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Introduction
 

For the most part, attempts to answer the question of how scientific models can explain have centered on analyzing the concept of representation, since it is often assumed that the way that scientific models explain is by representing the world to some degree of accuracy. For instance, Margaret Morrison has argued that “models have explanatory power (because) they provide representations of the phenomena that enable us to understand why or how certain processes take place
” (218). Although many philosophers of science agree with Morrison that scientific representation generates explanations, here their agreement ends. What exactly representation amounts to has been the subject of much debate
. However, it is a generally recurring theme in these discussions that whatever representation is, it is its degree of accuracy that determines whether or not it will generate a scientific explanation
. 
In contrast to this representationalist view, Tarja Knuuttila has argued that models can provide scientific explanations independently of any representational power
 they might have. In “Modelling and Representing: An Artefactual Approach to Model-Based Representation,” she proposes instead that models generate scientific explanations when they are manipulated
. This view is what I will refer to as “non-representationalist
.”
My aim in this paper is to evaluate and defend this non-representationalist view. First, I will try to show how a model can explain irrespective of its representational power. Second, I will attempt to reconcile the account of models as epistemic tools with what actually occurs with the use of models in scientific practice. Many scientists claim that their models are representations, and that they explain by virtue of accurate representation; however, if the non-representationalist account is correct, then scientific models are capable of generating scientific explanations even if they do not accurately represent.
Representation

Traditional accounts of scientific representation can be divided into two groups: strong accounts and deflationary accounts
. Very generally, strong accounts say that there is a shared underlying structure between a model and a target system that grounds the representational relationship. This relationship is generally analyzed in terms of an isomorphism of some kind. 
One of the main issues with this structuralist
 view is that it doesn’t provide an adequate account of misrepresentation. Because misrepresentation, both intentional and accidental, is commonplace in science, any plausible theory of scientific representation must provide an adequate account of it. If the morphism between the model and the target system is taken to be an isomorphism between every substructure of both the target system and the model, as it often is, then there is no room for certain types of misrepresentation, such as the elimination of components of a target system from the model. In answer to this difficulty with their account, some structuralists have suggested that the morphism in question should be taken to be a partial isomorphism
  between the model and the target. However, even this interpretation misses the mark, as it is not adequate to explain all the forms of misrepresentation found with the use of models in science. For example, there are scientific models that do not have any substructures that are isomorphic to any structure in their target systems and yet they are still thought to represent those systems in some way. Therefore, for this and other reasons
, one might reject the strong account of scientific representation.
The second account of scientific representation is the “deflationary” or three-place account.
 This account argues that what representation is depends upon use. It has an advantage over the strong account in that it can explain misrepresentation (via the fallibility of the human user) but, as Knuuttila correctly points out, this comes at a price: 

When representation is grounded primarily on the specific goals and representing activity of humans as opposed to the properties of the representative vehicle and the target object, as a result the notion of representation is emptied of much of its explanatory content: If one opts for a pragmatist deflationary strategy, not much is established in claiming that models give us understanding because they represent their target objects (unpublished 2010, 17).
All that can be said on this kind of account is that models represent because the user intends them to represent. But this does not explain how models can explain. Therefore, the challenge that the non-representationalist confronts is to give an account of models that preserves their explanatory power, yet avoids the problem of misrepresentation.
Models as Epistemic Tools

Knuuttila gives a non-representationalist account of models as epistemic tools. On this view, models are concrete objects that we can learn from, by constructing and manipulating them, even if they do not accurately represent a target system. This view is able to avoid the problem of misrepresentation that is present on the strong account because it does not rely on accurate representation in the first place. The question, then, is whether or not this non-representationalist view can give an account of how models generate scientific explanations. I claim that in order for a model to generate a scientific explanation, it must generate an explanation that is specifically about a target system that is in the world. That is, it is a necessary condition for a scientific explanation that the explanation in question be about a target system in the world.
 In what follows, I will attempt to show how a model that does not accurately represent a target system in the world can still generate an explanation about that system, and in this way show how this kind of non-representationalist view can avoid certain objections. But first, in order to better understand the non-representationalist view, it is helpful to rephrase the main claim in the following way:
Models can generate scientific explanations without accurately representing anything in the natural world. 
This claim is plausible. But another way of reconstructing this view is not. We can see this more clearly if we rephrase the non-representationalist’s central claim a second time:

Models can generate scientific explanations, even if these explanations are not about any target system in the world. 
If, as I have suggested, a scientific explanation (in order to count as scientific) must be about a target system in the world
, then this second claim is false. Thus, the non-representationalist view should not be interpreted in this way. Instead, in order to defend this view, we must specify how models as epistemic tools can generate explanations that are specifically about a target system, even when the model itself does not accurately represent the target system. It is not enough to say that the construction and manipulation of models generates scientific explanations, because, as we have seen, while constructing and manipulating a model might teach us something, we are not justified in categorizing this explanation as specifically scientific if we do not allow that the model somehow generates an explanation that is about a target system. Thus in an attempt to defend the non-representationalist view, I will begin by exploring one way in which a model can generate a scientific explanation. 
My claim is that a model can generate scientific explanation via the manipulation of its false components. In other words, I am claiming that models need their inaccuracies in order to generate scientific explanations. Models are generally a combination of realistic and unrealistic components. “Realistic” components consist in such things as observational or experimental data, or well-confirmed theoretical input, while “unrealistic” components consist of things such as idealizations, approximations, or other structure that is, strictly speaking, known to be false. What I am proposing is that it is often the false or idealized parts of the model, rather than the realistic parts, that ultimately enable us to explain a fact about a target system, and thus that are responsible for generating scientific explanation
. That is, my claim is that we learn things about the actual world, through the manipulation of the false components within models. 
William Wimsatt in his article, “False Models as Means to Truer Theories” describes twelve ways in which false models can generate explanations about a target system
. In the example that follows, I will show how a specific astronomical model delivered scientific explanation in two of the ways that Wimsatt describes. 
 Several years ago I worked on a model of maser
 emission from comets that sought to explain why masing was only rarely detected in comets, even though the probability of masing occurring in comets was actually high. In order to do this, the model employed several simplifications. Thus, strictly speaking, it was a false model (as all models are).  But what I want to emphasize here is that it was the false parts of the model, and not the “realistic” parts that gave the model explanatory power. That is, the model generated a scientific explanation because it employed false components, not in spite of this fact. In our model we assumed that masing in comets does not happen uniformly, but rather in jets. We further assumed that:
Although many comets may have one or a few jets strong enough to provide an observable maser if seen along the jet, we will assume that a comet possesses just one such jet and estimate the probability of observing this jet along its axis in

a random search. It is difficult and not worthwhile to undertake a strict general analysis of the probabilities. Instead, we will investigate two asymptotic cases: (1) it is located near the equator and (2) the jet’s origin is located near a pole of the rotating nucleus (see diagrams below). We will assume that the probabilities for all the intermediate cases will be encompassed by the values found for the two asymptotic cases. For the jet to be observed along its axis, the axis of rotation should be oriented along the line of sight in the first case above and perpendicular to the line of sight in the second case. We will show that in both these asymptotic cases the probability of observing a masing jet along its axis in a random search is low. (Graham, et. al. 2469, emphasis added) [image: image1.emf] [image: image2.emf]
The above simplifications in the model of the comet made the model false. However, my proposal, and one which I think supports the non-representationalist account, is that it was these false components of the model that allowed us to explain a fact
 about the target system. Two of the suggestions on Wimsatt’s list can be used to further illuminate this point. He writes that:

An oversimplified model may provide a simpler arena for answering questions about properties of more complex models. (8)

In the comet model, the simplification of assuming that every comet has only one jet allowed for a “simpler arena” in which to answer the question of why masing in comets is so rarely observed. That is, the assumption of a single jet allowed for greater ease of manipulation in the model and thus was useful in generating an explanation that would not have been possible if the model was more complex. The comet model also worked in another of Wimsatt’s ways:
Two false models may be used to define the extremes of a continuum of cases in which the real case is presumed to lie, but for which the more realistic intermediate models are too complex to analyze or the information available is too incomplete to guide their construction or to determine a choice between them. In defining these extremes, the “limiting” models specify a property of which the real case is supposed to have an intermediate value. (8)

The comet model employed two sub models, or “asymptotic cases” that worked in just the way that Wimsatt describes. Recall that we wrote that it was difficult and

not worthwhile to undertake a strict general analysis of the probabilities. Instead, we will investigate two asymptotic cases: (1) the jet’s origin is located near a pole of the rotating nucleus, and (2) it is located near the equator. We will assume that the probabilities for all the intermediate cases will be encompassed by the values found for the two asymptotic cases. 
Our two cases were analogous to what Wimsatt calls “limiting” models and served to give the limiting probabilities of observing a cometary jet along its axis. The idea was that the “real case” would have an intermediate probability value. By looking at just the limiting cases, we were able to generate a probability estimate of the likelihood of observing a cometary maser, without doing the actual complex probability calculations. Thus, the comet model, even though it did not accurately represent a target system, generated a scientific explanation in two of the ways that Wimsatt describes. 
This point is important for a defense of a non-representationalist view of models. If, as I have tried to show, the false components of a model allow the model to explain certain facts about a target system, then this shows not only that a model can deliver scientific explanation independently of accurate representation, but that it generates scientific explanation just because of its inaccuracy. 
Even though this is true, a whole model, with both its realistic and unrealistic parts is necessary for scientific explanation. If we abstracted only the false parts of a model, they alone would not be able to explain anything. Then again, if we abstracted only the true parts of a model, they alone would not be able to explain anything either. The unrealistic components of models, such as idealizations and approximations, are only useful when the other, realistic parts of a model are present. This is not because it is the realistic parts that do the explanatory work while the unrealistic parts remain “explanatorily irrelevant.” Rather, it is because the realistic components of a model serve as the background against which the false components can be manipulated. Thus, the false components are pivotal in generating scientific explanation. The false components in a model are analogous, in many ways, to experimental variables
 which can be changed, or manipulated, while the other (realistic) components of the model are held fixed. Thus, it is the manipulation of these false components against a realistic background that allows for the generation of scientific explanation.
Models in Scientific Practice


I have just given an account of how a model can generate a scientific explanation independently of whether or not it accurately represents a target system in the world. However, there remains another, equally problematic, part of the non-representationalist account of models to make sense of. At first glance the non-representationalist account does not seem to accurately reflect what actually takes place in scientific practice. Knuuttila writes that: 

Models contain idealizations, simplifications, approximations, fictional entities and so on, which seem to make them (hopelessly) inaccurate representations of the world. (unpublished 2010, 2)

While it is true, as we have already seen, that models contain these things, it does not follow from this that models, at least in the mind of the scientist, are hopeless. Rather, scientists seem to think that the explanatory power of a model is proportional to its degree of accuracy. For instance, scientists generally strive to minimize idealizations and maximize realism in their models. That is, they often think of idealizations as components that ought to be eliminated over time, as understanding of the system in question progresses. Their view is that since models are representations, a more perfect representation is always a better one. In sum, the view of many scientists is something like this:

Models explain by representing a target system to some degree of accuracy. The more closely a model represents a target system, the more accurate and complete our understanding of the target system will be. 
Thus, on the scientist’s view, even though imperfect models can explain, it is better to try to eliminate the “imperfections” from a model in order to get the most accurate account of the system in question. Now, if a model could only generate an explanation via accurate representation, then this view would be correct – a more realistic model would mean a better model. This is what many scientists seem to assume. But if the non-representationalist account is correct, and models can explain facts about a target system regardless of whether or not they accurately represent that target system, then scientists do not need to be overly concerned about de-idealization. Knuuttila, for instance, writes that:
the highly idealized and simplified construction of models need not be seen only as a shortcoming of them, something that needs to be made good by referring to other virtues of models or to their future correction by de-idealization. Rather (this construction) is often part of a consistent epistemic strategy of modeling. (unpublished 2010, 3-4)
If the non-representationalist account is correct, then scientists should view certain explanation-generating idealizations in their models as important components without which the model would not be able to explain. In other words, if we think of models as epistemic tools, then the idealizations, etc. that they employ should not be viewed as things to be gotten rid of, but rather as components that are indispensible. Below I give an example of a scientific model that supports this argument. First, this example shows that scientists often do think of idealizations as components of models that should be eliminated. Second, and importantly for defending the non-representationalist view, it shows that it is actually these idealized parts that play the pivotal role in generating scientific explanations.
Example
 
In astrophysics, the study of accretion disks in energetic objects, from systems ranging in size from low-mass binary stars to the disks surrounding supermassive black holes in active galaxies and quasars, requires the use of models. Models are required to study these objects because the theory that describes them is, out of necessity, highly simplified
 and does not allow for the solution of the time-dependent equations describing the disks. (One such simplification is the assumption of a time stationary disk even though both ground-based and space-based observations show that these disks are anything but stationary) Solving these time-dependent equations requires numerical techniques which can be employed only with the use of computer simulations. (Hawley 1) The models themselves of course also employ simplifications and approximations in order to make the computations involved in the simulations easier. One simplification that is often used in accretion disk simulation is to assume 2-dimensionalism. Hawley writes that:
Although two-dimensional simulations cannot capture the essential features of global evolutions (in accretion disks), they do have one clear advantage: they are easier to compute. Two dimensional simulations are useful for searching a wide range of initial conditions in support of the more challenging three-dimensional models. (3)
This simplifying assumption is, however, used only temporarily, in order to make the more accurate three-dimensional models easier to manipulate. The stated goal, all along, is to make the model as “realistic,” or as close to the real world observations as possible. Hawley makes this point clear in his paper about accretion disk models:

Of course, we want to simulate disks fully globally and with as few approximations […] as possible. (4)

However, even though this might be the goal (and, again, this goal is one that arises from viewing models as representations that should be made as accurate as possible) it is not always possible to achieve this goal in practice. Sometimes it isn’t possible to de-idealize a model because the observational or experimental data is not available. Other times it isn’t possible because it would render computation of the relevant equations intractable. But if the non-representationalist account is correct, it might not always be preferable to try to de-idealize models. Rather, if it is the idealizations themselves, as I have attempted to show, that are the pivotal components in generating scientific explanation, then we should view idealizations not as undesirable, but rather as indispensable. For example, the idealization of assuming two-dimensionalism in the above example is what allowed the scientists to learn about various initial condition states in accretion disks. Without this idealization, the model would not have generated this explanation. Again, Wimsatt’s list of how false models can generate information about a target system helps to make this point more clear. He writes that:

An oversimplified model may act as a starting point in a series of models of increasing complexity and realism. (8)

The two-dimensional model of an accretion disk does this. It acts as a starting point from which scientists can investigate various initial conditions, before moving on to the more complex (and more realistic) three-dimensional model. This starting point is important, because it is too difficult to investigate initial conditions in the three-dimensional model. The simplified two-dimensional model generates explanations that cannot be generated with the more realistic model, thus, it is another case in which the explanation generated by a model does not come from its representative capacity, but rather from its false components. 

My point in presenting this example is to show that although scientists, in many cases, seem to see idealizations and simplifications in models as shortcomings, on the non-representationalist view they don’t have to. Instead, this view allows the scientist to see the simplifications that go into a model as important and indispensable components of models as epistemic tools. In fact, I have attempted to argue that they are the very components that allow us to learn from models. 
Conclusion

The non-representationalist account of models as epistemic tools avoids the problem of misrepresentation that is found in representationalist accounts of models because it does not rely on accuracy of representation for generating scientific explanation. However, the account raises two other important issues. First, it raises the issue of whether a model can explain components of a target system even if it does not accurately represent that target system. I have attempted to argue that it can, by showing that the false components of scientific models (which do not accurately represent) are often the components that are pivotal in generating explanations. Second, at first glance, it seems that the non-representationalist account of models as epistemic tools does not reflect scientific practice. Scientists talk as though realistic representation and de-idealization is their goal in the construction and use of models. However, I have tried to show that it is possible to reconcile the non-representationalist view with what scientists actually do. Although scientists often write as though idealizations ought to be eliminated, in practice, these simplifications and idealizations are indispensible. They are indispensable because it is these imperfections that do the work of generating the explanations. 
References

Bokulich, Alisa. “How Scientific Models can Explain.” Synthese. (forthcoming): 1-13
French, Steven, and Ladyman, James. “Reinflating the Semantic Approach.” 
International Studies in the Philosophy of Science 13 (1999): 103-121.

Frigg, Roman. “Scientific Representation and the Semantic View of Theories.” Theoria 55 (2006): 49-65.
Giere, Ronald. “How Models Are Used to Represent Reality.” Philosophy of 
Science (Symposia) 71 (2004): 742-752.

Graham, Ashley. et. al. “Water Maser Emission from Comets.” Astronomical Journal 119 (2000):2465-2471.

Hawley, John. “Global Magnetohydrodynamical Simulations of Accretion Tori.” available from http://www.astro.virginia.edu/VITA/papers/torus3d/torus3d.html
Knuuttila, Tarja. “Modelling and Representing: An Artefactual Approach to Model-Based Representation” (unpublished 2010)
-------------------- “Models, Representation, and Mediation.” Philosophy of Science. 72 (2005): 1260–1271.
Knuutila, Tarja. and Voultilainen, Atro. “A Parser as an Epistemic Artefact: A Material View on Models.” Philosophy of Science. 70 (2003): 1484-1495

Maki, Uskali. “Models are Experiments, Experiments are Models.” Journal of Economic Methodology. 12:2 (2005): 303-315
Morrison, Margaret. “Where Have All the Theories Gone?” Philosophy of Science. 74 (2007): 195-228

Strevens, Michael. “Why Explanations Lie: Idealization in Explanation.” 2007 available from: http://www.strevens.org/research/expln/Idealization.pdf
Suárez, Mauricio. “Theories, Models, and Representations.” In L. Magnani, N. J. 

Nersessian & P. Thagard (Eds.). Model-Based Reasoning in Scientific Discovery (pp. 75-
83) (1999) New York: Kluwer.

----------- “Scientific Representation: Against Similarity and Isomorphism.” International Studies in the Philosophy of Science. 17, 3, (2003): 225-244.
van Frassen, Bas. Scientific Representations, Paradoxes and Perspectives. 

Oxford: Oxford University Press, 2008.
Weisberg, Michael. “Who is a Modeler?” The British Journal for the Philosophy of Science. 58 (2007): 207-233

Wimsatt, W.C. “False Models as Means to Truer Theories.” Re-engineering philosophy for limited beings: Piecewise approximations to reality. Cambridge: Harvard University Press.
� See also French and Ladyman 1999, Giere 2004, and Suárez 1999 for similar views.


� I will briefly address this debate in the following section. For a more robust discussion of the history of this debate see van Fraassen 2008.


� Frigg 2006, for example, writes that it is “generally accepted that most models represent their target systems in one way or another” and further, that:


The importance of models is based on the fact that they play an essential role in the acquisition and organization of scientific knowledge…But for this to be possible a model must be representational. A model can instruct us about the nature of reality only if we assume that it represents the selected part or aspect of the world that we investigate.” (1)


� By “representational power” I simply mean some degree of representational accuracy.


� The idea that models are epistemic tools can also be found in some of Knuutila’s earlier work. See, for instance, Knuutila and Voutilainen 2003 and Knuutila 2005. 


� So far I have only said what this non-representationalist view does not depend on. In a later section I will be more explicit about what it does depend on.


� These are also referred to as “two-place” and “three-place” accounts in the literature.


� The structuralist view says that models are mathematical entities that consist only of structures. 


� I have borrowed the term “partial isomorphism” from Knuutilla. Although she doesn’t give a definition in her paper, here is what I take it to mean. Two objects are partially isomorphic to one another if they share certain substructures that are isomorphic to one another. Van Fraassen 2008 uses the term “embedding” to refer to what I have called “partial isomorphism.” For Van Fraassen embedding “means displaying an isomorphism to selected parts of (the relevant) models…For a phenomenon to be embeddable in a model, that means that it is isomorphic to a part of that model.: (247)


� Knuutilla 2010 and Frigg 2006 have argued that another reason to reject the strong account of scientific representation is that isomorphism is symmetric and reflexive while representation is not.


� Philosophers who hold this view include van Frassen (2008), Frigg (2006), Suárez (2003) and Weisberg (2007).


� It is possible that non-scientific models (such as engineering models) might be able to generate explanations that are important, useful, etc., but yet not specifically about a target system in the world. My point simply is that this kind of explanation wouldn’t count as scientific explanation. 


� If one does not accept “being about a target system in the world” as a necessary condition for “being scientific,” then one will not see this claim as obviously false. In this case, one would have to evaluate the claim in terms of whatever one accepts as the necessary condition for “being scientific.”


� In contrast to this claim, see Strevens 2007. Strevens argues that an idealized model is no “worse” than a veridical model, provided that what it leaves out is not “explanatorily relevant.” I am arguing, in contrast, that the false components of a model are indispensable to the model’s explanation generating power.


� While Wimsatt and I agree that false models can generate scientific explanations, we disagree on an important point. Wimsatt writes that false models generate explanations by helping us to find more realistic models, and that true models are always better than false ones (and here he also disagrees with Strevens who argues that a model that includes all and only explanatorily relevant components is “better” than a veridical model which will often have extra, explanatorily irrelevant components) (7). I argue, in contrast to Wimsatt, that false models, in and of themselves, can (and do) serve to generate scientific explanations. even if they do not lead to more veridical models. This is not because, as Strevens argues, the components of false models that generate explanations are all explanatorily relevant. Rather, this is because the false components of models allow for manipulation that in turn generates the explanations.


� “Maser” stands for microwave amplification by stimulation emission of radiation. A laser is a maser that works with higher frequency photons in the ultraviolet or visible light spectrum.





� Incidentally, this fact turned out to be that cometary masers can only be observed given a favorable geometric setup between observer and sublimating  jet.


� For a discussion of models as experiments, see Maki 2005.  In this article he argues that the assumptions that go into false models allow the models to “causally isolate parts of the world from the rest of it so as to examine the properties of those fragments free from complications arising from the involvement of the rest of the world.” (6) Even though Maki thinks that models are experiments, he still thinks that their explanation-generating power comes from their representative power, in the form of resemblance:


“The causal powers and mechanisms isolated and identified by the models resemble


those that function outside those theoretical and material models.” (9)


� The point that this theory is simplified out of necessity interestingly runs contrary to what Margaret Morrison argues in “Where Have All the Theories Gone?” In this article, Morrison acknowledges that a certain amount of “excess structure” is necessary in models, but that this excess should not be included in theories. She reasons that simple theories should, in general, be preferred to complex theories. Elsewhere I have argued that this reasoning is flawed. The important point here is that scientists opt for simplicity in both models and theories when it is necessary for calculation or manipulation. Thus, while there is clearly an aesthetic preference for simplicity among mathematicians who produce abstract mathematical theories, in contrast, in the scientific case, the preference for what goes into (or stays out of) a scientific theory or model is not based on aesthetic considerations. While scientists aim to make both their models and their theories as realistic as possible, they are of course always constrained by limitations in calculation power, availability of data etc. So Morrison is incorrect in arguing that it’s acceptable for scientific models to be messy, but not for theories to be so. If messiness leads to greater explanatory power, then it, and not simplicity, should be preferred in both models and in theories. Of course if things are the other way around, and simplicity and not complexity leads to greater explanatory power (if a model is very complex, it might be hard to understand, and thus not do much in the way of generating an explanation) then it should be preferred. In other words, if explanation is the goal, then whatever serves this goal is to be preferred. This is, I think, reflected in actual scientific practice.
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