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Allocation Aggregation for a Finite Valuation Domain
C. Wagner.   August 19, 2009
1. Introduction
An n
[image: image1.wmf]´

m  matrix A = (aij) is an s-allocation matrix if  (1)  each entry of A is  a nonnegative real number and  (2) the sums of the entries in each row of A are identically equal to some fixed positive real number s.  When n = 1, an s-allocation matrix is called an s-allocation row vector. Let A(n,m;s) denote the set of all n
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m  s-allocation matrices, and A(m;s) the set of all m-dimensional s-allocation row vectors. An allocation aggregation method (AAM) is any mapping  F: A(n,m;s)
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 A(m;s).  Each s-allocation matrix  A = (aij) may be thought of as recording the opinions of n individuals regarding the most appropriate values of  variables x1,…,xm , constrained to be nonnegative and to sum to s, with aij denoting the value assigned by individual i to variable xj.  Each AAM       F furnishes a method, applicable to every conceivable s-allocation matrix A, of reconciling the possibly different opinions recorded in A in the form of the group assignment F(A) = a = (a1,…,am).  In what follows, the jth column of a matrix A is denoted by Aj , and the jth entry of the row vector  a  is denoted by  aj. The n
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1 column vector with all entries equal to c is denoted by c. If  A = (aij)  and  B = (bij) are any matrices with identical dimensions,  we write  A 
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 B to indicate that  aij 
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 bij  for all 

i and j.
Aggregation theory has followed social choice theory in adopting an axiomatic approach to the study of AAMs. Typical axiomatic restrictions on aggregation have included, for example:
Irrelevance of Alternatives (IA).  For all j 
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{1,…,m}, and  all A, B
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 A(n,m;s), 
Aj = Bj 
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 F(A)j = F(B)j.

Strong Label Neutrality (SLN).  For all j,k 
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{1,…,m}, and  all A, B
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 A(n,m;s), 

Aj = Bk 
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 F(A)j = F(B)k.
Zero Preservation (ZP).  For  all j 
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{1,…,m},  and all  A
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 A(n,m;s), 

 Aj = 0  
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 F(A)j = 0.
Theorem 1. (Lehrer and Wagner 1981).  If m 
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 3, and the AAM F satisfies IA and Z, then it satisfies SLN.

Clearly, IA is equivalent to the existence of functions fj : [0,s]n 
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[0,s], j = 1,…,m, such that, for all A 
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 A(n,m;s),  F(A)j = fj(Aj)   and  
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m

j

=

å

fj(Aj) = s.  SLN strengthens IA to 
require that the functions fj are identically equal to some function f.  When m 
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 3, the following theorem characterizes those AAMs satisfying  IA and Z:
Theorem 2. (Lehrer and Wagner 1981).  If m 
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 3, an AAM  F  satisfies IA and Z if and only if there exists a single sequence w1,…,wn of weights, nonnegative and summing to one, such that for all A
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 A(n,m;s) and all j = 1,…,m,  F(A)j = w1a1j + w2a2j + …+ wnanj.
2.  Finite Valuation Domains

In Theorems 1 and 2, the valuation domain, i.e., the set of values that may be assigned to the variables, is the infinite closed interval [0,s].  In real world allocation problems, however, valuation domains will necessarily be finite. As shown below, under certain mild closure conditions on such domains (satisfied, inter alia, by [0,s]), only dictatorial aggregation satisfies IA and Z.
Theorem 3.  If  s > 0,  a finite subset  V  of  [0,s]  with cardinality r + 1 satisfies 

 (1)  0
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V ,  

 (2)  x
[image: image24.wmf]Î

V 
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 s – x 
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V,  and

 (3)  x,y
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V  and  x + y 
[image: image28.wmf]£

 s  
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 x + y 
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V

if and only if   V = { ks/r : k = 0,1,…,r}.
Proof.  Sufficiency: obvious.  Necessity: If  r = 1, the result is obvious. Suppose then that r 
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 2, and let 
[image: image32.wmf]a

be the smallest positive element of V. 
(i)  If 
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 < s/r, then by repeated application of (3) it follows that 

k
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 EMBED Equation.DSMT4  [image: image35.wmf]Î

V, k =0,1,…,r, and hence by (2) that  s - r
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V. By assumption,  s – r
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 > 0.  Moreover,  s – r
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 < 
[image: image40.wmf]a

, for otherwise  (r + 1)
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 EMBED Equation.DSMT4  [image: image42.wmf]£

 s, which would imply that 

(r + 1)
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 EMBED Equation.DSMT4  [image: image44.wmf]Î

V, and hence that  |V| > (r + 1. But this contradicts the assumption that 
[image: image45.wmf]a

is the smallest positive element of V.

(ii)  If 
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 > s/r, then  r
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 > s, and so  r
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 EMBED Equation.DSMT4  [image: image49.wmf]Ï

 V.  Let  m  be the largest integer for which  m
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  s, whence m < r,  m
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V, and  s – m
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V. Suppose that  m
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< s.  Then 
 0 < s – m
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< 
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, again contradicting the assumption that 
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is the smallest positive element of V. So  
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 = s/m.   Morever, V = {0, s/m, …, (m – 1)s/m, s} . Otherwise, there exists
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V  such that  ks/m< 
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 < (k+1)s/m, where 1
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 k 
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m – 1. Let  

[image: image66.wmf]b

* : =  
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 + (m – 1 – k)s/m.  Then (m – 1)s/m < 
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* < s,  and so  
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* 
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 V  and 
 s – 
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* 
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 V.  Furthermore,  0 < s – 
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* < s/m, contradicting the assumption that  s/m  is the smallest positive element of  V.  Hence |V| = m + 1 < r + 1, contradicting the assumption that |V| = r + 1.
By  (i) and (ii), it follows that 
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 = s/r.  Since ks/r 
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V  for k = 0,1,…,r
and |V| = r + 1, it must be the case that  V = {ks/r  : k = 0,1,…,r}.           □

In the remainder of this note,  V denotes a finite subset of  [0,s]  satisfying the closure conditions (1), (2), and (3) above,  A(n,m;s,V)  denotes the set of all  n
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m  s-allocation matrices with entries limited to elements of V , and A(m;s,V) the set of all 
m-dimensional s-allocation row vectors with entries limited to elements of V.  
Allocation aggregation methods are now mappings  F: A(n,m;s,V)
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 A(m;s,V).
Theorem 4.  If  m 
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 3,  and  F: A(n,m;s,V)
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 A(m;s,V) satisfies IA and Z, then it satisfies SLN.

Proof. The proof is identical to that of Theorem 1, which only uses the fact that [0,s] satisfies the closure properties (1), (2), (3).  □
An AAM  F  is dictatorial if there exists an individual d
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{1,…,n} such that for all 

A
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 A(n,m;s,V),  F(A) = (ad1, ad2,…,adm).  
Theorem 5.  If  m 
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 3,  an  AAM  F: A(n,m;s,V)
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 A(m;s,V)  satisfies  IA  and  Z  if and only if  F is dictatorial.
Proof. Sufficiency: obvious.  Necessity:  By Theorem 4, F satisfies SLN, and so there exists a function  f : Vn 
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 V  such that, for all  A
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 A(n,m;s,V)  and  all  j
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{1,…,m}, F(A)j = f(Aj).  Moreover, 
(4)       f(X + Y) = f(X) + f(Y)     for all  X, Y
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Vn  such that  X, Y, and X + Y  
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 s.

This follows from considering matrices A and B in A(n,m;s,V)  defined (with vertical lines separating columns) by  A = (X |  Y  |   s – X – Y | 0 | … |0)   and   
B = (X + Y  |   s – X – Y |  0  | 0| …|0),  and noting that by Z,  f(0) = 0. Summing the values of  f  over the columns of A and B then yields f(X) + f(Y) + f(s – X – Y) = s
 = f(X + Y) + f(s – X – Y), and hence (4).  Summing the values of  f  over the columns of 
C = (s | 0 | …| 0 )  shows that 
(5)         f(s) = s. 
By induction, the functional equation (4) can be extended to any finite number of summands X, Y, Z, …, so long as X, Y, Z,…, X + Y + Z + …  
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 s.  With (5), this yields
(6)         f(s/r) = s/r      and, more generally,     f(ks/r) = ks/r,   k = 0,…,r.
      Next, associate with the function  f: Vn 
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 V  functions  f ‹i› : V
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V, i = 1,…,n, defined for all x
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V  by  f ‹i›(x) = f(0,…,0,x,0…,0), where x occupies the ith position in the preceding vector. Clearly,
(7)          f(x1,…,xn) = f ‹1›(x1) + f ‹2›(x2) + …+ f ‹n›(xn)     for all  (x1,…,xn)
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 Vn,
 and by (4), 
(8)        f ‹i›(x + y) = f ‹i›(x) + f ‹i›(y) for all x,y 
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V such that  x, y, and x + y  
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 s. 
 Recall that V = { ks/r : k = 0,1,…,r}.  By (6) and (7),
(9)                f(s/r) = f ‹1›(s/r) + f ‹2›(s/r) + …+ f ‹n›(s/r) = s/r.

Since the values of  f, and hence of the functions f ‹i›, are constrained to lie in V, this implies that there exists an individual d
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{1,…,n} such that

(10)               f ‹d›(s/r) = s/r       and     f ‹i›(s/r) = 0  for all  i
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d,
and repeated application of (8) to (10) then yields

(11)             f ‹d›(ks/r) = ks/r       and     f ‹i›(ks/r) = 0  for all  i
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d,    k = 0,…,r.

i.e., for all x
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V,

(12)             f ‹d›(x) = x      and     f ‹i›(x) = 0  for all i
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d.

Hence, for all A
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 A(n,m;s,V),  F(A) = (f(A1), f(A2),…, f(An)) = (ad1, ad2,…,adm).  □
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