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Abstract

Here we show that there exist closed timelike curves in Gödel space-
time with total acceleration less than 2π

√
9 + 6

√
3. This settles a

question posed by Malament (1985, 1986, 1987).

1 Introduction

Gödel spacetime [7], although not a reasonable model of our own universe,
has provided wonderful insights concerning the possibilities of large-scale
spacetime structure. The model is an exact solution of Einstein’s equation
in which the matter content is a perfect fluid [8, 11]. It contains five gobal
independent Killing fields and is completely homogenous [21, 22]. Further,
the model exhibits uniform, rigid rotaion [10, 17].

The causal structure of the Gödel universe is of particular interest: there
exist closed timelike curves through each spacetime point [24, 19]. In addi-
tion, the model contains no spacelike hypersufaces without boundary. The
exotic features of the Gödel model have been studied under a variety of per-
tubations [1, 23]. And recently Gödel-type models have been shown to be
exact solutions of minimal supergravity in five dimensions [6, 25]. This has
sparked a flurry of activity on a variety of topics (see, for example, [2, 9] and
the citations there).

The literature on Gödel spacetime is vast but a number of recent historical
and conceptual surveys have appeared which collect together a large subset
of it [5, 15, 16, 18, 20]. Here, we will focus on a small handful of classical

∗I am grateful to David Malament for his help. I also wish to thank members of the
Southern California Philosophy of Physics Group for useful comments.
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questions concerning total acceleration efficiency along closed timelike curves
[3, 12, 13, 14].

The first question of interest is this: (Q1) Are there any closed timelike
geodesics? In other words, can one “time travel” without accelerating? It
has been known for some time that the answer is negative [4, 24]. Next, one
wonders whether a would be “time traveler” can get by with arbitrarily small
amounts of acceleration. Let us make this precise.

Let γ be a closed timelike curve1 with tangent field ξb. Let the accel-
eration vector field be αb = ξa∇aξ

b and the magnitude of acceleration be
a = (−αbαb)1/2. The total acceleration of γ is given by

TA(γ) =

∫
γ

a ds

where s is elapsed proper time along γ.
So the second question, posed by Chakrabarti, Geroch, and Liang [3], is

this: (Q2) Is there some number k > 0 such that, for all closed timelike curves
γ in Gödel spacetime, TA(γ) ≥ k? Malament [12] showed there is indeed
such a number: ln(2+

√
5) will do.2 Now, let GLB be the largest k such that,

for all closed timelike curves γ in Gödel spacetime, TA(γ) ≥ k. Our next
question, which was posed by Malament [12, 13, 14], is the following: (Q3)
What is GLB? This has yet to be settled. The smallest known value of total

acceleration for a closed timelike curve in Gödel spacetime is 2π
√

9 + 6
√

3.

This means that ln(2 +
√

5) ≤ GLB ≤ 2π
√

9 + 6
√

3. But although we know
that GLB falls within this range, pinning it down seems to be a somewhat
difficult task.

Malament [12, 13, 14] also asked a related question: (Q4) Are there any
closed timelike curves in Gödel spacetime with total acceleration less than

2π
√

9 + 6
√

3? Malament believed there were not. To him, it seemed “over-

whelmingly likely” that GLB=2π
√

9 + 6
√

3 but he was unable to prove the
claim [14, p. 2430]. In this paper, we show that Malament’s conjecture is
false. Our result turns on the fact that closed timelike curves are not re-
quired to be smooth everywhere: at the initial (=terminal) point a “kink” is

1Timelike curves are those that are smooth everywhere unless they are closed, in which
case smoothness will be allowed to fail at initial (=terminal) points [12, 14].

2Malament [12, p. 776] calculated that a rocket ship traversing a curve with total
acceleration ln(2 +

√
5) must have at least 76% of its initial mass as fuel.
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permitted.3

Physically, an observer traveling along a kinked closed timelike curve
γ : [si, sf ] → M in a spacetime (M, gab) will have different initial and final
velocity vectors ξai and ξaf at the point γ(si) = γ(sf ). Of course, since the
time traveler cannot, at this kink point, instantaneously switch from ξaf back
to ξai (that would imply an infinite acceleration) this means that the trip
cannot be immediately repeated. This contrasts with the smooth case where
the trip may be repeated any number of times.

The set up is certainly an idealization. But if consistency worries arise
regarding the kink point, the proposition below can be understood simply

as the following claim: There exists some k < 2π
√

9 + 6
√

3 such that for
all sufficiently small open sets O in Gödel spacetime, there exists a (smooth,
non-closed) timelike curve γ which leaves O and then returns to it with
TA(γ) < k. In other words, one may return arbitrarily closely to a previously
visited spacetime point with less total acceleration than was known.

2 Preliminaries

Here we review some basic facts concerning Gödel spacetime (M, gab). Here
the manifold M is just R4. The metric gab is such that for any point p ∈M ,
there is a global adapted (cylindrical) coordinate system t, r, ϕ, y in which
t(p) = r(p) = y(p) = 0 and

gab = (∇at)(∇bt)− (∇ar)(∇br)− (∇ay)(∇by)

+j(r)(∇aϕ)(∇bϕ) + 2k(r)(∇(aϕ)(∇b)t)

where j(r) = sinh4 r − sinh2 r and k(r) =
√

2 sinh2 r. Here −∞ < t < ∞,
−∞ < y < ∞, 0 ≤ r < ∞, and 0 ≤ ϕ ≤ 2π with ϕ = 0 identified with
ϕ = 2π.

The vector field ( ∂
∂ϕ

)a is a rotational Killing field with squared norm j(r).

The closed integral curves of ( ∂
∂ϕ

)a (curves with constant t, r, and y values)

will be called Gödel circles. Let rc be such that sinh rc = 1 (so j(rc) = 0).
Gödel circles with radius less than rc are closed spacelike curves. If the radius

3We know that Malament took the possibility of kinked closed timelike curves very
seriously. At one point, he devotes a paragraph to explaining that only the possibility of
kinked closed timelike curves kept him from doubling his minimal acceleration requirement
[12, p. 776]. Also see [14, p. 2430]
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is larger than rc, the Gödel circles are closed timelike curves. Gödel circles
with radius rc are closed null curves. Because of the simple nature of these
curves, it is fairly straightforward to calculate the total acceleration of Gödel
circles as a function of r. Because these curves play a central role in our
argument, we carry out the calculation here.

Lemma 1. A Gödel circle γ with radius r > rc has total acceleration
π sinh 2r(2 sinh2 r − 1)j(r)−1/2.

Proof. The unit timelike vector field for a Gödel circle or radius r is ξa =
j(r)−1/2( ∂

∂ϕ
)a. We know that ξa∇aj(r)

−1/2 = 0. So the acceleration vector

αb = ξa∇aξb is j(r)−1( ∂
∂ϕ

)a∇a(
∂
∂ϕ

)b. But because ( ∂
∂ϕ

)a is a Killing field,

this is just −j(r)−1( ∂
∂ϕ

)a∇b(
∂
∂ϕ

)a = −1
2
j(r)−1∇bj(r). Differentiating, we

have αb = −1
2
j(r)−1 sinh 2r(2 sinh2 r − 1)∇br. Thus, a(r) = (−αbαb)1/2 =

1
2
j(r)−1 sinh 2r(2 sinh2 r − 1). Next we compute dϕ

ds
= ξa∇aϕ = j(r)−1/2. So,

integrating, we have

TA(γ) =

∫
γ

a(r) ds =

∫ 2π

0

a(r)j(r)1/2 dϕ = 2πa(r)j(r)1/2

So the total acceleration is π sinh 2r(2 sinh2 r − 1)j(r)−1/2 as claimed. �

Note that the total acceleration of a Gödel circle approaches infinity as
r → rc and as r → ∞. The total acceleration is minimized when r is such
that sinh2 r = (1+

√
3)/2 (call this optimal radius ro). The total acceleration

of this optimal Gödel circle is 2π(9 + 6
√

3)1/2.
Next, for ease of presentation, we give a list of identities that are true in

Gödel spacetime.

Lemma 2. Let (M, gab) be Gödel spacetime. The following are true:

(i) ( ∂
∂r

)a∇a(
∂
∂r

)b = 0

(ii) ( ∂
∂ϕ

)a∇a(
∂
∂r

)b = ( ∂
∂r

)a∇a(
∂
∂ϕ

)b

(iii) ( ∂
∂ϕ

)a∇a(
∂
∂ϕ

)b = −1
2
(∂j
∂r

)∇br

(iv) ( ∂
∂r

)a∇a(
∂
∂ϕ

)b = ( dj
dr

)∇bϕ+ (dk
dr

)∇bt
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Proof. We know (i) is true because ( ∂
∂r

)a∇a(
∂
∂r

)b = −( ∂
∂r

)a∇a∇br. But be-
cause r is a scalar field, this is just −( ∂

∂r
)a∇b∇ar. This becomes ( ∂

∂r
)a∇b(

∂
∂r

)a
which is the zero vector.

To see why (ii) holds, note that ( ∂
∂r

)a∇a(
∂
∂ϕ

)b = −( ∂
∂r

)a∇b(
∂
∂ϕ

)a because

( ∂
∂ϕ

)b is a Killing field. But this is just ( ∂
∂ϕ

)a∇b(
∂
∂r

)a. We rewrite this as

−( ∂
∂ϕ

)a∇b∇ar, switch the differential operators because r is a scalar field,

and wind up with −( ∂
∂ϕ

)a∇a∇br which is just ( ∂
∂ϕ

)a∇a(
∂
∂r

)b as claimed.

Because ( ∂
∂ϕ

)a is a Killing field, ( ∂
∂ϕ

)a∇a(
∂
∂ϕ

)b = −( ∂
∂ϕ

)a∇b(
∂
∂ϕ

)a. But this

is just −1
2
∇bj(r) = −1

2
(∂j
∂r

)∇br as claimed. So (iii) is true.
To see why (iv) holds, consider the following. ∇a(

∂
∂ϕ

)b = ∇[a(
∂
∂ϕ

)b] be-

cause ( ∂
∂ϕ

)a is a Killing field. So we can rewrite this with the exterior deriva-

tive operator as da(
∂
∂ϕ

)b. This is the same as da(j∇bϕ + k∇bt). But this is

just ∇aj∇bϕ+∇ak∇bt. Differentiating, we have ( dj
dr

)∇ar∇bϕ+ (dk
dr

)∇ar∇bt.

So ( ∂
∂r

)a∇a(
∂
∂ϕ

)b = ( dj
dr

)∇bϕ+ (dk
dr

)∇bt as claimed. �

Let S be any submanifold of M on which t = const and y = const. In
this paper, we will be concerned only with closed timelike curves which are
contained entirely within S. We now find an expression for the magnitude
of acceleration of this limited class of curves.

Lemma 3. Let ξa = f(r, ϕ)( ∂
∂ϕ

)a + g(r, ϕ)( ∂
∂r

)a be the unit tangent to some

curve γ : I → S. Then the acceleration a(r, ϕ) at a point on ran[γ] is

[−f 2(
∂f

∂ϕ
)2j − 2f(

∂f

∂ϕ
)g(

∂f

∂r
)j − 4f 2(

∂f

∂ϕ
)g(

dj

dr
) +

1

4
f 4(

dj

dr
)2 + f 3(

∂g

∂ϕ
)(
dj

dr
)

+f 2g(
∂g

∂r
)(
dj

dr
) + f 2(

∂g

∂ϕ
)2 + 2fg(

∂g

∂r
)(
∂g

∂ϕ
)− g2(

∂f

∂r
)2j − 4g2(

∂f

∂r
)(
dj

dr
)f

+g2(
∂g

∂r
)2 + 4(

dj

dr
)2g2f 2m− 8(

dj

dr
)g2f 2(

dk

dr
)km+ 4(

dk

dr
)2g2f 2jm]1/2

where m(r) = 1/(sinh4 r + sinh2 r).

Proof. Let ξa be as above. Consider the acceleration vector αb = ξa∇aξb:

αb = [f(
∂

∂ϕ
)a + g(

∂

∂r
)a][(∇af)(

∂

∂ϕ
)b + f∇a(

∂

∂ϕ
)b

+(∇ag)(
∂

∂r
)b + g∇a(

∂

∂r
)b].
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By (i) and (ii) of Lemma 2 and direct computation, we know that αb becomes

f
∂f

∂ϕ
(
∂

∂ϕ
)b + f 2(

∂

∂ϕ
)a∇a(

∂

∂ϕ
)b + f

dg

dϕ
(
∂

∂r
)b + g

∂f

∂r
(
∂

∂ϕ
)b

+2fg(
∂

∂r
)a∇a(

∂

∂ϕ
)b + g(

∂g

∂r
)(
∂

∂r
)b .

Let m(r) = 1/(sinh4 r + sinh2 r). Now we compute a = (−αbαb)1/2. By (iii)
and (iv) of Lemma 2 and direct computation, we have our result.4 �

3 Result

In this section we present our result. It will be useful to have a general idea of
how we will go about proving our claim. Eventually, we seek to answer (Q3)
by showing there exists a curve in Gödel spacetime with total acceleration

less than 2π
√

9 + 6
√

3. We will do this by considering the behavior of a
particular curve γ : I → S contained entirely in the submanifold S.

We can think of γ as three separate curves joined together. From 0 ≤ ϕ ≤
ε for some ε the curve γ makes its way from the point (ro, 0) to (rε, ε) where
rc < rε < ro. We will call this portion of the curve γ1. From ε ≤ ϕ ≤ 2ε, γ
makes its way from the point (rε, ε) to (ro, 2ε). This portion of the curve we
will call γ2. From 2ε < ϕ < 2π, γ is simply the optimal Gödel circle of radius
ro. We call this portion of the curve γ3. We are careful to make the three
portions of γ join together smoothly except at the point (rε, ε). Thus, at this
point, there will be a “kink” and so we stipulate that this will be the initial
(and therefore the final) point of the closed timelike curve (see Figure 1).

The basic structure of our proof is simple. We show that along γ, (a)
the acceleration of γ1 is always decreasing (from the constant acceleration of
the optimal Gödel circle) and (b) the acceleration of γ2 is always increasing
(up to the constant acceleration of the optimal Gödel circle). With this in-
formation we can integrate along γ to show that the total acceleration from
0 ≤ ϕ ≤ 2ε is less than the total acceleration of the optimal Gödel circle from
0 ≤ ϕ ≤ 2ε. Because the total acceleration of γ3 just is that of the optimal
Gödel circle from ϕ = 2ε to ϕ = 2π, we have our result.

4It is helpful during the calculation to have the inverse to gab. It is given by gab =
−j(r)m(r)( ∂

∂t )
a( ∂

∂t )
b−( ∂

∂r )a( ∂
∂r )b−( ∂

∂y )a( ∂
∂y )b−m(r)( ∂

∂ϕ )a( ∂
∂ϕ )b+2k(r)m(r)( ∂

∂ϕ )(a( ∂
∂t )

b).
See [12, p. 777].
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(ro, 0)

(ro, 2ε)

(rε, ε)
γ1

γ2

γ3

Figure 1: The three portions of the kinked curve γ which has total acceleration

less than 2π
√

9 + 6
√

3.

Proposition. There exists a closed timelike curve in Gödel spacetime with

total acceleration less than 2π
√

9 + 6
√

3.

Proof. The first step is to define our curve. Consider the vector field
ξa(r, ϕ) = f(r, ϕ)( ∂

∂ϕ
)a+g(ϕ)( ∂

∂r
)a defined for all values of r > rc and on some

interval [0, ε] of ϕ. Let f(r, ϕ) = j(r)−1/2h(ϕ) where h(ϕ) = (1 + e−2/ϕ)1/2.
Let g(ϕ) = −e−1/ϕ For continuity considerations later, let h(0) = 1 and
g(0) = 0. Clearly, ξa is a unit timelike vector field. Now, for some interval
I ⊆ R, let γ1 : I → S be such that its tangent vector at each point is ξa and
(ro, 0) ∈ ran[γ1] (i.e. γ1 is an integral curve of ξa).

We have also chosen ξa to be such that at ϕ = 0, it joins smoothly with
j(r)−1/2( ∂

∂ϕ
)a (the unit tangent field associated with Gödel circles). Finally,

we note two important facts concerning our functions f and g. The first is
a relationship between f and g and their derivatives with respect to ϕ. The
second states that as ϕ approaches zero from above, g and dg/gϕ both go to
zero more quickly than d2g/dϕ2. These facts will play a crucial role in our
argument. They are easily verifiable and so we present them here without
any proof:

(1) f ∂f
∂ϕ

= j−1g dg
dϕ

7



(2) lim
ϕ→0+

g/
d2g

dϕ2
= lim

ϕ→0+

dg

dϕ
/
d2g

dϕ2
= 0

Let a1 be the magnitude of acceleration at any point on ran[γ1]. Next,
consider the expression ξb∇ba1 = f ∂a1

∂ϕ
+ g ∂a1

∂r
. This is the rate of change of

the magnitude of the acceleration in the direction of ξb. The claim is that
this quantity will be negative when evaluated at points (r, ϕ) ∈ ran[γ1] very
close to (ro, 0). We can differentiate the expression for a given in Lemma 3
to find that f ∂a1

∂ϕ
+ g ∂a1

∂r
is a (very long) string of terms. Using the identity

(1) we can rewrite the string of terms such that all the terms except for one
contain, as a factor, either g or dg

dϕ
. We choose the one exception to be the

term 1
2
a−1

1 f 4( d
2g
dϕ2 )( dj

dr
) (call this term ω). The following can also be verified:

(3) All of the terms in f ∂a1

∂ϕ
+ g ∂a1

∂r
approach zero as the point (ro, 0) is

approached.

(4) All of the various factors of the terms approach real numbers as the
point (ro, 0) is approached (none of them “blow up”).

(5) ω goes to zero as d2g
dϕ2 does.

We know that (2)-(5) imply that, as the point (ro, 0) is approached, ω
becomes the dominate term (it goes to zero slower than any term containing
g or dg

dϕ
). To illustrate this, we can pick any term in ξb∇ba1 (other than

ω) and show that it must go to zero faster than ω as the point (ro, 0) is
approached. Take, for example, the term −1

2
a−1

1 f 2( ∂f
∂ϕ

)3j. This is one of the

terms that results in taking the partial derivative (with respect to ϕ) of the
first term in the expression for a1 in Lemma 3 and multiplying by f . Using
(1) we can rewrite this term as −1

2
a−1

1 f( ∂f
∂ϕ

)2g( ∂g
∂ϕ

). We know that as (ro, 0)

is approached, a1 goes to some positive real number (the acceleration of the
optimal Gödel circle). Similarly, f approaches some positive real number (the
number is j(ro)

−1/2). The remaining three factors all go to zero as (ro, 0) is
approached. So, the entire term approaches zero. How fast does it go? We
know it must go at least as fast as any one of the factors. So, it must go
at least as fast as g. But now consider ω. We know that it goes to zero as
d2g
dϕ2 does. We also know that ω must go to zero slower than the example

term that we picked (it dominates the term as the point (ro) is approached).
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The claim is that if we repeated this process and compared all the terms in
ξb∇ba1, ω would dominate them all.

What is the behavior of ω near (ro, 0)? It is negative. So, there exists
an ε1 such that for all ϕ ∈ (0, ε1], ξ

b∇ba1 < 0 (moving along γ1 away from
(ro, 0) the value of acceleration decreases).

Now we define another curve γ2. Pick any point (ro, δ) in the optimal
Gödel circle. Let f ′(r, ϕ) = j(r)−1/2h′(ϕ) where h′(ϕ) = (1+e−2/(δ−ϕ))1/2 and
g′(ϕ) = e−1/(δ−ϕ) (for continuity considerations, let h′(δ) = 1 and g′(δ) = 0).
Let ηa = f ′( ∂

∂ϕ
)a+g′( ∂

∂r
)a and let γ2 : I ′ →M be such that its tangent vector

at each point is ηa and (ro, δ) ∈ ran[γ2]. Note that for all points (r, ϕ) where
0 ≥ ϕ ≥ δ we have f ′(r, δ − ϕ) = f(r, ϕ) and g′(δ − ϕ) = −g(ϕ). Thus,
under that same interval of ϕ, it is the case that ran[γ1] is the mirror image
of ran[γ2] across the line of symmetry ϕ = δ/2.

Let a2 be the magnitude of acceleration for any point on γ2. By an
argument very similar to the one made above for γ1 we can establish that
there exists some ε2 such that for all ϕ ∈ [ε2, δ), η

b∇ba2 > 0 (moving along
γ2 toward (ro, δ) the value of acceleration increases). Let ε = min{ε1, δ− ε2}.
Because δ was arbitrarily chosen and because ε ≤ δ − ε2, we know (if we let
δ = 2ε) that for all ϕ ∈ [ε, 2ε), ηb∇ba2 > 0. Of course, because ε ≤ ε1 we
know that for all ϕ ∈ (0, ε], ξb∇ba1 < 0.

Let γ3 : I ′′ → S be that portion of the optimal Gödel circle from ϕ = 2ε
to ϕ = 2π. Let γ be such that ran[γ] = ran[γ1] ∪ ran[γ2] ∪ ran[γ3].

Now we integrate. We reparametrize a1 along γ1 so that it is only a func-
tion of ϕ. Next, note that dϕ

ds
for γ3 is j(r)−1/2 while dϕ

ds
for γ1 is j(r)−1/2h(ϕ).

We also reparametrize j(r) along γ1 so that it is a function of ϕ. Since along
γ1, j(ϕ)1/2 ≤ j(0)1/2 and h(ϕ) ≥ 1 we may conclude that∫ ε

0

a1(ϕ)j(ϕ)1/2h(ϕ)−1dϕ ≤ j(0)1/2

∫ ε

0

a1(ϕ)dϕ.

Let a3(ϕ) be the acceleration at any point in the optimal Gödel circle. Be-
cause ξb∇ba1 < 0 along γ1, for all 0 < ϕ ≤ ε, we know that a3(ϕ) > a1(ϕ)
over that same interval and, of course, a1(0) = a3(0). From Lemma 1 we
know that the total acceleration of the optimal Gödel circle over this interval
is ε(9 + 6

√
3)1/2. So, we have

j(0)1/2

∫ ε

0

a1(ϕ)dϕ < j(0)1/2

∫ ε

0

a3(ϕ)dϕ = ε(9 + 6
√

3)1/2.
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So, we have

TA(γ1) =

∫ ε

0

a1(ϕ)j(ϕ)1/2h(ϕ)−1dϕ < ε(9 + 6
√

3)1/2.

A similar argument establishes that for γ2, we have

TA(γ2) =

∫ 2ε

ε

a2(ϕ)j(ϕ)1/2h(ϕ)−1dϕ < ε(9 + 6
√

3)1/2.

Finally, for γ3 we have

TA(γ3) =

∫ 2π

2ε

a3(0)j(0)1/2dϕ = (2π − 2ε)(9 + 6
√

3)1/2.

So we may conclude that

TA(γ) = TA(γ1) + TA(γ2) + TA(γ3) < 2π(9 + 6
√

3)1/2.

Thus, there exists a closed timelike curve in Gödel spacetime with total
acceleration less that 2π(9 + 6

√
3)1/2. �

4 Conclusion

So, we have answered (Q4) concerning closed timelike curves in Gödel space-
time. We have shown there exists a curve (and therefore a family of curves)

with total acceleration less than 2π
√

9 + 6
√

3. It is uncertain if a curve of the
type we have proposed will actually approach GLB. As previously mentioned,
(Q3) remains open.

In addition to finding the answer to (Q3), other work remains. We won-
der if the result presented here applies to other spacetimes, such as Kerr-
Newman, which also contain closed timelike curves but no closed timelike
geodesics [26]. The more general question is this: (Q5) In any spacetime, if
there exists a smooth non-geodesic closed timelike curve γ, does there also
exist a kinked closed timelike curve γ′ such that TA(γ′) < TA(γ)? The
following is an argument sketch in support of an affirmative answer.

Consider any spacetime (M, g) with a smooth non-geodesic closed timelike
curve γ : [s, s′] → M . We know there will be a point p in ran[γ] such that
the scalar acceleration of γ at p is non-zero. Smoothness conditions near p

10



guarantee that there will be some convex normal neighborhood O of p such
that the scalar acceleration of γ restricted to O is everywhere non-zero. But,
within any convex normal neighborhood, any two points may be connected by
a unique geodesic contained in O. So let r and r′ be such that s < r < r′ < s′

and γ(r) and γ(r′) are in O. Now let γ′ be the closed timelike curve whose
image is exactly the same as the image of γ except for the portion running
from γ(r) to γ(r′). Let the the image of γ′ between those points be identical
to the unique geodesic connecting them. The resulting (unphysical) curve
has two kinks but is clearly such that TA(γ′) < TA(γ). However, it might
be possible to “smooth out” one of the kinks while maintaing the result.
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