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Abstract. We present a streamlined axiom system of special rel-
ativity in first-order logic. From this axiom system we “derive” an
axiom system of general relativity in two natural steps. We will
also see how the axioms of special relativity transform into those
of general relativity. This way we hope to make general relativity
more accessible for the non-specialist.

Introduction

In axiomatizing physical theories, we follow in the footsteps of many
great predecessors. Logical axiomatization of physics, especially that
of relativity theory, is not at all a new idea. It goes back to such
leading mathematicians and philosophers as Hilbert, Gödel, Tarski,
Reichenbach, Carnap, Suppes and Friedman. It also has an extensive
literature, see, e.g., the references of [2], [4]. Our aims go beyond these
approaches, because we not only axiomatize relativity theories, but also
analyze their logical and conceptual structures.

There are many examples showing the benefits of using the axiomatic
method in the foundations of mathematics. The success story of the
axiomatic method in the foundations of mathematics suggests that it
is worth to apply this method in the foundations of spacetime theories.

For good reasons, foundations of mathematics was carried through
strictly within first-order logic (FOL). For the same reasons, founda-
tions of spacetime theories are best developed within FOL. For exam-
ple, in any foundational work it is essential to avoid tacit assumptions,
and one acknowledged feature of using FOL is that it helps to eliminate
tacit assumptions. That is only one of the many reasons why we work
within FOL. For further reasons, see [2, §Why FOL?], [23, §11].

In physics, the same way as in mathematics, we do not address the
question whether the axioms are true or not, we just postulate them.
The reason for this in mathematics is that we want to give a tool that
is usable in all applications where the axioms are true. However, in
physics the statements of the theories are closely related to the real
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physical world, thus the application area is fixed in a way. Therefore,
the role of the axioms (the role of statements that we assume without
proofs) in physics is more fundamental than in mathematics. That is
why we aim to formulate simple, logically transparent and intuitively
convincing axioms. All the surprising or unusual predictions of a phys-
ical theory should be provable as theorems and not assumed as axioms.
For example, the prediction “no observer can move faster than light”
is a theorem in our approach and not an axiom, see Theorem 2.1.

Some of the questions we study when investigating the logical struc-
ture of relativity theories are: – What is believed and why? – Which
axioms are responsible for certain predictions? – What happens if we
discard some axioms? – Can we change the axioms and at what price?

First-order logic can be viewed as a fragment of natural language
with unambiguous syntax and semantics. Being a fragment of natural

language is useful in our project because one of our aims is to make
relativity theory accessible to a broad audience. Unambiguous syntax

and semantics are important for the same reason, because they make it
possible for the reader to always know what is stated and what is not
stated by the axioms. Therefore they can use the axioms without being
familiar with all the tacit assumptions and rules of thumb of physics
(that one usually learns via many, many years of practice).

A novelty in this paper is that we concentrate on the transition from
special relativity to general relativity, we try to keep this transition
logically transparent and illuminating for the non-specialist. We are
going to “derive” the axioms of general relativity from those of special
relativity in two natural steps. In the first step we will extend our FOL
axiom system of special relativity of inertial observers to accelerated
observers. This step will provide us a FOL theory of accelerated ob-
servers, which implies the usual predictions about them, such as the
twin paradox, see Theorem 3.1. In the second step we will eliminate
the difference between inertial and noninertial observers on the level of
axioms. By these two natural steps, we will get a FOL axiomatization
of the spacetimes of general relativity suitable for further study. All
these three theories (special relativity, theory of accelerated observers,
general relativity) will be formulated in the same streamlined FOL
language.

1. The FOL language of our three theories

The first important decision in writing up an axiom system in FOL
is to choose the vocabulary (set of basic symbols) of our language, i.e.,
what objects and relations between them we will use as basic concepts.
We will have to stick to this language while writing up the axioms and
investigating our theory. However, later we can change the vocabulary
of our language, and we can write up a new theory (or a new version of
our theory) in this new language. Then we can investigate the logical
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connections between these theories built up in different FOL languages.
This way we can investigate the role of having chosen the particular
basic concepts of our theory, see [5, second half of §3].

In this paper we will use the following two-sorted FOL language:

{B , IB,Ph, Q ,+, ·, W },
where B (bodies1) and Q (quantities) are the two sorts, IB (inertial
bodies) and Ph (light signals or photons2) are one-place relation sym-
bols of sort B , + and · are two-place function symbols of sort Q , and
W (the worldview relation) is a 2 + 4-place relation symbol the first
two arguments of which are of sort B and the rest are of sort Q .

Atomic formulas IB(b) and Ph(p) are translated as “b is an inertial

body,” and “p is a photon,” respectively. We use the worldview relation
W to speak about coordinatization by translating W(o, b, x, y, z, t) as
“body o coordinatizes body b at space-time location 〈x, y, z, t〉,” (i.e., at
space location 〈x, y, z〉 and at instant t). Sometimes we use the more
picturesque expressions sees or observes for coordinatizes. However,
these “seeing” and “observing” have nothing to do with visual seeing
or observing they only mean associating coordinate points to bodies.

The above, together with statements of the form x = y (read as x
equals y) are the so-called atomic formulas of our FOL language, where
x and y can be arbitrary variables of the same sort, or terms built up
from variables of sort Q by using the two-place operations · and +. The
formulas of our FOL language are built up from these atomic formulas
by using the logical connectives not (¬), and (∧), or (∨), implies (→),
if-and-only-if (↔) and the quantifiers exists (∃) and for all (∀). For
the precise definition of the syntax and semantics of FOL, see, e.g., [9,
§1.3], [12, §2.1, §2.2], or [14, pp.39–46].

For example, the formula ∀btxzy W(b, b, x, y, z, t) → x = y abbrevi-
ates the natural language sentence “For all b, t, x, y, z it is true that b
observes b at t, x, y, z implies that x equals y,” or in a more readable
form “If b sees itself at t, x, y, z, then x equals y; and this is true for

all b, t, x, y, z.”
To abbreviate formulas of FOL we often omit parentheses according

to the following convention. Quantifiers bind as long as they can, and
∧ binds stronger than →. For example, we write ∀x ϕ∧ψ → ∃y δ∧ η
instead of ∀x

(

(ϕ ∧ ψ) → ∃y(δ ∧ η)
)

.
We will use the letters p, b, m, k, h and their variants for variables of

sort B , and the letters x, y, z, t, v, w, c and their variants for variables

1By bodies we mean anything which can move, e.g., test-particles, reference
frames, electromagnetic waves, centers of mass, etc.

2Here we use light signals and photons as synonyms because it is not important
here whether we think of them as particles or electromagnetic waves. The only
thing that matters here is that they are things that can move. So they are bodies
in the sense of our FOL language.
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of sort Q . For easier readability, we will use x̄, ȳ, etc. for sequences of
variables. The i-th element of the sequence x̄ is denoted by xi.

2. An axiomatization of special relativity in FOL

Having fixed our language, we now turn to formulating an axiom
system for special relativity in this language. The first axiom states
some usual properties of addition + and multiplication · true for real
numbers.

AxFd: The quantity part 〈Q ,+, ·〉 is a Euclidean field, i.e.,
• 〈Q ,+, ·〉 is a field in the sense of abstract algebra,

• the relation ≤ defined by x ≤ y
d⇔ ∃z x+ z2 = y is a linear

ordering on Q , and
• ∀x ∃y x = y2 ∨ −x = y2, i.e., positive elements are squares.3

The field-axioms (see, e.g., [9, pp.40–41], [15, p.38]) say that +, · are
associative and commutative, they have neutral elements 0, 1 and in-
verses −, / respectively, with the exception that 0 does not have an
inverse with respect to · , as well as · is additive with respect to +. We
will use 0, 1, −, /,

√
as derived (i.e., defined) operation symbols. As

usual, x2 denotes x · x.
AxFd is a “mathematical” axiom in spirit. However, it has physical

(even empirical) relevance. Its physical relevance is that we can add
and multiply the outcomes of our measurements and some basic rules
apply to these operations. Physicists use all properties of the real
numbers tacitly, without stating explicitly which property is assumed
and why. The two properties of real numbers which are the most
difficult to defend are the Archimedean property, see [20], [21, §3.1],
and the supremum property,4 see the remark after the introduction of
Cont on p.11.

In special relativity, we will not need more properties of the real
numbers than stated in AxFd. In the next two sections, we will use more
properties of the real numbers in our next two theories for relativity,
but we will state exactly and explicitly how much we will use.

Euclidean fields got their names after their role in Tarski’s FOL
axiomatization of Euclidean geometry [25]. By AxFd we can reason
about the Euclidean structure of a coordinate system the usual way,
we can introduce Euclidean distance, talk about straight lines, etc. In
particular, we will use the following notation for x̄, ȳ ∈ Qn if n ≥ 1:

|x̄| =
√

x21 + · · ·+ x2n, and x̄− ȳ
d
= 〈x1 − y1, . . . , xn − yn〉.

3We note that the second statement in the definition of AxFd can be replaced
with x2 + y2 + z2 = 0 → x = 0.

4The supremum property (i.e., every nonempty and bounded subset of the real
numbers has a least upper bound) implies the Archimedean property. So if we want
to get ourselves free from the Archimedean property, we have to leave this property,
too.
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The rest of our axioms speak about the worldviews of inertial ob-
servers. We have not introduced the concept of observers as a basic one
because it can be defined as follows: an observer is nothing else than
a body who “observes” (coordinatizes) some other bodies somewhere,
this property can be captured by the following formula of our language:

Ob(m)
d⇔ ∃bx̄ W(m, b, x̄);

and inertial observers can be defined as inertial bodies which are ob-
servers, formally:

IOb(m)
d⇔ IB(m) ∧ Ob(m).

We will also use the following two notations:

x̄s
d
= 〈x1, x2, x3〉 and xt

d
= x4

for the space component and the time component of x̄ ∈ Q4, respec-
tively.

Our next axiom is the key axiom of SpecRel, it has an immediate
physical meaning. This axiom is the outcome of the Michelson-Morley
experiment. It has been continuously tested ever since then. Nowadays
it is tested by GPS technology.

AxPh: For any inertial observer, the speed of light is the same every-
where and in every direction, and it is finite. Furthermore, it is
possible to send out a light signal in any direction. Formally:

∀m ∃cm ∀x̄ȳ IOb(m) →
(

∃p Ph(p) ∧W(m, p, x̄) ∧W(m, p, ȳ)
)

↔ |ȳs − x̄s| = cm · |yt − xt|.
Let us note here that AxPh does not require that the speed of light

is the same for every inertial observer or that it is nonzero. It requires
only that the speed of light according to a fixed inertial observer is a
quantity which does not depend on the direction or the location.

Our next axiom connects the worldviews of different inertial ob-
servers by saying that all observers observe the same “external” reality
(the same set of events). Intuitively, by the event occurring for m at
x̄, we mean the set of bodies m observes at x̄. Formally:

evm(x̄)
d
= {b : W(m, b, x̄)}.

AxEv: All inertial observers coordinatize the same set of events, i.e.,

∀mk IOb(m) ∧ IOb(k) → ∀x̄ ∃ȳ ∀b W(m, b, x̄) ↔ W(k, b, ȳ).

Hereafter, we will use evm(x̄) = evk(ȳ) to abbreviate the subformula
∀b W(m, b, x̄) ↔ W(k, b, ȳ) of AxEv.

Our two remaining axioms are simplifying ones. We could leave them
out without losing the essence of our theory, only the formalizations of
the theorems would become much more complicated.



A LOGIC ROAD FROM SPECIAL TO GENERAL RELATIVITY 6

AxSf: Any inertial observer sees himself as standing still at the origin:

∀m IOb(m) →
(

∀x̄ W(m,m, x̄) ↔ x1 = 0 ∧ x2 = 0 ∧ x3 = 0
)

.

Our last axiom is a symmetry axiom saying that all observers use
the same units of measurement.

AxSm: Any two inertial observers agree as to the spatial distance be-
tween two events if these two events are simultaneous for both
of them; furthermore, the speed of light is 1 for all observers:

∀mk IOb(m) ∧ IOb(k) → ∀x̄ȳx̄′ȳ′ xt = yt ∧ x′t = y′t∧
evm(x̄) = evk(x̄

′) ∧ evm(ȳ) = evk(ȳ
′) → |x̄s − ȳs| = |x̄′s − ȳ′s|, and

∀m IOb(m) → ∃p Ph(p) ∧ W(m, p, 0, 0, 0, 0) ∧ W(m, p, 1, 0, 0, 1).

We introduce an axiom system for special relativity as the collection
of these five axioms:

SpecRel
d
= {AxFd,AxPh,AxEv,AxSf,AxSm}.

The so-called worldline of body b according to observer m is defined
as follows:

wlm(b)
d
= {x̄ : W(m, b, x̄)}.

To abbreviate formulas, we will use bounded quantifiers in the fol-
lowing way: ∃x ϕ(x)∧ψ and ∀x ϕ(x) → ψ are abbreviated to ∃x ∈ ϕ ψ
and ∀x ∈ ϕ ψ, respectively. For example, ∀x̄, ȳ ∈ wlm(b) ψ abbrevi-
ates ∀x̄ȳ W(m, b, x̄) ∧W(m, b, ȳ) → ψ.5

In an axiom system, the axioms are the “price” we pay, and the
theorems are the “goods” we get for them. Therefore, we strived for
putting only simple, transparent, easy-to-believe statements in our ax-
iom system. We want to get all the hard-to-believe predictions as
theorems. For example, now we are going to prove from SpecRel that
it is impossible for inertial observers to move faster than light relative
to each other. This theorem is a generic example for a “fancy theorem”
following from “plain axioms.”

Theorem 2.1. (no faster than light inertial observers)

SpecRel ⊢ ∀mk ∀x̄, ȳ ∈ wlm(k)

x̄ 6= ȳ ∧ IOb(m) ∧ IOb(k) → |ȳs − x̄s| < |yt − xt|.
Intuitively, no observer can travel faster than light relative to an-

other. Let us see the axioms in action: now we will prove Theorem 2.1
paying a close attention to the axioms used in each step.

5Both b ∈ evm(x̄) and x̄ ∈ wlm(b) represent the same atomic formula of our FOL
language, namely: W(m, b, x̄).
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Figure 1. Illustration for the proof of Theorem 2.1

Proof. Let m and k be inertial observers and let x̄, ȳ ∈ wlm(k) such
that x̄ 6= ȳ. By AxFd, ≤ is a total order, so there are three possibilities
only: |ȳs− x̄s| < |yt−xt|, |ȳs− x̄s| > |yt−xt| or |ȳs− x̄s| = |yt−xt|. We
will prove |ȳs − x̄s| < |yt − xt| by excluding the other two possibilities.

Let us first prove that |ȳs − x̄s| > |yt − xt| cannot hold. Figure 1
illustrates this proof.6 So, let us assume that |ȳs − x̄s| > |yt − xt|, we
will derive a contradiction. By AxFd, there is a coordinate point z̄ such
that |z̄s− x̄s| = |zt−xt| 6= 0, zt = yt and z̄s− x̄s is orthogonal to z̄s− ȳs
if xt 6= yt, and |z̄s − x̄s| = |zt − xt| 6= 0 and z̄s − x̄s is orthogonal to
ȳs− x̄s if xt = yt (here we used that |ȳs− x̄s| > |yt−xt|). Any choice of
such a z̄ implies that any line of slope 1 in the plane x̄ȳz̄ is parallel to
the line x̄z̄ (because the plane x̄ȳz̄ is tangent to the light cone through
z̄). To choose one concrete z̄ from the many, let

w̄s
d
=

ȳs − x̄s
|ȳs − x̄s|

, w̄⊥

s

d
=

〈y2 − x2, x1 − y1, 0〉
√

(y2 − x2)2 + (x1 − y1)2
.

Then, if xt = yt, let

z̄s
d
= |ȳs − x̄s| · w̄⊥

s + x̄s, zt
d
= |ȳs − x̄s|+ xt,

and, if xt 6= yt, let

z̄s
d
=

|yt − xt|2
|ȳs − x̄s|

· w̄s +
|yt − xt| ·

√

|ȳs − x̄s|2 − |yt − xt|2
|ȳs − x̄s|

· w̄⊥

s , zt
d
= yt.

6To simplify the figure, we have drawn x̄ to the origin. This is not used in the
proof but it can be assumed without losing generality.
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Figure 2. Illustration for the proof of Theorem 2.1

See Figure 2. It is easy to see that this z̄ has the required properties.
Then by AxPh and AxSm, there is a photon p such that p ∈ evm(x̄)∩

evm(z̄) since |z̄s − x̄s| = |zt − xt|. Also by AxPh, AxSm and AxFd,
there are photons showing that inertial observers see distinct events in
distinct points, so evm(x̄), evm(ȳ) and evm(z̄) are distinct. By AxEv,
there are coordinate points x̄′, ȳ′ and z̄′ such that evm(x̄) = evk(x̄

′),
evm(ȳ) = evk(ȳ

′) and evm(z̄) = evk(z̄
′). We have that x̄′, ȳ′ and z̄′ are

distinct since evm(x̄
′), evm(ȳ

′) and evm(z̄
′) are so. By AxSf, x̄′s = ȳ′s =

〈0, 0, 0〉. By AxPh and AxSm, |z̄′s − x̄′s| = |z′t − x′t|. By AxFd, there is
a coordinate point w̄′ on the line x̄′z̄′ such that |x̄′s − w̄′

s| = |x′t − w′

t|,
|ȳ′s− w̄′

s| = |y′t−w′

t| and |z̄′s− w̄′

s| = |z′t−w′

t|. By AxPh and AxSm, there
are photons p1, p2 and p3 such that x̄′, w̄′ ∈ wlk(p1), ȳ

′, w̄′ ∈ wlk(p2) and
w̄′, z̄′ ∈ wlk(p3). By AxEv, there should be a coordinate point w̄ such
that evm(w̄) = evk(w̄

′). By AxPh and AxSm, this w̄ should be on the
line x̄z̄, since by AxFd there is no nondegenerate triangle whose sides
are of slope 1 (this fact can be shown by proving that if we project a
triangle of this kind vertically, we get another triangle whose one side
is the sum of the other two). Specially, w̄ should be in the plane x̄ȳz̄.
By AxPh and AxSm, this w̄ should also be on a line of slope 1 through
ȳ. Since w̄ is in the plane x̄ȳz̄, line w̄ȳ has to be parallel to the line x̄z̄.
However, distinct parallel lines do not intersect. Thus this w̄ cannot
exist. That contradicts AxEv, so |ȳs − x̄s| > |yt − xt| cannot hold.

Let us now prove that |ȳs − x̄s| = |yt − xt| cannot hold, either. If
|ȳs− x̄s| = |yt−xt|, then by AxPh and AxSm, there is a photon p, such
that p ∈ evm(x̄)∩ evm(ȳ). By AxPh, AxSm and AxFd, evm(x̄) 6= evm(ȳ)
since x̄ 6= ȳ. So by AxEv, there are distinct coordinate points x̄′ and ȳ′

such that evm(x̄) = evk(x̄
′) and evm(ȳ) = evk(ȳ

′). By AxSf, x̄′s = ȳ′s =
〈0, 0, 0〉. So |ȳ′s − x̄′s| = 0. By AxPh and AxSm, |ȳ′s − x̄′s| = |y′t − x′t|.
Hence y′t = x′t, too. Thus ȳ′ = x̄′. That contradicts the fact that x̄′

and ȳ′ are distinct.
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The only remaining possibility is that |ȳs− x̄s| < |yt−xt| which was
to be proved. �

It is easy to see that AxSm was not fully used in the proof above. We
only used its second part, i.e., that the speed of light (the cm in AxPh)
is 1. Even the use of this part of AxSm was not essential. By slightly
changing the proof, we could get basically the same result using only
that cm 6= 0, but then we also need to mention the speed cm of light
(according to m) explicitly in the formalization of the theorem.

In relativity theory we are often interested in comparing the world-
views of two different observers. To do so, we introduce the worldview
transformation between observers m and k (in symbols, wmk) as the
following binary relation:

wmk(x̄, ȳ)
d⇔ evm(x̄) = evk(ȳ) 6= ∅.

By the following theorem, the worldview transformations between
inertial observers in the models of SpecRel are not only binary rela-
tions but very special transformations. For the definition of a Poincaré
transformation (which is a Lorentz transformation composed with a
translation) we refer to [10, p.110] or to [19, pp.66–69]. For the proof
of the next theorem, see [3, Thm.11.10, p.640] or [23, Thm.3.2.2, p.22].

Theorem 2.2.

SpecRel ⊢ ∀m, k IOb(m)∧IOb(k) → wmk is a Poincaré transformation.

Every Poincaré transformation is an affine7 one, specially it takes
lines to lines. So by AxSf, Theorem 2.2 implies that wlm(k) is a line for
any inertial observers m and k. Thus Theorem 2.2 implies Theorem 2.1
since a Poincaré transformation cannot take a line of slope less than 1
(slower than light) to a line of slope more than 1 (faster than light). In
the proof of Thm.2.2 the symmetry axiom, AxSm has to be fully used.8

Therefore, using Theorem 2.2 to prove that “no inertial observer can
move faster than light” does not show the roles of the particular axioms
in the proof, e.g., it does not reveal that the first part of AxSm plays
no role in proving the no faster than light theorem.

By Theorem 2.2, SpecRel implies the paradigmatic effects of spe-
cial relativity, i.e., “moving clocks slow down,” “moving meter-rods
shrink” and “moving pairs of clocks get out of synchronism.” How-
ever, we prefer proving these effects directly from the axioms, see, e.g.,
[3, Thm.11.6, p.631], [7].

7Let us recall that an affine transformation is the composition of a linear mapping
and a translation.

8Without AxSm there are other possible worldview transformations, such as dila-
tions (i.e., rescaling of the units of measurement). For a complete characterization
of the possible worldview transformations without AxSm, see, e.g., [4, Thm.1.2(i)].
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3. Axioms for accelerated observers in FOL

In SpecRel we restricted our attention to inertial observers. It is
a natural idea to generalize the theory by including accelerated ob-
servers as well. We will refer to such a generalized theory as a theory
of accelerated observers. It is explained in the classic textbook [19,
pp.163–165] that the study of accelerated observers can be regarded as
a natural first step (from special relativity) towards general relativity.
The theory of accelerated observers can also be used to explain how
the relativistic paradigmatic effects of special relativity develop.

The most important axiom for accelerated observers will state that at
each moment of his life-time, an accelerated observer coordinatizes the
world near him for a short while as some inertial observer does. How
can we formalize this idea? Saying that the worldview transformation
wmk is the identity function in a neighborhood would state that m and
k totally agree in this neighborhood. This statement would connect the
worldviews too rigidly. We want to state a somewhat looser connection
between m and k. So, instead, we will state that the identity function
approximates the worldview transformation wmk at the spacetime point
in question.

Let f, g : Qn → Qm, n,m ≥ 1 be partial9 mappings and x̄ ∈ Qn.
We say that f approximates g at x̄, in symbols f ∼x̄ g, if

∀ε > 0 ∃δ > 0 ∀ȳ |ȳ − x̄| ≤ δ → |f(ȳ)− g(ȳ)| ≤ ε · |ȳ − x̄|.
Let us recall that for partial functions f and g, the formula |f(ȳ)−

g(ȳ)| ≤ z is true iff both f(ȳ) and g(ȳ) are defined and the inequality
holds. Thus f ∼x̄ g implies that x̄ has a neighborhood where both f
and g are defined; and also it implies that f(x̄) = g(x̄).

Let us note that approximation at a given point is an equivalence
relation on functions, and if two affine mappings approximate each
other, then they are equal. These can be proved from AxFd.

Let Id denote the identity function from Q4 to Q4, i.e., Id(x̄) = x̄ for
all x̄ ∈ Q4.

AxCm: At each moment of his life, observer k “sees” (i.e., coordinatizes)
the nearby world for a short while as an inertial observers m
does, i.e., the identity map Id approximates wmk at this moment:

∀k ∈ Ob ∀x̄ ∈ wlk(k) ∃m ∈ IOb wmk ∼x̄ Id.

Let us note here that AxCm is true for inertial observers in a stronger
form, i.e., SpecRel ⊢ ∀k IOb(k) → wkk = Id. Axiom AxCm ties the
behavior of accelerated observers to those of inertial ones. Justification
of this axiom is given by experiments. If wmk ∼x̄ Id, we say that m
and k comove at x̄. If k is an accelerated spaceship, we can think of
a dropped spacepod as a comoving inertial observer (comoving at the

9Partial means that f and g are not necessarily everywhere defined on Qn.
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moment of dropping). Or, if k switches off his engines at x̄, he will
move on as a comoving inertial observer would.

Assuming SpecRel, AxCm implies that the worldlines ofm and k meet
and are tangent at x̄ in the worldviews of all other inertial observers.
Moreover, any body b present in the event at x̄, wlm(b) and wlk(b) are
tangent at x̄; intuitively we could say that the whole worldviews of m
and k are tangent at x̄.

Our next two axioms ensure that the worldviews of accelerated ob-
servers are big enough. They are generalized versions of the correspond-
ing axioms for inertial observers, but now postulated for all observers.

AxEv−: If m sees k participate in an event, then k cannot deny it, i.e.,

∀m, k ∈ Ob W(m, k, x̄) → ∃ȳ evm(x̄) = evk(ȳ).

AxSf−: The worldline of any observer is an interval of the time-axis, in
his own worldview:

∀m ∈ Ob ∀x̄ W(m,m, x̄) → x1 = x2 = x3 = 0 and

∀x̄, ȳ ∈ wlm(m) ∀t xt < t < yt → W(m,m, 0, 0, 0, t).

Our last two axioms will ensure that the worldlines of accelerated
observers are “tame” enough, e.g., they have velocities at each mo-
ment. In SpecRel, the worldview transformations between inertial ob-
servers are affine functions, the next axiom will state that the world-
view transformations between accelerated observers are approximately
affine, wherever they are defined.

AxDf: The worldview transformations have affine approximations at
each point of their domain (i.e., they are differentiable):

∀m, k ∈ Ob ∀x̄ ∈ Dom(wmk) ∃ affine A wmk ∼x̄ A,
10

where Dom(R), the domain of a binary relation R, is defined as:

Dom(R)
d
= { x : ∃y 〈x, y〉 ∈ R }.

We note that AxDf implies that the worldview transformations are
functions with open domains. However, if the numberline has gaps, still
there can be crazy motions. Our last assumption is an axiom scheme
supplementing AxDf by excluding these gaps.

Cont: Every subset of Q which is definable, bounded and nonempty
has a supremum.

In Cont “definable” means “definable in the language of AccRel, para-
metrically.” For a precise formulation of Cont, see [17, p.692] or [23,
§10.1].

That Cont requires the existence of supremum only for sets definable
in the language of AccRel instead of every set is important not only

10The quantifier “∃ affine A” looks like a second-order logic one, but truly it
is a first-order logic quantifier because every affine map from Q4 to Q4 can be
represented by a 4 × 4 matrix, i.e., 16 elements of Q , together with an x̄ ∈ Q4.
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because by this trick we can keep our theory within FOL (which is
crucial in our foundational setting), but also because it makes this
postulate closer to the physical/empirical level. This is true because
Cont does not speak about “any fancy subset” of the quantities, but
just about those “physically meaningful” sets which can be defined in
the language of our (physical) theory.

Our axiom scheme of continuity (Cont) is a “mathematical axiom”
in spirit. It is Tarski’s first-order logic version of Hilbert’s continuity
axiom in his axiomatization of geometry, see [13, pp.161-162], fitted to
the language of AccRel.

When Q is the usual real number-line, Cont is automatically true.
Adding this five axioms to SpecRel, we get the following axiom sys-

tem for accelerated observers:

AccRel
d
= SpecRel ∪ {AxCm,AxEv−,AxSf−,AxDf} ∪ Cont.

The explicit introduction and development of AccRel as a theory in its
own right is a contribution of our group. As an example we show that
the so-called twin paradox can be naturally formulated and proved in
AccRel. More importantly, the details of the twin paradox (e.g., who
sees what, when) can be analyzed with the clarity of logic, see [2,
pp.139–150] for part of such an analysis.

According to the twin paradox, if a twin makes a journey into space
(accelerates), he will return to find that he has aged less than his twin
brother who stayed at home (did not accelerate). We formulate the
twin paradox in our FOL language as follows.

TwP: Every inertial observer m measures at least as much time as any
other observer k between any two events e1 and e2 in which they
meet; and they measure the same time iff they have encountered
the very same events between e1 and e2:

∀m ∈ IOb ∀k ∈ Ob ∀x̄x̄′ȳȳ′ xt < yt ∧ x′t < y′t ∧
m, k ∈ evm(x̄) = evk(x̄

′) ∧m, k ∈ evm(ȳ) = evk(ȳ
′) → y′t − x′t ≤ yt − xt

∧
(

y′t − x′t = yt − xt ⇐⇒ encm(x̄, ȳ) = enck(ȳ
′, ȳ′)

)

,

where encm(x̄, ȳ) = {evm(z̄) : W(m,m, z̄) ∧ xt ≤ zt ≤ yt}.
Theorem 3.1.

(i) AccRel |= TwP.

Moreover, AccRel− AxDf |= TwP.
(ii) AccRel − Cont 6|= TwP.

Moreover, for any Euclidean ordered field F different from the
field of real numbers there is a model M such that its field
reduct 〈Q ,+, ·〉 is F and M |= (AccRel−Cont), but M 6|= TwP.

For the proof of Theorem 3.1, see [17] or [23, §7].
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The second part of Theorem 3.1 implies that Cont cannot be replaced
with the whole FOL theory of real numbers in AccRel if we do not want
to lose TwP from its consequences.

m

x̄

ȳ

k

x̄′

ȳ′

k

m

m: “non-moving” (inertial) brother k: traveling (accelerated) brother

Figure 3. The “twin paradox”

Adding the axiom schema Cont to our axioms in AccRel represents
a first step in the direction pursued in the so-called nonstandard-time
logics of time approach represented by [1], [22].

All this enables us to “import” just as much of any field of mathe-
matics, e.g., mathematical analysis into our first-order theory AccRel

of accelerated observers as we need. Explicit and detailed elaborations
of these ideas to situations similar to our present one (theory of ac-
celerated observers) can be found in the above quoted [1], [22] and
in the works quoted therein. For developing AccRel further, it is a
distinct possibility to adopt the methods of the works just quoted to
the framework of AccRel (extended with first-order logic sorts to treat
second-order logic objects, just like in Henkin-style second-order logic).

4. An axiomatization of general relativity in FOL

The theory of accelerated observers AccRel speaks about two kinds
of observers, inertial ones and accelerated ones. Some of the axioms
are postulated for inertial observers only (such is, e.g., AxSm), some of
the axioms apply to all observers (such is, e.g., AxSf−), and there is
one axiom, AxCm, which talks about both of them. We get the axiom
system GenRel for general relativity by stating the axioms of AccRel in a
generalized form in which they are postulated for all observers, inertial
and accelerated ones equally. In other words, we will change all axioms
of AccRel in the same spirit as AxSf− and AxEv− were obtained from
AxSf and AxEv, respectively. This kind of change AccRel 7→ GenRel can
be regarded as a “democratic revolution” with the slogan “all observers
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are equivalent, the same laws should apply to all of them.” Here “law”
translates as “axiom.” This idea originates with Einstein (cf. his book
[11, Part II, ch.18]). In [11, pp.58(ch.18),88(ch.28)], Einstein calls this
idea of “democratic revolution of observers” the “General Principle of
Relativity.” Below, we implement Einstein’s idea in logic (particularly
in FOL).

For simplicity, we will use an equivalent version of the symmetry
axiom AxSm (see [2, Thm.2.8.17(ii), p.138] or [23, Thm.3.1.4, p.21]),
and we will require the speed of photons to be 1 in AxPh− (as opposed
to requiring it in AxSm−).

We will need the notion of velocity for curved worldlines. This notion
will be based on the usual notion of the affine approximation. First
we define the affine approximation (also called linear approximation or
differential) of f at x̄, denoted by Apr(f, x̄).

Apr(f, x̄) = g
d⇔ f ∼x̄ g and g is affine.

Let f : Q → Qn be an affine map. We will use the following auxiliary
notation for the velocity of f :

v(f)
d
=







f(1)− f(0) if n = 1,
f(1)s−f(0)s
f(1)t−f(0)t

if n > 1 and f(1)t 6= f(0)t,

undefined otherwise.

To define the velocity of body b according to observer m, first we define
the time-parameterized worldline of b (parameterized by the time ofm):

wlm(b)(t) = x̄
d⇔

W(m, b, x̄) ∧ xt = t ∧
(

∀ȳ W(m, b, ȳ) ∧ yt = t→ x̄ = ȳ
)

.

By this definition, the time-parameterized worldlines are partial func-
tions from Q to Q4. Now we can define the velocity of body b according
to observer m as follows:

vm(b, x̄)
d
= v(Apr(wlm(b), x̄)).

The behavior of observer k’s clock as seen by observer m is defined
as follows:

clm(k)(t) = t′
d⇔ ∃x̄x̄′ W(m, k, x̄) ∧ evm(x̄) = evk(x̄

′)∧
t = xt ∧ t′ = x′t ∧

(

∀z̄ W(m, k, z̄) ∧ zt = t→ x̄ = z̄
)

.

By this definition, clm(k) is a function relating t′ to t if k’s clock shows
t′ when m’s clock shows t. That is, clm(k) is the time k’s clock shows
at t according to m’s clock. Thus, e.g., v(Apr(clm(k), t)) = 2 means
that at t (according to m’s clock) k’s clock runs twice as fast as m’s.
Now we are ready to state our axioms for general relativity.



A LOGIC ROAD FROM SPECIAL TO GENERAL RELATIVITY 15

AxPh−: The velocity of photons an observer “meets” is 1 when they
meet, and it is possible to send out a photon in each direction
where the observer stands, i.e.,

∀k ∀p ∈ Ph ∀x̄ ∈ wlk(k) ∩ wlk(p) |vk(p, x̄)| = 1 and

∀k ∀x̄ ∈ wlk(k) ∀v ∈ Q3 |v| = 1 → ∃p ∈ Ph ∩ evk(x̄) vk(p, x̄) = v.

AxSm−: Meeting observers see each other’s clocks slow down with the
same rate, i.e.,

∀mkx̄ȳ m, k ∈ evm(x̄) = evk(ȳ)

→ v(Apr
(

clm(k), xt)
)

= v
(

Apr(clk(m), yt)
)

.

We introduce an axiom system for general relativity as the collection
of the following axioms:

GenRel
d
= {AxFd,AxPh−,AxEv−,AxSf−,AxSm−,AxDf} ∪ Cont.

Axiom system GenRel contains basically the same axioms as SpecRel,
the difference is that they are assumed only locally but for all the ob-
servers. Axiom AxDf also fits into this picture. By Theorem 2.2, the
worldview transformations between inertial observers are affine ones,
and AxDf is the localization of this statement assumed for all the ob-
servers. Cont is a property of real numbers that we could have assumed
in SpecRel but we did not assume it because it was not needed.

The following theorem states that our axiom system GenRel captures
general relativity in that its models are exactly the spacetimes of usual
general relativity. For the notion of a Lorentzian manifold we refer to
[10, p.55], [19, p.241] and [3, sec.3.2].

Theorem 4.1 (Completeness theorem). GenRel is complete with re-

spect to its standard models, i.e., to Lorentzian Manifolds over real

closed fields.

This theorem can be regarded as a completeness theorem in the fol-
lowing sense. Let us consider Lorentzian manifolds as intended models
of GenRel. How can we do that? We give a method for construct-
ing a model of GenRel from each Lorentzian manifold; and conversely,
we show that each model of GenRel is obtained in this way from a
Lorentzian manifold. By the above, we defined what we mean by a
formula ϕ in the language of GenRel being valid in a Lorentzian man-
ifold, or in all Lorentzian manifolds. Then completeness means that
for any formula ϕ in the language of GenRel, we have GenRel ⊢ ϕ iff
ϕ is valid in all Lorentzian manifolds over real closed fields. That is
completely analogous to how Minkowskian spacetimes were regarded
as intended models of SpecRel in the completeness theorem of SpecRel,
see [3, Thm.11.28, p.681] and [16, §4]. For more on the proofidea for
our completeness theorem for GenRel, cf. also [3, items 11.28-11.30,
pp.681-2].
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Our theory GenRel was obtained from AccRel by getting rid of the
concept of inertiality on the level of our axioms. However, we can
recover this concept. We call the worldline of observer m timelike geo-

desic, if each of its points has a neighborhood within which this observer
“maximizes measured time” between any two encountered events, i.e.,

∀z̄ ∈ wlm(m) ∃δ δ > 0∧
∀kx̄ȳ |x̄− z̄| < δ ∧ |ȳ − z̄| < δ ∧ Ob(k) ∧ x̄, ȳ ∈ wlm(m) ∩ wlm(k)

∧
(

∀w̄ ∈ wlm(k) |w̄ − z̄| < δ
)

→ |xt − yt| ≥ |wmk(x̄)t − wmk(ȳ)t| .
In this case we also say that observer m is an inertial body (but not
necessarily an inertial observer). This definition is justified by the twin
paradox theorem of AccRel, see Theorem 3.1. This theorem says that
in the models of AccRel the worldlines of inertial observers are timelike
geodesics in the above sense.

According to the definition above, if there are only a few observers,
then it is not a big deal that the worldline of m is a time-like geodesic
(it is easy to be maximal if there are only a few to be compared to). To
generate a real competition for the rank of having a timelike geodesic
worldline, we postulate the existence of many observers by the following
axiom scheme of comprehension.

Compr: For any parametrically definable timelike curve in any observer’s
worldview, there is another observer whose worldline is the
range of this curve.

A precise formulation of Compr can be obtained from that of its ana-
logue in [3, p.679].

The assumption of axiom schema Compr guarantees that our defi-
nition of geodesic coincides with that of the literature on Lorentzian
manifolds. Therefore we also introduce the following theory:

GenRel+
d
= GenRel ∪ Compr.

So in our theory GenRel+, our notion of timelike geodesic coincides
with its standard notion in the literature on general relativity. All the
other key notions of general relativity, such as curvature or Riemannian
tensor field, are definable from timelike geodesics. Therefore we can
treat all these notions (including the notion of metric tensor field) in
our theory GenRel+ in a natural way.

In general relativity Einstein’s equations give the connection be-
tween the geometry of the spacetime and the energy-matter distribu-
tion (given by the energy-momentum tensor field). Since in GenRel+

all the geometric notions of the spacetime are definable, we can use
Einstein’s equation as a definition of the energy-momentum tensor,
see, e.g., [8] or [10, §13.1, p.169], or we can extend the language of
GenRel+ by the concept of energy-momentum tensor and assume Ein-
sten’s equations as axioms. As far as we do not assume anything more
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from the energy-momentum tensor than its connection to the geometry
described by Einstein’s equations, there is no real difference in these
two approaches. In both approaches we can add any extra condition
about the energy-momentum tensor to our theory, e.g., the dominant
energy condition or that the spacetimes are vacuum solutions.
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[5] Andréka, H., J. X. Madarász, I. Németi, P. Németi, and G. Székely. Vienna
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