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former determined by the masses of the bodies and the later by �elds obeying Maxwell's equations.Knowledge of the initial position and momentum of all bodies and their masses as well as the initial�eld on�guration would then be su�ient to alulate the future development of the universe.But already during the nineteenth entury several observations were made whih indiated thatthis an not be the whole story. As an example one may think of the photoeletri e�et, namelythe emission of eletrons from matter under an inident eletromagneti �eld. Although this e�etan be explained without quantization of the eletromagneti �eld [1, p. 11℄ it was historiallyimportant for substantiating the idea of photons. But it was mainly early twentieth enturyobservations of small-sale phenomena whih required a new theory, viz. quantum mehanis. Thenotion of a partile with a well-de�ned position and momentum had to be replaed by a wave-funtion |ψ〉 whih obeys Shrödinger's equation (setting ~ = 1; f. the appendix for notationalonventions)
i
d

dt
|ψ〉 = H |ψ〉 (1)and therefore evolves deterministially. But the square of the wave-funtion merely gives theprobability density to �nd the partile in a ertain position or state of motion. And learly thisprobabilisti desription torpedoes the idea that the universe ould be deterministi. Moreoverin quantum mehanis position and momentum have lost their fundamental status as dynamialvariables. Nevertheless they are still observables whih are measured in the laboratory and thereforeneed to be represented in the theory. In the ase of the position observable this is aomplishedby assoiating with it a hermitian operator X with a purely ontinuous spetrum σc(X) = R3whose (improper) eigenfuntions form an orthonormal basis {|~x〉 : ~x ∈ R3} of the state spae ofthe system, i.e.

〈~x|~x′〉 = δ(3)(~x− ~x′),

∫

d3x |~x〉 〈~x| = 1. (2)The ation of this position operator on an arbitrary wave-funtion in position spae lying in thedomain of X is then de�ned by
〈~x|X |ψ〉 := ~x 〈~x|ψ〉 . (3)Similarly other observables suh as momentum and angular momentum are represented by assoi-ating with them hermitian operators P and L respetively.What happens with the wave-funtion if suh an observable, say the position, is being mea-sured? Before the measurement the position spae wave-funtion 〈~x|ψ〉 allows us to predit theprobabilities of obtaining the various possible outomes. However, one having measured the statein a ertain volume V ⊂ R3 the wave-funtion immediately after the measurement needs to haveompat support in this volume, and thus has to have ollapsed to a di�erent wave-funtion givenby the measurement postulate
〈~x|ψ′〉 =

〈~x|PV |ψ〉
√

〈ψ|PV |ψ〉
, (4)where PV is the projetion operator onto the eigenspae assoiated with the volume V , i.e.

PV =

∫

V

d3x |~x〉 〈~x| . (5)A further remarkable di�erene between lassial mehanis and quantum mehanis are theanonial ommutation relations between the omponents of the position and momentum operators
[X i, Pj ] = iδi

j, [X i, Xj ] = 0, [Pi, Pj ] = 0. (6)2



whih are needed to aount for the observation that ertain observables take on only a disretenumber of values; e.g. the energy of an eletron in a hydrogen atom and its angular momentumare both quantized. Heisenberg has shown that these ommutation relations lead to an unertaintypriniple for the position and momentum operators
〈X〉 〈P 〉 & 1, (7)where 〈X〉 and 〈P 〉 denote the standard deviation of position and momentum respetively. As aonsequene it is impossible to know both position and momentum of a partile at the same timeto an arbitrary preision whih abolishes one and for all the speial role these two observableshave had in lassial mehanis.At this point it has to be mentioned that quantum mehanis an tehnially be divided intoa well-de�ned mathematial framework and an interpretation whih onnets the mathematialformulation with the experiment. The interpretation of quantum mehanis given above is partof what is known as the Copenhagen interpretation. Although it is nowadays the most widely-aepted interpretation of quantum mehanis, other interpretations have been developed, notleast beause the measurement postulate (4) with its predited wave-funtion ollapse remainsontroversial. But the important point is that within the mathematial framework of quantummehanis the onept of position is well-de�ned and unambiguous, although its onsequenes areadmittedly not very intuitive for us marosopi beings.At the beginning of the twentieth entury a seond major revolution in physis took plae: thebirth of the theory of relativity. However, quantum mehanis as desribed above is not ompatiblewith relativity, mainly beause the Shrödinger equation (1) is not relativistially invariant. Con-sequently there were several attempts to ombine onepts from relativity with quantum mehanisout of whih relativisti quantum mehanis and quantum �eld theory grew, the later one pushedforward by the need to �nd a quantum theory for the eletromagneti �eld. But unfortunately itwas exatly the onept of loalization whih proved very di�ult to arry over to a relativistiquantum theory; a onept so heavily and suessfully used in experimental physis.In 1949 Newton and Wigner tried to takle this problem systematially by writing down thepostulates whih in their eyes were neessary and su�ient to haraterize loalization. On theone hand their postulates turned out to be very ompelling in the sense that they give rise to aunique position operator for every massive system of arbitrary spin and for every massless systemof either spin 0 or 1

2 . On the other hand the eigenstates of these position operators have strangeand unpleasant properties, i.e. they propagate superluminally and are only loalized for speialinertial observers. Whilst the former property raised onern that these states ould be used tosignal superluminally and thus generate aausal behaviour, the later property interferes with thepriniple of relativity whih requires the physial laws to be equivalent in all inertial frames. Butthis would ertainly not be the ase if the wave-funtion desribing a partile ould have ompatsupport in one inertial frame but extend to in�nity in another. Moreover the Newton-Wignerpostulates do not lead to any position operator for massless systems with spin 1 or higher andthereby miss suh important partiles as the photon.Out of all these onerns two fundamentally di�erent points of view developed.
• The di�ulties an be onsidered as evidene that strit loalization does not exist, andpartiles are a pure illusion.
• Despite their strange properties, the Newton-Wigner position operators and their eigenstatesmake physial sense.In fat there have also been attempts to downplay the issues by laiming that the whole problemis on�ned to systems with a �xed number of partiles, but following Fleming and Butter�eld it3



needs to be emphasized that this is not true: the aforementioned strange properties are equallypresent in a theory of variable partile numbers suh as quantum �eld theory [2, p. 110�111℄.The struture of this essay is as follows. At the beginning it is shown that the superluminalpropagation of the position operator eigenstates is already present in non-relativisti quantummehanis, but not the deloalization under ertain spaetime symmetry transformations. Subse-quently the loalization onept due to Newton andWigner is introdued and the strange propertiesof the eigenstates of their position operator are expliitly demonstrated in the example of a massivespinless partile. Thereafter a theorem is presented whih supports the point of view that partilesare a pure illusion. Finally, the onept of hyperplane-dependent loalization is desribed whihshows that, against all the odds, loalizable partiles are not neessarily unphysial.2 Loalization in non-relativisti Quantum MehanisIn setion 1 the position operator for a partile was introdued by its ation on the wave-funtionof the partile in position spae representation. For later onveniene it is worth realling its ationin momentum spae representation, viz.
〈~p|X |ψ〉 =

∫

d3x 〈~p|~x〉 〈~x| ~X|ψ〉 =

∫

d3xe−i~p·~x~xψ(~x)

= i∇~p

∫

d3xe−i~p·~xψ(~x) = i∇~pψ(~p). (8)The probability amplitude for a free partile initially loated at ~x0 to propagate to ~x within a time
t is

〈~x|e−iH0t|~x0〉 =

∫

d3p

(2π)3
e−it~p2/2mei~p·(~x−~x0), (9)whih after substitution of ~q := ~p−m(~x− ~x0)/t beomes

=

∫

d3q

(2π)3
e−it~q2/2meim(~x−~x0)

2/2t =
( m

2πit

)3/2

eim(~x−~x0)
2/2t, (10)an osillating wave, spread out over all spae [3, p. 1989℄. Beause it does not vanish for arbitraryseparations |~x− ~x0| the partile an propagate superluminally.In the following it is shown that a loalized wave-funtion remains loalized under the ationof the Galilean group whih is the largest symmetry group of non-relativisti quantum mehanisleaving sales invariant. As mentioned above this behaviour an not be taken for granted anymorein the Newton-Wigner sheme, and so it may well be worth verifying expliitly that it is truein this ase. For this purpose onsider two Galilean inertial frames O and O ′ equipped withoordinates (t, ~x) and (t′, ~x′) respetively. Assume a partile loalized in O at position ~x0, i.e.with a wave-funtion in position spae 〈~x|~x0〉 = δ(3)(~x − ~x0). It is obvious that the loalizationof the wave-funtion is not a�eted by spatial rotations nor by spaetime translations. Under aGalilean boost

t→ t′ = t, ~x→ ~x′ = ~x− ~vt. (11)the wave-funtion transforms into
〈~x′|~x′0〉 =

∫

d3p

(2π)3
ei~p·~x′ 〈~p+m~v|~x0〉 =

∫

d3p

(2π)3
ei~p·(~x−~vt−~x0)e−im~v·~x0

= e−im~v·~x0δ(3)(~x− ~vt− ~x0). (12)4



Up to a phase this is the same wave-funtion as before. Beause every wave-funtion an beexpanded in terms of δ-funtions the loalization regime of an arbitrary wave-funtion is indeeduna�eted by a Galilean transformation [4, p. 104℄. It is now time to introdue Newton andWigner's attempt to reonile loalization with the speial theory of relativity.3 Newton-Wigner LoalizationThe requirements Newton and Wigner onsidered as neessary for a system to be loalized aresummarized in the following postulates.Newton-Wigner postulates [5, p. 401℄, [6, p. 1093℄Let S denote the set of loalized states at the origin of a spaetime oordinate system with thefollowing properties(a) S is linear, i.e. a |ψ〉 + b |ϕ〉 ∈ S for all |ψ〉 , |ϕ〉 ∈ S and for all a, b ∈ C.(b) 〈ψ|T~a|ψ〉 = 0 for all |ψ〉 ∈ S and for all ~a 6= 0 where T~a is the translation operator de�ned by
T~a | ~x0〉 := | ~x0 + ~a〉.() S is invariant under rotations R ∈ O(3) and time re�etions.(d) The states |ψ〉 ∈ S obey a mathematial regularity ondition whih essentially eliminatesdisontinuous funtions from S.These postulates alone annot entirely determine the loalized states as they do not ontain anyinformation about the internal struture of the system. Consequently a requirement on the statespae of the system needs to be imposed, namely that it be the arrier spae of a single irreduibleand unitary representation of the Poinaré group [2, p. 114℄, [7, p. 524�525℄. The state spae ofa system ontaining an arbitrary number of partiles an always be deomposed into suh arrierspaes and the physial system assoiated with a arrier spae is alled an elementary system. Anelementary partile is then de�ned to be an elementary system whose states annot be onnetedby physial interations to the states of other systems. As an example the neutron is not anelementary partile beause it an be onneted to the proton by β-deay. From these de�nitionsit follows that an elementary system is a more general onept than an elementary partile sine,for example, the ground state 1s of a hydrogen atom forms an elementary system [5, p. 400℄ butnot an elementary partile as it an be onneted to other states of the hydrogen atom by photonabsorption.3.1 Newton-Wigner States and their PropertiesIn the following the Newton-Wigner operator for a massive spin zero system is introdued and itsmost important properties are disussed. Massive spin zero systems are desribed by the Klein-Gordon equation

(∂2 +m2)φ(x) = 0. (13)Writing φ(x) as a Fourier deomposition one obtains the Klein-Gordon equation in momentumspae
(

∂2
t + ω2

~p

)

φ(t, ~p) = 0, (14)5



where ω2
~p := ~p2 +m2. The set of positive energy solutions is de�ned as U+ := {φ(t, ~p) : ω~p ≥ 0}and a Lorentz-invariant inner produt on this set is given by

〈ϕ|ψ〉 =

∫

d3p

(2π)3
1

2ω~p
ϕ(~p)∗ψ(~p), ϕ, ψ ∈ U+. (15)The reason for restrition to positive energy solutions is that the negative energy solutions haveeigenvalues whih are unbounded from below. Therefore an arbitrary amount of energy ould beextrated from the system by lowering its energy state further and further. This problem is resolvedin quantum �eld theory by reinterpreting the negative energy solutions as positive energy statesof an antipartile. But by making this restrition to positive energy solutions the onsequenes ofthe Newton-Wigner loalization derived below will then be present also in a quantum �eld theory.The fator of 1/2ω~p in the de�nition of the inner produt (15) is neessary to make the integra-tion measure Lorentz-invariant. At the same time it prevents the non-relativisti position operator

(8) from being used beause this one is not hermitian with respet to the Lorentz-invariant innerprodut
〈Xψ|ϕ〉 =

∫

d3p

(2π)3
1

2ω~p
[−i∇~pψ

∗(~p)]ϕ(~p)

=

∫

d3p

(2π)3
ψ∗(~p)i∇~p

[

ϕ(~p)

2
√

~p2 +m2

]

=

∫

d3p

(2π)3
1

2ω~p
ψ∗(~p)i

[

∇~p − ~p

~p2 +m2

]

ϕ(~p), (16)and does therefore not orrespond to an observable. From the above alulation however it is nothard to see how it an be turned into a hermitian operator with respet to the Lorentz-invariantinner produt, namely by setting
Xnw := i

(

∇~p − ~p

2ω2
~p

)

. (17)This is indeed the position operator Newton and Wigner derived from their postulates. Theommutation relations of its omponents then follow from (6)
[X i

nw, pj] =

[

i
∂

∂pi
, pj

]

− i

[

pi

2ω2
~p

, pj

]

= iδi
j (18)

[X i
nw, X

j
nw] = −

[

∂

∂pi
,
∂

∂pj

]

+

[

∂

∂pi
,
pj

2ω2
~p

]

+

[

pi

2ω2
~p

,
∂

∂pj

]

−
[

pi

2ω2
~p

,
pj

2ω2
~p

]

= 0, (19)where in the last line the third term anels the seond and the other two terms vanish individually.A general eigenstate of the Newton-Wigner position operator in momentum spae at position ~x0and time t = 0 is
〈~p|~x0〉 =

√

2ω~pe
−i~p· ~x0 , (20)whih an be veri�ed by ating with the Newton-Wigner position operator (17) on this state

〈~p|Xnw|~x0〉 = i

(

∇~p − ~p

2ω2
~p

)

√

2ω~pe
−i~p·~x0 = ~x0

√

2ω~pe
−i~p·~x0 = ~x0 〈~p|~x0〉 . (21)6
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Figure 1: Qualitative form of the Newton-Wigner eigenfuntion in position spae (22) as a funtion ofradial distane. Beause this funtion is not square integrable it is not normalizable and the square ofthe amplitude annot be interpreted as a probability density. Hene the tail as r → ∞ does not have aphysial meaning.The wave-funtion in position spae is obtained from (20) by using the inverse Fourier-transform
〈~x| ~x0〉 =

∫

d3p

(2π)3
1

2ω~p
〈~x|~p〉 〈~p| ~x0〉 =

∫

d3p

(2π)3
ei~p·(~x− ~x0)

√

2ω~p

= const

(

m

|~x− ~x0|

)5/4

K5/4

( |~x− ~x0|
λ0

)

, (22)where λ0 = 1/m is the Compton wave length and Kν(z) is the modi�ed Bessel funtion of theseond kind [5, p. 402℄, [8, p. A253℄. The qualitative form of this wave-funtion is plotted in Fig.1. At �rst glane it seems as if (22) would not represent a loalized partile beause it does nothave ompat support. However, the funtion is not square integrable and therefore an not beinterpreted as a probability density. It is rather the fat that the Newton-Wigner eigenstates satisfythe above postulate (b) whih justi�es their interpretation as desribing loalized states. Indeed,
〈~x0|~x0 + ~a〉 =

∫

d3p

(2π)3
1

2ω~p
〈~x0|~p〉 〈~p|T~a|~x0〉

=

∫

d3p

(2π)3
1

2ω~p
e−i~p·~a 〈~x0|~p〉 〈~p|~x0〉 = δ(3)(~a) = 0 ∀ ~a 6= 0, (23)where T~a is the translation operator. Nevertheless it would be onvenient to have an orthonormalbasis of the state spae whih allows the de�nition of a position dependent probability density fora state |ψ〉 in this state spae. Fortunately the Newton-Wigner eigenstates |~x0〉 form exatly suha basis.Proof Orthonormality follows from

〈~x0|~x′0〉 =

∫

d3p

(2π)3
1

2ω~p
〈~x0|~p〉 〈~p|~x′0〉 =

∫

d3p

(2π)3
ei~p·(~x0−~x′

0
) = δ(3)(~x0 − ~x′0)7



and losure from
∫

d3x0 |~x0〉 〈~x0|ψ〉 =

∫

d3p

(2π)3
d3p′

(2π)3
d3x0

2ω~p 2ω~p′

|~p〉 〈~p|~x0〉 〈~x0|~p′〉 〈~p′|ψ〉

=

∫

d3p

(2π)3
d3p′

(2π)3
1

2ω~p 2ω~p′

(2π)3δ(3)(~p− ~p′)
√

2ω~p

√

2ω~p′ |~p〉 〈~p′|ψ〉

=

∫

d3p

(2π)3
1

2ω~p
|~p〉 〈~p|ψ〉 = 1 |ψ〉 . �Using the ompleteness every normalized state |ψ〉 an then be expanded as [9, p. 64℄

1 = 〈ψ|ψ〉 =

∫

d3x0 〈ψ|~x0〉 〈~x0|ψ〉 =

∫

d3x0|ψ(~x0)|2 (24)whih allows to interpret |ψ(~x0)|2 as a probability density.3.1.1 Superluminal PropagationHow does a Newton-Wigner state evolve in time? Consider a Newton-Wigner state initially loal-ized at ~x′0. The probability amplitude for this state to propagate within a time t to ~x0 is then [10,p. 14℄
〈~x0|e−ip0t|~x′0〉 =

∫

d3p

(2π)3
e−it

√
~p2+m2

ei~p·(~x0−~x′

0
). (25)Rewriting the above integral in spherial oordinates using p := |~p|

1

(2π)3

∫ ∞

p=0

dpp2

∫ 2π

ϕ=0

dϕ

∫ π

ϑ=0

dϑ sinϑe−it
√

p2+m2

eip|~x0−~x′

0
| cos ϑ. (26)Substituting f := cosϑ and arrying out the integration over df and dϕ gives

1

(2π)2i

1

|~x0 − ~x′0|

∫ ∞

0

dppe−it
√

p2+m2

(

eip|~x0−~x′

0
| − e−ip|~x0−~x′

0
|
)

. (27)Using the symmetries of the integrand, the region of integration an be extended to the entire realaxis
1

(2π)2i

1

| ~x0 − ~x′0|

∫ ∞

−∞

dppeiΦ(p) (28)where Φ(p) := −t
√

p2 +m2 +p|~x0−~x′0|. Well outside the light one |~x0−~x′0| ≫ t this integral anbe approximated using the method of stationary phase [10, p. 14℄. In the following the abbreviation
|~x| := |~x0 − ~x′0| is used. The phase Φ has a stationary point at pS = im|~x|/

√

|~x|2 − t2 where ittakes on the value Φ(pS) = im
√

|~x|2 − t2. The seond derivative of Φ with respet to p is
d2Φ

dp2
= − t

√

p2 +m2

(

1 − p2

p2 +m2

)

, (29)and
∣

∣

∣

∣

d2Φ(p)

dp2

∣

∣

∣

∣

2

p=pS

=
|~x|2 − t2

m2

[

1 − |~x|2
t2

]2

> 0. (30)8



Hene the matrix element well outside the light one is apart from a phase approximated by [11,p. 307℄
〈~x0|e−ip0t|~x′0〉 ≃

1
√

(2π)2
mt

√

|~x|2 − t2

√

2πm

(|~x|2 − t2)3/2
e−m

√
|~x|2−t2 , (31)where |~x| := |~x0 − ~x′0|. The propagation amplitude is therefore dominated by a term of the form

〈~x0|e−ip0t|~x′0〉 ∝ e−m
√

|~x0−~x′

0
|2−t2 . (32)Although damped by an exponential term proportional to the mass m of the system, the amplitudeis non vanishing and superluminal propagation is therefore possible.3.1.2 Deloalization under Lorentz BoostsLet O and O ′ be two inertial frames with assoiated Newton-Wigner eigenbases |~x0〉 and |~x′0〉 ofthe state spae of the system. For simpliity assume an eigenstate loalized at the origin of Odenoted by |~xo

0〉. Aording to equation (20) its momentum spae representation at time t = 0 is
〈~p|~xo

0〉 =
√

2ω~p. (33)Furthermore assume O ′ is moving along the x-axis of O with relative veloity v, thus the twoinertial frames are related by a Lorentz boost
Λ =









γ −vγ 0 0
−vγ γ 0 0

0 0 1 0
0 0 0 1









. (34)The orresponding transformation indued on the state spae of the system is implemented bya unitary representation U [Λ] of the Lorentz group. Beause (34) is a pure Lorentz boost thisrepresentation is entirely determined in terms of the in�nitesimal boost generators ~K
U [Λ] = e−i ~K·~v. (35)The boosted state in the momentum spae representation then beomes [10, p. 23℄, [12, p. 65℄

〈~p|~xo,B
0 〉 = 〈~p|e−i ~K·~v|~xo

0〉 = 〈Λ~p|~xo
0〉 =

√

2ωΛ~p (36)where ωΛ~p = (Λp)0 = γ(ω~p − vp1) as an be heked by ating with (34) on the momentum p.Thus, in terms of the Newton-Wigner eigenbasis |~x′0〉 of O ′ the boosted state is
〈~x′0|~xo,B

0 〉 =

∫

d3p

(2π)3
1

2ω~p
〈~x′0|~p〉 〈~p|U [Λ]|~xo

0〉 =

∫

d3p

(2π)3

√

ωΛ~p

ω~p
ei~x′

0
·~p

=

∫

d3p

(2π)3

√

√

√

√γ

(

1 − vp1
√

~p2 +m2

)

ei~x′

0
·~p. (37)The Paley-Wiener-Shwartz theorem [13, h. 7℄ states that the Fourier transform of a ompatlysupported tempered distribution on Rn is an entire funtion on Cn, i.e. a funtion whih is analytiat all �nite points of Cn. The spae of tempered distributions S ∗ is de�ned as the ontinuous9



dual of the Shwartz spae S and the state spae spanned by the Newton-Wigner basis of O ′ is
H = L2(R3, d3x′0). Together S ,H and S ∗ form what is known as a Gelfand triple [14, p. 383℄

S ⊂ L2(R3, d3~x′0) ⊂ S
∗. (38)But the integrand in (37) is not an entire funtion sine the square root an not be analytiallyontinued to all omplex values and it follows by Paley-Wiener-Shwartz that the integral is ingeneral non-vanishing for arbitrary ~x0, i.e. the Newton-Wigner state is ompletely deloalized in

O ′.Therefore the Newton-Winger eigenstates, although arising from seemingly reasonable postu-lates in a unique way, have the aforementioned strange properties; they1. propagate superluminally and2. are deloalized by Lorentz boosts.This has attrated ritiism in di�erent forms whih an roughly be divided into two ategories.On the one hand the strange properties an be taken as evidene that a onept of stritlyloalizable partiles is not adequate to desribe a relativisti quantum theory and although thenotion of partiles is suessfully used in the marosopi or non-relativisti limit, on a fundamentallevel partiles are nothing but illusion.On the other hand several objetions were raised against the postulates nurtured by the hopethat a suitable modi�ation of them would make the strange properties vanish. For exampleNewton and Wigner are treating loalization only in the limit of perfetly loalized states sinethey assume that every non-zero spatial displaement of a loalized state renders it orthogonal tothe original state; f. postulate (b) and equation (23). But on�ning a physial partile to anin�nitesimal spatial region would require an in�nite amount of energy and it ould well be that thestrange properties of the loalized states are merely a manifestation of this unphysial assumption.Aordingly modi�ed postulates might then resolve the problems. Another objetion brought upwas that Newton and Wigner only onsider loalization on instantaneous hyperplanes [2, p. 114℄,[15, p. 237℄. Whereas the former objetion ended in smoke after Wightman arried out the analysisfor partially loalized states and found himself onfronted with the same strange properties, thelatter proved more promising; the generalization of the Newton-Wigner loalization to arbitraryhyperplanes resolves the problem that initially loalized states are deloalized under Lorentz boostsand will be topi of the last setion. Before that, a theorem is introdued whih supports the pointof view of all those who deny the existene of loalizable partiles.4 Partiles � a pure Illusion?In more reent years several theorems have been proven whih seem to rule out the existene ofloalizable partiles in a relativisti quantum theory. But obviously the statement of eah suhtheorem depends ruially on its assumptions and it is almost impossible to remove all doubts thatthey might be unjusti�ed. In this setion the fous is laid on Malament's theorem whose soundnesshas been disussed extensively in the literature [16, p. 5�7℄. In order to introdue this theoremand later the onept of hyperplane-dependent loalization, some remarks about hyperplanes arerequired.4.1 Spaetime struture and HyperplanesConsider an inertial frame equipped with Minkowski oordinates x = (t, ~x).10
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(a) Foliation of spaetime into instantaneous hyper-planes obtained by setting η = (1, 0, 0, 0). Eah hy-perplane is then determined by the equation x0 = τ . ~x

x0

~x′

x′0

(b) Given an arbitrary hyperplane in O there alwaysexists an inertial frame O′ in whih this hyperplane isinstantaneous.Figure 2: Minkowski diagrams illustrating two remarks made in the text.Def. A spaelike hyperplane is de�ned to be the set of points
Σ(η,τ) := {x | η · x = τ with η2 = 1 and η0 ≥ 1} (39)From this de�nition it immediately follows that(i) every ordered pair (η, τ) de�nes a unique hyperplane and(ii) any two distint points on the hyperplane (η, τ) are separated by a spaelike interval.Proof (i) Assume (η, τ) 6= (η′, τ ′) de�ne the same hyperplane, i.e. Σ(η,τ) = Σ(η′,τ ′). Consider

x1 := τη ∈ Σ(η,τ) and x′1 := τ ′η′ ∈ Σ(η′,τ ′). But by assumption they have to be elements ofboth hyperplanes and onsequently η · η′ = τ ′/τ = τ/τ ′. This implies τ ′ = −τ sine τ and τ ′ areassumed to be distint. However, x2 = (τ/η0, 0, 0, 0) ∈ Σ(η,τ) has to be an element of Σ(η′,τ ′) aswell and thus τη′0 = τ ′η0 = −τη0 in ontradition with the requirement that both η′0, η0 ≥ 1. Asimilar argumentation works for the ases η 6= η′, τ = τ ′ and η = η′, τ 6= τ ′.(ii) Assume x, x′ are two distint points on Σ(η,τ), hene η · (x− x′) = 0. But this is equivalent to
η0(x0 − x′0) = ηi(xi − x′i). From η0 ≥ 1 and η · η = 1 it follows ηiηi < (ηo)2. Hene (x0 − x′0) <
(xi − x′i).Every �xed η thus de�nes a foliation S of spaetime into spaelike hyperplanes parametrized by
τ . For the speial ase η = (1,~0) the spaetime of O is foliated into instantaneous hyperplanes.Suh a foliation is shown in Fig. 3a.Moreover for every spaelike hyperplane Σ(η,τ) there exists an inertial frame in whih thishyperplane is instantaneous. In order to show this onsider an arbitrary Lorentz boost onnetingtwo inertial frames

Λ(θ,~a) =

(

cosh θ sinh θ~aT

sinh θ~a I3 + (cosh θ − 1)~a~aT

)

, (40)where ~a determines the diretion of the relative veloity of the inertial frames and tanh θ = |~v| itsmagnitude. A boost therefore has a total of four degrees of freedom θ,~a whih an be hosen suhthat η → η′ = (1,~0) under Λ, f. Fig. 3b. It is now possible to introdue Malament's theorem.11



4.2 Malament's TheoremLet M be an a�ne spaetime manifold equipped with a foliation S into spaelike hyperplanes Σ and
H the state spae of the quantum system under onsideration. Assume the following struture:(i) For all bounded subsets ∆ ⊂ Σ ∈ S there exists a map h : ∆ 7→ P∆, where P∆ is a projetionoperator on H .(ii) Let G be the translation group of M and d a homomorphism from G into the unitary repre-sentations U(g ∈ G) suh that 〈ψ|U(g)|ψ〉 → 1 as g → 0 for all |ψ〉 ∈ H with 〈ψ|ψ〉 = 1.Then (H , h, d) de�nes a loalization system on M [16, p. 3℄.One an interpret 〈ψ|P∆|ψ〉 as the probability amplitude of �nding the state |ψ〉 within theregion ∆ ⊆ Σ. Assume the loalization system has the following properties.Malament's postulates [16, p. 3�5℄, [17, p. 3�4℄(a) The energy of all states |ψ〉 ∈ H is bounded from below, i.e. ∃ E0 suh that 〈ψ|H |ψ〉 ≥ E0for all |ψ〉 in the domain of the Hamiltonian H of the system.(b) A state an not be found in two disjoint spatial regions of the same hyperplane: ∆1 ∩ ∆2 =

∅ ⇒ P∆1
P∆2

= 0.() Projetion operators assoiated with two spaelike separated regions ∆ and ∆′ do not in�uenethe statistis of eah other: [P∆, P∆′ ] = 0.(d) The statistis of the projetion operators are invariant under spaetime translations: P∆+~a =
U(~a)P∆U

†(~a), where ~a ∈ G and ∆ + ~a denotes the set obtained by translating every point in
∆ by the vetor ~a.It is ertainly worth seeing how these postulates ompare to the Newton-Wigner postulates. The�rst postulate simply assures that only a �nite amount of energy an be extrated from the partile.The same assumption has been made for the Newton-Wigner loalization of a massive spin zerosystem by the restrition to the positive energy solutions of the Klein Gordon equation and isgenerally ontained impliitly in the Newton-Wigner loalization sheme. The three remainingpostulates however di�er substantially from the Newton-Wigner postulates. They are valid for allpossible loalized states and not only for perfetly loalized ones and loalization is onsidered onarbitrary hyperplanes and not only on instantaneous ones. Moreover the third postulate imposesan expliit requirement on ausality. However, it followsThm. Malament [17, p. 6℄ A loalization system satisfying Malament's postulates also satis�es

P∆ = 0 for all bounded subsets ∆ and for all times.Consequently a state an never be deteted within a bounded region of spae and aeptane ofMalament's postulates would lead to a world without loalizable partiles. This is reason enoughto �nd good arguments against them and indeed there is room for ritiism.One objetion is that Malament's theorem only applies to a �at spaetime and its statementould therefore be an artefat of the Minkowskian spaetime. Although Halvorson and Cliftonhave proven a theorem [16, p. 13℄ whih entails Malament's theorem and only relies on a globallyhyperboli spaetime it is not entirely aepted that the present universe is globally hyperboli [18,p. 9℄ and there remains the possibility that a suitably urved spaetime ould save the onept ofloalizable partiles. But this would not be ompletely satisfatory sine no onept of loalizablepartiles would exist in a �at spaetime and it would be better to �nd another way to prove12



Malament wrong. For example one ould argue that the solution of the measurement problemmight inorporate an abolition of unitary dynamis [19, p. 170℄ and thereby invalidate postulate(d). However, Halvorson and Clifton [16, p. 7℄ point out that... it would be quite another thing to provide a model [with non unitary dynamis℄ ...whih is also apable of reproduing the well-on�rmed quantum interferene e�ets atthe miro-level. Until we have suh a model, pinning our hopes for loalizable partileson a failure of unitary dynamis is little more than wishful thinking.Various other objetions have been raised. Some of them turned out to be unfounded, but manyremain ontroversial and without de�nite answers.In addition to Malament's theorem there are several other theorems whih laim to rule outthe existene of loalizable partiles. Some among them seem quite powerful in the sense that theyonly rely on a very limited number of assumptions, but ertainly none of them is free of all doubts.In fat many of the objetions against a world without loalizable partiles are fueled by a verypromising theory developed by Fleming, Butter�eld et al. whose basi ideas are presented in thenext setion.5 Hyperplane-dependent LoalizationThis setion relies heavily on [2, esp. se. 9�11℄. Newton-Wigner loalization as introdued aboveis always with respet to an instantaneous hyperplane x0 = t. Due to the superluminal propagation(32) a Newton-Wigner state loalized at time t is not loalized anymore at any later time. Bearingin mind the above disussion of hyperplanes the deloalization of suh a state under a Lorentzboost does no longer ome as a surprise sine a Newton-Wigner state loalized in the x0 = 0hyperplane of observer O is in general not loalized in the x′0 = 0 hyperplane of observer O ′. Butby restrition of loalization to a ertain hyperplane these issues are immediately resolved as allobservers � no matter what their state of motion � an always refer to this spei� hyperplane.Whether a state is loalized with respet to this hyperplane or not is then well-de�ned.Consider two parametrizations (η, τ) and (η′, τ ′) of a given hyperplane in the oordinate systemsof inertial observers O and O ′ whih are onneted by a Poinaré transformation (Λ, a) suh that
η′ = Λη and τ ′ = τ + a ·Λη. In the Heisenberg piture a position operator (e.g. the enter of spinor the enter of energy position operator) then has the two di�erent parametrizationsXµ(η, τ) and
Xµ(η′, τ ′) whih for onsisteny need to be related by a Poinaré transformation

〈ψ′|Xµ(η′, τ ′)|ψ′〉 = Λµ
ν 〈ψ|Xµ(η, τ)|ψ〉 + aµ 〈ψ|ψ〉 ∀ |ψ〉 (41)where |ψ′〉 is obtained by ating with the unitary representation of the Poinaré group U(Λ, a) on

|ψ〉. The hyperplane-dependent version of the Newton-Wigner position operator Xµ(η, τ) for amassive spinless system, whih in this speial ase oinides with the enter of energy operator [2,p. 149℄, is given in terms of the symmetri produt by
1

2
(XµH +HXµ)(η, τ) :=

∫

d4xδ(ηx− τ)xµθνρ(x)ηνηρ, (42)where θνρ is the stress-energy-momentum tensor and
H(η, τ) := Pµηµ :=

∫

d4xδ(ηx − τ)θνρ(x)ηρ. (43)is the hyperplane-dependent energy. The δ-funtion ensures that the integration takes plae onlyon the hyperplane. The spatial omponents of this operator on an instantaneous hyperplane are
X iP 0 =

∫

d3xxiθ00(τ, ~x), (44)13



where the fator of 1/P 0 is the total energy and serves as a normalization fator. The θ00-omponent of the stress-energy-momentum tensor orresponds to the energy density and is weightedwith the position on the instantaneous hyperplane. Thus X i indeed orresponds to the enter ofenergy. It needs to be added that there always exists an inertial frame in whih the enter of energyposition operator takes the form (44).If the system under onsideration arries spin the hyperplane-dependent enter of energy oper-ator di�ers from the hyperplane-dependent Newton-Wigner position operator whih then measuresthe enter of spin. Certainly other loalizable properties require other operators. In ontrast tothe Newton-Wigner ase, it an then happen that the omponents of suh an operator Xµ(η, τ)do not ommute. Loalization is then only possible with respet to a hosen omponent of theposition operator, i.e. within a subset ∆ × R2 of the hyperplane Σ(η,τ).5.1 Lorentz Boosts and DeloalizationIt is now time to see how the problem of deloalization under Lorentz boosts is naturally resolvedin the formalism of hyperplane-dependent loalization. Consider the intersetion of two distinthyperplanes whih de�nes a two-dimensional subset of spaetime and assoiate with eah of thesehyperplanes a position operator. The sets of eigenvetors of these position operators lying in theintersetion are then given by
η′ ·X(η, τ) |α, τ ′; η, τ〉 = τ ′ |α, τ ′; η, τ〉 ,
η ·X(η′, τ ′) |α, τ ; η′, τ ′〉 = τ |α, τ ; η′, τ ′〉 , (45)where α denotes the additional parameters needed to uniquely de�ne the state. But there is noommon set of eigenstates sine the omponents of operators assoiated with di�erent hyperplanesin general do not ommute. Therefore it is possible to have a state |ψ〉 suh that
〈α, τ ′; η, τ |ψ〉 = 0 but 〈α, τ ; η′, τ ′|ψ〉 6= 0, (46)i.e. on Σ(η′,τ ′) the state |ψ〉 an be found within the intersetion, but on Σ(η,τ) it annot be foundwithin the same intersetion. In fat this property ours for any hyperplane-dependent positionoperator and is not spei� for the Newton-Wigner ase. Consequently loalization always needsto be onsidered with respet to a ertain hyperplane whose spei�ation requires three additionalparameters and Butter�eld and Fleming onlude that[...℄ quantum loalization [thus℄ takes plae in a seven-dimensional manifold, ratherthan in four dimensional Minkowski spaetime [2, p. 131℄.One of the strange properties of the onventional Newton-Wigner loalization onept, namelythe subjetivity of loalization is therefore nothing but a manifestation of the three unspei�eddegrees of freedom and is no longer worrying one one has introdued the hyperplane-dependentformulation.5.2 Superluminal Propagation and CausalityUnfortunately the superluminal propagation of the Newton-Wigner states still persists, but it anbe divided into two ategories. On the one hand for an open system the superluminal propagationof ertain position operators is not surprising. As an example one may onsider a perfet vauumtube ontaining a single massive and spinless partile at one end of the tube. The enter of energyof the ontent of the tube therefore oinides with the position of this partile. But injetion ofadditional partiles at the other end of the tube an easily ause the enter of energy to movesuperluminally. 14
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(b)Figure 3: Superluminal propagation of Newton-Wigner state with respet to instantaneous hyperplanes.The probability density outside the forward lightone diminishes with inreasing spaelike separation andthe probability to �nd the state inside the lightone rapidly tends towards 1.On the other hand superluminal propagation ours also in losed systems and is in fat ageneral feature of hyperplane-dependent position operators. To haraterize the superluminalpropagation let |α, x; η, τ 〉 be a basis of eigenfuntions of the hyperplane-dependent Newton-Wignerposition operator and imagine a wave-funtion 〈α, x; η, τ |ψ〉 expressed in this basis with ompatsupport on Σ(η,τ). Although this wave-funtion spreads out instantaneously
• the probability density outside the forward lightone diminishes with inreasing spaelikeseparation and
• the integrated probability density inside the forward lightone rapidly tends toward unitywith inreasing time, see Fig. 3.However, the physially relevant question is whether this superluminal propagation an be usedto signal superluminally and hene to reate ausal anomalies. To date there is no proof that suhanomalies are avoided in the hyperplane-dependent formulation, but in the following an argumentdue to Fleming [20, p. 123�124℄ is presented whih may allay these fears. Fleming onsiders thesetup shown in Fig. 4 whih at �rst sight serves to abuse the superluminal propagation of a Newton-Wigner state so as to generate a ontradition. Initially, two remarks need to be made.(i) Both on�nement and detetion of a partile are always with respet to a ertain hyperplanewhih here for simpliity is assumed to be the instantaneous hyperplane in the orrespondingreferene frame.(ii) In the framework of hyperplane-dependent loalization the state redution due to a measure-ment ours only on hyperplanes in the future of the state reduing region.On the one hand the state released in (A) is not on�ned to any hyperplane and an be measuredby the detetor (B) with a non-vanishing probability, thus being reloalized. But from (ii) itfollows that the e�et of this reloalization only manifests itself on hyperplanes lying in the futureof (B). The instantaneous hyperplane on whih the detetor (C) is sensitive is not among themand therefore the mehanism whih prevents the box from being opened annot be triggered. Onthe other hand the on�nement of the partile in the box is only with respet to the instantaneous15
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Figure 4: A box ontaining a loalized Newton-Wigner state at time t = 0 is opened (A). Due to thesuperluminal propagation the state an possibly be measured by a spaelike related detetion measurement(B). Assume that when this happens, the state ollapses to another Newton-Wigner state whih an thensuperluminally propagate to a detetion apparatus (C) in the past of (A). If this apparatus detets thestate it triggers a mehanism whih prevents the box from being opened in the future. But then thereleased Newton-Wigner state prevents itself from being released � a ontradition [20, p. 123℄.hyperplane in the inertial frame of the box and there is nothing whih hinders the state to propagateon other hyperplanes. The state an then propagate on the hyperplane on whih (B) is sensitiveand by doing so prior to the box opening event (A) it is possible to trigger the box lokingmehanism before (A). However, this is not a ontradition beause the triggering does not ouras a onsequene of the box being opened, but rather is the result of an earlier propagation of thestate on a hyperplane on whih the state has never been on�ned.6 ConlusionAlthough it is not obvious how to introdue the onept of loalization in relativisti quantumtheory the hyperplane-dependent formulation is a very promising attempt whih indiates thatsuperluminal propagation does not inevitably lead to ausal loops: though there is no proof forthat and further investigation is needed. But ertainly hyperplane-dependent loalization showsthat it would be premature to appeal to Malament's theorem, so as to rule out loalizable partiles.A AppendixA.1 ConventionsVetors in three dimensional spae are denoted by an arrow (~x, ~p, . . . ) whereas 4-vetors are writtenwithout (x, p, . . . ). All alulations are arried out in natural units (~ = c = 1) and the signatureof the metri tensor of �at spae-time is hosen to be (+,−,−,−). The Fourier-transform f̃(k) in
n dimensions is de�ned as

f̃(k) :=

∫

dnx f(x)e−ik·x (47)16



and its inverse as
f(x) :=

∫

dnk

(2π)n
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