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Abstract  

Philosophers have long debated ‗substrate‘ and ‗bundle‘ theories as to how properties hold 

together in objects ― but have neglected to consider that every chemical entity is defined by closure of 

relationships among components ― here designated ‗Closure Louis de Broglie.‘  That type of closure 

underlies the coherence of spectroscopic and chemical properties of chemical substances, and is 

importantly implicated in the stability and definition of entities of many other types, including those 

usually involved in philosophic discourse ― such as roses, statues, and tennis balls. Characteristics of 

composites are often presumed to ‗supervene on‘ properties of components. This assumption does not 

apply when cooperative interactions among components are significant (as they usually are in 

chemistry). Once correlations dominate, then adequate descriptions must involve different entities and 

relationships than those that are involved in ‗fundamental-level‘ description of similar but uncorrelated 

systems. That is to say, descriptions must involve different semantics (topology) than would be 

appropriate if cooperative interactions were insignificant. This is termed ‗Closure Henri Poincaré.  

Networks of chemical reactions that have certain types of closure of processes display properties that 

make other more-complex coherences (such as biological and cultural systems) possible. This is termed 

‗Closure Jacques Cauvin.‘  Each of these three modes of closure provides a sufficient basis for 

warranted recognition of causal interaction, thus each of them has epistemological significance. Other 

modes of epistemologically-important closure probably exist.  It is important to recognize that causal 

efficacy generally depends on closure of relationships of constituents. 
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Substrates and Bundles  

At least1 since David Hume rejected John Locke‘s supposition that properties inhere in ‗substrates‘ 

and argued instead that objects are nothing but ‗bundles of properties,‘ philosophers (mainly English-

speaking) have debated how properties hold together in ordinary objects. Currently, Locke‘s substrate 

theory has vigorous proponents (e.g., Sider 2006) but a larger number of philosophers favor versions 

of Hume‘s ‗bundle‘ approach and assert that a ‗compresence relationship‘ holds properties (or ‗tropes‘ 

― individual instances of properties) together (e.g., Robb 2005, Simons 1994). When intelligent people 

carry on vigorous debates about important matters for extended periods, it sometimes turns out that 

all parties to the dispute have made unwarranted assumptions, or that both sides have overlooked 

important considerations. This paper suggests that time cannot be ignored in discussions of properties 

and  that coherence of the properties of each individual entity requires closure of networks of 

relationships between and among components. Such closure is an important aspect but has not been 

considered in the debates, perhaps because synchronic rather than diachronic approaches have been 

used.  

Jiri Benovsky (2008) examined more than six current versions of both substrate and bundle 

theories. Some of those versions involved ‗tropes‘ and others recognized universals, some had a single 

identical unification-relation for all objects, others had a single unification-relationship but allowed 

variable numbers of relata (‗polyadicity‘), still others had distinct unification-relations for each object.  

Benovsky considered, in some detail, how proponents of each of these approaches defended 

themselves against objections. At the end of this inquiry, he concluded that both substratum and 

bundle theories share a common central postulate: namely, that each object has a feature, different 

from all other features of the object, which functions as a unifying device. (This unique feature is called 

the ‗substrate‘ or ‗bare particular‘ in one theory, and designated the ‗compresence relationship‘ in the 

other approach.) Benovsky identified both of these postulated special features as theoretical entities 

(items that are ―individuated by their theoretical role‖) and pointed out that both ―play the same role in 

the same way‖ in all their applications – therefore the two special features should be regarded ―as 

identical (metaphysically equivalent).‖ (p. 183) Benovsky concluded that substratum and bundle 

theories are ‗twin brothers‘ rather than ‗enemies‘ ─ and that both these approaches are seriously 

deficient, since neither has succeeded in clarifying the nature of the basis of unification that they both 

require. 2 

                                           

1   This debate is related to controversies in ancient philosophy. (Earley 2009) 

2  Mathematicians recommend that if a particular problem proves to be intractable then one should make a 

strategic switch to a different and easier problem that retains important features of the original task 

(Polya 1985). If the second problem can be solved, that solution may provide tools or hints that will allow 

the original problem to be clarified. The objects discussed in substrate or bundle debates have generally 

been ordinary items encountered in everyday life ― e.g. roses, tennis-balls, statues. Perhaps, as the 

mathematicians suggest,  greater success might be obtained by considering items that are less familiar 

but are understood in more detail, such as the entities with which contemporary chemists deal.  

 



Earley             ―Three Concepts of Chemical Closure‖           September 23, 2010            3 

Property Persistence through Interaction  

Remarkably, recent participants in substrate/bundle discussions seldom or never mention findings 

of physical chemists regarding how properties of well-defined chemical substances relate to the 

composition of those materials.  Hilary Putnam (1969) pointed out that philosophers often encounter 

serious problems because they generally use the word ‗property‘ to denote anything that can be said 

about an object – any predicable.  Philosophers who discuss substrate and bundle theories seem 

mainly concerned with logical structure, proper modes of speech, and maintaining customary patterns 

of thought (respectfully designated as ‗intuition‘). Chemists have different priorities3 and generally use 

a more-restricted concept of property ― one described by American chemist and philosopher Charles S. 

Peirce [1839-1914], who defined a property as how a thing behaves, or would behave, in a specified 

operation. This usage exemplifies Peirce‘s ‗pragmatic principle:‘ 

Consider what effects, that might conceivably have practical bearings, we conceive the 

object of our conception to have. Then our conception of these effects is the whole of 

our conception of the object. (Peirce, 1878) 

All the entities with which chemists deal are somehow composed of smaller items. All of these 

objects (both composites and components) are known to be in incessant thermal motion and also in 

continual interaction with other items. In order for any composite to remain more or less the same 

through motion and interaction there must be features of that composite that insure sufficient 

resiliency for integrity to be maintained. Paul Weiss (1959) described this situation well:  

Each actuality is a substance. It maintains a hold on whatever it contains, produces, and 

intrudes upon. It persists and it acts. It has an irreducible, independent core, and 

receives determinations from insistent, intrusive forces. ... If an actuality were not a 

substance, its parts would not belong to it, and it would disperse itself in the very act of 

making its presence evident. The very items which it dominates, it would not control; 

nor would it continue to be despite an involvement in change and motion. It would be 

inert and solely in itself, or it would be a mere event. In either case, it would not be a 

source of action.   

The well-established dynamic aspect of nature – incessant motions of all items – requires an account of 

the factors to which Weiss calls attention: how properties of objects are maintained through time, how 

they interact with others, and how they maintain their own integrity during such interaction. 

 Participants in substrate/bundle debates generally ignore temporality and explicitly or implicitly 

adopt  ‗synchronic‘ approaches  in preference to ‗diachronic‘ ones. (Humphrys 2008, Earley 2003b) The 

shared (but certainly false) assumption that history is negligible seems to have been a major factor 

contributing to the failure of both conceptual schemes. The long-term stability of composite chemical 

                                           

3  It seems participants in these debates have little concern as to whether the features they postulate are in 

fact exemplified in nature. In Shakespeare‘s King Henry IV, Part I, Welsh chieftain Owen Glendower 

boasts: ―I can call spirits from the vasty deep.‖ His English cousin and rival Hotspur replies: ―Why, so can 

I, or so can any man; But will they come when you do call for them?‖ (Act 3, Scene 1.) Hotspur probably 

would approve chemists‘ use of Peirce‘s pragmatic concept of ‗properties‘. 
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entities – molecules of dihydrogen or crystals of table salt for instance – even while the components 

are in constant motion requires that such motion is somehow constrained so that the entities maintain 

their integrity. We now consider how such coherence is achieved.   

Closure Louis de Broglie.  

When Louis de Broglie resumed his study of physics after the close of World War I, the then-

existing theories of Bohr and Sommerfeld could adequately rationalize the extensive body of 

experimental data that was available on the line spectra of atomic hydrogen and ionized helium – but 

only by making the unsupported assumption that electrons in atoms are restricted to certain specific 

energy values (‗orbits‘). As  de Broglie pointed out in his 1929 Nobel Prize address, those early versions 

of quantum mechanics could not explain: ―why, among the infinity of motions which an electron ought 

to be able to have in the atom according to classical concepts, only certain ones were possible,‖. In a 

note in Comptes rendus, de Broglie (1923) proposed that each electron within an atom had a 

frequency intrinsically associated with it, and also was connected with a wave that carried no energy.4 

He then introduced a postulate: 

 ‖It is almost necessary to suppose that the trajectory of the electron will be stable only 

if the fictitious wave passing O‘ catches up with the electron in phase with it: the wave 

of frequency ν and speed c /β has to be in resonance over the length of the trajectory‖   

This postulate envisions that an atomic system will be stable (that is, will persist) only if two oscillations 

agree in phase. The ‗only‘ in this postulate (emphasized in the French original) is a clearly a 

requirement of a specific relationship between two quantities (phases of waves).  On the basis of this 

postulate, de Broglie was able to derive the Bohr-Sommerfeld criteria for stable states of the electron in 

the hydrogen atom. This was a great triumph: de Broglie was awarded the 1929 Nobel Prize for Physics 

on the basis of his 1924 doctoral thesis. 5 The essential novelty of this contribution was that it provided 

a criterion that served as a basis for understanding why some states of electrons in atoms were 

capable of extended existence while other apparently equivalent ‗states‘ were not capable of existence.  

Related sorts of closure and analogous criteria are, I submit, characteristic of all stable chemical 

entities. The general requirement for such criteria is a key factor that has been left out of past and 

current philosophical discussion of bundle and substrate theories.  

                                           

4  Later, this ‗fictitious wave‘ became known as ‗the phase wave‘ or ‗the pilot wave‘. 

5  Through Einstein‘s mediation, this thesis also inspired Schrödinger‘s development of wave mechanics. In 

the Solvay Conference of 1927 de Broglie‘s approach was criticized by Wolfgang Pauli and others, and 

was then largely supplanted by Bohr‘s ‗Copenhagen Interpretation.‘ (Bonk 1994) De Broglie‘s approach 

has been partially revived by Bell and used in recent models of the internal constitution of the electron.  



Earley             ―Three Concepts of Chemical Closure‖           September 23, 2010            5 

Molecular Properties  

In chemical entities, distances between components remain within narrow limits because of 

balance of attractive and repulsive interactions (a type of closure). Attractive forces tend to pull 

components inward while repulsive interactions impel those constituents outward. As the positive 

centers separate for whatever reason, attractive forces draw them back together. Figure 1 displays 

calculated curves showing how potential energy varies with distance between positive centers for the 

three lowest-lying electronic states of the dihydrogen molecule, H2. The upper and lower curves 

correspond to situations in which the two electrons have opposite spins (‗singlet states‘). The central 

curve corresponds to a circumstance in which the two electrons have the same spin (a ‗triplet state‘). 

The lowest curve features a minimum in a region of negative potential energy. The central curve has 

no minimum. The third curve has a minimum but in a region of positive potential energy and at a 

larger internuclear distance than the lower minimum.  

If two hydrogen atoms with opposite electronic spins were to collide and somehow to transfer 

energy to a third body (say, a helium atom or the wall of a reaction-chamber) a dihydrogen molecule 

might result. Once produced this two-centered entity would move through space as a unit ― while 

vibrating more or less vigorously (that is, while oscillating within the ‗potential-well‘ defined by the 

minimum in the lower curve). (Earley 2003a) Texts in physical chemistry and quantum chemistry show 

that  factors that determine the potential-energy versus distance curves for dihydrogen are now 

understood rather well.  

Properties that depend only on the constitution of dihydrogen molecules could be be interpreted as 

deriving directly from the potential-energy versus internuclear distance curve. The molecular weight 

would be one such property.6 Two other types of properties are of great interest to chemists. 

‗Spectroscopic‘ properties  involve transition between various stable energy states of a given molecule 

with concomitant emission or absorbtion of energy. Chemical properties involve interactions (of 

molecules with like or different others) lead to transition to a different potential-well corresponding to 

alternative molecular compositions, or to new topologies of connection of elemental centers. 

Spectroscopic and Chemical Properties  

Vibrational and rotational energies are ‗quantized‘ – restricted to specific values that are spaced in 

regular ways – just as electronic energies are. Energy levels are spaced more widely for electronic 

states, less widely for vibrational states, and quite closely for rotational states. Figure 2 shows the 

several vibrational states that correspond to the two low-lying electronic states of the dihydrogen 

molecule that have potential minima. Each of these vibrational states has several associated rotational 

                                           

6  If a nonvolatile molecular substance were introduced into some appropriate volatile solvent, the freezing 

and boiling points of that solution would differ from the corresponding values for the pure solvent. For a 

dilute solution, both the boiling-point elevation and the freezing-point depression would be proportional 

to the lowering of vapor pressure of the volatile solvent due to presence of the nonvolatile solute. Such 

‗coligative‘ properties of solutions depend on the number of molecules of a given type that exists in a 

specific volume of solution and are not influenced by the properties of individual solute molecules. This 

would be another strictly ‗molecular‘ property. 

http://en.wikipedia.org/wiki/Boiling_point_elevation
http://en.wikipedia.org/wiki/Freezing_point_depression
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states. The designation ‗state‘ implies that, absent any disturbance, the system might remain in any 

one of these states indefinitely.7 But transitions between states can occur: such transitions provide the 

means for the molecule to interact with the rest of the world while retaining its integrity as dihydrogen, 

by maintaining the H—H bond.  Closure is what allows each molecule to ‗make a difference.‘ (Earley 

2008, 2004; Ney 2009)8  

Detailed study of ‗spectroscopy‘, the energy absorbed or released when chemical systems change 

for one energy state to another, accounts for much of the success modern chemical science. For a 

single instance, Martini et al (1990) used emission from the first vibrational excited state of dihydrogen 

to the ground (lowest) state to gather information about conditions in several ‗reflection nebula‘ ― 

immensely distant galaxy-clusters that are thought to be regions of active star-formation. Consideration 

of the details of the closure of relationships in the dihydrogen molecule is essential to account for the 

observed colors of these nebulae.  Stability of any chemical species corresponds to a closure of 

relationships that defines a minimum of potential energy in for a specific pattern of connectivity of 

elemental centers. The details of each such potential well determine how each system interacts with 

other systems, and so specifies the properties (in Pierce‘s pragmatic sense) of the total coherence.  

The central and essential parts of chemistry have to do with turning less-valuable materials into 

more-valuable items ― making cheap stuff into expensive stuff. Every chemical change involves 

decrease in ‗chemical potential‘ (free energy). Chemical reaction corresponds to transition between 

stable states – change from one potential well to another. Chemical reactions correspond to production 

of new closures ― every chemical process is ‗a becoming.‘ (Earley 2004) Transition from reactant to 

product potential wells necessarily involves passage through intermediate configurations that 

correspond to higher potential energy. Slower rates of chemical reaction involve traversing 

configurations corresponding to ‗barriers‘ of higher potential energy between reactant and product 

potential wells. 9 

                                           

7  For this reason the middle curve in Figure 1 does not correspond, properly speaking, to a state. The 

‗triplet state‘ designation is used ‗by courtesy.‘ 

8  Transition from a state associated with the lower electronic curve in Figure 2 to a state associated with 

the upper curve would involve a dihydrogen molecule absorbing a photon of appropriate energy. Once in 

the upper well (with a longer distance between the elemental centers) vibrations and rotation could 

occur. Sooner or later the molecule would emit a photon and move to one of the states associated  the 

lower curve, or the molecule wouild split up into free atoms. Transitions between molecular energy states  

are subject to a restriction chemists know as ‗the Franck-Condon principle‘: no nunclear motions occur 

during state-to-state transitions. Notice that in the figure lines indicting transitions are all vertical. This 

restriction applies because nuclei are relatively heavy and therefore move vastly more slowly than nearly 

weightless electrons.  In this consideration the parts of the dihydrogen molecule are taken as two protons 

and two electrons of opposite spin. Even though the formula of dihydrogen is H2, that molecule does not 

‗consist of‘ two hydrogen atoms, Striclty speaking there are no atoms ‗contained in‘ dihydrogen or any 

other molecule. (Most philosophers appear to be misinformed on this elementrary chemical concept.) 

9  For instance, change from the stable cis-conformation of 1,2 dichloroethane to the equally stable trans -

configuration encounters only a small barrier: the corresponding reactions of 1,2 dichloroethylene 
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Closure Henri Poincaré  

Discussions of composite objects generally assume (implicitly or explicitly) that properties of 

composites depend only (‗supervene‘) on the properties of components. That is, the properties of the 

lowest (‗ultimate mereological‘) level determine all properties. (E.g. Armstrong 2010, pp 29 ff.) 

Characteristics of dilute gases can sometimes be inferred from information regarding component 

molecules – based on the approximation that each molecule acts fully independently. However, when 

gases are cooled so that conditions come closer to those of the gas-liquid transition, correlations of 

molecular motion develop ― first over short ranges, then over longer and longer distances. The result 

is that motions of individual molecules are no longer independent but rather become more or less 

interrelated.  

Similarly, the simple model that chemical reactions occur by ‗elementary steps‘ that all involve 

‗instantaneous‘ collisions of pairs of molecules is usually an oversimplification. Frequently, ‗sticky 

collisions‘ produce ‗resonances‘ – more or less persistent aggregates. These also give rise to 

correlations among molecules. For example of resonances in a simple reaction, the reaction between a 

beam of F atoms and a second beam of HD molecules shows nonlinearities in the energy versus 

reaction-rate (‗cross-section‘) profile that are interpreted as arising from the presence of three 

rotational states of a tri-nuclear resonance transiently formed in this exceedingly simple reaction. 

(Dong 2010, Althorpe 2010)  

In both phase-change and chemical-reaction cases, as correlation increases applications of 

‗fundamental‘ theory are unwieldy, impracticable and under certain conditions (at  ‗singularities‘ ) 

become impossible in principle as computed quantities rapidly go to infinity. While dealing with 

problems of physical dynamics in the late nineteenth century, Henri Poincaré encountered similar 

situations in which standard methods failed due to singularities. In such cases, near singularities he 

replaced variables with divergent series (‗asymptotic expansions‘). This technique (Berry 1999) often 

led to discontinuous change (at the singularity) in the equations that described the situation. At and 

beyond the singularity, Poincaré found that relatively simple expressions applied which emphasized 

contextually important features and suppressed irrelevant detail.  When such asymptotic expansions 

become necessary, plots of ‗reduced‘ (unit-less) variables typically show lack of dependence on 

properties of individual substances. For instance,10 at various reduced temperatures (T/Tc), 

compression factors of many gases have the same dependence on reduced pressure (P/Pc) 

independent of their quite diverse individual properties.  (Moran 1995) That is to say, properties other 

than those that influence critical behavior are irrelevant to deviations of gases from ideal-gas behavior. 

                                                                                                                                                  

encounter a larger barrier and are much slower. Properties such as the melting temperature of a solid or 

the boiling temperature of a liquid can be considered as chemical properties, referring to especially 

simple chemical reactions involving interaction of molecules of only a single type. 

10  At ‗the critical point‘ [critical temperature, Tc; critical pressure, Pc] distinction between liquid and gas 

phase disappears. Compression factor, Z = PVm /RT, measures deviation from ideal-gas behavior. (Vm = 

molar volume.) 
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 The simpler description that asymptotic expansion yields at and after singularities has different 

semantics (another ‗topology‘) than the ‗fundamental-level‘ description that applied before the 

singularity. Properties of highly correlated systems do not ‗supervene on‘ properties of components 

system but require quite new and topologically incommensurable descriptions. (Batterman 2009, 2005, 

2002, 1998; Bishop 2006, 2005; Primas 1998, 2000). It can be argued (Laughlin 2005) that many 

aspects of ‗fundamental‘ physics result from such cooperative interactions.  

Cooperative interactions in condensed phases sometimes yield spectacular results. At room 

temperature, cesium chloride crystals can exist in two different spatial arrangements ― one with six 

positive ions around each negative ion and one with eight. One structure is more stable at lower 

temperatures, the other form is more stable at higher temperatures ― but conversion between the two 

structures does not occur readily. At a particular temperature a given crystal of this salt might have 

either internal structure depending on its prior history. Transition from the unstable to the stable form 

of cesium chloride does not occur smoothly and gradually but rather happens abruptly ― with an 

audible click usually accompanied by fragmentation of the crystal. This remarkable behavior (a 

Martinsitic  transition) is interpreted as occurring occurs by coordinated and simultaneous small 

motions of immense numbers of ionic centers. (Chakabarti 1979, Earley 2003c)  

When cooperative interaction of units becomes dominant situations adequately described by 

fundamental theories change into to situations that require approaches that use quite different sets of 

entities and relationships (other ‗topologies‘). This transition is also a kind of closure – a type of 

interaction that brings about epistemological and ontological change. (Primas 1998)  We call this 

circumstance ‗Closure Henri Poincaré.‘  Occurrence of such closure vitiates assumptions that properties 

of chemical entities can be adequately understood on the basis of descriptions based on properties of 

component parts, as Humean presuppositions imply. This situation is well described by Hans Primas.11  

The task of higher level theory is not to approximate the fundamental theory but to 

represent new patterns of reality… According to quantum theory the material world is a 

whole, a whole which is not made of independently existing parts. … Quarks, photons, 

electrons, atoms or molecules are … contextual objects without an independent 

existence. (Primas 1998) 

Closure Jacques Cauvin  

 Investigation of the properties of networks of processes (such as interconnected chemical 

reactions) is one of the most active fields of twenty-first century science. Surprisingly, in some 

biological situations, critical reagents involved in networks of reactions somehow remain at quite 

constant concentrations for long periods. A remarkable theorem as to how this can come about was 

published in spring 2010. (Shinar and Feinberg 2010) To understand this achievement, we need some 

concepts that are illustrated with reference to Figure 3.  

                                           

11  Prof. Primas was trained as a chemical laboratory technician and functioned as such before establishing 

himself as a leading theoretical chemist. (Atmanspacher 1999) 
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 Nodes are distinct combinations of chemical species that stand at heads and tails of reaction 

arrows. (Each node appears only once in a standard network diagram.) In the figure there are eight 

nodes: 2A, B, C, B+C, D, 2B, A+E, and F. 

 Sets of mutually-linked nodes are known as linkage classes. There are two linkage-classes in 

the network shown, as indicated by the solid lines on the right half of Figure 3. 

 A group of nodes constitute a strong linkage class if there is a path of directed arrows from one 

node to each of the others and also from each of the others to that one (dashed lines in the figure). 

 A strong linkage class is terminal if none if its nodes involve an arrow leading to another linkage 

class.  In the figure, both C and the class [2B, A+E, F] are terminal classes. There are two non-terminal 

classes, each of which has two nodes.  

 The rank of a network is the maximum number of independent reactions the network contains.  

Only five of the ten reactions shown in Figure 3 qualify as being independent. 

 The deficiency of a network is an integer index obtained by subtracting both the number of 

linkage classes and the rank from the number of nodes.  For the network of Figure 3 the deficiency is 

one, because there are eight nodes, two linkage classes, and the network has a rank of  five.  

 A system is said to have ‗absolute concentration robustness in species S‘ if the system admits a 

positive steady state and if the concentration of S is the same in all positive steady states.  

The theorem Shinar and Feinberg established by a priori reasoning is:  

Consider a mass-action system that admits a positive steady state and suppose that the 

deficiency of the underlying reaction network is one. If, in the network, there are two 

non-terminal nodes that differ only in species S, then the system has 

absolute concentration-robustness in S.  

In the network shown in Figure 3 there are two non-terminal nodes (B+C and B) that differ only in 

species C. The theorem therefore requires that the network shown exhibits robustness in the 

concentration of species C. That is, over a wide range of the other concentrations involved, the 

concentration of C will have the same value. This theorem correctly rationalizes approximate 

concentration robustness that has been experimentally observed in several biochemical networks. 

Presence of concentration robustness in a network favors incorporation of that network as a reliable 

component part of larger dynamic systems.  

In some biochemical systems where the concentration-robustness theorem applies, the key species 

is a single bifunctional enzyme that acts as a catalyst for two quite-different reactions. Presence of 

such a bifunctional catalyst in a reaction network is a good indication that the network may display 

concentration robustness. Remarkably, a naturally-occurring example of such a bifunctional catalytic 

species has recently been found in ancient organisms. Say and Fuchs (2010) report discovery of a 

bifunctional glycogenic enzyme, ‗fructose 1,6-bisphosphate aldolase /phosphatase.‘  This substance 

catalyzes the combination of two small molecules to produce the six-carbon sugar fructose 1,6-

biphosphate. Simultaneously the same molecule also catalyzes removal of one phosphate group from 

that rather unstable initial product to yield a the much more stable fructose monophosphate. (Please 

see Figure 4.) This new type of enzyme has been found to be contained in ―virtually all archaeal 

groups‖ ―- including many ancient biological species that have high-temperature 
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‗chemoautolithotrophic‘  metabolism. These are critters of exceedingly ancient lineage that live at 

temperatures close to or above the boiling point of water and fulfill their food requirements by 

chemically degrading rocks.  

Current theories of the origin of life at sites of undersea volcanic activity (e.g., Smith and Morowitz 

2005, Earley 1998a) postulate that, at or just prior to the origin of life, previously-existing endothermic 

reaction-networks that  produce six-carbon sugars from three-carbon precursors (using geologic energy 

for glycogenesis) reversed their direction of operation  to yield exothermic reaction-networks that use  

six-carbon sugars to produce three-carbon products (in energy-releasing glycolysis) and thereby made 

biological activity possible. This quite novel bifunctional catalyst was discovered in the most ancient 

currently existing organisms, has characteristics conducive to concentration robustness, and  brings 

about an essential step in the postulated glycogenetic mechanism.  Taken together these facts have 

been interpreted to suggest that this enzyme  may be a ‗dynamic fossil‘ that preserves information 

relevant to the dawn of proto-biology. (Gunawardena 2010) This specific suggestion is speculation.  

What is not speculation is that closure of dynamic networks of chemical processes, what we here call 

Closure Jacques Cauvin, did play a central role in the origin of life, and also in the beginnings of each 

of the myriad more-complex dynamic coherences that now characterize our world. 

In The Birth of the Gods and the Origins of Agriculture  (1994, 2000) anthropologist Jacques 

Cauvin explored how prior changes in concepts and social practices made possible  initial  development 

of agriculture, and thereby grounded the flourishing of subsequent human cultures. It is on this basis 

that we designate as ‗Closure Jacques Cauvin‘ any mode of interrelation of processes that makes 

further network formation possible. The concentration-robustness theorem quoted above is one 

example of such closure, the discovery of the ancient bifunctional enzyme to which that theorem 

applies is a second example. Elsewhere, I consider such systems as examples of ‗Process Structural 

Realism‘ (Earley forthcoming, 2008a, 2008b, 2006, 2003b, 2003d).  

Cauvin‘s insight has been developed by recent studies based on evolutionary network theory 

(Atran 2010) that have clarified how human agents have themselves been shaped by relational 

networks ― at the same time are each of those networks has been created by the choices of such 

agents.  As Marjorie Grene (1978) observed: ―We do not just have rationality or language or symbol 

systems as our portable property. We come to ourselves within symbol systems. They have us as much 

as we have them.‖  One perhaps surprising finding of Atran‘s recent (2010) research is the conclusion 

that transmission of a conceptual system is greatly enhanced rather than impeded if that scheme of 

thought involves some counterintuitive (i.e. nearly incredible) concepts. Such ‗counterintuitive‘ 

propositions clearly have played essential roles in major advances in human evolution. Perhaps the 

widespread acceptance of the counterintuitive doctrine that ‗objects are bundles of properties‘ can be 

understood on this basis.  Human individuals do develop their identities within social and technological 

networks, but the actions of those persons (along with other factors) constitute those networks. Such 

complex closures are dealt with in Rom Harré‘s Positioning Theory (Harré 1999), Isabelle Stengers‘ 

Cosmopolitics (Stengers 2010), and Bruno Latour‘s Actor Network Theory (2010, 2005).  
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Conclusion 

Each of the three types of closure described above corresponds to a transition in topology of 

description. Louis de Broglie clarified (for his time) how coherence of electrons and protons constitute 

atoms – basic units of an ‗ontology.‘  Henri Poincaré demonstrated how new topologies (ontologies) 

result from cooperative action of molecules. Jacques Cauvin showed how the invention or discovery of 

human conceptual systems enabled (‗afforded‘) yet further evolutionary advance. Each of these three 

sorts of closure corresponds to a type of major transition in the history of the world, and make 

additional kinds of human understanding possible. Undoubtedly other modes of closure exit: the 

important point is that causal functions (‗properties‘) of items depend, in every case, on underlying 

defining closure of relationships. As Closure de Broglie provides the basis for intra-molecular processes 

and super-molecular coherences, and Closure Poincare grounds the ontological change brought about 

by highly cooperative inter-molecular interaction, so Closure Cauvin make possible evolution of still 

more-complex dynamic coherences of processes – including ourselves and our cultures. All of these can 

be regarded as examples of the ‗affordances‘ that Rom Harré discusses elsewhere in this volume. The 

characteristics of the objects that philosophers usually discuss (such as roses, statues, tennis balls) 

depend on the chemical closures that involve the components of those entities, and also on closures 

(e.g. decisions) of other sorts (involving plant breeders and gardeners, sculptors and their patrons, and 

committees of the US Lawn Tennis Association). 

Much current philosophy of science seems to be subject Putnam‘s objection:  ―Once we assume 

that there is, somehow fixed in advance, a single 'real,' a single 'literal' sense of 'exist' – and, by the 

way, a single 'literal' sense of identity – one which is cast in marble and cannot be either contracted or 

expanded without defiling the statue of the god, we are already wandering in Cloud Cuckoo Land.‖ 

(Putnam 2004, p.84-85). Taking such attacks seriously supports the conclusion of Atmanspacher & 

Primas (2005): ―… States and properties of a system which belong to an epistemic description in a 

particular domain can be considered as belonging to an ontologic description from the perspective of 

another domain.‖ This move would be quite consistent with Rom Harre‘s science-related ‗policy realism‘ 

(e.g. Bhasskar 1990) and also with Michel Bitbol‘s (1998) contemporary version of transcendental 

epistemology: ‖objects are no longer regarded as constituents of our experience but rather as (i) 

potential aims for our research and resolution and (ii) elements in our strategy for anticipating the 

outcomes of our activities.‖  

In addition to providing excellent opportunity for technological participation in the development of 

future societies, chemistry ―The Central Science‖ could contribute significantly to increase in philosophic 

understanding, hopefully to help humanize evolving and dynamic structures ― technological, 

conceptual, and social.  
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Figure 1.  Calculated potential-energy curves for the dihydrogen molecule. (Kolos 1965) 
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Figure 2.  Electronic, vibrational, and rotational energy levels for the dihydrogen molecule.  

(After Kolos, 1965) 
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Figure 3.    A reaction network that exhibits absolute concentration robustness. From 

Shinar 2010. 
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Figure 4.      Action of bifunctional fructose 1,6-bisphosphate aldolose /phosphatase. From Say 2010. 
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