STRANGE COUPLINGS AND SPACE-TIME STRUCTURE
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General relativity is commonly thought to imply the existence of a unique metric
structure for space-time. A simple example is presented of a general relativistic
theory with ambiguous metric structure. Brans-Dicke theory is then presented as
a further example of a space-time theory in which the metric structure is ambig-
uous. Other examples of theories with ambiguous metrical structure are men-
tioned. Finally, it is suggested that several new and interesting philosophical ques-
tions arise from the sorts of theories discussed.

In Robert Wald’s textbook, General Relativity, we find the following (1984, 72-73):

The entire content of general relativity may be summarized as follows: Space-
time is a manifold M on which there is defined a Lorentz metric g, The cur-
vature of g, is related to the matter distribution in spacetime by Einstein’s
equation

1
G,=R, — ERgnb = 8nT,,.

This neatly encapsulates the modern view of what is meant by “general relativity.”
It would seem to suggest that it makes sense, in general relativity, to talk about
the geometry of space-time. After all, space-time is a manifold equipped with a
metric, g, which tells us what the shape of space-time is. However, depending on
how matter couples to gravity, one may encounter situations in which there is
more than one geometrical object which could be counted as “the metric.” In this
paper, I would like to discuss some contexts in which the question, “What is the
metric?”’ may admit more than one reasonable answer.

1. Minimal and Nonminimal Coupling. General relativity admits a Lagrangian for-
mulation, and it is this formulation which is particularly useful for the examples I
will be discussing. Briefly, the Lagrangian formulation of a field theory involves
the construction of a Lagrangian density (or simply “Lagrangian™) L, and from
that an action S = [ L d*x, and utilizes the principle of least action to find the
equations of motion of the fields described in the Lagrangian.! For example, the
vacuum Einstein equation may be obtained from the Lagrangian

L, = /—gR )

+This paper has its genesis in a remark made by Chris Isham following Harvey Brown’s fasci-
nating talk at the Sigma Club philosophy of physics conference held at Cambridge University in
May, 1995. I would like to thank Chris for the idea and for enjoyable discussion thereof. Thanks
also to Arthur Fine, Luis Garay, Bill Harper, David Malament, Bob Wald, and to the audience at
my talk at the University of Western Ontario for helpful comments and questions.

iDepartment of Philosophy, Northwestern University, 1818 Hinmen Avenue, Evanston, IL
60208-1315.

'Fuller discussions of the Lagrangian formulation of general relativity may be found in Appendix
E of Wald 1984, Chapter 12 of Weinberg 1972, and Chapter 3 of Hawking & Ellis, 1973.
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(where g is the determinant of g,, and R is the scalar curvature). Varying the
resulting action with respect to the (inverse) metric g and setting the result equal
to zero (in accord with the principle of least action) yields

3§ 1

Sgab - Rab - ERgab = O’ (2)

which is the desired vacuum Einstein equation. The tensor G, = R, — ERgab is

known as the Einstein tensor. Since G, is a function of the metric g, we will
understand g, to be the metric associated with G,.

It is straightforward to incorporate matter into the Lagrangian formulation.
For example, let the Lagrangian for the matter (be it a scalar field, an electromag-
netic field, dust, or what have you) be L, Then the total Lagrangian (in units
where ¢ = 1) is simply

L = (6nG)'L; + L, 3)

where G is the gravitational coupling constant, which measures the amount of
space-time curvature induced by a given matter distribution. (Note that G, the
constant, is unrelated to G,,, the Einstein tensor.) Variation of the associated action
with respect to g, yields

1
R, ~ 5 Rgy = 8nGT,, @

where

-1 &S,
8nG/—g 3¢
Here we have recovered the Einstein equation from an action principle. So long
as the matter portion L,, of the total Lagrangian L is a scalar, the stress tensor of
the system is guaranteed to be locally conserved; i.e., V*T,, = 0 (see Weinberg
1972, 363). If it is locally conserved, one can sensibly regard it as representing the
total stress-energy-momentum of the system, and consequently regard the Einstein
equation as an equation correlating the spatio-temporal distribution of matter 7,

with the curvature of space-time G,,.
A simple instance of (3) is

L = [—gl(161G)~' R + gV, yV,y + g*V,4V,d]. (6)

This is a theory in which gravity is coupled to two massless scalar fields y and ¢.
We can abbreviate this as

L= (161G)"' L, + L, + Ly, )

or equivalently, since multiplication by a constant does not affect the equations
obtained by varying the action S = [ L d*x, as

L =L, + 167G(L, + Ly). 8)

Note that the leading term of both Ly and L is / —gg® (or 167‘5(;\/ —gg®), indi-
cating that the fields y and ¢ are “directly coupled” to the metric g,. The fact
that there are no other variables multiplying the metric means that the coupling is
“minimal;” minimal coupling Lagrangians are constructed by taking the flat space-
time Lagrangian and substituting the curved (Lorentz) metric g, for the flat (Min-

Ty &)
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kowski) metric.2 (If the meaning of “minimal coupling” is not yet obvious, it will
be once we discuss some non-minimal couplings below!)

In any case, variation of the action S = [ L d*x yields the Einstein equation (4)
above, with stress tensor

(s, o
= — ————\|7T— + . 9
’ 8nG/—g \3g” 3 @)

There is no ambiguity regarding the geometry of space-time; since the metric as-
sociated with the 1.h.s. of the Einstein equation is g, and since the equations of
motion (e.g., gV, V,y = 0) of the matter on the r.h.s. invoke the same metric, we
would likely say that, at least in this case, general relativity associates a unique
metric g, with space-time.

Now consider the Lagrangian

L = (16nG)"' Ly + L, + €L, (10)

where L,, by itself is a minimally coupled Lagrangian for some matter M of in-
terest. Here, the factor e>¢ describes a “conformal” coupling of matter to gravity
via the scalar field ¢; the matter is said to be “directly coupled” to the field (in
contrast to the “indirect coupling” to be discussed in the next section). “Conformal
coupling” means coupling to a term of the form Q?g*, where Q is some smooth
function. (2 is called a “conformal factor.””) As we shall see, this sort of coupling
suggests an alternative candidate for “‘the metric.” (Conformal couplings of a sim-
ilar sort are found in the low-energy effective Lagrangians of various string the-
ories. See for instance Garfinkle et al. 1991 or Horowitz 1990.)

One way of determining the metric would be to look at the equation obtained
by varying the action with respect to g*. Doing this gives an Einstein equation of
the standard form (4), where the total stress tensor 7,(¢b, M) is a function of both
& and M and satisfies the conservation equation V7 (b, M) = 0 (where V< is the
covariant derivative operator associated with the metric g,,). However, there is an
important sense in which one might regard g, = e*¢g,, as an equally good or
better candidate for “the metric,” since this is the metric to which the matter M is
coupled. If M is a pressureless dust, for example, the particles of the dust

will follow geodesics of g,,, not g,,. In general, we have V*T,,(M) = 0, but not
VeT (M) = 0, where T,,(M) is the stress tensor resulting from the variation of the
matter action S,, = [ L,, d*x with respect to g.> (See Horowitz 1990 for a dis-
cussion of this point.)

Thus there is an ambiguity with regard to the identification of the metric in the
theory represented by (10). Though the theory may be put into general relativistic
form, the metric associated with the Einstein tensor G,, in the Einstein equation
G,, = 8nGT,, is not the metric with respect to which the matter M propagates.
This speaks against the claim that g, is the “true” metric.

In short, the conformal coupling in the Lagrangian (10) gives rise to an ambi-
guity as to which geometrical object, g, or £,,, should properly be called the true
metric. Three positions suggest themselves with respect to this example:

1. The true metricis g, because that is the metric associated with the general
relativistic formulation of the theory, and because the scalar field ¢ is cou-
pled to that metric.

20f course, the Minkowski metric is a special case of a Lorentz metric.

*Note, however, that both ﬁ"T,,b(M) = 0 and V<T,,(M) = 0 hold if the matter field M is con-
formally invariant. Thus conformally invariant matter does not provide a ready way to distinguish
the “true” metric.
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2. The true metric is §,, because the matter M is directly coupled to that
metric, and the equations of motion for M are thus given by the conser-

vation equation V<T,,(M) = 0. In the case where M is a pressureless dust,
the dust particles will traverse geodesics of ;.

3. There is no “true” metric; both g, and g, encode relevant physical infor-
mation.

Rather than attempt to adjudicate between these positions, I will use the space
remaining to discuss a theory in which there is a scalar field which is directly
coupled to the metric but indirectly coupled to matter. This is the Brans-Dicke
theory of gravitation.

2. Brans-Dicke Theory. The Brans-Dicke theory was developed with an eye toward
incorporating various ideas of Berkeley and Mach on the nature of space and the
origin of inertia.* In particular, the theory is an attempt to realize the idea that
gravitational effects are generated by distant matter, rather than simply con-
strained by matter as in general relativity. In Brans-Dicke theory, the metric is
undefined for universes without matter.

Like general relativity, Brans-Dicke theory may be derived from a Lagrangian.
The Brans-Dicke Lagrangian is

L= /—gR - %gﬂbmvbzb + 161L,) (11)

(Brans & Dicke 1961) where o is the (dimensionless) Brans-Dicke coupling con-
stant, ¢ is a massless scalar field, and L,, is a normal, minimally coupled (to g,,)
Lagrangian for the matter. Here we have “indirect coupling” of the field ¢ to
matter; it is called ““indirect” because it interacts with matter only indirectly, by
shaping the geometry of the space-time in which the matter moves. However, ¢ is
directly coupled to gravity in the first term (¢.R). Comparing (11) with (7) and (8),
one can see that ¢! has replaced the gravitational coupling constant G, making
the effective gravitational coupling a dynamical variable in the theory.

Varying the action associated with the Brans-Dicke Lagrangian (11) with respect
to g* yields the Brans-Dicke equation

1
R, — EgabR = 80, 12)
where

L+ 2 VA — 3 aVOVH) + VT — 2,00)

PR b

and T, is the usual stress tensor resulting from the variation of the matter portion

eab =

4The original paper of Brans & Dicke (1961) contains a brief but interesting discussion of the
philosophical motivations behind their theory, as well as references to some of the relevant papers
of Berkeley, Mach, and others. This paper, along with other relevant papers, may be found Dicke
1964. (Thanks to Bill Harper for bringing this collection to my attention.)

It is of some interest to note that Dicke’s views on the incompatibility of textbook general
relativity and Machian ideas are not universally shared. See Ciufolini & Wheeler 1995, especially
chapter 7, for an exposition of the viewpoint that general relativity does indeed realize Mach’s
views.
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of the Lagrangian. (Note that the coefficient of 7, is 8nd~! in place of the typical
general relativistic 87G.) The wave equation for ¢,

8
20 + 3

Lo =VVd =

is obtained by varying the action with respect to ¢, and demonstrates how the
matter distribution (specifically, the trace of the stress tensor) serves as a source
for ¢.

Though the Lh.s. of (12) is the Einstein tensor associated with g, the r.h.s., 6,
is not the usual stress tensor, which is to say it is not simply the stress tensor 7,
associated with the matter M in the presence of g,. However, what remains is in
some sense an Einstein equation, since V0,, = 0 (from (12) and the contracted
Bianchi identity). What we have, then, is arguably a form of general relativity!

Now, Brans-Dicke theory is generally regarded as an alternative to general rel-
ativity, at least in the form given in (12). There are a couple of reasons for this.
One, the various “extra” terms in the tensor 0, (i.e., the terms other than 8nd~'7,,)
are regarded as representing an additional degree of freedom of the gravitational
field, whereas in general relativity it is typically felt that the gravitational field
should be fully described by the metric. Two, 0, does not satisfy the weak energy
condition (Magnano 1995), and many would impose this as an additional require-
ment on whatever appears on the r.h.s. of an Einstein equation. (See sec. 4.3 of
Hawking & Ellis 1973 for further discussion of energy conditions.) Let us just say,
then, that it is a matter of some debate as to whether (12) counts as an Einstein
equation.

In any case, as Dicke (1962) himself recognized, it is possible to rewrite the
Brans-Dicke Lagrangian (11) in terms of new variables so as to make it look like
a typical general relativistic Lagrangian, and to derive an Einstein equation from
the new Lagrangian. This is done by effecting a conformal transformation g, =
$g,, and varying the action with respect to the new metric. The form of the new
Lagrangian is

i = [-gR + 16nG(L, + L,), (13)

where L~W is the expected Lagrangian for a massless scalar field y = f{d) and L,,
is the matter Lagrangian, which is now a function of both M and vy, reflecting the
fact that in this formulation, the two are directly coupled. This coupling effectively
induces a position-dependent change in the rest masses of the matter M. (See Dicke
1964 for discussion of the effects of scalar-matter interaction.)

Variation of the action yields

‘knb - gabﬁ = 8nGO,, (14)

N —

where
énb = Tnb + /~\ab‘

T,, is the usual stress tensor of the matter M, reflecting the mass effect due to the

coupling with y. A, is the stress tensor associated with y. The tensor 8, is con-
served with respect to the connection associated with the new metric and it obeys
relevant energy conditions (Magnano and Sokolowski 1994). As a consequence it
is plausible to regard this change of variables as effecting a transformation of
Brans-Dicke theory into legitimate general relativistic form.
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In an important sense, the difference between Brans-Dicke theory in the normal
frame (sometimes known as the “Jordan frame”) and in the Einstein (general
relativistic) frame is simply non-existent, for the two theories are observationally
indistinguishable. In another sense, they appear to have different ontologies. Dicke
(1962) states that in the Jordan frame, “‘the gravitational field is described by a
metric tensor and a scalar, but . . . the equations of motion of matter in a given
field are identical with those of General Relativity, not being explicitly dependent
upon the scalar field” (1962, 2163). The indirect dependence of the motion of
matter on the scalar arises in the scalar’s role as the variable gravitational coupling
parameter. (This is also the point of view of Magnano 1995.) In the Einstein frame,
the transformed scalar field y = f{d) essentially appears as an additional matter
field which couples directly to the matter M, the effect of which is to alter the rest
masses of the particles of M. From this perspective, the fact that particles of M
do not follow geodesics of the Einstein metric §,, may be seen as resulting from
the interaction between M and ¢, analogous to the deviation from geodesic motion
of a charged particle in an electromagnetic field. In short, the Jordan frame for-
mulation of Brans-Dicke theory suggests a metric g,, to which matter is directly
coupled, with variable gravitational coupling parameter ¢!, whereas the Einstein
frame formulation suggests a different metric &, with matter M directly coupled
to a further matter field .

3. Other Theories. The metrical ambiguities discussed in this paper do not typically
arise in generic, textbook general relativity, resulting as they do from either non-
minimal coupling of matter to geometry or from (apparent) modifications of gen-
eral relativity itself. However, as noted, they do find their origin in actual, physi-
cally motivated models. Motivated by Berkeleyan and Machian ideas, Brans-Dicke
theory was developed for use in cosmology, while the sorts of non-minimal cou-
plings discussed in the earlier section have their roots in string theory.

Another recent application of non-standard matter couplings has been to the
problem of dark matter in cosmology. Generalizing the Brans-Dicke model, Dam-
our et al. (1990) conjecture that dark matter and visible matter are coupled differ-
ently to space-time. (See also Casas et al. 1992 and Garay & Garcia-Bellido 1993.)

The complications involved in coupling fermions to space-time have, in com-
bination with a preference for minimal coupling, given rise to various “metric-
affine” theories of gravity, which are not torsion-free. These may well be equivalent
to non-affine (torsion-free) theories with non-minimal coupling and a different
metric or connection. (See Hehl et al. 1976 for a useful review; see also Anandan
& Brown 1995, 355.)

In short, the examples offered here are not simply philosophical thought-exper-
iments, but streamlined versions of actual conjectures as to the proper physical
description of space-time and matter for our universe.

4. Philosophical Investigations. There are many interesting philosophical questions
raised by the two examples I have discussed. I have taken a somewhat conven-
tionalist attitude toward the issue of distinguishing the metric in the theories I have
considered. However, there is surely much room for interesting philosophical de-
bate. Among the questions one could ask are the following:

+ Are there reasonable criteria for distinguishing the metric in a space-time
theory? If so, under what circumstances (if not all) do these criteria guar-
antee uniqueness of the metric? If such criteria fail to distinguish a unique
metric, is there a fact of the matter nonetheless as to which metric is the true
one? Or is this a bad question?
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Is it possible (or desirable) to define “general relativity’”’ in a way which
would rule out the existence of theories which admit two metrically inequi-
valent “general relativistic” formulations?

Does the sort of ambiguity in metric structure evinced in these examples
speak against the idea that space-time is an ontologically distinct entity, that
it in some sense exists “absolutely’”? (See Earman 1989 and Friedman 1983
for discussion of this idea.)

Does the ambiguity raise problems for relationist views of space-time? This
may well be the case, since relationist views typically view space as a relation
between objects, and the objects in these theories are arguably as ambiguous
as the metric. (Again, see Earman 1989 and Friedman 1983.)

Is Brans-Dicke theory in the Jordan frame a different theory than in the
Einstein frame, or are they just two different interpretations or formulations
of the same theory? This question has a close cousin in the question of the
relation between the Copenhagen and Bohmian versions of quantum me-
chanics. (See Cushing et al. 1996 for a collection of recent papers and further
references on Bohmian mechanics.)

These are only a few of the areas of investigation suggested by the simple examples
discussed in this paper. No doubt there are many shapes future discussion might
take!
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