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Abstract. In this paper we consider the notions of structure and models
within the semantic approach to theories. To highlight the role of the
mathematics used to build the structures which will be taken as the
models of theories, we review the notion of mathematical structure and
of the models of scientific theories. Then, we analyse a case-study and
argue that if a certain metaphysical view of quantum objects is adopted,
namely, that which sees them as non-individuals, then there would be
strong reasons to ask for a different mathematical framework for describ-
ing the structures that would be the models of the corresponding theory.
In departing from the standard frameworks (that is, worked on within
standard mathematics), we hope to bring to the scene, within the scope
of the semantic approach, the importance of paying attention to some
fundamental concepts usually only superficially touched by philosophers
of science (if touched).
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1. Introduction: the role of foundational studies
Ever since the end of the nineteenth century, philosophy of science has es-
tablished itself as a respectful branch of philosophy. The great specialization
of scientific disciplines and the overall role of science in contemporary life
corroborates the need of philosophical reflection in search of an understand-
ing of many of the intricacies created by scientific practice. Obviously, these
reflections involve all aspects of science, such as social and ethical aspects, as
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well as epistemological, ontological, and metaphysical, among possibly oth-
ers. Related to these issues but with a different set of worries, we may be
concerned with the logical foundations of some of these disciplines. Briefly
speaking, foundational studies have among their main task the clarification
of the ideas and methods involved in the formulation of scientific theories
(either in physics, biology, human sciences, etc.). For instance, we may be
interested in problems such as what theories are, where they are formulated
(that is, the relevance of a particular mathematics for the ‘construction’ of
a theory), what we mean by ambiguous words such as model of a scientific
theory, what is the relationship between theories and reality, if there is some,
etc.

The philosopher seeking foundational studies, if concerned particularly
with the logical foundations of scientific theories, would address a critical
discussion to some of these problems. So, in investigating the way the the-
ories are built, we can, for example, pay attention to their underlying logic
and mathematics. There are several different—and not equivalent—logics and
mathematics; in trying to make more rigorous the exposition of scientific the-
ories, so that the underlying logic and mathematics becomes totally explicit,
we need to employ the axiomatic method as a tool for conceptual clarity (but
it works also as an heuristic tool in science—[26]). This kind of investigation
involves, for example, the analysis of the dichotomy between the informal dis-
course of the scientists and the corresponding facts described by the theories
they consider, and how these notions fit in one among the various possible
rigorous reconstructions of the theory.

For example, in quantum theory (say orthodox—non-relativistic quan-
tum mechanics),1 according to the discourse of certain interpretations, we find
philosophers speaking about particles, indistinguishability, identity, and the
like, but without attributing precise meaning to these notions. For instance,
let us fix for a moment on the notion of indistinguishability, or indiscerni-
bility. It is usually recognized that quantum entities may be indiscernible,
and that quantum mechanics cannot provide any distinction among them.
A typical example is that of a Bose-Einstein condensate, where we find lots
of particles or atoms in the very same quantum state, being indiscernible
by all mechanisms provided by quantum theory. Another example is that of
the two electrons of a Helium atom, but the situation is a little bit different.
In this case, we have two quantum objects (electrons) but they are not in
the same state; being fermions, electrons must obey Pauli’s Exclusion Prin-
ciple, and so they present a difference, in this case, the direction of their
spin. One of them has spin UP in a certain direction, while the other one has
spin DOWN in the same direction. The problem is that nothing can tell us

1Really, we should distinguish among several ‘quantum mechanics’, for there are different
interpretations of the formalism, each having its peculiar characteristics, such as matrix
mechanics (Heisenberg, Born, Jauch), wave mechanics (de Broglie, Schrödinger), bohmian
mechanics (Bohm), and so on. Here, when speaking of ‘quantum mechanics’ (QM), or
‘quantum theory’, we are thinking more in the mathematical formalism, which we assume
being done by the Hilbert-space approach.
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which is which, as this is well known. But quantum mechanics is erected using
standard mathematics (and logic), so, the following version of the excluded
middle law holds: for any objects a and b, a = b ∨ a 6= b is a logical truth.
Since the two electrons are not the very same entity (which is the mean-
ing of a = b), then we need to accept that a 6= b. Hence, once we cannot say
which is which, it seems that what is lacking is some kind of hidden variables,
something that would be added to the formalism of quantum mechanics in
order to distinguish them. But this move is not accepted in general, mainly
due to the no-go theorems such as Kochen-Specker’s [13]. So, how should we
to understand the relationship between identity and indistinguishability? Do
these concepts coincide (as in standard logic and mathematics), or can they
be kept separated? Do identity and indistinguishability always apply to the
items treated by the theory or do they have a limited range? Obviously, this
is where the philosopher interested in foundations enters the stage, and we
shall have more to say on this specific topic later.

In this work, we shall be concerned precisely with this kind of issue. We
shall discuss the precise formulation of scientific theories on nowadays most
widely accepted view, the semantical approach to scientific theories, and point
to some of the consequences of adopting the classical mathematical framework
in philosophical discussions. Our paradigmatic case will be the well-known
problem of identity and individuality in quantum mechanics. We begin with
the notion of structure.

2. Structures, models and theories
In this section we assume first-order ZFC. Our aim is to sketch how we can
understand scientific theories according to the so-called semantic approach
to theories. One of the slogans of the approach is that to present a the-
ory is to present a class of structures, the models of the theory. Here, we
start to see a link between many of the notions that should be clarified in
foundational studies, according to the previous discussion. We begin with
structures, following the general theory exposed in [4]. Notice that the fact
that we are working in ZFC has its own consequences, and making the under-
lying framework explicit is part of the foundational worry with rigor, which
will be touched on later.

2.1. Structures
We begin with the notion of structure. The first important definition we shall
need is that of types:

Definition 2.1 (Types). The set T of types is the least set satisfying the fol-
lowing conditions:

(a) i ∈ T (i is the type of the individuals)
(b) if t1, . . . , tn ∈ T, then 〈t1, . . . , tn〉 ∈ T

Thus, i, 〈i〉, 〈i, i〉, 〈〈i〉, i〉, 〈〈i〉〉 are examples of types. Each type has an
order, attributed according to the following definition:
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Definition 2.2 (Order of a type). The order of a type, Ord(t), is defined as
follows:

(a) Ord(i) = 0
(b) Ord(〈t1, . . . , tn〉) = max{Ord(t1), . . . ,Ord(tn)}+ 1.

Thus, Ord(〈i〉) = Ord(〈i, i〉) = 1, while Ord(〈i, 〈i〉〉) = 2. Relations will
be understood here as both extensional sets (collections of n-tuples) and
being of finite rank (that is, having finite weight only). Unary relations are
sets.

Definition 2.3 (Order of a relation). The order of a relation is the order of
its type.

Thus, binary relations of individuals are order–1 relations, and so on.
This, together with the previous definition of order of a relation makes clear
that the order of a relation should not be confused with the notion of the
weight of a relation. As mentioned before, Ord(〈i〉) = Ord(〈i, i〉) = 1, but the
first is the type of an unary relation, while the second is the type of a binary
relation. The same goes for n-ary relations, and one should not confuse order
with arity.

Now, we shall introduce a function tD as follows:

Definition 2.4 (Scale based on D). Let D be a set. We pose:
(a) tD(i) = D
(b) If t1, . . . , tn ∈ T, then tD(〈t1, . . . , tn〉) = P(tD(t1)× . . .× tD(tn)).
(c) The scale based on D is the union of the range of tD, and it is denoted
by ε(D).

Thus, tD is a function that attributes to each type in T the set of all
relations of that type. We say that the elements of t(a), for a ∈ T, are objects
of type a. The set ε(D) is the set of all relations of all types.

Definition 2.5 (Structure). A structure E based on a set D is an ordered pair

E = 〈D, rι〉 (1)

where D 6= ∅ and rι represents a sequence of relations of degree n belonging
to ε(D). These relations are called the primitive elements of the structure.

Thus, the relations in a structure may have as relata not only elements
of the domain (these are called order-1 relations), but also subsets of D and
other ‘higher’ elements. The domain may comprise also several sets, some of
then called the principal basis, while the others are the secondary basis of
the structure (this terminology is Bourbaki’s, who has an approach closer to
ours). The vector-space example below is a typical case, as we shall see in
the next subsection.

Definition 2.6 (Order of a structure). Let E = 〈D, rι〉 be a structure. Its order,
Ord(E), is defined as follows: if there is a greatest order of the relations in
rι, then the order of the structure is that greater order, and it is ω otherwise.
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If the primitive relations of the structure are relations having individuals
of D as relata only, we say that the structure is an order–1 structure. These
are the structures typical of standard model theory. In general, the structures
of scientific theories are not order-1 in this sense; they involve not only rela-
tions on the elements of the base sets, but more sophisticated relations (and
operations), as we shall see with our example of the non-relativistic quantum
mechanics. Even in mathematics we find structures which are not order-1,
such as topological spaces, well-orders, ciclic groups and so on. This distinc-
tion between orders has important consequences when we consider scientific
theories, as we shall see soon.

2.2. Models and theories
Now, how can we understand a scientific theory? According to one possible
version of the so-called semantic approach, a theory can be seen as a class of
structures, the models of the theory. Obviously, this deserves qualification.
First of all, the word ‘model’ can be taken in so many senses that it is
difficult to understand what does it mean to say that a theory is a class of
models. Here, for the sake of rigor and simplicity, we shall understand this
concept in the sense of some set-theoretical structure (as seen in the last
section) satisfying some conditions, the postulates of the theory. This agrees
with Suppes’ talk of “models in the sense of Tarski” [27, p.20]. Also, taken
literally, the purported characterization suffers from an obvious circularity,
for it aims at clarifying the concept of theory appealing to the models, but
models of what? Well, of the theory itself. This is one of the reasons why
we shall not call it a definition, but only a heuristic characterization, which
serves to illuminate the main idea (for further discussion, see [24]).

One of the possible ways to throw some light in this problem and which
can turn the purported characterization into a workable definition, can be
sought in what came to be called in the literature a set-theoretical predi-
cate. This is roughly seen as a proposal which marks the beginning of the
semantical approach, when in the middle 50s Patrick Suppes initiated a new
approach to the axiomatization of scientific theories. According to Suppes,
the axiomatization of a scientific theory can be made through a formula of
set theory, which specifies what kind of constraints the structures satisfying
it must conform to: “to axiomatize a theory is to define a set-theoretical pred-
icate” [27, p.30]. The structures satisfying the predicate, then, are the models
of the theory, and so the predicate can be seen as selecting a class of models
(but see the discussion in [16] and Suppes reply in [28]).

Suppes approach has obvious advantages over axiomatization in strict
sense, that is, axiomatization which proceeds through the usual method of
devising a formal apparatus making explicit the vocabulary, syntactic rules
of formation and derivation, and so on.2 Working inside set theory, one has
already at hand all the mathematics needed when dealing with empirical the-
ories, and so, it is not necessary to build them all from the bottom, furnishing

2We give a detailed description of both methods in [12].
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axioms and providing the necessary theorems; besides being counterproduc-
tive, this would entail a mathematical prolegomenon which would be big
enough to fill an encyclopedia, which would be in obvious contrast with the
scientific practice (see also [27]).

In his exposition of the method (see [25, 27]), Suppes did not give a
rigorous definition of a set theoretical predicate, but expected that the main
idea kept clear from some examples (for a rigorous account of his method, see
da Costa and Chuaqui [3]). Besides, working inside ZFC set theory allows him
to follow standard mathematical practice,3 in which one uses every theorem
of set theory available without further justification. This kind of procedure
has an influence on the sense in which we can say a structure is a model for
the postulates: in order to show for instance that the additive group of the
integers Z = 〈Z,+〉 is a group, we prove in ZFC that the formulas (of the
language of ZFC extended to cope with symbols such as Z, Z, etc.) are true,
in the Tarskian sense, in Z, that is, we get a result that can be written as
follows:

ZFC ` (Z |= A1 ∧A2 ∧A3),
where A1, A2, A3 are the formulas that traduce the group axioms (see the
example below). That is, we just derive, with the full resources of set theory,
that the objects in the structures, i.e., elements of the domain and the rela-
tions composing the structure, have the properties stated in the postulates
of the set theoretical predicate.

To illustrate these points, let us see some examples of set theoretical
predicates in the style of Suppes:

Example 2.1 (Groups). For a group predicate, we start with a base non-empty
set G. We want to axiomatize the structures of the kind: G = 〈G, ∗〉, where
∗ ∈ P(G × G × G), satisfying (A1) associativity, (A2) the existence of the
identity element, and (A3) the existence of inverses. Then, the set-theoretical
predicate may be as follows:

G(x)↔ ∃G∃ ∗ (x = 〈G, ∗〉 ∧G 6= ∅∧ ∗ ∈ P(G×G×G)∧ (A1)∧ (A2)∧ (A3))

The structures that satisfy the predicate are the models of G, vis., the
groups, for instance, Z above.

Example 2.2 (Vector spaces). In the case of vector spaces over a field, we
have a base set V (the vectors), and an auxiliary set, K (the domain of
the field). The basic operations, despite the usual ones of the field, are the
following ones: + ∈ P(V × V × V ) and · ∈ P(K × V × V ). We shall not
write explicitly the axioms for vector spaces, for they are well known. The set
theoretical predicate is then:

V(x)↔ ∃V ∃K∃+ ∃ · (x = 〈V,K,+, ·〉 ∧ etc.).

3In his works, Suppes refer to an informal set theory. But, if pressed, he would refer to a
standard set theory, such as ZFC.
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To present a set-theoretical predicate is equivalent to present the pos-
tulates of the theory, as we usually do—really, in practice we of course do not
write a Suppes predicate, but prefer a shorter notation.

3. A set-theoretical predicate for non-relativistic quantum
mechanics

Since this is our case study, we shall take a look also in a set-theoretical
predicate for non-relativistic quantum mechanics.

A non-relativistic quantum mechanics (QMNR) can be seen as a structure

QMNR = 〈S, {Hi}, {Aij}, {Tik}〉i∈I,j∈J,k∈K (2)

where S is a set of physical systems,4 {Hi} is a collection of Hilbert spaces,
{Aij} is a collection of Hermitian operators on the space Hi and {Tik} is
a collection of unitary operators on Hi, {Tik} ⊂ {Aij}, where the following
guidelines (usually called ‘axioms’) are satisfied:

(i) For each physical system s ∈ S, we associate a complex Hilbert space
Hs ∈ {Hi}. The vectors |ψ〉 of this space represent the states of the
physical system. It is called the state vector of the system, and stands for
all we know about it. The state vectors are normalized, for k.|ψ〉 (for any
complex number k) represents the same state as |ψ〉.

When we have a system composed by several elements of S, we as-
sociate to it the tensor product of the Hilbert spaces of the composing
systems (in some order). If the cardinal of the subset of systems is n (call
them s1, . . . , sn), the Hilbert space is

H = Hs1 ⊗ . . .⊗Hsn .

A typical vector of this space is written |ψ1〉 ⊗ . . . ⊗ |ψn〉, or simply
|ψ1〉 . . . |ψn〉 for short. When the systems are considered to be indiscernible,
we make Hi = Hj for any i and j.

(2) Let |ψ(t)〉 represent the state at time t. Then, for each |ψ〉 we associate
an unitary operator Ts such that for any instant of time t, we have that

|ψ(t)〉 = Ts(t).|ψ(0)〉, (3)

where |ψ(0)〉 is the state at time t = 0. This represents the unitary evolu-
tion (in time) of the vector state, and it is called the Schrödinger equation.

4Newton da Costa has an interesting proposal of seeing quantum objects themselves as
structures of the form s = 〈R × R3,Hs,O, P〉, where R × R3 is the Galilean space-time,
Hs is a Hilbert space and O a collection of self-adjoint operators on H, subjected to
standard definitions compatible with the axioms presented in this section. By the way, P
is a mapping which plays the role of a probability measure. It is clear that his schema
can be incorporated to ours. (da Costa’s ideas were presented in a seminar delivered in
22.09.2010)
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(3) The eigenvalues of A, that is, those (real) scalars ai such that A|ψi〉 =
ai.|ψi〉 are the possible results of a measurement of A. It is assumed that
the Hermitian operators represent observable physical quantities that can
be measured on the system at a certain state. Sometimes we distinguish
between the observable (such as mass, energy, momentum, number of
particles, etc.) from the corresponding Hermitian operators by writing A
for the observable and Â for the operator. We think that we don’t need
this distinction here.

(4) It is know that any Hermitian A is diagonalizable, what means that
we can find a basis {|αi〉} for the considered Hilbert space formed by
eigenvectors of A. Thus, for any state |ψ〉, we can write |ψ〉 =

∑
i ci|αi〉,

where ci = 〈αi|ψ〉 are the Fourier coefficients. Thus, |ci|2 = Pi represents
the probability that the measurement ofA gets the value ai. This postulate
is known as Born rule.

(5) If a measurement of A gives the result ai, the state vector |ψ〉 becomes
|αi〉 immediately after the measurement. This is known as the collapse of
the vector state.
Now, the foundationalist may be interested in investigating what are

the implications of using this specific underlying mathematical basis to for-
mulate non-relativistic quantum mechanics. In particular, ontological issues
may be in strong conflict with some of the presuppositions of the mentioned
mathematical basis. Let us turn to this point now.

3.1. Quantum indistinguishability and non-individuality
In the beginnings of quantum physics, Heisenberg, Born, Schrödinger, Bohr,
later Weyl, Hesse, among others, spoke of the lost of individuality of quantum
entities. They have also referred to these entities as non-individuals (for his-
torical references and further information, see [9, chap. 3]). In fact, it seems
that there are no differences among atoms of the same species, as well as
among other sub-atomic ‘particles’ of the same kind. In a certain sense, all
protons (electrons, neutrons, quarks, ...) are exactly alike. So, with no distin-
guishing feature between two of them, it seems there is no reason to say they
can be individuals in any sense. Really, by an individual, informally speak-
ing, we usually mean something that can be identified as such in different
circumstances: it has identity. But quantum objects as those mentioned seem
to be of a distinct nature; can we identify an electron twice? It is clear that
we can’t. Thus, quantum objects would be non-individuals.

The main motivation behind the claim that these objects are not individ-
uals is of course a possible way to interpret quantum objects in a metaphysical
framework accommodating this kind of objects. ‘Quantum objects’ may be
particles (as in orthodox QM), fields in relativistic quantum mechanics, or
any other among many possibilities (field excitations, and so on). In any case,
the strange relation of these items to identity (or lack of identity) seems to
grant that they can no longer be treated as individuals any more. Think of a
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BEC for instance (a Bose-Einstein Condensate). As the temperature becomes
‘critic’ (circa few pico Kelvins), the wavelengths become longer, so that the
‘particles’ cannot be treated as individuals any more (if they were): they be-
came a soup of matter waves. But even so, no physicist will say that this
soup, the ‘big atom’ is composed by just one entity, but by lots of entities in
the same quantum state, behaving in unisono (unison).

We can associate an interpretation to this phenomena. How can we
speak of individuals composing a BEC? Since they are in the same quantum
state, can the quanta in a BEC be seen as distinct solo numero? Otherwise
there will be ‘properties’ they have not included in the formalism of quan-
tum mechanics (hidden variables). Recall that permutations of objects of the
same kind lead to the same physical significative values (the same expectation
value). So, if properties of quantum entities are understood properly in terms
of these values, it seems that they share all their properties. It has been much
debated whether this implies that quantum objects violate Leibniz’ Princi-
ple of the Identity of Indiscernibles, according to which there are no two
entities differing solo numero. If we accept this idea (as many philosophers
seem to hold), then we can either regard quantum objects as non-individuals,
or to ground their individuality in some mysterious substratum, something
not many are willing to do. Paul Teller has interesting arguments to avoid
the introduction of substratum, haecceities, thisness and so on in quantum
mechanics [22]. In agreement with that, it seems quite ‘natural’ to pursue
(formally) a metaphysics of non-individuals, grounded on a possible interpre-
tation of quantum ‘objects’. Informally speaking, non-individuals are objects
to which the standard notion of identity does not apply. Why? If the standard
theory of identity holds for some objects, they can always (in principle) be
discerned from any other object.5 Then they are individuals. Classical theory
of identity says that indiscernible things are the very same thing. There are no
indistinguishable but not identical objects in the classical realm. Remember-
ing the foundationalist interest in the consequences of the underlying logic to
some fundamental questions about the theory, this is one that has far reaching
consequences, for it deals with the very nature of the items dealt with by the
theory (that is, its accompanying ontology). Indiscernibility may be assumed
to be a fundamental concept6 (in QM applications, we shall avoid discussing
interpretations such as Bohm-Hiley’s –but see French & Krause [9]). Heinz
Post, in 1963 proposed that the indiscernibility (non-individuality) of quan-
tum objects should be considered right at the start (as a primitive notion, see

5We said in principle. Standard mathematics presents us situations where objects (real
numbers, say) are distinct, but this distinction cannot be expressed in the languages em-
ployed. But, as we shall emphasize also later, ‘classical objects’ are either identical —the
same object— or different. But in this mentioned case where they are different but their
difference is not expressible, there are relations/properties that we prove to exist but which
cannot be expressed in the corresponding language, say a well order on R. Of course this
cannot be assumed in the quantum case except if we agree in introducing hidden variables.
6This can be seen from Gibbs paradox — see [23, Chap.4, p.95], where the author concludes
that “Indistinguishability is an experimental property of nature”.
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[18]). Usually, the formalism of orthodox QM uses symmetrization postulates:
symmetric and anti-symmetric vectors/functions express indiscernibility. For
two systems labeled 1 and 2 entangled in two possible states a and b, the join
system is described by the wave function (in the standard formalism)

|ψ12〉 =
1√
2
(|ψa1 〉|ψb2〉 ± |ψa2 〉|ψb1〉)

Note that we need to label the objects; our languages are objectual
[29, pp.220ff]. So, in order to grant that the order of the taken objects does
not matter, we use symmetric functions (or vectors), with the add of the
Indistinguishability Postulate below. This is of course a mathematical trick,
for what imports for physics is that the expectation value of the measure
of any observable Ô for the system in the state |ψ〉 does not change after
a permutation of the particles. Being P a permutation operator, we express
this by means of the Indistinguishability Postulate [19, 20]:

〈ψ12|Ô|ψ12〉 = 〈Pψ21|Ô|Pψ21〉

But of course that from the foundational point of view we should try
to find a formalism (a logic) for QM without appealing to these artificial
labeling of quanta. Redhead and Teller suggest to scape of the Hilbert tensor
product vector space formalism, which uses labels, by shifting to the Fock
space formalism (ibid., [21]). But, as we have seen, this move is done still
within standard mathematics, where all objects are, in a sense, individuals.
In our opinion, in order to rightly sustain a metaphysics of non-individuals, a
different mathematical and logic framework should be used. Once we have got
such a framework, we should try to ground a semantics for such a suitable for-
malism, such as the above, motivated by the metaphysics of non-individuals.
Below we shall suggest how this can be done, a procedure we may regard to
be consonant with what we call the von Weizsäcker–da Costa’s Principle of
Semantic Consistency, as formulated by von Weizsäcker: “the rules by which
we describe and guide our measurement, defining the semantics of the for-
malism of a theory, must be in accordance with the laws of the theory.” (cf.
[11, p.156]; [2]).

So, if certain objects are to be considered as ‘absolutely indiscernible’,
a semantics for such a logic will demand a mathematical theory compatible
with the hypothesis of indiscernibility, and we saw that ZFC is not such
a theory. Hence, there is a sense in speaking a logic of quantum physics
— really, the logic of quantum objects— in a distinct way from the usual
approaches of ‘quantum logic’ (the study of the orthomodular lattice of the
closed sub-spaces of a Hilbert space). One such proposal was made with quasi-
set theory [17], but we shall not discuss this issue here. Next, we outline the
mathematical framework.
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4. Quasi-set theory Q

We will review now the basic notions of quasi-set theory Q. More detailed
developments can be found in [9, chap. 7] and [10].

4.1. The language of the formal theory
The underlying logic of Q is classical first order logic without identity. The
postulates we assume are, first, a complete set of postulates for the classical
first order calculus, but we do not assume the classical semantics for this
calculus, that is, it should not be a formal Tarskian semantics built in ZFC,
for this would bring us back classical concepts such as identity into Q (for a
discussion on these topics see [1]). We take the following symbols as primitive:

(i) propositional connectives,
(ii) quantifiers
(iii) individual variables (a denumerable set)
(iv) two binary predicates ≡ and ∈,
(v) three unary predicates m, M and Z, and
(vi) an unary functional symbol qc.
Terms and formulas are defined as usual. Notice once again that iden-

tity is not part of the primitive vocabulary, and that the only terms in the
language are variables and items of the form qc(t), where t denotes a term.
The intuitive meaning of the primitive symbols is given as follows:

(i) x ≡ y (x is indiscernible from y)
(ii) m(x) (x is a ‘micro-object’, or an m-atom)
(iii) M(x) (x is a ‘macro-object’ or an M -atom)
(iv) Z(x) (x is a ‘set’ – a copy of a ZFU set)
(v) qc(x) (the quasi-cardinal of x)
Now, we introduce some important definitions, with the intuitive inter-

pretation attributed to them.

Definition 4.1.
(i) Q(x) := ¬(m(x) ∨M(x)) (x is a qset)
(ii) P (x) := Q(x) ∧ ∀y(y ∈ x→ m(y)) ∧ ∀y∀z(y ∈ x ∧ z ∈ x→ y ≡ z)
(x is a pure qset, having only indiscernible m-atoms as elements.)
(iii) D(x) := M(x) ∨ Z(x)
(x is a Ding, a “classical object” in the sense of Zermelo’s set theory,
namely, either a set or a ‘macro Urelemente’.)
(iv) E(x) := Q(x) ∧ ∀y(y ∈ x→ Q(y))
(x is a qset whose elements are qsets.)
(v) x =E y := (Q(x)∧Q(y)∧∀z(z ∈ x↔ z ∈ y))∨(M(x)∧M(y)∧∀Qz(x ∈
z ↔ y ∈ z)) (Extensional identity)— we shall write simply x = y instead
of x =E y from now on.
(vi) x ⊆ y := ∀z(z ∈ x→ z ∈ y) (subqset)

That is, Q is a theory containing two kinds of ur-elements, the m-atoms
and the M -atoms, and also collections of atoms and other collections, the
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qsets. Some qsets are specially important: when their transitive closure does
not contain m-atoms, they contain only what we call ‘classical objects’ of
the theory (objects satisfying D); items fulfilling this condition satisfy the
predicate Z and they coincide with the sets in ZFU, with which classical
mathematics can be built inside Q.

The main idea motivating the development of the theory is that some
items are non-individuals (roughly speaking, entities for which the standard
notion of identity does not apply), and does not obey the notion encapsulated
in the definition of extensional identity. As one can see, this concept is not
defined for m-atoms, the items which intuitively represent quantum indistin-
guishable objects. So, on one side, these things ‘do not have identity’, that is,
it does not make sense to say they are identical or different and, on the other
side, the indistinguishability relation holds for every item of the theory, so m-
atoms may be indistinguishable without being identical. Important to notice
that in saying that some entities are non-individuals, we are not supposing
that we cannot speak of them; really, we can speak of them. For instance, a
qset of indiscernible m-atoms may have a q-cardinal greater than one, say 5,
and so we can think of five entities in some situation, although they cannot
be discerned in any way. Below we shall see that m-atoms a and b may have
distinct properties, that is, it may be the case that a 6≡ b.

4.2. The postulates of Q

Besides postulates for classical first-order logic without identity (which we
shall not list here), we introduce the specific postulates for Q.

(≡1) ∀x(x ≡ x)
(≡2) ∀x∀y(x ≡ y → y ≡ x)
(≡3) ∀x∀y∀z(x ≡ y ∧ y ≡ z → x ≡ z)
(=4) ∀x∀y(x = y → (α(x)→ α(y))), with the usual restrictions.
These postulates ensure us that indistinguishability is an equivalence re-

lation. Now, this relation is not necessarily compatible with the other prim-
itive predicate or relations; that this in fact occurs for m-atoms helps us
keeping identity and indistinguishability separated. In fact, if x and y are
indistinguishable m-atoms, then being z a qset, we have that x ∈ z does not
entail that y ∈ z, and conversely.

Other postulates are:
(∈1) ∀x∀y(x ∈ y → Q(y))
If something has an element, then it is a qset; in other words, the atoms
have no elements (in terms of the membership relation).

(∈2) ∀Dx∀Dy(x ≡ y → x = y)
Indistinguishable Dinge are extensionally identical. This makes = and ≡
coincide for this kind of entities.

(∈3) ∀x∀y[(m(x)∧x ≡ y → m(y))∧(M(x)∧x = y →M(y))∧(Z(x)∧x =
y → Z(y))]
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(∈4) ∃x∀y(¬x ∈ y)
This qset can be proved to be a set (in the sense of obeying the predicate
Z), and it is unique, as it follows from the axiom of weak extensionality
we shall see below. Thus, from now own we shall denote it, as usual, by
∅.

(∈5) ∀Qx(∀y(y ∈ x→ D(y))↔ Z(x))
This postulate grants that something is a set (obeys Z) iff its transitive
closure does not contain m-atoms. That is, sets in Q are those entities
obtained in the ‘classical’ part of the theory.

(∈6) ∀x∀y∃Qz(x ∈ z ∧ y ∈ z) (pair axiom)
(∈7) If α(x) is a formula in which x appears free, then

∀Qz∃Qy∀x(x ∈ y ↔ x ∈ z ∧ α(x)).

This is the Separation Schema. We represent the qset y as follows:

[x ∈ z : α(x)].

When this qset is a set, we write, as usual, {x ∈ z : α(x)}.

(∈8) ∀Qx(E(x)→ ∃Qy(∀z(z ∈ y ↔ ∃w(z ∈ w ∧ w ∈ x))).
The union of x, written

⋃
x. Usual notation is used in particular cases.

4.3. Some basic concepts
From (∈6): ∀x∀y∃Qz(x ∈ z ∧ y ∈ z), using α(w)↔ w ≡ x ∨ w ≡ y, we get a
subqset of z which we denote

[x, y]z
which is the qset of the indiscernibles of either x or y that belong to z. When
x ≡ y, this qset reduces to

[x]z
called the qset of the indiscernibles from x that belong to z. The qset [x, y]z
does not have necessarily only two elements (that is, we may have qc([x, y]z) >
2, for there may be more than just one indistinguishable from x or y in z.
Given the qset z and one of its elements, x, the collections [x] and [x]z stand
for all indiscernible from x and the qset of the indiscernible from x that
belong to z respectively. (Usually, [x] is too big to be a qset.)

Later, with the postulates of quasi-cardinal, we will be able to prove
[x]z has a subqset whose quasi-cardinal equals to 1:

[[x]]z

We call it the strong singleton of x (really, a strong singleton of x, for
we cannot grant that it is unique). It has just one element, and we can think
of this element as if it were x, but in fact, it follows from the definition that
all we can know about it is that [[x]]z contains one object of the ‘species’ x.
That is, qc([[x]]z) = 1, there is one item indistinguishable from x in this qset.
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4.4. Other postulates and definitions
(∈9) ∀Qx∃Qy∀z(z ∈ y ↔ w ⊆ x),
The power qset of x, denoted P(x).

(∈10) ∀Qx(∅ ∈ x ∧ ∀y(y ∈ x→ y ∪ [y]x ∈ x)),
The infinity axiom.

(∈11) ∀Qx(E(x) ∧ x 6= ∅ → ∃Qy(y ∈ x ∧ y ∩ x = ∅)),
The axiom of foundation, where x ∩ y is defined as usual.

Definition 4.2 (Weak ordered pair).

〈x, y〉z := [[x]z, [x, y]z]z (4)

Then, 〈x, y〉z takes all indiscernible from either x or y that belong to
z, and it is called the “weak” ordered pair, for it may have more than two
elements. Sometimes the sub-indice z will be left implicit.

Definition 4.3 (Cartesian Product). Let z and w be two qsets. We define the
cartesian product z × w as follows:

z × w := [〈x, y〉z∪w : x ∈ z ∧ y ∈ w] (5)

Functions and relations cannot also be defined as usual, for when there
arem-atoms involved, a mapping may not distinguish between arguments and
values. Thus we provide a wider definition for both concepts, which reduce
to the standard ones when restricted to classical entities. Thus,

Definition 4.4 (Quasi-relation). A qset R is a binary quasi-relation between
to qsets z and w if its elements are weak ordered pairs of the form 〈x, y〉z∪w,
with x ∈ z and y ∈ w.

Definition 4.5 (Quasi-function). f is a quasi-function among q-sets A and B
if and only if f is quasi-relation between A and B such that for every u ∈ A
there is a v ∈ B such that if 〈u, v〉 ∈ f and 〈w, z〉 ∈ f and u ≡ w then v ≡ z.

In words, a quasi-function maps indistinguishable elements to indistin-
guishable elements. An interesting question concerns the more specific kinds
of functions, that is, injections, surjections and bijections. One can, with some
restrictions, define the corresponding concepts, but we shall not do that here
(see [9, chap. 7]).

4.5. Postulates for quasi-cardinals
One must notice that in Q the standard notion of identity is not defined
for some entities. Now, the identity concept is essential to define many of
the usual set theoretic concepts of standard mathematics, such as well order,
the ordinal attributed to a well ordered set, and the cardinal of a collection.
Since identity is to be senseless for some items in Q, how can we employ
these notions? One alternative would be to look for different formulations
employing methods that do not rely on identity. Another possibility would
be to introduce these concepts as primitive and give adequate postulates
for them. Concerning the notion of cardinal, there are interesting issues we
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should acknowledge. First of all, in Q, there are no well-orders on quasi-
sets of m-atoms. Really, a well-order would imply, for example, that there
is a least element relative to this well order, a notion which could only be
formulated if identity was defined for m-atoms, for this element would be
different from any other element in the quasi-set. Second, the usual claim
that aggregates of quantum entities can have a cardinal but not an ordinal
demands a distinction between the notions of ordinal and of cardinal of a
quasi-set; this distinction is made in Q by the introduction of cardinals as a
primitive notion, called quasi-cardinals.7

Let us see the postulates for quasi-cardinals; for details and motivations,
see [9, Chap.7], [10]. Here α, β, . . . stand for cardinals (defined as usual in
the classical part of the theory, that is, in the theory Q when we rule out the
m-atoms):

(qc1) ∀Qx(∃Zy(y = qc(x)) → ∃!y(Cd(y) ∧ y = qc(x) ∧ (Z(x) → y =
card(x)))
In words, if the qset x has a quasi-cardinal, then its (unique) quasi-cardinal
is a cardinal (defined in the ‘classical’ part of the theory) and coincides
with the cardinal of x stricto sensu if x is a set.

(qc2) ∀Qx(∃y(y = qc(x)→ x 6= ∅ → qc(x) 6= 0)).
Every non-empty qset that has a quasi-cardinal has a non-null quasi-
cardinal.

(qc3) ∀Qx(∃Zα(α = qc(x))→ ∀β(β ≤ α→ ∃Qz(z ⊆ x ∧ qc(z) = β)))
If x has quasi-cardinal α, then for any cardinal β ≤ α, there is a subqset
of x with that quasi-cardinal.
In the remaining axioms, for simplicity, we shall write ∀Qqc

x (or ∃Qqc
x)

for quantifications over qsets x having a quasi-cardinal.

(qc4) ∀Qqc
x∀Qqc

y(y ⊆ x→ qc(y) ≤ qc(x))
(qc5) ∀Qqcx∀Qqcy(Fin(x) ∧ x ⊂ y → qc(x) < qc(y))
It can be proven that if both x and y have a quasi-cardinal, then x ∪ y

has a quasi-cardinal. Then,

(qc6) ∀Qqcx∀Qqcy(∀w(w /∈ x ∨ w /∈ y)→ qc(x ∪ y) = qc(x) + qc(y))

In the next axiom, 2qc(x) denotes (intuitively) the quantity of subquasi-
sets of x. Then,

(qc7) ∀Qqc
x(qc(P(x)) = 2qc(x))

This last axiom enables us to think of subqsets of a given qset in the
usual sense; for instance, if qc(x) = 3, the axiom says that there exists 23 = 8
subqsets, and axiom (qc3) enables us to think that there are subqsets with
1, 2 and 3 elements. Furthermore, as we have seen above, in Q we can prove
that given any object a (either an m-atom, M -atom or quasi-set) we may
obtain the ‘singleton’ of a, termed [[a]] whose qcardinal is 1 (this is the strong

7As shown by Domenech and Holik, we can define quasi-cardinals for finite qsets in Q,
without resulting that the qset will have an associated ordinal in the usual sense; see [6].
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singleton of a). Important to say that there is no sense of saying, within Q,
that a is the only element of [[a]], for in order to prove that we need identity.
Anyway, Q is consistent with this idea. So, we can reason within Q that
we may have a certain m-atom, without keeping it specified in some form,
except that it has some characteristics, and not others. That m-atoms may
have different properties can be seen from the fact of Q that Q doesn’t prove
the Substitutivity of Indiscernibles, that is,

Q 6` a ≡ b→ ∀Qz(a ∈ z ↔ b ∈ z).
To prove this result, suffice to take [[a]]. Since qc(a) = 1, a and b cannot

belong both to this qset, except if a = b, which cannot be assumed in the case
of m-atoms. So, in an extensional context (and Q is an extensional theory,
although this should be qualified), we can read a ∈ z as a having a certain
‘property’ (whose ‘extension’ would be z). So, even indistinguishablem-atoms
may have distinct properties.

4.6. The Weak Extensionality Axiom
Our next goal is to present the weak extensionality axiom, which generalizes
the usual extensionality axiom. Intuitively, it grants us that two q-sets with
the same quantity of the same kinds of elements are indistinguishable. For
that, we need two extra definitions, the notion of similarity between q-sets,
denoted by Sim, and the notion of Q-similarity, denoted Qsim. Intuitively
speaking, similar q-sets have elements of the same kind, and q-similar q-sets
have elements of the same kind, and in the same quantity:

Definition 4.6.
(i) Sim(x, y) := ∀z∀w(z ∈ x ∧ w ∈ y → z ≡ y);
(ii) Qsim(x, y) := Sim(x, y) ∧ qc(x) = qc(y).

The weak extensionality axiom reads as follows:

(≡12) ∀Qx∀Qy((∀z(z ∈ x/≡ → ∃t(t ∈ y/≡ ∧ Qsim(z, t)))) ∧ ∀t(t ∈ y/≡ →
∃z(z ∈ x/≡ ∧ ∧Qsim(t, z)))→ x ≡ y)

Intuitively speaking, qsets that have ‘the same quantity’ (given by their
q-cardinals) of elements of the same kind are indiscernible.

The following theorem express the invariance by permutations in Q, and
with this result we finish our revision:

Theorem 4.1 (Invariance by Permutations). Let x be a finite qset such that
¬(x = [z]t) for some t and let z be an m-atom such that z ∈ x. If w ∈ t,
w ≡ z and w /∈ x, then there exists [[w]]t such that

(x− [[z]]t) ∪ [[w]]t ≡ x

Proof: See [9].
In words, two indiscernible elements z and w, with z ∈ x and w /∈ x,

expressed by their strong-singletons [[z]]t and [[w]]t, are ‘permuted’ and the
resulting qset x remains indiscernible from the original one. The hypothesis
that ¬(x = [z]t) grants that there are indiscernible from z in t which do not
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belong to x. This theorem has a ‘physical’ interpretation: the qset x must
be a neutral atom which is to be ionized by realizing an electron in order to
become a negative ion. Thus the m-object z would represent an electron in
the outer shell, while w is ‘another’ electron not in the atom (these words
are to be understood metaphorically). Thus, the electron z is realized and, in
another experiment, an electron is captured again so that the atom becomes
neutral again. The question is: is this last neutral atom the same (identical)
to the first one? Of course, this would be so if and only if the captured
electron is, ceteris paribus, exactly the same as the realized one. But, there is
any sense in saying that the realized electron is identical with the captured
one? Quasi-set theory escapes from this dilemma by assuming that the basic
notion is that of indiscernibility; the electrons are indiscernible, so as the
neutral atoms. And this is enough for physics. Philosophically, we advance
a thesis: the notion of identity is a useful notion. It simplifies in much our
discourse and mathematics, but it is fragile; as Hume showed, the identity
of objects is something attributed by habit. Indistinguishability suffices. But
we shall not develop this thesis here.

5. The semantic approach, quasi-sets, and non-individuals
How could the theory Q helps the philosopher in the investigation of founda-
tional aspects of quantum mechanics? In order to discuss this point, yet here
only superficially, let us consider once more the schema given by the structure
(2), presented at page 7. Using Q, the set S can be (perhaps more appro-
priately for the quantum mechanical case) represented by a quasi-set, maybe
composed by non-individuals only, representing elementary particles, either
indiscernible or not.8 This qset has a cardinal, in general (in the physical
applications) finite (so, suppose qc(S) = n). Then, even (eventually) without
being able to discern the elements of S, we may associate to each of them
a Hilbert space in the class {Hi},9 and the rest of the schema follows in an
obvious way. In this sense, we are considering structures such as (2) not in
ZFC, but in Q.

What is the importance of this move from ZFC to Q? We may justify
this as follows. The structure (2), built in ZFC, can be extended to a rigid
structure, that is, to a structure whose only automorphism is the identity
function. This is a theorem of ZFC: any structure can be extended to a rigid
structure [4]. A rigid structure is a structure whose only automorphism is
the identity function. Since the notion of indiscernibility is given relative to a
structure by means of invariance by one of its automorphisms,10 this implies
that we may have objects which, within the structure, are indiscernible in the
sense that there exists a non-trivial (i.e., distinct from the identity function)

8We remark that the construction of structures and set theoretical predicates carries
through to Q.
9In the case of indiscernible m-atoms, we take the same Hilbert space for all cases.
10The automorphisms of a structure form the Galois group of the structure —see [4].
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automorphism of the structure which leads one object in another object. But
the above theorem says that, in the extended structure, they are no more
indiscernible: the only object indiscernible from a certain object is the object
itself. Since we can always extend a structure to a rigid one, indiscernible
elements (from the point of view of a certain structure) will be always indi-
vidualized outside the structure, say in the extended one. That is, yet masked
for within a certain structure we are not seeing their individual characteristics
for they are veiled by the existence of non trivial automorphisms, they are in-
dividuals, objects that obey the classical theory of identity. This is essentially
what happens when we represent indiscernible quantum objects by symmetric
or anti-symmetric vectors. Two (or more) quantum objects whose join state
is described by either a symmetric or by an anti-symmetric wave function are
indiscernible, but they remain indiscernible only in the context of a certain
structure, but by force of the underlying mathematics (say, ZFC), there will
exist a difference among them, yet sometimes we cannot point this difference,
for due to the above instance of the excluded middle law, either they are the
very same object (a = b) or they are distinct (a 6= b). But, if they are not
the same entity, as we tend to agree concerning indistinguishable quantum
objects forming a collection with cardinality greater than 1, the mathemat-
ical representation of quantum objects within standard mathematics (built
in ZFC) seems to suggest the existence of hidden variables of some kind. In
other words, within ZFC, although indiscernible from the point of view of
quantum mechanics, quantum objects are individuals (again: they obey the
classical theory of identity). But, if we aim at to deal with an alternative
metaphysical package, namely, by considering them as non-individuals, we
have two options: either to confine the discourse to within a certain non-rigid
structure, and this can be done within ZFC proper, and which is a quite
artificial move, or we may employ something such as the theory Q, where the
indiscernibility is treated in a quite more natural way.

Thus, it seems that when we are concerned with individuality and iden-
tity problems, Q looks better for the development of a formulation of quantum
mechanics in which indistinguishable entities appear as such right from the
start, as demanded by Post, in the sense we have seen already. The idea that
these items are non-individuals is encapsulated in Q with its m-atoms and
collections thereof, which are now available for mathematical work in devel-
oping a different version of quantum theory. Important to notice that this
does not imply that we cannot think of them as ‘entities’ of some sort. They
are objects, but objects of a different kind than those postulated by classical
logic, actually non-individual objects. Really, a collection of m-atoms has a
(quasi)cardinal (say, 5), even if we cannot distinguish them, thus, we may
reason as if five entities were being treated; in this sense, we are in agree-
ment with the standard informal view of electrons, protons, or even atoms,
when they cannot be distinguished from one another, although being not the
very same entity.
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In Domenech et al. (see [7] and [8]), the non-classical part of Q was
used to define a Hilbert space (called Q-space) whose vectors refer only to
occupation numbers, while permutation operators act as the identity opera-
tor on them, reflecting in the formalism the unobservability of permutations.
By maintaining both quantum indistinguishability and antisymmetry with-
out resort to a symmetrization postulate, spin values in a two-value fermionic
system were derived, obtaining identical results as those obtained in the stan-
dard Fock space formalism. The main difference to the standard approach is
that, although some philosophers think that the (standard) Fock space for-
malism is free from individual labels (see [19, 20], [21]), it is not. In fact, dealt
with within standard mathematics, the represented quanta are individuals,
as we have seen, and then Fock spaces just act as another ‘structure’ where
the individuality of the represented objects is blurred in some way, masked by
some kind of veil. The only way to deal with truly indiscernible entities is by
employing a different mathematical framework. Thus, the use of theories such
as Q (is there any other?), we can trace the first steps to found a quantum
mechanics involving indiscernibility as a metaphysical hypothesis. This way,
we shall be working in agreement with the semantic approach, but now in
the framework of Q, and we can look for a quasi-set theoretical predicate for
quantum theory. Such a predicate would include, among its models, the in-
tended model, built by considering m-atoms as representing quantum objects.
In this sense, the theory may deal with indistinguishable but non identical
items without the need of mathematical tricks, such as the introduction of
symmetrization conditions.

An alternative approach could also be considered. Still working in Q, we
can retain classical mathematics involved with the set theoretical predicate
presented at section 3, but now we recognize that among the models of the
predicate, some may have as its domain a qset with m-atoms, that is, the
set of physical systems is now a pure qset. This is a different approach than
the just mentioned one, in which one bases the mathematical formalism itself
on collections of m-atoms. Here, we restrict ourselves to the classical part
of Q to do the mathematics necessary for QM, but we employ the resources
of non-classical qsets to bring the entities this formalism deals with. In this
case, of course, those unwilling to keep with a classical mathematics that uses
symmetrization conditions to represent the non-individual entities may stick
to the Q-spaces. But we shall leave these details and pay attention to some
kind of difficulties that arise in considering the present discussion.

The first point to be noticed is that the Hilbert space formalism, com-
monly used in QM, is compatible with at least two ways when it comes to
metaphysical issues regarding the entities it deals with: they can be seen
either as individuals or as non-individuals. Both readings will rely on how
we interpret the symmetrization postulate (see 3.1): one can understand it
as implying that only symmetric and anti-symmetric states exists or, on an
alternative reading, we can say that every observable must be compatible
with permutations, that is, the Hermitian operators representing observable
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quantities must commute with permutation operators, representing permu-
tations on the labels of particles. The first reading is chosen by the non-
individuals package, the second one allows one to interpret the items dealt
with by the formalism as individuals, since in this case the asymmetric states
that could distinguish the particles are simply inaccessible to the particles,
but they are there (even though they have no physical significance). This
is in conformity with the two metaphysical packages dealt with by French
and Krause in [9]; the first consider non-individual quanta; the second one
consider them as individuals, on a pair with their classical twins (described
by classical physics), but at the expenses of introducing restrictions on the
available states/observables, as implied by the restrictions imposed by the
symmetrization postulate.

What is at issue here is, to our view, is a simple manifestation of the
so-called thesis of the underdetermination of the metaphysics by the physics
(see [9, chap. 4]). In fact, the formalism of quantum mechanics is compatible
with (at least) two kinds of metaphysics, the individuals package and the
non-individuals package. This compatibility notwithstanding, one must also
advance a second step on the discussion of which underlying metaphysics will
be adopted, a step we think has not been completely recognized: one should
only effectively choose one of the metaphysical packages if the mathematical
framework is chosen accordingly. In fact, each metaphysical package has its
own accompanying logico-mathematical framework, which is most adequate
for its purposes ([9, p.244]). So, it seems that if we want to ‘prove’ that
quantum mechanical entities are individuals or, otherwise, that they are not
individuals, there will be not a neutral base to do that, and we need to choose
from some of the available mathematical basis one to work within; but then,
once we have already made a choice of our preferred metaphysics, we need
to choose the corresponding mathematical package to deal with. The move
is purposeless, that is, metaphysics comes first, for it is already manifest in
the very choice of our mathematical framework.
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