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Abstract

Many of the advances in string theory have been generated by the discovery of new
duality symmetries connecting what were once thought to be distinct theories, solu-
tions, processes, backgrounds, and more. Indeed, duality has played an enormously
important role in the creation and development of numerous theories in physics and
numerous fields of mathematics. Dualities often lie at those fruitful intersections at
which mathematics and physics are especially strongly intertwined. In this paper
I describe some of these dualities and unpack some of their philosophical conse-
quences, focusing primarily on string-theoretic dualities. I argue that dualities fall
uncomfortably between symmetries and gauge redundancies, but that they differ in
that they point to genuinely new deeper structures.
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There’s more to physics than nonrelativistic quantum mechanics.
Robert Weingard

1 Introduction and Motivation

Philosophers of physics are by now well-steeped in symmetries and are well
aware both of their importance for the development of physical theory and of
their many conceptual implications—see for example the wide-ranging essays
collected in [4]. Usually, the symmetries discussed relate states, observables,
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or histories (more generally, solutions) of one and the same theory (or some
physical system described by that theory). For example, one might consider
rotated and unrotated states of an individual experiment; boosted and un-
boosted states of a moving object; permuted and non-permuted configurations
of particles; or a critical or fractal (i.e. self-similar) system viewed at a variety
of scales. Such symmetries also tell us about what gets conserved in various
processes (via Noether’s theorem), and as such are crucially important in the
discovery, testing, and application of laws.

More recently, philosophers have become interested in a class of transforma-
tions called “gauge symmetries,” or, more accurately, gauge redundancies. 2

Here the orbits of the gauge symmetry group are generated by first class con-
straints, and the transformations thus generated are taken to be unphysical :
unlike symmetries, gauge transformations do not map distinct physical states
to one another. One might consider here transformations that amount to a
reshuffling of the (indistinguishable) points of a manifold (i.e. an active dif-
feomorphism), or, more obviously, a multiplication of a vector potential by an
arbitrary gradient in classical electromagnetism. While symmetries can result
in physically distinguishable scenarios, gauge redundancies (and the preser-
vation of invariance with respect to them) result in no physically observable
differences, and so are generally (i.e. in the physics literature) removed by a
quotienting procedure leaving one with a space of orbits of the gauge group
whose elements are constants of the original gauge motion. Again, these gauge
redundancies can tell us much about the laws (the form of interactions), and
are a crucial component in the development of modern physics. They lie at
the root of some philosophically interesting pieces of modern physics, including
the hole argument and the problem of time in quantum gravity.

However, there is a less-well known (to philosophers of physics at least) family
of symmetry, this time relating putatively distinct physical theories, rather
than simply states or quantities within a single theory. These are more com-
monly referred to as ‘dualities’. 3 Roughly, two theories are dual whenever they
determine the same physics: same correlation functions, same physical spectra,
etc. By analogy with symmetries as standardly understood, one is faced with
a space whose elements are theories, as opposed to states or configurations,

2 See Gordon Belot’s fine survey [3] for a philosophically-oriented guide to the
formal details.
3 But note that the notion of duality is rather more general than this: dualities can
also relate different ‘sectors’ (energies or scales, say) of a single theory. However,
there is usually ambiguity here over the issue of whether we do indeed have a
multiplicity (connected by a duality) or one single theory (connected by a gauge-type
symmetry). This is related to the ‘Landscape Problem’ in string theory, according to
which there is an ambiguity over whether the moduli space of string theory consists
of some 10500 theories or a single theory with this many ground states. I return to
this issue in §5.2.
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so that dualities map one theory onto another in a way that preserves all
‘physical’ predictions. 4 One finds, for example, that certain theories at high
temperatures (or energies, scales, couplings, fluctuations, ...) are physically
equivalent to (other or the same: see footnote 3) theories at low temperatures
(or energies, scales, couplings, fluctuations, ...). The computational value of
such relations should be immediately apparent: high-energy problems are of-
ten intractable, involving extreme fluctuations and so on, but here one is at
liberty to work in the dual low-energy theory and then ‘translate’ the results
back into the high-energy lexicon. More crucially perhaps, dualities uncover
new (nonperturbative) physics that is hidden from the Taylor series expansions
that characterise perturbative formulations of theories.

In this paper I argue that such mappings have important consequences for
scientific realists 5 , since one can find cases of dual (and therefore physically
equivalent) theories that have prima facie radically (even structurally so, with
topologically distinct spacetimes, for example) different ontologies. Duality
might intuitively be viewed along the lines of gauge symmetry, with dual the-
ories amounting to mere representational ambiguity. However, as I mentioned
above, often when one has gauge symmetries, one performs an operation of
‘quotienting out’ to produce a ‘slimmer’ object with the redundancy associ-
ated with the symmetry eliminated. If we perform this operation in the case of
dualities connecting theories with apparently distinct ontologies (and it is not
clear that this is always a formal possibility) then it isn’t clear what object we
get out at the end. However, I argue that often (possibly always) something
very similar to such a procedure does happen and introduces new, deeper
physical ontologies. This both protects realist positions (from the potential
underdetermination) and also answers some difficult questions over the status
of dualities and those entities related by them.

Many of the dualities in appearing in string theory should have a particular res-

4 There is some similarity (that might point to some profound connections) here to
the way one conceives of theories in the effective field theory programme, involving
renormalization group technology. A key difference between the two cases, however,
is that effective field theories have their validity restricted to a particular scale,
whereas (in the case of string theory at least) there is no such restriction enforced
by the duality picture: the dual theories are generally applicable at all scales (since
renormalizable—in fact they are conformally invariant and so are fixed points of the
renormalization group flow), but may nevertheless become intractable at certain
scales. Indeed, finding particular types of dual theories (those with ‘strong-weak’
coupling duality) is tantamount to finding theories that have good non-perturbative
behaviour, and so that are demonstrably renormalizable. For philosophical exami-
nations of some of these ideas, see: [7,19,22,23].
5 The consequences are connected to that philosopher’s ‘hardy perennial’: underde-
termination. Do dualities merely point to the multiplicity of representation of one
and the same thing or are we are faced with something conceptually more serious?
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onance for philosophers of physics since they have the character of spacetime
symmetries (there are geometric and topological dualities). 6 I shall therefore
also try to draw out some potential areas of interest for philosophers of space-
time in what follows. The issues that emerge here are again connected to issues
of underdetermination, but also extend into many other issues beyond this.

Finally, dualities are of wider interest in philosophy of science since they point
to a mechanism for generating new theories and results. In particular, they
point to the possibility of ‘simulating’ hard physics, in hard regimes, with sim-
ple physics. This isn’t simulation in the sense of approximation: the dualities
are exact. Often the ‘simple physics’ is classical while the ‘hard’ physics is
quantum. This adds some confusion (or interest?) to the relationship between
classical and quantum physics. One can also find that the simple physics is
in lower spacetime dimensions than the hard theory. Physical equivalence in
such situations puts serious pressure on our current conception of spacetime
and its role in physical theories.

Though I don’t aim to provide answers to these problems, or probe them in
any real detail in this paper, I do wish to leave them as open problems for
future work. If philosophers want to understand and interpret string theory
(and many aspects of modern field theory—e.g. confinement, and so on), then
they had better get to grips with the notion of duality. Besides, as I hope to
show in this paper, there are many rich pickings from ‘low-hanging fruit’ for
philosophers who are willing to investigate the subject.

2 Symmetry, Gauge, and Duality

In this section we briefly examine the differences between the prima facie
rather similar concepts of symmetry, gauge redundancy, and duality. Once
we have a grip on the basic notion of duality and have distinguished it from
these other notions, we will aim to characterise it more precisely by looking at
some specific non-string theoretic examples. With a handle on the concept we
can then begin to extract some of its philosophical implications in the purely
string theoretic context.

6 In an early paper, Cyrus Taylor [36] suggested that such issues from string theory
might be of interest to philosophers of spacetime physics. However, Taylor never
went into any detail beyond this suggestion, and aside from the companion paper
by Robert Weingard [40], his suggestion wasn’t pursued.
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Phase space

Orbit of Symmetry Group

Fig. 1. The action of a symmetry group, mapping physical states onto distinct states,
generating an orbit that we understand as representing a nomologically possible
dynamical history of a system.

2.1 Physical Symmetries

A physical symmetry can be defined as a structure-preserving mapping of the
space of physical states (i.e. the totality of points representing states that sat-
isfy the relevant equations of motion) onto itself. There will always be trivial
symmetries that map a state to itself, but the interesting ones (giving non-
trivial dynamics) map physical states to distinct physical states—e.g. the ac-
tion of the unitary time-evolution operator in quantum mechanics which maps
states to later states. Though the states are different, they both nonetheless
satisfy the laws of the theory. In other words, symmetries are transformations
that keep the system within the set of physically possible states.

A symmetry will in general map a physical state to a distinct physical state.
The orbit under the action of a symmetry group will, then, consist of points
representing distinct physical situations. We can represent this in the phase
space description as in figure 1.

In the case of gauge symmetries this is not the case: all elements within the
same orbit correspond to the same physical situation. The physical state of a
system is given by the orbit rather than by a point within the orbit.

2.2 Gauge Symmetries

In the case of gauge transformations, though it is true that gauge symmetries
do not send physically possible states to physically impossible states, they
do not map physically possible states into distinct physical states. Rather,
the transformed and untransformed states are taken to represent one and
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Gauge Orbits

Constraint Surface

Phase space

Gauge transformation

Fig. 2. In a gauge theory, physical states must satisfy constraints which pick out
a submanifold in phase space, partitioned into gauge orbits representing the same
physical state. Gauge transformations map between points within gauge orbits.

Reduced Phase Space

Equivalence Classes

Fig. 3. The reduced phase space obtained by eliminating gauge freedom so that
gauge orbits become single points.

the same physical situation. The multiplicity in representations amounts to a
redundancy in the mode of representation (see fig.2). In fact, what we mean
by ‘a physical state’ is really an equivalence class of states under the gauge
symmetry, so that physical states are represented by gauge orbits rather than
their elements (see fig.3).

This is easiest to see in electromagnetism in the vector potential formulation:
the physical states here are not represented by single vector potentials, but by
vector potentials up to arbitrary gradients. As Wigner so nicely expressed it:

In order to describe the interaction of charges with the electromagnetic
field, one first introduces new quantities to describe the electromagnetic
field, the so-called electromagnetic potentials. From these, the components
of the electromagnetic field can be easily calculated, but not conversely.
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Furthermore, the potentials are not uniquely determined by the field; several
potentials (those differing by gradient) give the same field. It follows that
the potentials cannot be measurable, and, in fact, only such quantities can
be measurable which are invariant under the transformations which are
arbitrary in the potential. This invariance is, of course, an artificial one,
similar to that which we could obtain by introducing into our equations the
location of a ghost. The equations the must be invariant with respect to
changes of the coordinate of the ghost. One does not see, in fact, what good
the introduction of the coordinate of the ghost does. ([41], p. 22)

Classically, it is true that the gauge potentials are physically redundant, but
when quantum mechanical electrons interact with the electromagnetic field,
as in the case of the Aharonov-Bohm effect, the potentials take on a causal
role. In ([31] p. 132) Michael Redhead describes the process of ‘stretching’
some surplus structure by giving it a realistic interpretation. Clearly, what
is deemed ‘physical’ and ‘unphysical’ is not an absolute matter, but depends
on contextual factors, on what observables one has available to distinguish
between elements of the theory. 7 New relational structures (in the case of
the Aharonov-Bohm effect, this was the complex wave-function of a charged
particle) introduced by some new system or theory can render unobservable
quantities, such as the classical vector potential, physically significant and
observable—see, e.g. [25] for an interpretation along these lines (the line also
adopted by Aharonov and Bohm in their original presentation, though Bohm
at first viewed the formal possibility of such an effect as a reductio of quantum
mechanics!).

But note that in the case where some structure is stretched into reality, it is
understood that just one potential is the real physical one. It does not make
sense to speak of multiple simultaneous potentials; though it does make sense
to speak (even in the case of the Aharonov-Bohm effect) of a gauge-invariant
object that incorporates all gauge-related potentials, namely the holonomy of
the potential (or, more generally, the Wilson loop)—note that this does not
allow us to dispense with the vector potential as such, but the holonomies and
Wilson loops are insensitive to gauge-transformations involving the potentials.

2.3 Duality Symmetries

Duality symmetries also point to a multiplicity in the descriptive machinery
available for some system or phenomenon. Dualities represent freedom in the
representation of some physical system, but unlike ordinary symmetries, the

7 I would conjecture, on this basis, that the only case in which one has indistin-
guishability simpliciter is in the trivial case of self-identity.
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representations connected by dualities are often surprisingly different in ap-
pearance, and they are decidedly not redundant. It is this marked theoretical
difference (a genuine structural difference) combined with identical (observ-
able) physics that make dualities special and distinguish them from symme-
tries and gauge. Dual descriptions are not in competition for ‘physical reality’;
rather they are considered to be complementary descriptions of one and the
same physical situation.

I should note that duality is often distinguished in terms of the fact that it
makes previously intractable problems tractable. It is true that it is capable
of great simplifying feats. However, this is not really so different from the
case in symmetry—say, where one’s choice of an appropriate reference frame
can make a difficult problem simpler—or in gauge theory, where choosing (or
‘fixing’) a particular (though strictly arbitrary) gauge can make a problem
easier to work with. One might also point to the similar use of symmetry in
a pure mathematics context where one can ‘guess’ a solution to some equa-
tion by studying its invariances—this was, essentially, Galois’ great discovery
(with contributions from Abel): one can distinguish between types of roots
of polynomial equations by their symmetries such that functions of the roots
are rational just in case they are invariant with respect to some group of
permutations (see [37] for an excellent account of the development of Galois
theory).

Hence, though there are clear differences in the kinds of problem made tractable
by symmetry, gauge, and duality, 8 I don’t think we can distinguish so easily
in this way. The difference lies in what is related by symmetry, gauge, and
duality transformations, as we discuss further in the next section.

3 Defining Dualities

In this section we get to grips with the notion of a duality symmetry. In simple
terms, a pair of (putatively distinct) theories are said to be dual when they
generate the same physics, where “same physics” is parsed in terms of having
the same amplitudes, expectation values, observable spectra, and so on. The
most familiar dualities will no doubt be those of the Maxwell equations and
of the wave and particle pictures of quantum theory. Less familiar, but just
as profound and surprising, if not more so, are those connecting the weak and

8 For example, David Olive ([30], pp. 62–3) notes that there has been some resis-
tance to duality amongst physicists precisely because it seems, prima facie, to be “so
unreasonable”. It has the characteristic of making very hard problems (in the non-
perturbative sector of some theoretical framework) calculable in the perturbative
sector.
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strong coupling regimes of quantum field theories and string theories. 9

Cumrun Vafa gives the following very useful direct characterisation of duali-
ties, making the connection to physical observables manifest (and also intro-
ducing some of the terminology that we will use below):

Consider a physical system Q ... [a]nd suppose this system depends upon a
number of parameters. Collectively, we denote the space of parameters λi
byM, which is usually called the moduli space of the coupling constants of
the theory. The parameters λi could for example define the geometry of the
space the particles propagate in, the charges and masses of particles, etc.
Among these parameters there is a parameter λ0 which controls how close
the system is to being a classical system (the analogue of what we call ~ in
quantum mechanics). For λ0 near zero, we have a classical system and for
λ0 ≥ 1 quantum effects dominate the description of the physical system.

Typically, physical systems have many observables which we could mea-
sure. Let us denote the observables Oα. Then we would be interested in
their correlation functions which we denote by

〈Oα1...Oαn〉 = fα1...fαn(λi) (1)

Note that the correlation functions will depend on the parameters defining
Q. The totality of such observables and their correlation functions deter-
mines a physical system. Two physical systems Q[M,Oα], Q̃[M̃, Õα] are
dual to one another if there is an isomorphism between M and M̃ [the
‘moduli spaces’–DR] and O ↔ Õ respecting all the correlation functions.
Sometimes this isomorphism is trivial and in some cases it is not. [[38], p.
539–540]

We can distinguish between two general kinds of non-trivial duality: those
that relate pairs of distinct theories and those that relate one and the same
theory to itself. We can call these ‘internal duality’ (or ‘self-duality’) and ‘ex-
ternal duality’ respectively. Strictly speaking, since they state an equivalence
between (apparently very distinct) descriptions of one and the same system,
self-dualities are really just gauge symmetries in disguise, representing some
interpretative ambiguity in the theory’s formulation. Let us now present a
selection of dualities, leading up to those appearing in string theory.

3.1 Electromagnetic Duality

Maxwell’s equations describe the behaviour of a pair of (vector) fields: ~B, the

magnetic field, and ~E, the electric field. These fields depend on the charge

9 Of course, there is some sense in which all dualities are of the same broad type,
namely a relation between large and small scales/energies.
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density ρ and the current density ~j. However, the vacuum Maxwell equations
(with vanishing charge and current densities) exhibit a duality in a most im-
mediate (and visual) way:

∇ · ~B = 0 ∇× ~E +
∂ ~B

∂t
= 0 (2)

∇ · ~E = 0 ∇× ~B − ∂ ~E

∂t
= 0 (3)

In addition to being Lorentz invariant, these equations are also conformally
and gauge invariant. It is easy to see that the following pair of maps (inter-
changing the electric and magnetic properties, and so, one might well suppose,
giving in a different theory) amount to a duality symmetry of the vacuum
Maxwell equations: 10

~B −→ ~E (4)

~E −→ − ~B (5)

In this case the duality points to a deeper structure into which both the
electric and magnetic fields are integrated, namely the electromagnetic field.
Hence, the discovery of a duality between a pair of things can be ‘symptom’
that the pair of things are really two aspects of one and the same underlying
structure. But this duality is just as striking (though buried a little more
deeply) even if we write the equations in terms of the electromagnetic field
tensor Fµν (representing field strength) and the Hodge star ? (taking k−forms
to k − 1-forms):

∂νFµν = 0 (6)

∂ν
?Fµν = 0 (7)

The duality can be expressed by the mappings:

∂νFµν −→ ∂ν
?Fµν (8)

∂ν
?Fµν −→ −∂νFµν (9)

Where ?2 = −1 = ‘squaring the duality map (for the 3 + 1 case)’. In more

10 The duality transformation leaves physical observables, such as total energy den-
sities 1/8π| ~E|2 + 1/8π| ~B|2, invariant.
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detail, let us define the electromagnetic field strength by Fµν = ∂µAν − ∂νAµ
with components:

F0i = −F i0 = −Ei (10)

F ij = −εijkBk (11)

We can write this out explicitly, highlighting the duality hidden within the
field tensor, as follows

Fµν =



0 − ~Ex − ~Ey − ~Ez
~Ex 0 ~Bz − ~By

~Ey − ~Bz 0 ~Bx

~Ez ~By − ~Bx 0


(12)

Where the Hodge dual is:

∗Fµν =



0 ~Bx
~By

~Bz

− ~Bx 0 ~Ez − ~Ey
− ~By − ~Ez 0 ~Ex

− ~Bz
~Ey − ~Ex 0


(13)

The Hodge star operation on the electromagnetic field tensor is equivalent
to the application of the duality maps to the separate electric and magnetic
fields.

Of course, we don’t live in an electromagnetic vacuum: there are electric
charges. The problem for duality is, there don’t appear to be correspond-
ing magnetic charges. This can be seen in the non-vacuum equations, which
state precisely that fact: 11

∇ · ~B = 0 ∇× ~E +
∂ ~B

∂t
= 0 (14)

∇ · ~E = ρe · 4π ∇× ~B − ∂ ~E

∂t
= ~je ·

4π

c
(15)

11 In the field tensor formulation we have ∂νFµν = jν and ∂ν
?Fµν = kµ.
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Hence, electric sources spoil the duality: there are no magnetic charges since
the divergence of ~B vanishes—by implication, there is no magnetic current
(since currents amount to moving charges). Of course, the duality can be
restored if we simply assume that there are magnetic charges (i.e. monopoles)
ρm:

∇ · ~B = ρm · 4π ∇× ~E +
∂ ~B

∂t
= ~jm ·

4π

c
(16)

∇ · ~E = ρe · 4π ∇× ~B − ∂ ~E

∂t
= ~je ·

4π

c
(17)

The duality is then preserved if we map all ‘magnetic objects’ to ‘electric
objects’, and vice versa (with the necessary change of sign): 12

( ~E, ρe,~je) −→ ( ~B, ρm,~jm) (18)

( ~B, ρm,~jm) −→ −( ~E, ρe,~je) (19)

Of course, while this is formally a very nice situation, we don’t have any direct
empirical evidence for the existence of magnetic monopoles, despite quite a lot
of theoretical investigation. If we want a physically realistic theory, we have
to then explain why they have never been observed.

Dirac in particular worked hard to motivate the study of magnetic monopoles
and discovered the quantization condition that bears his name while inves-
tigating them. His approach was to separate the north and south magnetic
poles of a dipole (by an infinite distance) so that the magnetic flux between
them is concentrated in the so-called ‘Dirac string’ connecting them. The
monopole becomes unobservable (using charged particles) when the charge on
the monopole obeys the ‘Dirac quantization condition’ (in notation where ‘e’ is
the electric charge and ‘g’ is the magnetic charge): e·g = n~c

2
(where n ∈ Z). 13

Hence the Dirac monopole is really only a ‘FAPP-monopole’: for all practical
(i.e. experimentally observable) purposes it behaves as a true monopole.

The combination of the original electric-magnetic duality and the Dirac quan-
tization condition gives us another aspect of electromagnetic duality. We get
(dividing through by e in the first instance and g in the second) an inverse rela-
tionship between the coupling strengths of the two forces (setting ~ = 1 = c):

12 Or, in the corresponding field tensor form: jµ −→ kµ and kµ −→ −jµ.
13 There is much more to be said here. For example, the quantization condition is a
constraint on the possible values that the charges of monopoles can possess in order
to be consistent with quantum mechanics. I give a flavour of this (though just a
flavour) in the next subsection.
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e −→ g =
n

2e
(20)

g −→ −e = − n

2g
(21)

Note that this also gives us an explanation for charge quantization since if a
single magnetic monopole of charge g exists then all electrically charged par-
ticles will come with charges that are integer multiples of 1/2g. Dirac thought
this explanatory virtue was reason enough to give the existence of magnetic
monopoles credence (outweighing the vice of lack of experimental evidence 14 ):

The interest of the theory of magnetic poles is that it forms a natural gen-
eralization of the usual electrodynamics and it leads to the quantization of
electricity. [...] The quantization of electricity is one of the most fundamental
and striking features of atomic physics, and there seems to be no explana-
tion for it apart from the theory of poles. This provides some grounds for
believing in the existence of these poles. [[11], p. 817]

The electromagnetic duality now gives us a duality between strong and weakly
coupled theories. At weak coupling the electrically charged particles are well-
localized quanta of the electromagnetic field and the magnetic monopoles ap-
pear as spread out, composite, bound states, or solitonic excitations. This
has some clear philosophical interest since there is no principled reason why
we should take one description as ‘fundamental’ with the other being ‘super-
venient.’ It bears some similarity too to the notion of ‘nuclear democracy’
espoused by Geoff Chew in the context of his anti-field theoretic S-matrix
bootstrap approach to particle physics from the 1960s. The dualities discussed
here, however, are not antagonistic to field theory and the constructive pic-
ture of physics, but are instead ‘complementary’ in the sense of wave-particle
duality, to be discussed below.

However, even if this duality, involving monopoles, were part of physical re-
ality, it does not offer much by way of computational aid since electromag-
netism is a weakly-coupled theory: we cannot derive much benefit from switch-
ing strongly (i.e. magnetic) and weakly (i.e. electric) coupled regimes. But if
this duality could be found to hold in strongly coupled theories, so that the
interchange rendered the theory weakly coupled, then computations would
thereby be made much easier, switching a theory with very strong quantum

14 The methodology here is certainly not what we would call ‘the standard model’ of
how science works: there is no empirical evidence as such. Rather, what is motivat-
ing the theory of monopoles is its ability to resolve a hitherto unresolved theoretical
puzzle: the quantization of charge. Then, in order to make the theory consistent with
observation Dirac devises a reason for our not having observed magnetic monopoles.
Namely, as a result of the strong-weak coupling duality, a quantized monopole re-
quires an exceedingly large amount of energy to be produced.
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fluctuations with one with small fluctuations. An obvious candidate is QCD,
a very strongly coupled theory who’s non-perturbative behaviour is still ill-
understood. Just such a scheme has been suggested in QCD, and also in string
theory as we will see later. 15 In QCD the difficult property to explain is con-
finement (the phenomenon prohibiting free quarks to be observed). ’t Hooft
argued that confinement can be understood as a dual, strongly coupled de-
scription of the Higgs mechanism, giving a mass-gap. However, to discuss
would take us too far afield. 16

3.2 Quantum Mechanics and Magnetic Monopoles

Let us briefly return to the reasons underlying Dirac’s quantization condi-
tion. It is clear that the input of quantum mechanics seemingly spoils the
nice clean duality once again, since there the electric and magnetic fields
alone are not sufficient to determine the state. In the context of classical elec-
tromagnetism coupled to classical particles the basic electric and magnetic
fields bear full responsibility for particle motion, via the Lorentz force law,
q( ~E(x) + v× ~B(x)). This is not the case where quantum particles are made to
interact with the classical field for then the vector potential plays a crucial role
in the Hamiltonian—underlying this, of course, is the fact that charged quan-
tum particles must be described by a complex wave-function ψ(x) obeying

equations of motion involving gauge potentials, φ and ~A (where {φ, ~A} = A,
the 4-vector potential). However, magnetic monopoles exclude the definition
of the vector potential. There is a simple argument that highlights an internal
inconsistency between the existence of monopoles, Maxwell’s equations, and
quantum mechanics—cf. [42], p. 28.

The equation for the magnetic monopole is ∇ · ~B = ρm · 4π. However, a well-
known theorem from vector calculus tells us that ∇ · (∇ × A) = 0 (where A
here is the vector potential, but can be any vector field for the purposes of the
theorem). If we write ~B in terms of the vector potential, we get ~B = ∇× A.

Hence, ~B satisfies the vacuum Maxwell equation ∇ · ~B = 0 = ∇ · (∇ × A).
However, if we give the weight to the vector potential and include monopoles
we face a contradiction: with monopoles, we have ∇· ~B = ρm ·4π 6= ∇·(∇×A)

15 Indeed, though I won’t discuss it here, it has been proposed that string theory
(with gravity), in a special 10-dimensional (product) spacetime AdS5 × S5, is dual
to 4-dimensional conformal field theory (without gravity) defined on AdS5’s bound-
ary. This is known as the AdS/CFT correspondence (also known as ‘Maldacena
duality’)—see [28] for the original presentation (though there were forerunners to
Maldacena’s conjecture, connected to aspects of black hole physics, especially the
notion of holography developed by ’t Hooft, of which the Maldacena conjecture can
be seen as a concrete realization).
16 For a sampling of some relevant philosophical literature, see: [35,20,27].
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(unless ρm = 0). Thus, there is a clear clash between magnetic monopoles and
vector potentials. 17 However, the vector potential is seen to be demanded by
quantum mechanics—as evidenced by the Aharonov-Bohm effect, for example,
in which the scattering of electrons off a long, thin solenoid produces a diffrac-
tion pattern that depends on whether a magnetic field is or is not present in
the solenoid. The electron feels the presence of the non-vanishing vector po-
tential outside of the solenoid (though the measurable quantity still involves
the magnetic field flux, rather than the vector potential itself). Formally, the
line integral around a loop enclosing the solenoid equals the magnetic flux con-
fined within the solenoid. Hence, charged quantum particles must be affected
by the vector potential (on pain of violating local action, though one could in
principle reject this).

The resolution of this apparent inconsistency is rather complex, but interest-
ing. The trick is to first consider a magnetic monopole at the origin of a sphere
the surface of which is intersected by the the magnetic field emanating from
the monopole. The monopole (and so the origin of the sphere) is of course

where ∇ · ~B 6= 0. The divergence of ~B does, however, vanish everywhere else,
including on S2, the sphere’s surface. But despite the vanishing divergence
on the surface, one cannot write the magnetic field as the curl of a vector
potential—one cannot have an everywhere continuous vector potential for a
magnetic field when one has a magnetic monopole. That is, ~B 6= ∇×A, since
by Stokes’ Theorem we can infer:

( ~B = ∇× A) ⊃ (ρm =
∫
S2

~B · dS =
∫
S2

∇× A · dS = 0) (22)

In words, the flux through the sphere would be the magnetic charge; but this
would be forced to vanish if written in terms of the the curl of the vector
potential, by Stokes’ Theorem. Yet ρm 6= 0 by construction. 18

The conflict can be eliminated by viewing the sphere as composed of two
distinct hemispheres, N(orth) and S(outh), separated by an equator at which
N and S overlap. We can consider vector potentials, AN and AS, restricted to
N and S respectively that satisfy ~B = ∇×AN and ~B = ∇×AS. AN and AS
must differ on the overlap disc at the equator but possess the same curls (since

17 Shifting to holonomies or Wilson loops here would not help, since we are still
transporting particles around a curve within a vector potential, and so still need
it—at least as a formal ‘leg up’. In a little more detail, the Wilson loop is the phase
that a charged particle’s wavefunction is multiplied by as it traverses a loop. The

phase is multiplied by an element of U(1), namely: e
− 1
h
nq
∮
γ
A

(where γ is the loop
and A is the vector potential).
18 See Chapter 6 of Baez & Munian [2] for a useful discussion of this argument and
its formal underpinnings.
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the magnetic field must take on the same value there, and we have written this
as the curl of a vector potential). The solution is that whenever one has vector
potentials defined in different regions (and one has a magnetic monopole), the
potentials will be related by gauge transformations (ω(x) in Dirac’s notation)

on their overlap (the equator in the above example), such that e
ieω
~ = 1. This

gives us the desired result that the monopole is not observable with electrically
charged particles, since its wave function will now be everywhere continuous.

Let us next consider a specifically quantum duality, namely wave-particle du-
ality.

3.3 Wave-Particle Duality

The wave-particle duality is well encapsulated, in the context of quantum
electrodynamics, by Dirac as follows:

Instead of working with a picture of the photons as particles, one can use
instead the components of the electromagnetic field. One thus gets a com-
plete harmonizing of the wave and corpuscular theories of light. One can
treat light as composed of electromagnetic waves, each wave to be treated
like an oscillator; alternatively, one can treat light as composed of photons,
the photons being bosons and each photon state corresponding to one of the
oscillators of the electromagnetic field. One then has the reconciliation of
the wave and corpuscular theories of light. They are just two mathematical
descriptions of the same physical reality. [[10], p. 49]

This last expression is simply another way of saying that these pictures are
really dual; they are connected by what Dirac called a “formal reconciliation
between the wave and the light-quantum [pictures]” ([12], p. 711)—a fact that
Bohr was quick to avail himself of in support of his ideas on complementarity.

Hence, we see again the ability of dualities to point to new structures beyond
those things that are considered to be dual. In this case the waves and particles
are but two aspects of the same underlying (and more fundamental) entity:
the electromagnetic field. Mathematically, however, the duality between wave
and particle descriptions is simply encapsulated in the difference between the
position basis and the momentum basis of states. These are related by a Fourier
transformation. Vafa in fact suggests that we can understand string dualities
along the lines of a “non-linear infinite dimensional generalization of a Fourier
transform” ([38], p. 537).
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3.4 Duality and the Birth of String Theory

Many of the advances in string theory have been generated by the discovery
of new duality symmetries. In fact, string theory was in effect born from a
duality principle, namely the DHS [Dolan, Horn, and Schmid] duality iden-
tifying descriptions of 2-particle to 2-particle scattering in the s-channel (or
‘direct’ channel) with those in the t-channel (or ’transverse’ channel) of the
S-matrix for strongly interacting particles, or hadrons—the specific particles
involved were, in this case, mesons. 19 That is, low-energy (direct) s-channel
‘resonances’ and high-energy (cross) t−channel ‘Regge poles’ produce equiva-
lent (dual) physics (one representation can be analytically continued into the
other). 20 Diagrams that would be added together in the Lagrangian quantum
field theoretic approach to hadronic physics are considered to be representa-
tions of one and the same process in the context of DHS duality.

This duality, along with other properties of the S-matrix led Gabriele Veneziano
to propose his famous (2-particles go to 2-particles, or ‘4-point’) amplitude
based on the Euler beta function (here suppressing the u-channel contribu-
tion and with linearly-rising Regge slope α(s) = α0 + α′s): 21

A(s, t) =
Γ(1− α(s))Γ(1− α(t))

Γ((1− α(s))− α(t))
=
∫ 1

0
dxx−α(s)−1(1− x)−α(t)−1 (23)

Though considered empirically inadequate now, this model enjoyed consider-
able phenomenological success, especially with respect to low-energy proton-
antiproton annihilation (cf. Rubinstein, [34], p. 55). But doing the real ex-
planatory work is the underlying DHS duality. The connection to strings comes
about since this amplitude can be derived from a theory of relativistic open
strings. The poles of the amplitude (i.e. the singularities that occur when
s = m2 = t = n−1

α′ ) correspond to the string’s mass spectrum. The interpre-
tation provides an explanation of the infinite tower J = αM2 of mass-energy

19 In this scenario, s = −(p1 +p2)2 and t = −(p2 +p3)2. These are Lorentz invariant
combinations of the momenta of the scattered particles, with subscripts labelling
the particles.
20 The earliest version of string theory was known as “dual theory” in recognition of
this fact. See [24] for a collection of classic review papers on this subject. A recent
festschrift [15] for Gabriele Veneziano includes some useful discussions of the earliest
days of string theory, including discussions of the DHS duality principle and its role
in the birth of string theory.
21 This simultaneously satisfies what were deemed to be the crucial formal properties
describing the S-matrix for strong interactions, particularly analyticity, crossing
symmetry, and DHS duality. The Veneziano amplitude thus solved the bootstrap!
However, there is degeneracy in the choice of α which need simply be linear.
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and spin states in the Regge trajectories: they correspond to the oscillatory
(and rotary) modes of the strings.

It is this notion of duality that has persisted into the development of modern
QCD and string theory, and that I shall discuss in this paper. It, or something
very close, lies at the heart of various pieces of conceptually important physics,
such as the holographic principle, black hole information, as well as several
experimental advances, including quark-gluon plasmas and high temperature
superconductivity.

Indeed, duality has played an enormously important role in the creation and
development of numerous theories in physics and numerous fields of mathe-
matics. It is also a ubiquitous feature at the interface between physics and
pure mathematics: that complex area where discoveries go both ways, from
mathematics to physics and from physics to mathematics. Given the crucial
role of dualities in modern physics it is incumbent on philosophers of physics to
evaluate their significance, ontological, epistemological and otherwise. 22 I at-
tempt an initial foray in this paper, with the focus squarely on string theoretic
dualities. These are especially interesting from a philosophical point of view
because of their close connection with geometrical considerations. However,
they are also a particularly good window onto a vast array of philosophical
issues emerging from the notion of duality.

22 Richard Dawid ([9], pp. 316–7) briefly discusses string dualities. However, he fo-
cuses on T-duality and the purely perturbative theory. The conclusion he draws
is that T-duality implies that “[a]n absolute limit is set on attaining new physical
information below a certain scale [2π

√
α′–DR]” (p. 317). Described in this way it is

a fairly modest result, since if, for example, quarks were to represent the smallest
possible entities, then their Compton wavelengths would set a similar limit on the
physical information we could obtain, since it would be by scattering them that we
get information and they themselves represent the limit of what we can scatter (in
fact, the phenomenon of confinement would raise the scale somewhat). Edward Wit-
ten [43] describes T-duality in stronger terms. He argues that it points to “quantum
geometry”: a limit on space itself, rather than our ability to extract information.
(Note that D-branes are non-perturbative objects that, in general, do not obey
T-duality—though there are nonetheless suggestions that they involve quantum ge-
ometry too, since they have non-commuting position coordinates (relative to the
space in which they lie) which are described by matrices. These claims are clearly
in need of closer philosophical scrutiny and surely ought to be of greater interest to
philosophers of spacetime physics.
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4 String Dualities

There are two general kinds of duality in string theory and they map onto our
earlier distinction between internal and external duality. Philosophically, the
more interesting ones are the external ones. However, the internal dualities in
string theory are not without interest, especially where spacetime ontology is
concerned, so we shall begin with this case.

4.1 What is String Theory?

String theory, as we have seen, has its origins in strong interaction physics
where it was constructed specifically to model hadrons. It wasn’t able to per-
form this function for a variety of reasons, both formal and empirical. Em-
pirically, it predicted the existence of particles at particular energies (namely
those appropriate for hadronic interactions) that weren’t seen in experiments:
these were the massless spin-2 particles. Quantum chromodynamics super-
seded string theory putting, more or less, standard quantum field theory back
in charge of elementary particle physics. In QCD the strong interaction is
described by an SU(3) Yang-Mills field.

Duality has been a decisive factor throughout the entire development of string
theory, from these origins in the dual resonance model for describing hadrons
to the (still unknown) M−theory. It can be found in the algebraic core of
string theory too: the Leech lattice, for example, describing early string the-
ory, is characterised by self-duality. The dualities in string theory take on a
special resonance, from a philosophical point of view, because they are highly
geometrical. In what I take to be the most interesting cases the dualities are
mapping the physics of some string theory compactified on a manifold to an-
other string theory on a prima facie very different manifold.

The easiest way to make sense of the geometrical dualities in string theory is
by introducing the theory via its perturbation expansion. 23 We restrict the
discussion to closed string theory, and begin with the so-called σ-model. One
wants to construct an action to describe the string dynamics in spacetime. The

23 I should perhaps point out that this perturbative ‘worldsheet’ formulation is some-
what outmoded. However, it is at least a well-defined theory and enables one to see
in a fairly visual way how the interesting elements of mathematics (such as Rie-
mann surfaces, modular invariance, and the like) enter into string theory. Though I
don’t discuss it here, the modular invariance lies beneath some of the deepest con-
nections between physics and mathematics, and is connected also to S-duality (the
strong-weak coupling duality). The technicalities would take too long to introduce
here.
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initial step is to consider a map Φ from a complex curve (a Riemann surface)
Σ representing the 2-dimensional string worldsheet 24 into the ambient target
space X (with metric G and additional background fields Bi):

Φ : Σ −→ X (24)

The action is then a function of this map (including the worldsheet’s metric),
given the background fields G and Bi:

S(Φ, G,Bi) (25)

The Φ field gives the dynamics of a 2-dimensional field theory of the worldsheet
relative to the fixed background fields, one of which is the metric. The quantum
theory (in 1st quantized form) is given by the path-integral (over moduli space:
i.e. the space of inequivalent 2D Riemann surfaces, or Teichmüller space):

P(X) =
∑
g

∫
modulig

∫
DΦeiS(Φ,G,Bi) (26)

In terms of the interpretation of this object, there is a degree of non-separability
of the kind found in loop quantum gravity, for the relevant domain is not the
space of metrics on a manifold (i.e. geometries) but the loop space. However,
there are consistency conditions that must be met by string models not shared
by the loop models.

4.2 Compactification

Quantum superstring theory remains Lorentz invariant only if spacetime has
10 dimensions. To construct a realistic theory therefore demands that the
vacuum state (i.e. the vacuum solution of the classical string equations of
motion, supplying the background for the superstrings) is given by a prod-
uct space of the form M×K, where M is a non-compact four dimensional
Minkowskian spacetime and K is a compact 6-real dimensional manifold. One
gets the physics ‘out’ of this via topological invariants of K and gauge fields
living on K. One chooses the specific form of the compact manifold to match
the observed phenomena in M as closely as possible. The Landscape Prob-

24 This worldsheet has a metric hαβ defined on it in the so-called Polyakov version.
In the original Nambu-Goto version the worldsheet was metric-free. The surface
also has a genus g which plays a crucial role in the quantum theory.
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lem referred to earlier is tantamount to the severe degeneracy in this space of
possible classical vacua.

If one wants N = 1 supersymmetry in the non-compact dimensions M, then
one requires a very special geometry for the compact dimensions K, namely a
Calabi-Yau manifold. This is defined to be a compact Kähler manifold with
trivial first Chern class—this is just mathematical shorthand for saying that
we want to get our low-energy physics (Ricci flatness 25 and the single super-
symmetry) out of the compact dimensions.

There are five quantum-mechanically consistent superstring theories (in 10
dimensions): Type I, SO(32)-Heterotic, E8×E8-Heterotic, Type IIA and Type
IIB. The Type I theory and the heterotic theories differ from the Type II
theories in the number of supersymmetries, and therefore in the number of
conserved charges.

One is able to compute physical quantities from the these theories using per-
turbation expansions in the string coupling constant. Given the extended na-
ture of the strings, there is just a single Riemann surface for each order of
the expansion (that is, the initially distinct diagrams can be topologically
deformed into one another since there are no singularities representing inter-
action points: interactions are determined by global topological considerations
of the world sheet, rather than local singularities). 26

4.2.1 T-Duality

T-duality results from the combination of compactified dimensions and strings. 27

T-duality is a kind of scale-invariance: it says that a theory at one size is
equivalent to a theory at another size. It is essentially a duality that arises
in conformal field theory. For superstring theories (i.e. with fermions and su-
persymmetry relating bosons and fermions) we find that the Type IIA and

25 The first Chern class c1(X ) of a metric-manifold is represented by the 2-form

1/2πρ (with ρ the Ricci tensor Rijdz
i∧dzj). Calabi and Yau determined the various

interrelations between Chern classes, Kählericity, and Ricci forms. If one has a Ricci
flat metric then one also gets the desired single supersymmetry since Ricci flatness
is a sufficient condition for an SU(3) holonomy group. Any textbook on complex
algebraic geometry will explain these matters in detail—[1] and [29] are good sources
of information.
26 Note, this is true for all but the Type I theory since its strings can be opened up.
However, this does not need to concern us in what follows.
27 There are various options for the referent of the ‘T’. Some take it to refer
to (T)arget space, some to the fact that it is similar to the Kramers-Wannier
(T)emperature duality of the Ising model, others to the fact that the letter ‘T’
was used to refer to a low-energy field in early string theory.
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Type IIB theories are dual, as are the two heterotic theories. In the context
of bosonic string theory it is a self-duality and can therefore be viewed as a
gauge symmetry.

T-duality is very simply expressed: given two manifolds, with different compact
geometries, a circle of R and of radius R̃, and string length scale α′, we have
(schematically):

String Theory on R
isomorphic←−−−−−→ String Theory on R̃ =

α′2

R

This isomorphism can be seen by considering the case where we have compact-
ified one of the dimensions onto a circle. When this is done, the momentum is
quantized around the circle according to the relation p = n/R (where n ∈ N).
If we then consider the mass-energy of a system in such a compactified configu-
ration then we must add a term corresponding to these so-called Kaluza-Klein
modes:

E2 = M2 +
n

R

2

(27)

So far everything we have said applies just as well to particles. Strings have
the additional property that they can wind around the compact dimension.
This brings with it another term (the winding modes, where m counts the
number of such windings) that must be added to the total energy-mass:

1

2π
α′ × 2πR ·m =

(
mR

α′

)2

(28)

This gives us the following equation for computing the mass-energy:

E2 = M2 +
n

R

2

+

(
mR

α′

)2

(29)

If we then make the following (duality) transformations we leave the energy
invariant:

R −→ α′

R
(30)

m←→ n (31)

since we then have:
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E2 = M2 +
m
α′

R

2

+

(
nα

′

R

α′

)2

(32)

This can be converted back into the original by simply multiplying the nu-
merator and denominator of the 2nd and 3rd terms by R and cancelling the
α′s in the 3rd term.

Though this is a very elementary account, it serves to highlight the curious
nature of strings and compact dimensions: from the stringy perspective there is
no difference between a space with a large radius and one with a small radius!
If we consider a theory to be an equivalence class of structures (with the
equivalence given by the determination of identical observables) then what
we took to be four distinct theories—type IIA and IIB on the one hand, and
SO(32) and E8 × E8 on the other—are really just two.

Physical sense can be made of this by viewing T-duality through the lens of
the uncertainty principle: the attempt to localize a closed string at very small
scales increases its energy-momentum. This increase in energy as one localizes
to smaller and smaller length scales increases the size of the string.

In a nutshell, T-duality tells us that it is only some deeper intrinsic properties
of the backgrounds for string propagation that matter in terms of ‘the physics’.
Different background spaces are identical from the point of view of the strings.
Since, in a string theory, everything is assumed to be made of strings, then in a
purely string theoretic world, these backgrounds are indiscernible. This is very
similar to the implications of diffeomorphism invariance in general relativity.
There the localization of the fundamental objects relative to the manifold is a
gauge freedom in the theory: the physics is therefore insensitive to matters of
absolute localization. Quantities that are defined at points of the manifold are
clearly not diffeomorphism-invariant, and therefore not gauge-invariant. The
physics should not depend on such gauge-variant local properties. In the case
of string theory, the physics should not depend on the size of the compact
dimensions.

4.2.2 S-Duality

S-duality is not a purely string-theoretic symmetry. It maps a strongly-coupled
theory to a weakly-coupled theory. It is, therefore, a nonperturbative duality.
Combined with T-duality, it shows that the five apparently distinct string
theories (and, in fact, an additional 11 dimensional theory) are dual. Invoking
our principle from earlier, that dualities point to some underlying structure,
we can assume that there is a deeper theory of which these various ‘theories’
are aspects. This is indeed what has been conjectured, with the hidden theory
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Fig. 4. Web of dualities between the supposedly distinct superstring theories.

labeled M-theory—see [42] for an elementary account.

S-duality identifies Type I and SO(32) and different sectors (in the moduli
space) of type IIB in much the same way that T-duality related the other
string theories. Schematically, we have the following duality relations (where
g is the string coupling constant):

Type I with g � 1
isomorphic←−−−−−→ SO(32) with g � 1

Type IIB with g � 1
isomorphic←−−−−−→ Type IIB with g � 1

Since Type IIB theory is ‘internally’ S-dual, or self-S-dual, we might more
properly refer to it as a gauge symmetry in the standard sense.

Though I won’t discuss it here, an interesting phenomenon occurs when we
consider the Type IIA and E8 × E8 theories at strong coupling. The theories
‘grow’ an additional dimension, with the size of the dimensions given by g

√
α′.

These theories are dual to some other quite different 11 dimensional theory
that is not apparent in the weak-coupling regime studied in perturbation the-
ory. This is a clear case where new physics lies hidden from view when one
restricts the analysis to the purely perturbative regime.

4.3 Mirror Symmetry

Mirror symmetry is possibly the most conceptually curious aspect of string
theory. It is essentially a generalization of T-duality (which holds only for
homeomorphic manifolds) to topologically inequivalent manifolds.
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Recall that a phenomenologically respectable string theory requires that six
of the 10 dimensions be hidden from view somehow. Compactification is the
process that achieves this (at least formally). As we saw earlier, this involves
writing the 10 dimensional spacetimeM10 (required by quantum consistency)
as a product space of the form M4 ×K6, where M4 is flat Minkowski space-
time and K6 is some compact 6 real-dimensional space. M4 ×K6 then forms
the background space (the ground state in fact) for the classical string equa-
tions of motion. One chooses K6 in such a way so as to use its geometrical
and topological structure to determine the physics in the four non-compact
spacetime dimensions (i.e. the low-energy physics). By choosing in the right
way one can get explanations for a host of previously inexplicable features
of low-energy physics, such as the numbers of generations of particles in the
standard model, the various symmetry groups of the strong, electroweak, and
gravitational forces, and the masses and lifetimes of various particles.

Calabi-Yau manifolds were found to be of importance in string theories since
they allow for N = 1 supersymmetries in four spacetime dimensions and other
nice properties. Calabi-Yau manifolds are compact spaces satisfying the condi-
tions of Ricci-flatness (to accommodate general relativity at the phenomeno-
logical 4D level) and Kählericity (generating the N = 1 supersymmetry in the
non-compact dimensions). The problem is, there is a huge number of Calabi-
Yau spaces (in D=6) meeting the required conditions, so the selection of one
is a difficult task. However, what I want to discuss here is the identification of
various of these, seemingly very different, manifolds via mirror symmetry.

To characterize manifolds one needs to know about their topological struc-
ture. To pick out this structure one looks for the invariants, of which there are
various kinds. For example, a real 2-dimensional manifold is specified by its
genus. In string theory, the topological and complex structure of the compact
manifold determines the low energy physics in the real, four non-compact di-
mensions. What was required by the string theorists, in order to consistent the
observed particle physics, was a Calabi-Yau space with an Euler characteris-
tic χ of ±6. These can be found (and were found by Yau himself). However,
there is an entire family of ‘mirror’ Calabi-Yau spaces with opposite Euler
number. These look distinct from a topological and complex structure per-
spective, but from the point of view of the string theory (or, more precisely,
the 2D conformal field theory) living on these spaces, the difference is merely
apparent: the field theory is insensitive to the mirror mapping and is, in this
sense, background independent.

4.3.1 The Hodge Diamond

The concept of the Hodge diamond makes the phenomenon of mirror sym-
metry easy to see in a visual way, and was in fact discovered and named as
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Fig. 5. The two independent cycles of a torus.

a result of this visual appearance. Hodge numbers are to (complex) Kähler
manifolds what Betti numbers are to real manifolds: they specify topological
invariants of the manifold and correspond to the dimension of the relevant co-
homology group. The Betti numbers count the number of irreducible n-cycles
of some manifold—see fig.5.

The n-cycles themselves are defined as ‘chains’ without boundary, where chains
are sums of (oriented) submanifolds of the manifold. So, for example, Hn=0,
a 0-cycle is a 0-chain and and is simply a point—note, cycles are considered
equivalent if they differ by a boundary; so, for example, for a connected man-
ifold, all points are deemed equivalent. The Hodge numbers do the same, but
for complex cycles p and their complex conjugates p = q. Schematically:

DeRham Cohomology GroupHn
D ⇒ Betti number bn = dim(Hn

D)
Dolbeault Cohomology GroupHp,q ⇒ Hodge number hp,q = dim(Hp,q)

The Betti number and the Hodge number are related (by the Hodge decom-
position) as:

bn =
∑

p+q=n

hp,q (33)

The Hodge diamond encodes these various Hodge numbers as follows:
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h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h3,0 h1,2 h2,1 h0,3

h1,3 h2,2 h3,1

h2,3 h3,2

h3,3

(34)

For a complex 3-dimensional manifold, we can compute the Hodge numbers
via the Hodge decomposition, giving:

b0 = 1

b1 = 0

b2 = h1,1

b3 = 2(1 + h2,1)

b4 = h2,2 = h1,1

b5 = 0

b6 = 1

(35)

The only independent Hodge numbers of the 3-manifold (with non-vanishing
Euler characteristic—see below) are h1,1 (roughly describing, via a number
of real parameters, the size, or radius, and shape of the manifold) and h2,1

(roughly the number of complex parameters to describe the complex struc-
tures that can be defined on the manifold). The other numbers are set by
various mathematical identities and properties: hp,q = hq,p by complex conju-
gation; hp,q = h3−p,3−q by Poincaré duality (giving us the identity h1,1 = h2,2

above); and the condition of vanishing first Chern class sets up an isomorphism
between h0,p and h0,3−p. Hence, we have:
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1

0 0

0 h1,1 0

1 h2,1 h2,1 1

0 h1,1 0

0 0

1

(36)

Since the Euler number χ for a real manifold is computed via the Betti num-
bers as:

χ =
∑
n

(−1)nbn (37)

The Euler characteristic for a complex Kähler manifold can be computed,
again invoking Hodge decomposition, as:

χk =
∑
p,q

(−1)p+qhp,q. (38)

This number is, as mentioned above, crucial in the mapping to real-world,
low-energy physics.

4.3.2 The Mirror Principle

It is a claim of algebraic geometry, having its origin in string theory, that
every space described by such a Hodge diamond has a mirror (with the axis of
reflection lying along the diagonal). The phenomenon of mirror symmetry then
refers to an isomorphism between pairs of conformal field theories (worldsheet
string theories) defined on prima facie very distinct Calabi-Yau manifolds,
differing even with respect to their topology. In this case the manifolds have
their Hodge numbers switched as:

Hp,q(M)
isomorphic←−−−−−→ Hn−p,q(M̃) (39)

Where n is the (complex) dimension of the manifold. In the case where this is 3,
we find that the remaining Hodge numbers h1,1 and h2,1 are isomorphic. These
numbers parametrize the size and shape of the compact space, along with its
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Fig. 6. The torus (with top and bottom and left and right identified) is an example
of a 1-dimensional Calabi-Yau manifold. Deformations of the Kähler form of the
torus change the volume while leaving the shape invariant (that is, the angles be-
tween the independent cycles are constant). A complex structure deformation does
the opposite: it changes the shape (the angles) while leaving the volume invariant.
(Adapted from Greene [16], p. 25.)

complex structural properties—see fig.6. 28 Mirror symmetry tells us that the
physics (of relativistic quantum strings) is invariant when these, apparently
very different (with different corresponding classical theories), features are
exchanged. That is, there is quantum equivalence despite a marked difference
at the classical level.

For example, the Euler character is equal to twice the number of particle
generations. It can be connected to these shape and size parameters as follows:

|χ|
2

= |(h1,1 + h2,1)| = |(h1,1 − h2,1)| = | − χ|
2

= No.Gen. (40)

To achieve a realistic string theory, then, one needs to find a Calabi-Yau
manifold with h1,1 and h2,1 satisfying:

|(h1,1 + h2,1)| = 3 (41)

Gang Tian and Shing-Tung Yau discovered such a manifold [44]. Though there
is degeneracy here too, with multiple candidates available.

4.3.3 Using Mirrors to Count Curves

This setup was used to great (and surprising) effect to resolve a problem
in pure mathematics, in the field of enumerative geometry. Briefly, Gromov-
Witten invariants were used to calculate the number of curves of a given degree

28 They correspond to topologically nontrivial 2-cycles and 3-cycles respectively.
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of a particular surface. 29 Candelas et al. [6] developed a generating function
to find the number of curves for all degrees n through a surface (a well-known
Calabi-Yau manifold) known as a quintic, defined by the equation:

x5
o + x5

1 + x5
2 + x5

3 + x5
4 = 0 ⊃ P4 (42)

The function they came up with was based on string perturbation theory (that
is, a sum-over-Riemann-surfaces approach):

K(q) = 5 +
∞∑
d=1

ndd
3 qd

1− qd (43)

Mathematically, nd is the number of rational curves of degree d, and q =
e2πit. In terms of the physics, nd is the ‘instanton number’, pertaining to the
quantum corrections. 30 Each curve of degree d adds d3 qd

1−qd to the Yukawa
coupling. This gives the various intersection numbers as coefficients in the
series:

K(q) = 5 + 2875
q

1− q + 609250 · 23 q2

1− q2
+ 317206375 · 33 q3

1− q3
+ · · · (44)

That is

n1 = 2875

n2 = 609250

n3 = 317206375
...

The d = 1 and d = 2 cases were already well-known. But d = 3 was under
investigation. The string theoretic calculation turned out to be correct, giving
strong evidence that the formula was giving the correct values. 31

29 Full and very readable accounts of mirror symmetry, including the application
discussed in the subsection, can be found in: [8] and [21].
30 In more rigorous accounts, nd is taken to represent the Gromov-Witten invari-
ants of the space. These, roughly, correspond to the structure that is left invariant
under deformations of the complex structure (i.e. those infinitesimal deformations
parametrized by the cohomology group H2,1).
31 I discuss the methodological ramifications of this scenario (vis-à-vis the concept
of evidence for string theory) in [33]. Peter Galison has a related, though more

30



The application of the duality (mirror symmetry) here amounts to the simu-
lation of the difficult quantum corrections (with yield the desired intersection
numbers as instanton corrections) using aspects of the classical geometry in
the dual theory. As Vafa explains, using the concepts introduced in §3:

[W]hat happens is that a parameter which controls quantum corrections λ0

on one side gets transformed to a parameter λ̃k with k 6= 0 describing some
classical aspect of the dual side. This in particular implies that quantum
corrections on one side have the interpretation on the dual side as to how
correlations vary with some classical concept such as geometry. [[38], p. 540]

In the case of the string theoretic enumerative geometry, what is going on
is that the Yukawa coupling (here, the 3-point vertex function or correlation
function) is giving the count of the curves. This function contains both a
classical (easy) piece and a quantum corrected (hard) piece. Following the
prescription sketched by Vafa above, one can compute the quantum part using
elements of the classical geometry and then convert back.

The mirror theories are equivalent for n−point functions, not just 3-point
functions, since all string diagrams can be constructed from the basic ‘pair of
pants’ vertex:

Given the remarkable nature of this application of the duality conjecture, one
might not unreasonably view the positive results as offering evidence for the
correctness of the duality. 32

I think it is fair to say that mirror symmetry is the most philosophically
interesting part of string theory vis-à-vis spacetime ontology. It is tantamount
to the claim that very different manifolds are physically equivalent. Not only
that, it involves an isomorphism between classical geometry and quantum
phenomena. We unpack the meaning of such isomophisms in the final sections.

historical article, covering similar themes: [14].
32 The formula of Candelas et al. was in fact made more rigorous using a variety
of techniques external to string theory, see [26] for example. The various proofs of
mirror symmetry can be found in [21].
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5 Duality and Physical Content

Theories related by dualities can appear very different while making exactly
the same predictions about all observable phenomena. Indeed, the theories
can look sufficiently different that would-be interpreters of the theories would
surely consider them to be representations of very different possible worlds
indeed. Different elements and relations: one quantum, one not; one gravita-
tional, one not; one 5-dimensional, one 10-dimensional; one large, one small,
and so on. Yet duality symmetries may hold the key to extracting physical
content from string theories. But what could this physical content possibly
be, given these dualities?

Strongly coupled theories can have as ‘duals’ weakly coupled theories. This
physical equivalence can then be used as an exploratory resource to enable the
probing of the, practically unsolvable, strongly coupled theory. Thus, much as
the method of simulation opened up new ways of tackling otherwise intractable
physical system, so duality symmetries offer a similar possibility. Indeed, they
appear to be very similar in terms of ‘representational style’, since a simpler
system enables one to describe a more complicated system. The difference
is, however, that the duality-based ‘simulation’ is ‘non-lossy’. It is not that
one description approximates another (say by abstracting some details away).
Rather, there is a curious exact congruence in their physical predictions de-
spite an often extreme superficial incongruity. However, though this aspect
of duality is important and rather remarkable, it is the philosophical con-
sequences of this situation that concern us more here. Exactly what do the
existence of these dualities between apparently distinct theories tell us about
these theories, about representation, and about interpretation?

5.1 Plain Vanilla Underdetermination?

Dual theories provide distinct but ultimately physically equivalent represen-
tations. Do they thereby amount to underdetermination? I would argue that
there are crucial and subtle differences. The dual theories are not in competi-
tion: they are complementary. They are both true in a sense, and the practice
of physics suggests, in many cases at least, a pluralistic stance with respect to
the dual theories. However, in many cases (perhaps, ultimately, all) the cases
point to a deeper underlying structure, and in that sense neither dual theory
is true in anything but an approximate sense.

Duality symmetries appear to land us in familiar philosophical waters: we have,
it seems, a multiplicity of representational schemes that, simply interpreted,
support widely differing ontologies. A positivist might well be no more fazed
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by dual descriptions than standard underdetermined cases (such as Poincaré’s
example of the curved space versus distorting forces that have equivalent em-
pirical geometrical consequences). But are dualities really just different ways
of saying the same thing? In a sense, of course, they are, for duality is defined
in terms of an isomorphism of physically meaningful consequences. In another
sense they clearly aren’t equivalent, for we often cannot use the dual theories
in the same way to do the same things.

The syntactic view of scientific theories will clearly view the dual ‘theories’
as distinct simpliciter, with different basic axioms. However, on the semantic
view of theories, matters are not so simple. As van Fraassen explains:

The essential job of a scientific theory is to provide us with a family of
models, to be used for the representation of physical phenomena. On the
one hand, the theory defines its own subject matter—the kinds of system
that realize the theory; on the other hand, empirical assertions have a single
form: the phenomena can be represented by the models provided. [[39], p.
310]

In the case of string dualities, we have genuinely distinct topological manifolds
that serve as background manifolds for the compact dimensions. These are
structurally different. They would seem to be describing very different systems.
In terms of models, they amount to different relational structures. Hence, even
on van Fraassen’s own ‘state space’ approach (with symmetries factored out),
these will be distinct theories since the states will involve the backgrounds as
part of their definition, not to mention a variety of different parameters (or
moduli). The dualities point to a ‘double (or n-fold) counting’ in moduli space
where we would not expect to see it. That is to say, dual theories occupy what
appear to be very different regions of parameter space (or theory space). The
duality identifies them on the grounds that they have a perfect matching with
respect to their physical predictions.

Constructive empiricism would distinguish dual theories too, since it adopts
a direct, literal interpretation of the formalism representing ‘unobservable’
things, properties and structures. Of course, this stance includes a freedom of
choice component when it comes to empirically equivalent, empirically ade-
quate alternatives. But recall that dual descriptions are not alternatives in the
usual sense: they are indispensable modes of representing particular physical
systems in different situations.

I don’t wish to attempt to resolve the relationship between dualities and un-
derdetermination here, but I do wish to emphasise that they is a very clear
connection to be probed. What we have with dualities is something that does
not quite fit the usual case studies presented as examples of underdetermina-
tion, and for that reason they should be of vital interest to those investigating
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underdetermination and issues of scientific realism more generally.

5.2 Theory, Duality, and Moduli Space

A central question of string theory, and one that has led to a great deal
of controversy over string theory’s scientific prowess and its ability to make
sensible predictions, concerns how many string theories there in fact are. In
a recent retrospective of string theory, David Gross, answering a question he
had posed nearly two decades earlier, writes:

Do there exist more consistent string theories than the known five—the two
forms of the closed superstring, the SO(32) open superstring and the two
forms of the heterotic string? Do there exist fewer in the sense that some of
the above might be different manifestations (different vacua?) of the same
theory?

This question has been definitively answered. All the five ‘string theories’
referred to above are different manifestations of one and the same theory.
[...]

The various forms of string theory are related by an intricate and beautiful
web of dualities that relate one form of the theory, most appropriate for
its description in a given region of parameter space, to another form, more
appropriate for its description in a different region of parameter space. [[17],
p. 102]

In other words, the various consistent superstring theories are distinguished
points in the moduli space of vacua of some underlying theory. They represent
solutions of the underlying theory—not forgetting the 11-dimensional theory,
which amounts to a sixth solution. The web of dualities is taken to restore the
uniqueness that was thought to characterise the earliest incarnation of string
theory.

The problem with this ‘solutions rather than theories’ interpretation is that
it is purely verbal as it stands, until the ‘underlying theory’ of which these
‘theories’ are solutions is found. If the underlying theory is found, with these
limits, then the dualities will be converted into gauge symmetries of this new
theory: 33

In practice, there is frequently a natural notion of what one should consider
as a theory, so that any further analysis of the difference between these
types of symmetries [gauge versus duality—DR] would be a rather academic

33 However, in the cases discussed in this paper, relating solutions with very different
topological spaces (as in mirror symmetry) so that they are taken to represent ‘one
and the same physical situation’ is highly non-trivial in interpretive terms.
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exercise. On the other hand, it can be a major breakthrough in science to
discover a symmetry between a priori different theories and then promote
it to a symmetry of the first type [i.e. relating states within a theory—DR].
Such a paradigm change is currently advocated in supersymmetric gauge
theories and superstring theory with extended supersymmetry. ([13], p. 14)

As mentioned earlier, there is a relationship here with the Wilsonian con-
ception of a renormalization group flow on ‘theory space’ (in the context of
quantum field theory this is really just space of Lagrangians). Here the idea
is that the energy scale at which some physical theory is studied and ap-
plied matters. In some theories one finds that the physics at one energy (or,
inversely, distance) scale is dynamically decoupled (save for a few global pa-
rameters) from the scales below. 34 The nature of this dynamical insensitivity
between various energy scales is precisely described by Wilson’s theory. What
it describes is the way in which the coupling constants and masses of some
theory (i.e. in the Lagrangian) must be varied as the energy scale is varied
so as to keep the values of known observables fixed. As David Gross puts it,
“If there was no decoupling, it would be necessary for Newton to know string
theory [valid at 10−33—DR] to describe the motion of a viscous fluid [valid at
1cm—DR]” ([18], p. 553).

However, there is clearly a crucial difference with dualities. The renormaliza-
tion group is really only a semi-group: it is irreversible. So one cannot work out
the details of lower scales from the physics at higher scales: micro-information
is lost at higher scales. In the case of dualities one is seemingly able to evade
this informational embargo, studying strongly coupled, high energy, small scale
situations using weakly coupled theories (and vice versa).

However, without some clear definition of ‘theory’ on the table, the claim
that M-theory is a unique theory with various limits (satisfying the various
dualities) looks like a case of enforcing uniqueness by fiat. We also need an
argument telling us that when a pair of theories are related by a duality
transformation, they can be viewed as merely describing different regions of
parameter space of an underlying theory (rather than those different regions
of parameter space themselves amounting to distinct theories). Though this
seems intuitive and appealing, I have seen no definite argument showing why
it should be so—one suspects that the lure of ‘unification’ is playing some role
in the claim that the various string theories really amount to some freedom in
the way one describes a deeper (unique) theory. There is, in any case, clearly

34 This is basically what renormalizability amounts to in the modern theory. It
is simply the fact that the details of the physics at scales lower than some scale
of interest can be bundled up into a finite number of parameters. If we can then
measure and understand these parameters we can understand the theory at all
scales. Non-renormalizable theories require infinitely many such parameters who’s
measurement would clearly be impossible.
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good work for philosophers of science in clarifying what notion of theory is in
operation here, and how it stands up to the various debates in philosophy of
science over how theories ought to be viewed.

5.3 Duality Contra Fundamentalism

There are many surprising ontological consequences that flow from duality.
For example, as we saw earlier, the notion of ‘fundamentality’ is impacted in
a serious way by S-dualities exchanging strong and weakly coupled theories:
there is no distinction between elementary (or what would standardly be la-
belled ‘fundamental’) and composite descriptions. That is, one can have a pair
of representations, one in which some phenomenon is described by compos-
ite particles and another with ‘elementary’ entities. This is easiest (and most
surprising, given quarks’ supposedly elementary nature) to see in the case of
quarks—though it holds for other dualities, including the electromagnetic du-
ality. Quarks have a generalised notion of charge, known as colour, and the
motion of such charges generates ‘colour magnetic fields’. Quarks are able
to combine to form a composite monopole with its own charge (i.e. colour).
S-duality exchanges strong and weak coupling, however, which enables us to
view the monopole as a non-composite object that itself forms quarks (which
are then viewed as composite objects themselves).

If we apply our ‘duality rule’ to this case, then it seems even more puzzling
than the geometrical cases. What structure could possibly underlie this duality,
expressing as it does an equivalence between so seemingly different a pair of
descriptions as ‘fundamental’ and ‘composite’? Very similar aspects of duality
involving quantum black hole physics (connected to the so-called holographic
principle) have led ’t Hooft to conjecture that this particular duality points
to some deeper structure beneath quantum mechanics so that the quantum
fluctuations are really statistical fluctuations in an underlying deterministic
system who’s degrees of freedom are neither field nor particles and who’s
picture of space and time is revised.

Ultimately, of course, duality isn’t such a good case study for those who wish
to deny fundamentalism, since it points to deeper structures that ‘might’ have
fundamental status. Certainly, dualities are not inconsistent with the funda-
mentalist world picture.

Though I will not defend the claim here, it appears that the consequences of
duality may be the structural realists best ‘physics-motivated case’ for their
position. For the underdetermination is a part of our best physics and it is of a
form where the dual descriptions are complementary, rather than in competi-
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tion (that is, they are both thought to be true in some sense). 35 The differences
in the representations (involving ‘composite/elementary’-duality, dualities be-
tween distinct topologies, and so on) are significant enough to cause genuine
trouble for non-structural realists. It seems that both descriptions in cases of
duality are ‘successful,’ and yet they describe very different possible worlds at
the level of an ontology of individual objects and properties (such as fields and
field values, spacetime points and regions, and so). The fact that the dualities
have been used to discover genuinely new and unexpected physics are enough
to pose a problem for anti-realists who will need to provide an explanation for
how this is possible.

Hence, the typical structural realist route to evading underdetermination in-
volves the commitment to those structural aspects that are common to both
of the pair of underdetermined descriptions. Here, we don’t have underdeter-
mination as such, but the same strategy is applicable: the dual pictures are
dual in precisely the sense that they share their observable structure (they
match up with respect to all physically measurable properties). As such , they
seem like ready-made exemplars for the structural realist position.

A potential problem that would need to be considered, however, is that the un-
derdetermination is itself structural (with different topologies and such like).
This would seem to put the structural realist in as much trouble as standard
realists. However, the resulting ‘underlying’ structure that the dual pictures
point to are of the sort that provide more grist to the structural realists mill:
they are of a distinctly non-local, relational nature since precisely what is at
stake in the dual pictures are distinct individualistic or local elements. Hence,
the idea of duality is one that the structural realist can accommodate quite
naturally. Dual pictures amount to a (highly constrained, non-trivial) multi-
plicity in the ways that one can realise some system of physically observable
(in the physicist’s sense) relations.

6 Conclusion

Dualities are at the root of many difficult and profound debates in contem-
porary theoretical physics. They are essential to a proper understanding of
nonperturbative physics and by implication to a proper understanding of our
best physical theories, including the quantum gauge field theories compris-
ing the standard model and string theory. They are connected to a plethora
of problems that philosophers can profitably and constructively engage with
and, in addition to posing new questions, have the potential to reinvigorate
many old issues in the philosophy of physics and science. This paper merely

35 I discuss the possible support that dualities offer to structural realism in [32].
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skimmed the surface of a handful of these 36 in the hope that they will spark
some interesting new lines of research.
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