hand sides ... of the ten gravitational equations four identities - "Bianchi's identities" - which assure their "compatibility".' Wheeler (1964, p. 81) relates that this overdetermination made Einstein initially sceptical about the final form of the field equations. But then Hilbert pointed out that if the equations uniquely determined the components of gμν, then they would be unacceptable, because they would then determine not only the geometry but also the coordinates in terms of which that geometry is to be expressed, which would, of course, have violated general covariance, qua invariance under arbitrary curvilinear coordinate transformations, i.e. it would have violated the point about labels having no physical significance.  


� Ironically Kretschmann's argument is based on one of Einstein's own central ideas (Norton, 1993, pp. 817-819). See also (Lawrie, 1990, Ch. 8, esp. p. 159). 


� As he pointed out on another occasion (Einstein, 1950, p. 352) '... the principle of general relativity [covariance] imposes exceedingly strong restrictions on the theoretical possibilities. Without this restrictive principle it would be practically impossible for anybody to hit on the gravitational equations, not even by using the principle of special relativity, even though one knows that the field has to be described by a symmetrical tensor. No amount of collection of facts could lead to these equations unless the principle of general relativity were used.' See also Rosenthal-Schneider (1969, p. 138, note 18); and Brown and Brading's (2002) discussion of Einstein's response to Kretschmann.


� Satisfaction of general covariance on the part of the new theory was a desideratum for Einstein, although that desideratum had to be abandoned for two years. As Havas (1964, p. 965) points out, 'Historically, the emphasis in the development of Einstein's theory was on the generalization of the space-time structure of the special theory of relativity to incorporate the principles of general covariance and of equivalence.' On the two year abandonment see (Norton, 1993; and Stachel, 1993).


� Einstein (1950, p. 342) himself may have realised this point, and perhaps he thought that linking simplicity with success is a way out of the problem: 'The metaphysicist believes that the logically simple is also the real. The tamed metaphysicist believes that not all that is logically simple is embodied in experienced reality, but that the totality of all sensory experience can be "comprehended" on the basis of a conceptual system built on premises of great simplicity. The sceptic will say that this is a "miracle creed". Admittedly so, but it is a miracle creed which has been borne out to an amazing extent by the development of science.' 


� See also Friedman (1983). For some other responses see Norton (1993).


� The idea that there are no absolute elements in G.R. is to be understood in contrast to the case in S.R. where the absolutes are '... the metric and affine structures of space-time ' (Brown, 1997, p. 67). There are no such absolutes in G.R. However, as Brown  points out, even in G.R., 'There is ... some justification ... in calling both the type of the metric (i.e. whether it is Riemannian or otherwise) and its signature absolute features of space-time.' (p. 68) Thus, 'It is perhaps worth emphasising the fact that in GR the signature of the metric field is not determined by Einstein's field equations. This property of the metric field, along with the very physical (operational) meaning of the metric, owes its existence to the legacy of SR. ... It is a fundamental assumption in GR that the local structure of space-time, suitably defined, is special relativistic.' (p. 68) This point should not be surprising given that the recovery of S.R. was one of the major constraints operating in Einstein's construction of G.R. In the context of this constraint - plus the others noted in the text - one can see how the "absolute features" of G.R. could have been dictated by S.R.. Brown's conclusion is thus apt, '... the "absolute features" of GR specified above are what they are ultimately because of the nature of the non-gravitational interaction in the world.' (p. 68)    


� In view of this parsimonious foundation of Anderson's stance, and in view of the present stance, one could perhaps see his stance thus: One could regard the symmetric-structure revealed by a distinctly testable theory embedded symmetry - a component of the testable symmetricity of the theory - to be an absolute structure of the domain of the theory. Then whatever generates the symmetry expresses an authentic symmetry principle, with respect to its embedding theory, provided the theory is parsimonious. Accordingly, general covariance, were it to be distinctly testable (an issue discussed further in the section), could be regarded to be an authentic symmetry principle, pointing to an absolute structure, but only in the general relativistic domain, because general covariant formulations of N.T.G., and of S.R., are not parsimonious. (To regard a symmetric-structure to be absolute is not in conflict with the tenor of sect. B: that the symmetric-structures of phenomena depend on the domain of this or that theory in which the phenomena occur, and hence on the conditions that circumscribe that domain. What is meant is that within a particular domain, its associated symmetric-structures may act like absolute elements: conditioning phenomena, but not vice versa.) 


� Thus Stachel (1993, p. 149): 'Such an account of pre-general-relativistic theories, which makes no mention of differentiable manifolds, is entirely respectable. In one way, indeed, it is more respectable than one that does have such recourse, because it introduces less physically redundant mathematical structures, ...'.


� Stachel (1993) takes a theoretical model, or possible "world", of a foundational physical theory, to consist of its non-dynamical structure (manifold & metric), and one of its particular solutions, obtained with the help of its dynamic structure (equations of motion) plus auxiliary conditions. In this case, however, the metric is part of the dynamic structure.


� The diffeomorphisms relating the field to the class of metric tensor fields, gμν, are apparently such that they preserve the global invariance of the validity of the expression for the metric ds2 = gμν dxμ dxν . For only if that is the case could general covariance, qua diffeomorphic transformation, be regarded physically significant.


� This idea is held notwithstanding possible solutions of Einstein's equation for spacetimes without the presence of physical fields, suggesting the possibility of a substantive field independent spacetime. According to Stachel, this possibility ignores the non-disentanglable dual role of the metric - its chronogeometrical and gravitational roles - which indicates its field dependence. Stachel's view is in line with the idea that not all solutions of physical theories need have instantiations, e.g. advanced potential solutions of classical electrodynamics. For a more recent discussion of the substantivalist issue in relation to G.R. see (Melia, 1999).


� The idea that a deterministic view of G.R. requires a "gauge-like" interpretation of general covariance, or a gauge invariant interpretation of G.R., is also indicated by a study of Belot and Earman (1999). The study suggests, however, that such an interpretation leads to the time problem in respect of both classical and quantum theories of gravity.  


� It is perhaps worth noting that generally covariant formulations of both N.T.G. and of S.R. can, just as their standard formulations, be obtained from variational principles (Havas, 1964, pp. 963-965).


� This point is most clearly seen from Einstein's own formulation of the principle: 'All local, freely falling, non-rotating laboratories, are fully equivalent for the performance of all physical experiments.', cited in (Longair, 1984, p. 281).     


� On how general covariance looks from the perspective of Noether's theorems see Brown and Brading (2002).


� The distinct testability of the equivalence principle is not tantamount to the distinct testability of general covariance. For although the equivalence principle may be a 'direct consequence' of general covariance, the inverse does not hold (Anderson, 1967, pp. 338-339). Thus whilst distinct tests of the equivalence principle can be regarded to be tests of G.R. as a whole - as Anderson (1967, p. 403) does - they are not distinct tests of general covariance. It is worth noting here that in 1934, Einstein (1934b, p. 284) appears to take the equivalence principle to be indicative of the physical significance of general covariance: 'Is it true that the equations which express natural laws are covariant with respect to Lorentz transformations only and not with respect to other transformations? Well, formulated in that way the question really has no meaning, since every system of equations can be expressed in general coordinates. We must ask: Are not the laws of nature so constituted that they are not materially simplified through the choice of any one particular set of coordinates? We will only mention in passing that our empirical law of the equality of inert and gravitational masses prompts us to answer this question in the affirmative.' On a recent discussion of the relation between the equivalence principle and general covariance see Brown and Brading (2002).  


� Havas (1964) has shown that there are two generally covariant formulations of N.T.G.: one in flat spacetime, and one in curved spacetime. According to Will (1974), the former is not viable since it is not metric - in Will's terminology only a theory that accounts for gravity in terms of a spacetime curvature is metric. Since the general covariant formulation of N.T.G. in curved spacetime is metric, we would expect that metric to be dynamic, i.e. field dependent. Thus the theory ought to give a clear indication of the geometric significance of the field. But according to Havas it fails to do that.


� See e.g., Ju, et. al. (2000); Franklin (1994); Collins (1994); Will (1993) and Blair (1991);


� The empiric status of physical symmetries, based on their "direct" or "indirect" "observability", has recently been considered by Kosso (2000). His study finds, rightly, that only 'indirect evidence' can be marshalled in relation to general covariance, qua external local symmetry. From the viewpoint suggested here, this finding indicates that general covariance is not open to distinct testability, via the sort of "observability" considered by Kosso. However, its distinct testability might be had given the posit suggested here.


     The idea of a gravity wave suggests gravitational energy, and given the link between the field and metric points to the idea of spacetime structure possessing energy, which in turn points to a substantivalist notion of spacetime. However, this line of reasoning breaks down given that gravitational energy is ill-defined (Hoefer, 2000).  


     The idea of G.R. qua Q.F.T. is at present extremely problematic, given renormalization problems, etc. (But see e.g., 't Hooft, 1980; Mills, 1989; Lawrie, 1990, pp. 158-159; Stachel, 1993; Ryder,1994, pp. 115-128). However, given such a formulation, general covariance could be interpreted to suggest a compensating gauge field (in analogy with the gauge symmetries of inertial physics), which would characterise the gravitational interaction, and provide an account of the physical equivalence of the mathematically inequivalent class of metrics. Accordingly, general covariance could perhaps be distinctly testable via such a theory's prediction of a gravity wave and its quantum, the graviton - in analogy with the proposed testability of the local gauge symmetries of Q.F.T., discussed in sect. D. (The idea suggested there was that although a local gauge symmetry does not engender its characteristic distinct testable consequence, the link between the gauge symmetry and the theory predicted testable quanta of the field, could be analogous to a Noether type link between a symmetry and a theory predicted testable conserved quantity. And the physical argument for the physical significance of gauge symmetries is that whilst differing gauges - e.g. differing metric structures linked by diffeomorphisms - may be interpreted to lead but to alternative representations or descriptions of the same physical state -  e.g. the same gravitational field - the fact that the domain at issue permits such specified alternative representations or descriptions, when matters could be different in so many ways, does indicate that the gauge symmetry could be of physical significance.)   


� Indeed, Einstein's response to Kretchmann (as indicated in this section) may itself be hinting that parsimony considerations ought to be relevant to the issue, but on grounds of practicality, rather than on grounds of methodological and epistemological necessity. For on my reading, Einstein is suggesting that the heuristic power of general covariance consists in its ability to exhibit the relative simplicity and transparency, in the light of the tensor calculus, of a set of competing theories, satisfying the same constraints. And further that the theory that best satisfies his criterion of simplicity and transparency will be the most parsimonious, and hence, from a practical point of view, best manageable or usable, and should therefore be preferred. Einstein could have responded to Kretchmann by pointing to the resolution of the problem posed by the hole argument, which suggests the potential physical significance of general covariance. But, presumably, he saw that such a response would be inadequate, because it would leave Kretchmann's rationale untouched, i.e. that any theory, suitably expressed, can be given a generally covariant formulation. Einstein was thus apparently compelled to resort to his simplicity criterion, which excludes Newton's theory on practical grounds. But without a deductive-empiric underpinning, that move runs into the induction/apriorist dilemma. 





