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Abstract

Berry’s phase carries physical information coded as topological and geometrical objects that
can be directly verified in measurements. In some cases the situation can be reduced to an
irrational phase shift, that can be usually obtained by an iterative process. Take the Berry
phase as the geometric object and let the iterative process be a non-linear phase-locked
feedback mechanism defined by spin-orbit coupling and precession, a coupling of fast and
slow rotating vectors. For spin-orbit coupling the realization is easy and fast generating
irrational and rational numbers: generalized fine structure constants. As a result, this paper
provides for additional evidence, that the Sommerfeld fine structure constant « carries a
Berry phase component 27(1 — 137«).
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Due to a lack of knowledge, physics theories tend to define and postulated ‘second level’
constructions and abstractions that cannot directly be observed. This can lead to an inflation
of redundant parameters and dimensions. It is the success of math to find short-cuts or ‘first
level’ topological and geometrical constructions that can be directly verified and involve fewer
dimensions, Berry’s phase is a good example. Generally, phase factors or phases representing the
‘holonomy’ provide for important boundary conditions while reducing the degree of redundancy
in variables, including the phase shifts generated by Berry’s connection [1]. The non-adiabatic
generalization of [2] defines a geometric phase factor for any cyclic evolution of a quantum
system, for an introduction see i.e. [3]. This is one of the reasons why phases and gauge theories
are not unimportant in quantum mechanics, despite of the central role of amplitude densities.
The fine structure coupling in atomic and molecular dimensions is a candidate for a geometric
phase shift:

e it involves fast/slow vector couplings,
e on round trips on a curved surface,
e with exact frequency and phase relationships.

If a geometric phase component generates spin precession, it can couple back to the dynami-
cal phase evolution generating an non-linear feedback loop. In the previous paper [4] such a
quantum feedback mechanism has been defined including generalized fine structure constants.
The resonances of (atomic) clocks usually depend on phase-locked loops. Controlled by external
fields, the geometric phase has a passive role, but in a phase-locked feedback loop the geometric
phase has a double role: it is generated on the closed path and controls the closed path length
and dynamic phase. Consequently, it is very interesting to consider round trips of vector signals
additionally constrained by the precession dynamics induced by an emerging geometric phase.

Round trips

Based on phase-locked round trips of vector signals, a non-linear feedback situation controlled
by Berry’s phase can be modelled that is compatible with any kind of spin-rotation coupling
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Figure 1: The fine structure M-resonance: all green arrow line segments have the length of the precession
cone vertex angle 27 cos(6)/M = 20 = MyApq(T), drawn for M =5 and M, = 1. The two outer circles
show the additional contribution of Berry’s phase, see the short black arrows with length Aggy(T').

(even gravitomagnetic). Consider round trips of vector signals on spherical paths, where loops
induce a geometric phase component. The ‘parallel transported’ spin vector will come back after
every T-periodic loop with a directional change ¢,(T) equal to the curvature enclosed by the
path C. The Berry phase ¢4(7") and the total phase ¢(7T') are proportional to spin J. In the
standard case of precession on the sphere

o(T) =2nd, ¢y(T)=2nJ(1—cosB), ¢q(T)=2mJcosb, (1)

where 6 is the vertex cone semiangle and ¢4(7") the dynamical phase.

Berry’s phase appears if the fast dynamics (spin sub-loops) affects the slow dynamics (orbital
loop) and vice versa. A ‘rolling cone’ representing a vector state or signal is probably the simplest
model of spin-orbit coupling. Rotated once, the cone will change its orbital orientation by a
special angle 27/M, rotated M-times in the quantum case, the cone will return to the initial
position with integral M (providing for single-valuedness). Visualizing Thomas precession and
aberration (angle 6 obtained by infinitesimal Lorentz boosts) [5] already pointed out, that the
geometric phase can be found in classical mechanics with a gyroscope or point-like compass as
a solid-body turn during conical movement [6]. The correspondent cone geometry is shown in
fig.2.

Fine structure iteration

The question is, what balances both parts of the total phase? The frequency ratio in a phase-
locked situation follows the requirement of single-valuedness and provides for an integral number
of M spinning periods on one dynamical phase round trip period (slightly modified by preces-
sion). Starting with this model, M can divide the total phase range (slow orbit) into M sub-loop
intervals (fast spin) Ap(T) = Apa(T) + Apq(T') where

0a(T) = MApy(T), @4(T) =MApy(T), M ==+1,42,.... (2)



Figure 2: The rolling cone M-resonance: the base of the cone has radius §/7 (small circles), the side
length is M0/m = cos(f). The two green arrow line segments have the length of the precession cone
vertex angle and circumference of the cone base 2w cos(8)/M = 20 = M Apq(T), drawn for M =5 and
M, = 1. The Berry phase is given by the short black arrow with length Ay, (T').

The effect of precession can be a phase modulation of the orbital path length that could couple
to the number of sub-loops by modulating the ‘rolling cone path’. Intuitively it should be clear
how precession could directly "modulate” the path length and phase on a round trip. In any
case it is a non-linear feedback situation where the precession angle will increase with increasing
curvature enclosed by the path. The rolling cone resonance, see figs!ll and 2, provides for the
feedback relation

20 = MyApa(T), (3)

an orbital resonance condition regarding the dynamical phase and the precession phase. If the
cone rotates once, both, the radial and orbital waves will couple back in-phase because of the
integral wavenumber on the radial and orbital paths. Now it is possible to find with eq. (1),
eq.(2), and eq.(3) the optimum 6 for a given M and J, where

M6 = JMgymcos®. (4)
As a test for J = My, =1 and M > 0, eq.(4) can be solved by iteration
7 cos b;
Oit1 = TZ (5)

After a few steps the algorithm converges (no problem for JM, < M).

Frequencies

Let wys be the orbital evolution of the dynamical phase on a circular geometry. The spin-
rotation coupling will act on the spinning particle with mass-energy ' = hw via precession
energy I, = &,. The relative dynamical coupling strengths can be defined by the ratio

. JAQDd(T) . JwM
o(T) w
a generalized fine structure constant, where the coupling is proportional to the evolution of the
dynamical part Apy(T)/e(T) and to spin J. With eq.(2) in eq.(6)
wg(T) _ Ma

=1
o2nJ J (7)

(M) (6)




Table 1:
Convergent fine structure (re)generation constants o for Z, = 1 and variable M > 2. The third row
shows N = |Apq(T)/Dpy(T)| or [N4| (bottom), known as winding number on helical paths.

M J/a N

3 4.13669 2.63924
4 4.96178 4.15896
5 5.82662 6.04873
6 6.72097 8.32214
7 7.6371 10.98727
137 137.03600941164 3804.560912
137 137.03600998817 3804.57
137 137.03600052556 3805.5
137 137.03599106791 3806.5'
137 137.03598161523 3807.5!

! The next hypocycloidal or epicycloidal resonances for M = 137 (see fig/4) instead of free running ratio
N between dynamical and geometric phase.

the dynamical part of eq.(7) in eq.(I) provides for
Mo = Jcos(0). (8)

Comparing eq.(4) with eq.(8)) the precession cone vertex angle 26 of eq.(1) equals the dynamical
phase of the spin-orbit interaction part in eq.(2) with

0 = mM,0. (9)

The two possible signs can be combined to M /M, > 0

Mo = Jcos (nMgya) , (10)

and for M /M, < 0
Mo = Jcos(m — mMya) . (11)
Results for o with variable M for M, = J = 1 are shown in table 1, visualized inclusive

measurements in fig/3, and simulated with a Java applet in [7].

Topology

As shown by Berry, a geometric phase is produced in the field of a magnetic monopole [1].
Magnetic monopoles are topological in nature and are represented geometrically by non-trivial
bundles. For electrodynamics, the gauge group is U(1) which has the topology of a circle, on
which the homotopy classes of closed curves are labelled by their winding or loop numbers,
and where the magnetic charge is quantized taking integral values [§]. In electromagnetism the
charges are multiples of a fundamental charge M, so that the wave-function transforms as

P — eFMAy, (12)
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Figure 3: M = 137: Regarding the most accurate measurements of the last years there is almost no
overlap between the three different setups given by neutron (free running «y), electronic (epicycloidal
a_), and protonic (hypocycloidal ay) couplings. Dashed are combined values of different measurements,
see [4, [17].

the unit charge corresponds to the phase sub-interval [0,27/M]. The geometrical phase in
quantum mechanics is ultimately related to the construction of an Abelian monopole since this
is the only topologically non trivial object which arises when the structure group is U(1)[9]. For
appropriately chosen base space magnetic monopoles on SU(2)/U(1) = S2, the resulting fiber
bundle has a non-trivial topology with non-zero Chern number. It is the total flux produced
by the bundle curvature quantized to values M/2 with Hopf invariant M and stereographic
projection on S2. The construction of nonsingular vector potentials for a monopole in accordance
with Dirac [8], Wu and Yang [10] is shown in fig/d/for M = 5. For the two cases of opposite parity
(epicycloidal and hypocycloidal) the Berry phase is evolving with or against the dynamic phase.
The gradient of the geometric phase (the gauge potential of the monopole) is given by the radial
difference in epicycloids-hypocycloid phase evolution. Dirac [8] showed that the existence of
magnetic monopoles can explain the quantization of electric charge and that a monopole must
carry a magnetic charge which is an integral multiple of 68.5. According to these monopole
properties and the U(1) relation to the Berry phase for J = %, M = 137 is the topological
candidate to generate the quantum monopole charges of magnetism and electrostatics. Solving
eq.(10) or eq.(11)) by iteration provides for the balance of dynamical and geometric phase given by
a subject to a given number of sub-loops M, coupling loops M, sub-loop spin J. The coupling
is polar since a positive and negative M /M, corresponds to the repulsive and attractive case,
respectively, in the negative case the coupling phase interval and precession of eq.(9) is negative
with respect to the total phase in eq.(2).

Hypocycloidal and Epicycloidal

In addition to the coupling of dynamical phase and conic precession a radial/orbital resonance
(single-valuedness) of geometric phase and precession angle could be induced, see fig/4. This
situation generates two possibilities: a counter-rotating hypocycloidal system (4) generates more
dynamical sub-loops on the total loop than in the co-rotating epicycloidal case (—). Regarding
U(1) sub-loops there are two cases characterizing the effects of different sub-loop parity in
hypocycloidal and epicycloidal dynamics in terms of coupling constants «— and a., orbital
radii R— and R, and rolling radii p— and p, respectively, for a given small sub-loop radius .



Figure 4: The winding number N-resonance: The spin % construction of nonsingular vector potentials
for a monopole with charge M =5, N_ = N, = 7.5 is given by the connection of epicycloids (outer) and
hypocycloids (inner) patches in accordance with Dirac [8], Wu and Yang [10].

Generally

Ry =Nirq, p+=RiFre, o= (13)

M

where the equations for hypocycloidal (+) and epicycloidal (—) paths in the (z,y)-plane with
polar angle ¢ are given by

T =1q [Nx cos(¢) £ sin(Nig)]
Yy =14 [Ny sin(¢) — cos(N1o)]. (14)

The two cases of adjusting epicycloids to hypocycloids (the second case is visualized in figld)) are
given by:

e Ny =Ny, R_ = Ry = R, the small loops ‘roll’ at the same radius orbital loop radius but
in or on different rings,

e Ny =Nyg=+1, p_ = py = p, the small loops ‘roll’ at different orbital loop radii but in or
on the same ring.

The sub-loop rolling or spinning frequency obtained from the ‘rolling’ velocity vy is given by
wiRy =0y, (15)
where a measurement in the laboratory system is characterized by the invariant ratio

W+R+ _ w_R_ — ¢, (16)
a4 o

given by the light velocity ¢ = vi/ay. Since pi is stationary with respect to the laboratory,
comparing pi in different cases in terms of N requires no relativistic correction. Consequently,
for half spin charges interacting in a hydrogen-type ground state with N = 3805.5, the hypocy-
cloidal fine structure constant is decreased in the adjustment (where N = 3806.5 — 3805.5) by
~ 3805.572 ~ 6.9 - 10~%. This shift should appear in fine structure measurements and even-
tually also in ion mass measurements, since both types shows a different winding number for



the same wavelength and radius. Over the years there was a discussion about the value of the
fine structure constant. Different values measured with comparable accuracy disagree in differ-
ent directions by several standard deviations. The additional quantum condition selecting the
hypocycloid or epicycloid character could force extra shifts ~ IV 2 for M = 137, see table 1
and fig/3. And indeed, such shifts can be identified by comparing measurements with neutrons,
proton or positively charged ions, or electrons [4]. Regarding the a-powers produced with N?
2
o’ ~ 2N’ (17)

the Berry contribution with coupling change A«/a proportional to 1/N? has lowest order a*-

terms. It should be interesting to note, that hyperfine, fine structure, and Lamb shift are usually
assigned to the same a-power dependency. It is not clear why geometric phase contributions are
missing in almost all perturbative QED evaluations of the atomic spectra.

Hypocycloids and epicycloids can be conformally mapped to other paths. Circles and the
tangencies are preserved by the fractional-linear transformations of the Riemann sphere. En-
tering geometer’s world, projective geometry enables to map the epicycloids to hypocycloid and
vice versa the signal using conformal transformations, i.e. in the more simpler case by inversions
at the sphere combined with translations. In the complex plane Mobius transforms are confor-
mal transformation that always map circles on circles (especially rolling circles!), where a circle
is either a usual circle or a straight line, i.e., a circle with infinite radius. In the case of central
potentials the transition to polar coordinates and vice versa can be very effectively handled by
a conformal mappings involving the complex transformations log(z) and exp(z).

Gravitomagnetic coupling

If precession as a frequency ratio is related to a geometric phase

YW 2 J

and the coupling part to a dynamical phase according to eq.(7) and eq.(6)), the general expression
for spin-rotation coupling observed in the laboratory frame (relativistic correction «y) can be
assumed to be

“p g M (19)
Yw w
or
E, =~(E — Mhwy), (20)

a generalized form that appears also in gravitomagnetic spin-orbit interaction (Lense-Thirring
effect) [11, 12], where an integer M covers scalar and vector fields. Note, that orbital precession
of the geometrical phase provides for a change in the frequency ratio

w 1 @a(T) + ¢y(T)

= = . 21
Mwy  cosf ea(T) (21)

Usually, the gravitomagnetic effect can be hardly observed because of its tiny magnitude (tests
with orbiting gyroscopes are on the way, see gravity probe B news [13]). But the tiny magnitude
of the gravitomagnetic field in a classical measurement does not necessarily mean, that the mag-
nitude of the emerging geometric phase and related quantum mass—energy currents in feedback
loops must be tiny. Recently, [14] discussed coupling gravitomagnetism-spin and Berry’s phase
and pointed out, that the geometric phase changes should depend exclusively upon the solid



angle of a field, and not on the strength of the field. In other words, coupling affects the time
and length scale but not the phase. In a feedback loop controlled by phase relationships the
mass-energy current could increase to a level that is only limited by damping and (multipole)
radiation effects, probably a level characterized by electromagnetism. In this nonlinear context
it should be mentioned, that with increasing My, eq.(10) and eq.(11) characterize a complex
one-dimensional system that can show chaotic dynamics and quasiperiodicity [15]. The first
bifurcation occur near M, = 114, the next bifurcations occur periodically. Since the production
cross section of a super-heavy nucleus was found to be rapidly decreasing with the atomic num-
ber near 114 [16], it was concluded that it would be very difficult to reach still heavier elements.
For a J = 1 vector coupling with charge Z = JM, = 114 chaotic behavior could to some extend
be responsible for the instability of the nucleus [4].

Summary and conclusion

The probably most prominent fundamental constant can be within measurement uncertainty re-
produced by iterative phase relationships that obey the single-valuedness requirement. Berry’s
phase can evolve against or with the dynamical phase depending on the sign of curvature
(charge). aq is based on a plausible connection between the geometric and dynamical phase based
on single-valuedness, the winding number enables to construct a magnetic monopole magnetic
monopole component to quantize charge, where positive and negative curvatures can be related
to the sign in Berry’s phase and requires to introduce a; and a_ based on the hypocycloidal
and epicycloidal character, respectively. Supported by highly rated measurements [17] the epicy-
cloidal a— ~ 1/137.03600052556 with N_ = 3805.5 fits within a view ppb to the indirect QED
electron g — 2 determination, the ‘free’ neutron measurements with o ~ 1/137.03600941164 to
N =~ 3804.56, and the protonic measurements to N3 = 3806.5 with ay ~ 1/137.03599106791.
Additional details can be found in [4].
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