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                                    Abstract

It has often been recommended that the differing probability distributions of a group of experts should be reconciled in such a way as to preserve any agreement on the stochastic independence of  events. When probability pooling is conceived in analogy with the multi-profile social welfare theory of Arrow, there are severe limitations on implementing this recommendation. In particular, when the individuals are epistemic peers whose probability assessments are to be accorded equal weight by means of some type of averaging function, universal preservation of independence is, with a few exceptions, impossible. As an alternative, we consider here probability pooling conceived in analogy with the single profile social welfare theory of Bergson and Samuelson, and we describe several methods of preserving common instances of epistemically significant independence in this framework. 
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1.  Introduction
There has been a recent resurgence of interest among philosophers in the epistemology of disagreement, an inquiry that seeks to determine how two individuals (“you” and “I”) should revise their beliefs in the face of disagreement when each regards the other as an epistemic peer.1 Richard Feldman (2006), David Christensen (2007), and Adam Elga (2007), have all argued that in such cases one should give equal weight to the opinion of a peer and to one’s own opinion. As Thomas Kelly (forthcoming) has observed, the natural framework for exploring this equal weight view is one in which beliefs are encoded as judgmental probabilities, and this is the framework adopted here.2
     Suppose that you and I have each assessed a probability distribution over a countable set S of possible states of the world, and that my distribution P1 differs from your distribution P2. A natural way to implement the equal weight view here would be for each of us to revise our priors to their arithmetic mean P3 = ½ P1 + ½ P2.3 But many individuals have found arithmetic averaging to be problematic as a method of pooling probabilities, citing, inter alia, the fact that such averaging may fail to preserve agreement on the stochastic independence of events.  However, Genest and Wagner (1987) have shown that, under certain regularity conditions (see Theorem 2.4  below), if  |S| ≥ 5, only dictatorial pooling ensures the universal preservation of independence. Applied to the epistemic peer problem, this theorem entails that, under the aforementioned regularity conditions, insisting on universal preservation of independence entails that I must either stand pat in all cases of disagreement with you, or in all cases adopt without modification your probability assessments.

     Does this result constitute a “conundrum” for the equal weight view (indeed, for any sort of weighted averaging as a method for reconciling differing probability assessments) as, for example, Tomoji Shogenji (2007) has suggested? Our aim here is to explore this question in detail. In section two, we review the basic theory of probability pooling, conceived in analogy with the multi-profile social welfare theory of Kenneth Arrow (1951), including the aforementioned limitative theorem of Genest and Wagner.  We argue, however, that this theorem poses no problem for the equal weight view, since it is unreasonable to demand preservation of every single instance of independence common to the distributions of the relevant individuals. In section 3, we adopt as an alternative a conception of pooling analogous to the single profile social welfare theory of Bergson (1938) and Samuelson (1967) and describe several methods of preserving common instances of epistemically significant independence in this framework. 
2.  Multi-profile probability pooling and independence preservation
In what follows, S denotes a countable set of possible states of the world, assumed to be mutually exclusive and exhaustive. A function P: S → [0,1]  is a probability distribution on S if and only if                 ∑s
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S P(s)=1.  Each probability distribution P gives rise to a probability measure (which, abusing notation, we also denote by P) defined for each set  E 
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 S  by P(E) := ∑s
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E P(s).
      Denote by  Δ  the set of all probability distributions on S.  If n is a positive integer, we call a sequence (P1,…, Pn) of probability distributions on S  a profile, and denote by  Δn  the set of all such profiles. A pooling operator is any function  T: Δn → Δ.  The choice of such an operator determines a multi-profile procedure which, depending on the context, may furnish 

(i)  a rough summary of the current probability distributions  P1,…,Pn  of  n individuals;

(ii)  a compromise adopted by these individuals in order to complete an exercise in group decision making;

(iii)  a “rational” consensus to which all individuals have revised their initial probability distributions  P1,…,Pn  after extensive discussion;

(iv)  the probability distribution of a decision maker external to a group of n experts (who may or may not have assessed his own prior over S before consulting the group) upon being apprised of the probability distributions  P1,…,Pn  of these experts;

and, of particular interest here, for the case n =2, 
(v)  a  common revision of the probability distributions P1,…,Pn of n epistemic peers upon being apprised of each other’s probability assessments.
     There is an extensive literature on probability pooling (see the article of Genest and Zidek (1986) for a summary and appraisal of work done through the mid-1980s), which parallels in many respects the older and even more extensive literature on social welfare functions in the sense of Arrow (1951). Following the example of social welfare theory, pooling theories posit certain constraints on pooling, and then attempt to identify the pooling operators that satisfy those constraints. Typical constraints have included, for example:

Irrelevance of Alternatives (IA):  For each s
[image: image4.wmf]Î

S, there exists a function

fs: [0,1]n → [0,1] such that for all (P1,…, Pn) 
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 Δn ,

                   T(P1,…, Pn)(s) = fs(P1(s),…, Pn(s)).                            (2.1)   
Zero Preservation (ZP): For each s
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S and all (P1,…, Pn) 
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Δn,  if     P1(s) = …= Pn(s) = 0, then T(P1,…, Pn)(s) = 0.

Universal Independence Preservation (UIP): For all (P1,…, Pn) 
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Δn and for all subsets E and F of S, if  Pi(E∩F) = Pi(E)Pi(F) for i = 1,…,n, then

T(P1,…, Pn)(E∩F) = T(P1,…, Pn)(E) T(P1,…, Pn)(F).4
The pooling operators satisfying IA and ZP are just weighted arithmetic means.

Theorem 2.1. (Wagner 1982)  If  |S| ≥ 3,  a pooling operator T satisfies IA  and  ZP  if and only if there exists a sequence (w1, …,wn) of nonnegative real numbers summing to 1 such that, for all  s
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S  and all  (P1,…, Pn) 
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 Δn,  T(P1,…, Pn)(s) = w1P1(s) + …+ wnPn(s).

Remark 2.1.  If |S| = 2 there is a rich variety of pooling operators satisfying  IA and Z.  See Lehrer and Wagner (1981, Theorem 6.5).
It is clear that weighted arithmetic pooling may fail to satisfy condition UIP. Indeed, only the most extreme forms of such pooling satisfy UIP.

Theorem 2.2. (Lehrer and Wagner 1983)  If  |S| ≥ 3,  a pooling operator T satisfies IA, ZP, and UIP  if and only if it is dictatorial, i.e.,    if and only if there exists a  d 
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 {1,…,n}  such that for all               (P1,…, Pn) 
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 Δn,   T(P1,…, Pn) = Pd.  

As shown in Wagner (1984), dropping condition ZP is of no help since pooling operators satisfying IA and UIP must be dictatorial or imposed.
     Condition IA is stronger than it might appear to be at first glance. In particular, despite the apparent flexibility of using different functions to reconcile the probabilities assigned to each state of the world, it subjects those functions to the quite stringent requirement that        
[image: image13.wmf] Σs fs(P1(s),…, Pn(s)) =1, without any normalization. Would allowing for normalization allow accommodation of condition UIP in non-dictatorial fashion?  In what follows we restrict attention to probability distributions that assign a positive probability to each s
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S in order to avoid consideration of minor variations on the principal result,5 denoting by Π the set of all such distributions, and by  Πn  the set of all n-tuples of such distributions. A restricted pooling operator is any function           R: Πn → Π.  We consider two conditions on such operators.

Normalized Averaging (NA):   For each s
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S, there exists a function gs: (0,1)n → (0,1)  such that for all (P1,…, Pn) 
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 Πn ,

                    Σs 
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 S  gs(P1(s),…, Pn(s)) < ∞,        

 and 

  R(P1,…, Pn)(s) = gs(P1(s),…, Pn(s)) / ∑s 
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 S  gs(P1(s),…, Pn(s)).     (2.2) 

Universal Independence Preservation (UIP):   For all (P1,…, Pn) 
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Πn and for all subsets E and F of S, if  Pi(E∩F) = Pi(E)Pi(F) for i = 1,…,n, then R(P1,…, Pn)(E∩F) = R(P1,…, Pn)(E) R(P1,…, Pn)(F).

     When |S| = 3, any restricted pooling operator preserves independence in a trivial way since events E and F cannot be independent with respect to  P
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Π  unless one of E or F is S or the empty set. When |S| = 4, there is a rich variety of pooling operators satisfying NA and UIP:
Theorem 2.3. (Abou-Zaid 1984; Sundberg and Wagner, 1987) Suppose that |S| = 4 and R is a restricted pooling operator of the form (2.2) such that at least one of the functions gs is Lebesgue measurable. Then R preserves independence if and only if there exist arbitrary real constants a1,…, an and b1,…, bn such that

         R(P1,…, Pn)(s) 
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 EMBED Equation.DSMT4  [image: image23.wmf]1

n

i

=

Õ

 [Pi(s)]bi  exp{aiPi(s)[1 - Pi(s)]}               (2.3)
for all P1,…, Pn 
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 Πn  and all s
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S.
The pooling formulae arising from (2.3) include dictatorships          (ai
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0, bi = δi,d, the Kronecker delta for fixed d 
[image: image27.wmf]Î

{1,…,n}); normalized weighted geometric means (ai
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0); and the method which imposes the uniform distribution for all profiles P1,…, Pn (ai
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0, bi
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0).

     When |S| ≥ 5, however, the situation is quite different.
       Theorem 2.4. (Genest and Wagner 1987)  If |S| ≥ 5, a restricted pooling operator R satisfies NA and UIP if and only if it is dictatorial.

At first glance, this result may appear to be devastating to the equal weight approach to resolving peer disagreement. But are there really good reasons for demanding preservation of every single instance of independence common to the distributions of the relevant individuals, as UIP requires?  There are, after all, cases of independence having no epistemic significance whatsoever. If a fair die is tossed, the events E = “die comes up even” and  F = “die comes up a multiple of 3” turn out to be independent.  But independence emerges here as a purely  incidental feature of the uniform distribution.6  Where common cases of independence are worthy of preservation under pooling, it ought surely to be the case that such independence actually plays a role in the construction of the probability distributions in question. In the next section we consider how such epistemically significant cases of agreed-upon independence might be preserved in the case of a single profile of probability distributions.
3. The Single Profile Approach to Independence Preservation
While there are cases of independence having no epistemic significance, there are certainly many cases having genuine import. 

An important class of examples consists of sequences of independent random variables, whose stochastic independence is often entailed by their physical independence. Suppose, for example, that you and I agree that the outcomes of a sequence of two tosses of a coin are independent, but disagree about the probability of the coin landing heads, with your assessment of that probability being ¼ and mine being ½. What does it mean to reconcile our resulting distributions over the set S = {hh,ht,th,tt} under an equal weighting scheme? The fact that the arithmetic mean of our distributions fails to preserve the independence, common to both our distributions, of, say, the events    E = “heads on the first toss” and F = “heads on the second toss” is simply a red herring. A more sensible way to proceed here would be for each of us to adopt the value 3/8 = ½( ¼  +  ½ ) as the probability of heads, and then to exploit the independence of outcomes on different tosses to assess our common distribution over S.7 This strategy of applying equal weighting at the level of the defining parameters of the random variables in question can clearly be deployed in a wide range of cases to ensure preservation of independence.8 
     But there are other cases of epistemically significant independence (for example, cases of independent testimony, or other evidence) for which the random variable framework is at best artificial, and frequently inadequate. Suppose, for example, that the events E and F 
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 S are independent with respect to your distribution (P1) and to mine (P2), and that this common independence is not simply an incidental consequence of how we have distributed probability masses over the states in S, but a feature of our distributions to which we have a theoretical or methodological commitment quite apart from its particular mathematical embodiment in those distributions. In reconciling our differing distributions we might well insist that such independence be preserved. In what follows we explore how this might be done.
     Recall that partitions E and F of S are said to be independent with respect to a probability distribution P if and only if, for all E
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E and all F
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F,  P(E
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F) = P(E)P(F). This notion extends to any finite family of partitions in the obvious way. Note that what is usually termed the total independence of a set {E1,…, En} of events in S is equivalent to the independence of the n partitions E1 = {E1, E1c},…,En = {En, Enc}. It is often assigned as an exercise in elementary probability texts to show that the independence of events E and F entails (indeed, is equivalent to) the independence of E and Fc, the independence of Ec and F, and the independence of Ec and Fc.  In other words, what is really at issue in demanding preservation of the independence of E and F is the demand for preservation of the independence of the partitions             E = {E,Ec} and F = {F,Fc}. Given that these partitions are independent with respect to our  distributions P1  and  P2, our task is thus to find a distribution Q that preserves this independence, while at the same time giving equal weight, in some reasonable sense, to our original assessments. One way to do this proceeds as follows:
  1.  Let  P := ½ (P1 + P2).
  2.  Let  μE∩F : = P(E)P(F),  μE∩Fc : = P(E)P(Fc),  μEc∩F : = P(Ec)P(F),
       and  μEc∩Fc : P(Ec)P(Fc).

  3.  Revise P to Q by Jeffrey conditionalization9 on the partition

       { E∩F, E∩Fc, Ec∩F, Ec∩Fc },  with (i) Q(E∩F) = μE∩F, 
       (ii) Q(E∩Fc) = μE∩Fc,  (iii) Q(Ec∩F) = μEc∩F, and 
       (iv) Q(Ec∩Fc) = μEc∩Fc.
 It is easy to check that the partitions E = {E,Ec} and F = {F,Fc}
 are independent with respect to Q. Moreover, Q is the nearest 
 probability distribution to the arithmetic mean P of P1 and P2 that 

 satisfies (i) – (iv) above (and hence preserves the independence of E
 and F) on several notions of closeness, including the variation 
 distance, the Hellinger distance, and the Kullback-Leibler divergence 

 (see Diaconis and Zabell, 1982).  So the proposal that we reconcile  
 our differing priors P1 and P2  in the form of the common posterior Q

 is as close as we can get to simple equal weighting of those priors, 

 consistent with preserving the independence of E and F.
The above procedure can clearly be applied to any finite family                             E, F, G, etc. of partitions of S that are independent with respect to probability distributions P1 and P2 to construct a distribution Q that preserves this independence. Here one updates on the “cross partition” of  E, F, G, etc., which comprises all nonempty sets of the form  =E ∩ F ∩ G ∩∙∙∙ , where E ε E, F ε F,G ε G, etc. of Ω. It can also be applied in the case of more than two individuals of differing expertise, updating a weighted arithmetic mean of their priors by Jeffrey conditionalization on the appropriate cross partition, with the obvious posterior probabilities assigned to the events in that cross partition.
It should be emphasized that the use of arithmetic averaging in the above discussion was motivated solely by a desire for simplicity. As indicated in note 7, infra, we are open to using as an alternative any sort of (normalized) quasi-arithmetic mean. Especially when |S| =4, Theorem 2.3 above furnishes a number of attractive alternatives. The point is that there are principled ways to implement the equal weight view and preserve epistemically significant cases of independence, not (at least at this stage) to seek to identify a uniquely rational way to do this.
Notes
1. There are a number of ways to explicate the notion of epistemic peer. We might each judge that we are equals on “intelligence, perspicacity, honesty, thoroughness, and other relevant epistemic virtues” (Gutting 1982, p.83). Alternatively, we might each think that “conditional on our disagreeing, we are each equally likely to be mistaken.” (Elga 2007).  The precise explication of this notion is unimportant for our purposes here.
2.  If, for example, my doxastic options regarding propositions are limited to full belief, disbelief, and suspension of judgment, it is not even clear how to reconcile the full belief (or disbelief) of one peer with suspension of judgment on the part of another. As Thomas Kelly (in press) nicely puts it, how can the views of two epistemic peers, one atheist and the other agnostic, be reconciled in accord with the equal weight view?
3.  That is, for each state of the world s
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S, P3(s) = ½ P1(s) + ½ P2(s).
4.  Advocates of universal preservation of event independence include

Raiffa (1968), Laddaga (1977), Laddaga and Loewer (1985), Schmitt (1985), and (implicitly) Barlow, Mensing, and Smiriga (1985).

5.  See Wagner (1984), where dropping ZP while maintaining IA allows for externally imposed, as well as dictatorial pooling, depending on the fine details of how independence preservation is articulated.

6.  This example comes from Genest and Wagner (1987).  See also Lehrer and Wagner (1983, p.343).

7. There are of course a number of other possibilities for averaging the probabilities ¼ and ½, consistent with the spirit of equal weighting. Indeed, given any strictly monotonic function α, we might  revise our original probabilities that the coin lands heads to the (normalized) quasi-arithmetic mean  α-1( ½ [α(¼) + α(½)]) /σ, and our  probabilities that the coin lands tails to  α-1( ½ [α(¾) + α(½)])/σ,  where σ : = α-1( ½ [α(¼) + α(½)]) + α-1( ½ [α(¾) + α(½)]). 

8.  This is also the sensible way to proceed in order to preserve other features common to our two distributions. Suppose, for example, that you and I agree that the random variable X has a Poisson distribution, but you think that E(X) = μ1 and I think that E(X) = μ2. We should clearly each revise our original distribution to a Poisson distribution with E(X) = ½ (μ1 +  μ2), or some other quasi-arithmetic mean of μ1 and  μ2 (see note 7, supra). Here, by contrast, mindless state-by-state averaging of our original probabilities that X = k           (k = 0,1,…) would produce a non-Poisson density function. 
9. If P is a probability measure on a sigma algebra A of subsets of Ω,  E = {Ei} is any countable partition of Ω, with each Ei in A, and {μi} is a sequence of nonnegative real numbers summing to 1, then the probability measure Q, defined for all A in A by

                           Q(A) = Σi  μi P(A|Ei)
is said to come from P by Jeffrey conditionalization (or  probability kinematics) on E. In the above formula it is assumed that if P(Ei) =0, then μi = 0, and that the term μi P(A|Ei) = 0 in that case, notwithstanding the fact that P(A|Ei) is undefined. See Jeffrey(1965).
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