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1.  

My aim in this essay is to explore some issues concerning the structure of our thinking about the concepts of law and cause, as these figure in scientific contexts.  I will be particularly concerned with the evidential reasoning we use to infer to causal claims and laws and the way in which we use such claims in explanations.  My interests will be primarily epistemic and methodological, rather than metaphysical. My discussion is based on the assumption  (and I hope illustrates) that it is possible to say interesting   things about how  “cause” and “law”  figure in scientific practice without providing a full – blown metaphysics of science.  Despite this, I believe that my discussion is relevant to the claims of metaphysicians in (at least) the following way: providing a plausible metaphysical account of important scientific notions requires that one avoid  mistaken views about the structure and interrelations of those notions. Otherwise one may end up attempting to provide metaphysical foundations for non-existent features of science or failing to take account of resources present in actual science used to address some of the problems with which metaphysicians are concerned. I illustrate these points below.  

To set the stage for what follows, I begin by recalling a familiar dialectic. Suppose   we have a catalog of all of the non-modal   particular facts   true of our world— the Humean Supervenience Base (HSB). These facts are “non-modal” in the sense that their characterization does not require reference to notions like “law”, “cause”, “physical possibility”, “disposition” and so on. (Further details will not matter for our purposes.) We then ask whether laws and causal claims respect Humean supervenience in the sense of Lewis (1986) – that is, whether they supervene on this HSB. (Here we may distinguish two possibilities – (i) the  supervenience claim might  be true of our world, as a matter of contingent fact, or (ii) it might be true in all metaphysically possible worlds.  Lewis’ official position endorses only (i), although the usual arguments for supervenience, if cogent at all, seem to also support (ii)).  The most plausible version of the view that the laws do so supervene, either in sense (i) or (ii), appeals to a conception of laws advocated by Lewis (and attributed by him to both Mill and Ramsey): the Best Systems Analysis (BSA). On this conception, one considers alternative systemizations that capture features of the HSB. The “best” systemization  (or systemizations) is  (are) those that achieve(s) the best balance of “simplicity” and ‘strength”. Laws are   those claims (axioms or theorems) that occur in all such best systems and that describe regularities.  Simplicity and strength in turn are taken to be characterizable in a domain-independent way, not requiring reference to any particular subject matter or to unreduced modal assumptions.  A substantial part of the appeal of the BSA is that it is supposed to correspond (in a very idealized form) to how abductive inference and theory choice in science work —  the HSB  represents the most extensive body of inductive evidence we could possibly possess, and (it is contended) simplicity and strength are the criteria  scientists actually employ in choosing theories  and  laws on the basis of this evidence.  

Now a familiar puzzle looms. On the one hand, as discussed in more detail below, the generalizations identified as laws in the BSA seem to coincide rather imperfectly( at best) with the generalizations regarded as laws in scientific practice.   On the other hand, if we reject the claim that laws supervene on the HSB, we seem (or so it is argued) faced with a massive undetermination problem in which claims about laws are placed beyond the possibility of empirical test or confirmation. For example, we seem   committed to the possibility that there might be two different worlds, in one of which the Schrodinger equation is a law   and in the other of which this equation describes a mere regularity, but which are otherwise identical, with the result that no empirical evidence could possibly tell us which if these worlds we inhabit. The upshot is that both the claim that the laws supervene on the HSB and the denial of this claim appear to have unattractive consequences. A parallel dilemma holds for causal claims. 

When both horns of a dilemma appear to lead to unacceptable results, a good strategy is to re-examine the assumptions leading to the dilemma, rather than opting for impalement on one horn on the grounds that this is less bad than impalement on the other. This reexamination is (part of) what I propose in this paper. I will focus on the epistemological/methodological motivations for the BSA (and Humean supervenience)  and will argue that  these are  misguided – at least if our goal is to understand how the notions of law and  cause   figure in actual science.    In particular, I will argue that examination of actual cases of inference to conclusions about laws and causal relationships do not take the form of applying criteria like simplicity and strength (as these understood within the BSA) to an evidential basis that is entirely non-modal in character. Instead,  (i) the   evidential base in real-life science itself embodies modal commitments (having to do, for example, with the causal structure of the processes that have generated that evidence). Moreover (ii), even apart from this, in order to reach conclusions about causal and nomological relationships, additional assumptions must be conjoined with this evidential base.  These additional assumptions typically do not reflect the domain-independent criteria for simplicity and strength on which the BSA focuses.  Instead they are domain- specific empirical assumptions that have causal or nomological content. Put very schematically, the typical pattern of inference to laws and to causal claims does not take the form:  

Non-modal claims (about correlations, spatio-temporal relationships etc) + application of criteria involving a best balance of simplicity and strength ( conclusions about causal claims and laws

Instead such inferences have the following structure:

Non-modal claims  + domain specific empirical assumptions   having causal or nomological content (including but not limited to assumptions about the structures that generate observed correlations)  ( conclusions about other causal claims or laws. 

Two consequences are that the underdetermination problems about laws and causal claims are often resolved in very different ways than standard philosophical discussions suggest and that certain possibilities on which philosophers have focused rarely or never arise in actual practice. 

The remainder of this essay is organized as follows. Section 2 reprises the BSA account of laws.    Section 3 then discusses inference to causal claims.  Section 4 discusses   issues about the content and epistemology of laws. 

2.

David Lewis gives the following canonical formulation of the BSA:

A contingent generalization is a law of nature if and only if it appears as a theorem (or axiom) in each of the true deductive systems that achieves a best combination of simplicity and strength (p 73, 1986) 

Strength is understood as informativeness—a theory is stronger the more possibilities it excludes. Simplicity is understood as having to do with very general considerations that are domain –independent in the sense of not resting on subject matter- specific empirical considerations.  Often these considerations   are taken to be broadly formal or syntactic in character.  Lewis’ examples include the claim that “a linear function is simpler than a quartic or step function” and that a “shorter alteration of prenex quantifiers is simpler than a longer one”.  Other simplicity-based considerations that are invoked in discussions of the BSA rest on domain-general “counting” intuitions   – e.g., theories postulating  fewer different kinds of entities are simpler.  Although the details of   how simplicity and strength are to be understood may not seem crucial to the BSA project, it is crucial   that both simplicity and strength be specifiable in a way that does not presuppose or rely on assumptions that themselves have causal or nomological content, since this would undermine the reductive goals of the project.  


As Hall (forthcoming) remarks, there are at least two different strands to Lewis’ statement of the BSA. The “official” doctrine is a metaphysical   claim, according to which laws supervene on the HSB and the BSA shows us how this is the case. However, there is also an accompanying epistemological back-story. This is that the BSA describes, in an abstract or idealized way, the considerations that guide real scientists in   identifying laws. In particular, the idea is that we should think in terms of an idealized,   super-intelligent scientific investigator who has access to all of the information in the HSB and who  then constructs systemizations of this information which aim at  achieving a best balance of simplicity and strength. The theorems/ axioms describing regularities common to these systemizations will at least approximately or largely coincide with generalizations we presently regard as laws because the   procedure employed is just an idealization or extension of the procedure actual scientists employ in discovering laws. 

Lewis is quite explicit about this aspect of the BSA, writing:    

…I take a suitable system to be one that has the virtues we aspire to in our own theory-building, and that has them to the greatest extent possible given the way the world is.  

This feature of the BSA is not readily dispensable. I have already suggested it is far from obvious that the application of the BSA to the HSB leads to a notion of law that picks out just those generalizations regarded as laws in contemporary science.   Much of the appeal of the BSA rests on the assumption that, not withstanding this, the BSA is a reasonable description of how theory-choice in science actually proceeds, so that even if the details may be murky and the fit with scientific practice less than exact, something like the BSA   must capture the criteria by which scientists identify laws, thus validating the conclusion that laws just are whatever satisfy these criteria. If this assumption is not correct   —if scientists do not in fact identify laws by constructing systemizations that achieve a best balance of simplicity and strength, as these virtues  are understood in the BSA--  then it is hard to see why we should accept the BSA.  

                                                       3. 

To explore these issues, I begin with some very simple and schematic problems  involving causal inference.  These problems are in some respects different from   corresponding issues surrounding laws of nature, but I believe   a number of the considerations which surface in connection with the former   also transfer to   the latter.  

Suppose that in a small corner of our world (not some merely logically or metaphysically possible world), two variables X and Y   are (or at least appear to be) correlated or non-independent. Standard treatments of causal inference tell us that there are a number of different ways this correlation may arise.  Confining ourselves to some of the simplest possibilities, the correlation might be due to (or reflect that) (i) X causes Y, (ii) Y causes X, or (iii) might be due to some third factor Z , which we have not yet observed, but which acts as a common cause of both X and Y, with there being no causal connection from X to Y or from Y to X.  
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Another apparent possibility is that (iv) the correlation between X and Y arises by chance or coincidence, without being the result of some underlying causal structure like (i), (ii) and (iii).  There are standard statistical procedures that allow us to test   for this   possibility in the following sense:  If we have information about how the values of X and Y   we observe are generated from the underlying population from which they come (e.g., if  the values of X and Y are a random sample from a single underling population), then, relative to this information, we can test  the hypothesis  that X and Y are independent in this underlying population, but because of  chance variation appear to be correlated in the   sample  we draw.  Assumptions like random sampling (or any other assumption that might allow us to address the possibility that the sample is misleading about the underlying population) are most naturally understood as   assumptions about the causal structure of the procedure or mechanism by which the sample is generated.  Without such additional assumptions the sample correlation in itself has no interpretable evidential significance for what is going on in the underlying population.  Thus even in this case it is the conjunction of the sample correlation and additional assumptions that have causal or modal content (rather than just the sample correlation itself) that warrants any conclusion about the underlying population and about whether the sample correlation is merely accidental. Note also that in this context the claim that the sample correlation  is “accidental”  means simply that the sample is misleading about the underlying population This notion of “accidental” does not allow us to attach any sense to the possibility that the correlation holds in the underlying population but only “accidentally” . 

Suppose the hypothesis that X and Y are non-independent in the underlying population survives whatever tests we employ and we accordingly focus on   (i), (ii) and (iii), which we are willing to regard as the only remaining possibilities. Confining ourselves to these,  we see that without further information or additional assumptions, we (still) face an underdetermination problem:  on any plausible conception of evidential support, the  information that X and Y are correlated  does not in itself differentially support any one of these  alternatives over the others. Indeed, this is so even if we manage to identify some third variable Z which is correlated with X and Y—this by itself  does not show   this Z is a common cause of X and Y, since, for example, X may instead cause Z which causes Y, the X-Z correlation may be due to yet another variable W and so on.  

 My view is that in real-life science this underdetermination problem is rarely     solved just by appeal to  the sorts of abstract, domain –independent simplicity considerations that  figure in  the BSA.  In particular, researchers do not proceed by arguing   that one of (i-iii) is “simpler”  than the others and should be preferred for that reason. To begin with,  it is hard to see how simplicity considerations could be used to discriminate between (i) and (ii). And even if (iii) is judged less simple either than (i) or (ii) on the grounds that involves three variables rather than two and two causal connections rather than just one, there is general agreement that this would be very poor grounds for dismissing (iii)—correlations between two variables that arise because of the confounding influence of a third are extremely common in nature, and it would be terrible methodology to simply dismiss this possibility, on the grounds that it is not “simple”.   Nor is it plausible that one of the above three alternatives is “stronger” than the others.

 
Another move which is not seriously considered in real science is that of insisting that this apparent underdetermination problem is illusory; that  (i) – (iii) are not really alternatives at all; and that instead are merely equivalent ways of encoding the same correlational facts. The kind of local, small world problem of casual underdetermination described above is  ubiquitous in many areas of science, and scientists work to solve these problems, rather than denying that they can arise. 

Instead solutions to the sort of undetermination problem under discussion appeal to two interrelated considerations, often employed together:  additional empirical assumptions (which may be modal or causal in character) and additional evidence.  


 Here is a simple illustration drawn from my book Making Things Happen. (MTH).  Suppose it is possible to experimentally manipulate the value of X via some process that affects Y (and is known to affect Y), if at all only through X, in the sense that all causal routes (if any) from the experimenter’s manipulations I to Y, go through X as an intermediary, and there is no cause of  the manipulation I itself that affects Y via a causal route that does not go through X.  Following a now established usage, I will call such a manipulation an intervention  on X with respect to Y. If and only if,  under such  interventions on  X, Y consistently changes   value,  we may conclude  that X causes Y. Similarly, if interventions on Y are correlated with changes in the value  of  X, we conclude that Y causes X. Finally, if X and Y are correlated but  neither interventions on X are correlated with Y nor interventions on Y with X, then we conclude that  X does not cause Y and Y does not cause X. Thus,  if (i) –(iii) are the only possibilities,  the correlation between X and Y must be the result of some third factor Z, even if we are unable to identify that factor. 

   
Let us consider the structure of these inductive inferences (since that is what they are)  in a bit more detail. First, they take the general form of an eliminative induction, in which one argues for one of the alternatives (i)- (iii) by ruling out the others. Second, the inferences rely on a principle connecting what happens under interventions to the existence of causal relationships: very roughly a principle like:

(M) X causes Y if and only if X and Y would be correlated under interventions on X.  

This principle is fairly general but still a good deal more specific, in terms of its content, than a completely domain- independent simplicity constraint like the advice to always choose linear relationships over quadratics.   For example, M doesn’t apply to domains where the notion of an intervention doesn’t make sense or where the relationships of interest are not causal relationships (e.g. formal theories of syntax) .  M does some of the work   some philosophers suppose is accomplished by appeals to domain-general simplicity constraints  but looks  different  from such constraints.   

In fact, this way of putting matters understates what is distinctive about appeal to     M, for  this doesn’t just involve  combining  M  with the original evidential base represented by the correlation between X and Y—call this  C-- to solve the underdetermination problem. Rather, the intervention itself creates (or if you don’t like that word, at least makes use of information in) a different, and in some respects   richer evidential base than that represented by C. To explain this, we need to consider in more detail what an intervention does.  On one widely accepted understanding, an intervention on X alters the  structure of the  causal relationships in which X is embedded,  putting the variable intervened on, X,  entirely under the control of the intervention variable I  so that the values of X  are fixed by the intervention and not by whatever causal factors previously determined the value of that variable. Graphically, this has a simple representation:  the intervention I  on X, breaks all arrows directed into X in the original system, replacing these with a single arrow from I to X, and preserves all other arrows, including those directed out of X. Thus if X causes Y (X(Y) an intervention on X  yields the following structure: I( X( Y.  

By contrast if the correlation between X and Y arises because Z is a common cause of both X and Y,  then the effect of an intervention on X is to replace the structure  (iii) above with the structure

I(X       Z(Y 
It is because, in this second case, interventions on X will “break” the arrows directed into X, that we expect that X and Y will not remain correlated under these interventions , telling us that, in these cases, X does not cause Y. Thus the result of an intervention on X in   (iii) is  to generate a new set of regularities  in which X and Y are independent and  which are distinct from  the original correlation C.   It is the combination of this new evidence with  M, which allows us to resolve the original underdetermination problem.
  

Next a word about reduction: causal notions occur on both sides of M since the notion of an intervention is characterized causally. This makes M unsuitable as a principle that might figure in a reductive analysis of causation. However, it does not follow that M,  when used  for methodological or  epistemic purposes, is viciously circular or unilluminating. The reason is that the causal information required to recognize whether one has carried out an intervention on X with respect to Y is not information about the existence or not of a causal link between X and Y. Instead, it is information about other causal relationships --  about, for example, the existence of a causal relationship between  I and X, between I and certain other causes of Y  (besides X) and so on.   Thus the general pattern exemplified by the role of M in causal inference is something like: 

“Old” causal assumptions concerning relationship A+ correlational information(  “New” Causal conclusions concerning B (where A is different from B) 

Put slightly differently, at least in this particular case,  the solution to the puzzle of how one gets  conclusions about causal relationships from purely correlational, non-modal premises is that one doesn’t  -- the modal content in the conclusions derives   from  the combination of correlational information with additional premises that are already causal or modal in character.  

Of course, one can   go on to ask about the status of these causal premises—where do they come from and what justifies our believing them? Don’t such premises have to ultimately emerge from or be grounded in information that is entirely non-causal in character ?  Here it is natural to invoke   the anti-foundationalist picture associated with Neurath’s raft. As an empirical matter, there is no reason to suppose that we ever engage in causal inference in situations in which we have no causal background information
 at all and must rely instead only on purely correlational information. Instead,  we begin in media res, in a context in which he already have some causal information which we then use in combination with non-causal information to reach new causal  conclusions.   We can test particular causal background assumptions  by making use of still other causal assumptions, but there is no reason to suppose that this process bottoms out in some procedure that allows us to reach causal conclusions by relying  on non-causal information alone. Of course it can always be contended that the causal assumptions employed in the above inferences “must in principle” be fully replaceable by non-causal information, but those making this claim  need  to show in detail  how this can be accomplished.  It is not enough to merely assert that this “must” be possible. 

So far I have been focusing on cases in which we learn about causal relationships by experiments. Although I lack the space to provide details, I would argue that a broadly similar pattern also holds  in connection with causal inference from purely observational (that is non –experimental data).  As a brief example, work by Spirtes, Glymour, and Scheines  (2001) shows that if we are willing to assume two principles (labeled by them   Causal Markov (CM) and Faithfulness (F) conditions ) connecting causal structure to correlational relationships we may sometimes (but by no means always) “identify” that causal structure, in the sense that a unique  structure is picked out by  the correlational information, given the connecting principles.
  (To give the reader a hint of what is involved, causal relationships are represented by directed graphs, correlational relations by an accompanying probability distribution, and  a graph G with vertices V and accompanying probability distribution P satisfies the Causal Markov condition if  for any two  variables X and Y in  V,  X and Y are independent of all other variables in V except possibly for their descendants, conditional on their parents.  Condition F is a kind of converse.) The overall structure of these inferences is  similar  to the pattern when  M  is employed. Causal conclusions are not inferred from correlational data alone or just from the application of completely domain-general criteria like simplicity and strength to correlational data. Instead, the  principles employed  to get us from correlational information to causal conclusions are much more domain-specific and whether they hold in any particular case is an empirical question,  the answer to which is very much dependent on background knowledge. (Both CM and F are principles that apply distinctively to causal inference, rather than to inductive inference in general and there is a long list of conditions under which CM fails to hold—see Hausman and Woodward, 1999). Moreover, while CM and F allow us to infer from correlational information to causal conclusions, they certainly don’t provide the basis for a reduction of  the latter to the former. In addition, application of these principles to correlational information will sometimes allow us to  resolve underdetermination problems, but not always—this depends on  the details of correlational information in question. As an illustration, suppose X and Y are correlated, and we wish to know whether causal structure (i  - iii) from above lies behind this correlation. Suppose also X and Y are embedded in a larger structure which has the following features: First there are variables. W and Z which are not correlated with one another  but   are correlated with X and which furthermore are dependent conditional on X—in other words W ( Z, W  ((   X , Z  (( X and W ((  Z  | X  (where X(Y means X and Y are independent and X (( Y means X and Y are dependent) .  Second there are variables U and V which bear a parallel relationship to Y, so that one has the following structure:
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              Figure (v) 

where an undirected edges between two variables  means   they are correlated, but implies nothing about  the causal relationships which generate this correlation and the arrow from X to Y which is punctuated by a question mark indicates that we wish to determine whether X causes Y or whether instead they are related in some other way.  Given CM and F,  further correlations (or their absence) among these variables, W, Z, U , V, X and Y will allow us to  identify which of  (i), (ii) and (iii) is the correct causal structure. Put somewhat more “metaphysically” , the correlational  facts described  above, combined with the principles (CM) and (F), are sufficient to “fix” which of the causal structures (i)- (iii) holds.  


However, this result is limited in the following respects. First, nothing guarantees that,  in the situation under investigation,  the additional variables W, Z, U, and V will  be present with the right correlational  relationships – it is presumably a “contingent” matter whether these are present—and if they are not, whatever  correlations are present may not fix what the causal structure is, at least relative to (CM) and (F). Second, there are many cases in which the same correlations are consistent with a number of different causal structures, even given CM and F.  For example, the correlations generated by the common cause structure (iii) will also be generated by the structures X-(Z( Y and Y( Z-(X, so that which of these structures holds is underdetermined by these correlations, even given CM and F.  As these examples illustrate,  the partial solution to underdermination problems provided by CM and F does not in any way show or require that causal claims must always be “reducible” to  or even “supervene on” correlational claims.   

CM and F prompt a general observation about appeals to “simplicity” in science. It would not be unreasonable to interpret these principles as embodying  a particular conception of simplicity which is being used to guide causal inference
.  However,  “simplicity”  in this context means something very different from what it means in the BSA. The conception of simplicity embodied in CM and F rests on domain-specific empirical assumptions about the subject matter to which they are applied, rather than  on formal or trans-empirical assumptions   applicable to all of science. Studies of inductive inference elsewhere in science reveal a similar pattern. For example, Sober (1988) argues that while appeals to simplicity considerations play a role in phylogenetic inference, the considerations in question rest on domain-specific empirical assumptions about the processes underlying speciation rather than on purely formal considerations or on considerations that apply globally to all domains. Thus while it is not wrong to suppose that simplicity, properly understood, plays a role in inductive inference and theory-choice in science, it is wrong to suppose that simplicity in the sense in which it is understood in the BSA plays this role. 

The   examples above are cases in which the causal relationships and the associated correlations involve “small” or “local” structures  which we think of as embedded in a much larger world.   The question that is implicit in discussions of Humean supervenience is how we should think about matters when the structures and correlations in question  are “scaled up” to encompass the entire universe.  Suppose that we consider “all” the correlations that will ever occur anywhere in our universe and “all” other non-modal facts—in other words the entire HSB.  Now we no longer face the problem that the correlation in some sample that we are able to observe may be misleading about an underlying population correlation, since the HSB contains all information about population correlations. Similarly, since the HSB contains all correlations that ever hold, there is no issue about experimentation or other naturally occurring processes revealing new, previously unrealized correlations (as real life experimentation does).  Next consider the following line of thought: Even if, as we have argued, local correlational information by itself underdetermines local causal structure and   to the extent we can infer to a unique causal structure,  domain-specific  connecting principles are required, might it not be the case that matters are completely different when we consider the entire HSB, with this sufficing by itself to fix the causal structure of the entire universe (given the assumptions of the BSA)? 

One reason for skepticism about this suggestion is simply that there seems to be nothing in our actual practices of causal inference (which largely have to do with local inferential problems)  that warrants  this conclusion or even makes it seem plausible. In such local problems,  causal claims fail to supervene on or reduce to local Humean facts, and   additional appeals to  domain-independent considerations of simplicity and strength also don’t seem sufficient to yield supervenience. The defender of Humean supervenience (understood as the thesis that the causal structure of the whole universe supervenes on the full HSB) must hold that when we scale up to the entire universe matters become fundamentally different, but what positive grounds are there for supposing that  this sort of discontinuity exists? In addition, as we have seen, one reason why causal structure may fail to be fixed by local non-modal facts, even given connecting principles like M, CM and F is that, as a contingent matter, nature may fail to cooperate in producing enough of the right non-modal facts—there may be   correlations such that if they were to occur,  these would be consistent with (would “fix”) one  unique causal structure,  but initial conditions may be such that these correlations remain unrealized. For example, if the right pattern of correlations occurs among variables in Figure (v), this will be enough to fix that X causes Y (rather than Y causing X or some other possibility)  but  (locally at least) nothing guarantees that such  correlations will occur. It appears that only if we have such a guarantee at the global level  (that is, a guarantee that  the HSB includes enough correlations to disambiguate all possible candidates for the global causal structure)  that suprevenience will be plausible. Where does this guarantee come from? 

Does that mean   we should conclude instead that global causal structure does not supervene on the HSB? Although I was once prepared to draw this conclusion (cf. MTH, Chapter 6),  I  now  think  a different response is preferable. I suggest  we should conclude instead that the entire exercise of asking whether or not causal  structure supervenes on the HSB is unilluminating and irrelevant  to understanding our  conception of causation and  how it relates to evidence. (I will argue below that a similar conclusion follows for the relationship between laws and the HSB.) Our conception of causation is formulated for situations in which we don’t have access to anything like the full HSB but rather to much more limited and local forms of evidence. Our conception is also such that it fits with (and its application is guided  by) the availability of principles like (M), (CM) and (F)  -- principles that have causal and nomological content built into them.  These aspects of the situations in which we infer to and reason about causal conclusions help to structure our concept of causation and to endow it with the features it possesses.  It is unclear why we should suppose  that we can cast light on this concept   and how it relates to evidence by ignoring the features just described and by focusing attention instead on entirely imaginary  scenarios in which we suppose we have access to  a set of facts (the HSB)  we will never   know about and in which we are also asked to imagine that we are guided by ill-defined principles (achieving a best balance of simplicity and strength) that do not in fact characterize our best inferential practices.  Why suppose that the “intuitions” that result from such exercises (either pro or con supervenience) track anything objective? 






4.  

 
I turn now to laws. First, some terminology. “Laws ” can be used to refer either to generalizations  representing  relationships in nature, or  to those relationships   themselves.  Since some regimentation is necessary, I will use the word in the former sense.  I assume, however, that if a  generalization is a law, then it must accurately  represent (at least up to some  level of approximation or within a certain range or regime of circumstances) how matters stand in nature, even though the law itself is not “in” nature.   This fits with some aspects of ordinary scientific usage, according to which, e.g.,  Maxwell’s equations, the Schrodinger equation and so on are described as laws of nature.  


 Turning to more substantive issues, begin with the idea,  that we can construct successful theories about nature that involve a distinction between laws and initial (or boundary) conditions (hereafter ICs) and that,  moreover, this distinction plays a central,    role in many familiar physical theories. Here is a familiar quotation from Wigner (1979) expressing the idea:

The regularities in the phenomena which physical science endeavors to uncover are called the laws of nature. The name is actually very appropriate. Just as legal laws regulate actions and behavior under certain conditions but do not try to regulate all actions and behavior, the laws of physics also determine the behavior of its objects of interest only under certain well-defined conditions but leave much freedom otherwise. The elements of the behavior which are not specified by the laws of nature are called initial conditions. (1979, p. 39)
Elsewhere Wigner writes:

The world is very complicated and it is clearly impossible for the human mind to understand it completely. Man has therefore devised an artifice which permits the complicated nature of the world to be blamed on something which is called accidental and thus permits him to abstract a domain in which simple laws can be found. The complications are called initial conditions; the domain of regularities, laws of nature. Unnatural as such a division of the world’s structure may appear from a very detached point of view, and probable though it is that the possibility of such a division has its own limits, the underlying abstraction is probably one of the most fruitful ones the human mind has made.  (1979, p. 3) 

Wigner’s remarks suggest several points. The first is that  laws and ICs are not characterized  independently,  but rather with reference to one another --   so that when a theorist adopts a particular “split”  between laws and initial conditions, she makes a decision about what goes into both categories at the same time. The second is that although the law/IC distinction is useful  in many contexts, this is  consistent with the   distinction   turning out not to be a clear or useful one in other (e.g.,  some cosmological) contexts.  It is an empirical question whether a given part of nature (or all of it) admits of an illuminating split between laws and initial conditions. 


As Wigner and others also emphasize, one important way in which the law/IC distinction manifests itself is in the very different way in which various specific symmetry and invariance conditions interact with or constrain laws, on the one hand, and initial conditions on the other.  For example, genuine laws   are expected to remain invariant under changes in e.g. absolute position or absolute velocity in the sense that that the relationships described by the laws will continue to hold under such changes.  By contrast, although there may be patterns or regularities in initial conditions, there is no such expectation that these will satisfy similar symmetry/invariance conditions. Thus, among other considerations, we require a distinction between laws and initial conditions if we are to make sense of the role of invariance principles. John Earman, no friend of metaphysically extravagant, non –Humean notions of law, expresses this point as follows:  

  .. [I]nvariance principles can be formulated only if one admits the existence of two types of information which correspond in present-day physics to initial [and boundary] conditions and laws of nature. It would be very diﬃcult to ﬁnd a meaning for invariance principles if the two categories of our knowledge of the physical world [laws vs. initial/boundary conditions] could no longer be sharply drawn  

In thinking about  the role of laws and initial conditions in science,  I favor taking  these notions and the contrast between them (as well as  related notions that are also part of the same nomically committed  circle of concepts   invariance,    physical independence,   and so on )  as primitive. By this I mean  merely that I will not attempt to provide  an account that  explains these notions in terms of notions that are not already part of the  this  circle of concepts
.  I believe, however,  that  it is possible to say something about how these two notions are connected.   It is at this point that notions  like invariance (now understood in a generalized sense   explained below) enter the picture.  The idea I want to defend is  that a central feature of laws is that they describe relationships that will (or would) continue to hold over   some substantial range of  different ICs, as well as other conditions.   A generalization having this feature it is stable or invariant under  those conditions.  If we think of initial conditions as specifications of the values taken by variables figuring in a law when it is applied to   particular systems, then the conditions over which laws are invariant will include different ICs, including values of ICs     brought about by  intervention-like changes, of which more below.  For example, the Newtonian inverse square law  describing the gravitational force between two masses will continue to hold under changes in the distance between the masses, and the magnitudes of the masses themselves, both variables that figure in this law. Usually or always laws will  also be  invariant under changes in many other sorts of   conditions  as well, including conditions  that one doesn’t naturally think of as ICs,  and that do not correspond to variables that explicitly  figure in the law. (I will call these background conditions) For example, the Newtonian inverse square law will/would   continue to hold under changes in  such background conditions as the color  or shape of  the masses  that attract one another gravitationally.  Note that on this understanding of invariance,  the notion has  counterfactual commitments built into it. 

 
One way in which this stability feature of laws manifests itself in scientific practice is in scientists’ willingness to combine the same law with many different ICs and to then use the law to calculate what would happen under these different conditions, a procedure that obviously presupposes that the law will continue to hold under  a range of ICs (and typically  a range of background conditions as well).  Thus, one can take Coulomb’s law and combine it with a range of different assumptions about the charge distribution on a conductor, the geometry of the conductor etc. (whether it is a long straight wire, a solenoid etc.) and use this law in combination with these initial conditions to determine in each case what the resulting electrical field would be.  Or, to put the point   in  a more material mode:  If one has a long, straight current carrying wire and changes the current through the wire or alters the geometry of the conductor (say by coiling the wire up into a solenoid) the field will change in ways predictable from Coulomb’s law, but the relationship between charge, distance and field described by that law will continue to hold under these changes—it is in this sense that the law describes a relationship that is invariant. We may thus think of the law as describing a physical dependency relationship connecting  changes in the charge distribution etc. to changes in the field. 


Laws contrast in this respect with non-lawful, accidental relationships like  

(W) All the wires on L’s desk at time t are copper  

Special circumstances aside, one may readily empirically verify (e.g., by experiment) that it is possible to introduce a wire onto L’s desk that at times before t is not copper and that the upshot of this operation will not be to change the wire into  copper and that, moreover,  the desk will not repel the wire from its surface.  This shows that the generalization (W) and the relationship described by it are not stable or invariant  under this sort of change. I believe  it is often this feature of (W) that we have in mind when we describe it as paradigmatically “accidental”
. Note that this difference between, on the one hand, (W) and, on the other, the Newtonian inverse square law or Coulomb’s law seems to be an objective, empirically ascertainable difference— for example, it doesn’t just  have to do with just with a difference in  our epistemic attitudes  toward (W )  and Newton’s law.  Moreover, it is far from obvious that this difference merely has to do with a difference in  the ways in which these   generalizations fit into some much  larger systemization involving many other regularities, as on the BSA picture.  Of course the empirical difference in question may influence how we think the different sorts generalizations fit into such a larger systemization,  but  this may be a consequence of our recognition of the empirical differences just described, rather than the source of those differences. Certainly, if one asks how one might go about  determining whether W is   non-invariant in the way described,  it doesn’t look as though one needs to proceed  by considering alternative large scale systemizations of all the regularities obtaining in the universe and   W’s place in these. The empirical considerations that lead us to regard W as non-invariant seem much more local and direct than this.  


This pair of examples is meant to motivate the general idea that there is a relationship between lawfulness and invariance. However, in formulating this relationship more precisely we face  a number of different  issues. First, there are many changes in initial and background conditions over which even paradigmatically accidental generalizations will continue to hold: the generalization (W) will (one supposes) continue to hold if the price of tea in China were to change, if I were wearing a blue shirt rather than a green shirt at time t and so on. It would also continue to hold if I   introduce a new copper wire onto L’s desk.  The fact that even accidental generalizations continue to hold over some changes in initial and background conditions would not create problems for our claims about a law/invariance link if we were prepared to argue that a   genuine law must continue to hold   under all  possible ICs and background conditions,   since we could then argue that (W) fails to be a law because there are some such conditions (introducing a non-copper wire onto the desk) under which (W ) does not hold.   


This line of thought will appeal to those who think that genuine laws are exceptionless, but it comes with substantial costs. One is that many   generalizations described as “laws” in the scientific literature break down (or are believed to break down) under some conditions. For example, Maxwell’s equations break down under conditions under which quantum mechanical effects become important, general relativity is widely believed to require correction at very small length scales (the Planck length) and so on.  By “break down” I mean  that under these conditions, the generalizations   are not even approximately true.  As I propose to think about invariance, a generalization like the Newtonian inverse square law that holds to a high level of approximation under a range of classical conditions (e.g., weak gravitational fields) is stable under those conditions, even if, because of General Relativistic corrections, it is not exactly true under those conditions.  Again I think this corresponds to the way in which physicists deploy the concept of law.


 Of course, it is open to the defender of the claim that laws must be exceptionless   to respond that to the extent such breakdowns occur, the generalizations in question are not really laws.  However,   if we adopt this stipulation, it remains the   case that  -- call them what you wish--    Maxwell’s equations and the field equations of GR   play a central role in current science, that we appeal to them to explain and predict, and that their discovery is regarded as an important scientific achievement. It thus remains an important project to try to capture   the characteristics of such generalizations  and to better understand how they can play the  roles just described—roles which, after all, are just the roles traditionally ascribed to laws.  


If we admit the possibility that a generalization can count as a law and nonetheless fail to hold under some conditions,  then the simple strategy described above for distinguishing between laws and accidents is no longer be available. In MTH, I suggested an alternative partial solution to this problem along the following lines.  Begin by restricting attention to those generalizations that may be interpreted as change-relating in the sense that they purport to describe how changes in the values of one or more variables are related to changes in some other variable. This category will include both many laws of nature (although perhaps not all
)  and many accidental generalizations describing mere correlations such as the generalization (W) . Consider a change-relating generalization G that associates different values of some dependent variable Y with different values of an independent variable X (where X may be a vector) , according to some mapping F.  That is according to G, Y=F(X).  Now define a subclass of interventions called testing interventions as follows: a testing intervention for G on X with respect to Y is an intervention on X that changes some value of X, say x1 to a different value of X, x2, where x1 and x2 are  claimed by G to be associated with different values of Y, y1, and y2. That is, x1( x2 and (according to G) F(x1) = y1( F(x2) = y2. G will be invariant under this testing intervention if and only if it correctly describes how the value of Y will   change under this intervention—in this sense, the intervention “tests” G. As an illustration,  supposing   (W ) is understood in the change-relating way described above,  the introduction of a copper wire onto L’s table is not a testing intervention. However an intervention  introducing a   non-copper wire  is a testing intervention.  A necessary condition  N (not sufficient , as we will see shortly) for a generalization G to be a law is that G be stable/invariant under some testing interventions: 

 (N) If G is a change-relating generalization that is a law, then it is invariant under   some testing interventions.

 (W) fails  to meet condition N- it is not invariant under any testing interventions. By contrast, a generalization like Coulomb’s law will be invariant under some (in fact many) testing interventions and many other changes as well, so it meets condition N. 


I said above that N is only a necessary condition for a generalization  to count as  a law. The picture  I advocate is one in  there is both a threshold and above this a continuum with respect to lawfulness. Some generalizations, like (W), are  “pure accidents” in the sense that they are not invariant under any testing interventions. In this sense, they will be below the threshold represented by N. Other generalizations will be invariant under at least some testing interventions. Among these, some will be invariant under a larger or more significant range of changes, involving both testing interventions and other sorts of changes in background conditions than others, so that there will be a    continuum of extent  of invariance above the threshold represented by N. The generalizations that we regard as fundamental laws will be at the upper end of this hierarchy; causal generalizations of the sort found in the special sciences will be lower down in the hierarchy but (I would clam) that if they are genuinely causal, they must be above the threshold.  





LAWS

Direction of Increasing Invariance





   Generalizations  that are invariant under some interventions that  we do not regard as laws (causal generalizations in the special sciences)

         Threshold N





Accidents  (e.g. W)  


This system of classification contrasts with (or at least introduces additional structure that goes beyond) the way in which some philosophers use the notion of  an “accidental” generalization.   Consider  (cf. Haavelmo,  1944)  the relationship R between the angle of depression of the gas pedal of a particular model of car and its acceleration along a flat road meeting certain other conditions. Obviously   R will be rather fragile in the sense that may be readily disrupted by, e.g., changes in the grade of the road, the headwind, the condition of the engine etc. Nonetheless R is invariant under some testing interventions, as is reflected in the fact that under the right background conditions, it correctly describes how one can change the acceleration of the car by depressing the pedal to different degrees.  


   In discussing the generalization  (R), Marc Lange (2009, p.13) describes it as an “accident”. I agree  there is a sense in which this is correct--  (R) holds only because certain other conditions hold, and many of these  hold only “by accident”, in the sense that it would not be inconsistent with the fundamental laws for these conditions to be different. On the other hand, describing both (W) and (R) as accidental may be taken to suggest that there is no relevant difference between them and this seems  wrong-headed. Intuitively, (R) does describe a causal (or explanatory) connection (albeit one that is far less stable than a fundamental law) between the position of the pedal and the acceleration of the car—one that we appeal to when we say   that the car was accelerating because the pedal had been pushed all the way to the floor. By contrast,  (W) does not describe even a fragile causal connection, on an interventionist account like that embodied in (M). This is reflected in a real empirical difference between (W) and (R): One cannot make a non-copper wire turn into copper by placing it on L’s desk but one can make  the car go faster by pushing on the pedal.


I am aware that many philosophers will take a dismissive attitude toward generalizations like (R), and will wonder why it is worth distinguishing them from pure accidents. In response, I would observe that many of the generalizations of the special sciences seem to have broadly the same features as (R) – they are invariant, but only under a limited range of background conditions.  We need some way of distinguishing such generalizations from pure accidents like (W).  


I turn now to some other features of my characterization of invariance. First, note that unlike the stability conditions on laws formulated by some other philosophers (e.g. Lange, 2009, p. 22) (N) does not require that if a generalization is a law, it must continue to hold as  (or be) a law under some suitable range of conditions (or counterfactual suppositions). Instead, (N) requires only that the generalization continues to hold, in the sense of being approximately true, under those suppositions.   My suggestion is thus that there is nothing more to lawfulness than, so to speak, de facto invariance under some appropriately large range of changes in initial/boundary conditions, including changes involving interventions.  

  
One reason for favoring this conception of lawfulness as (mere) de facto invariance is that there are empirical considerations  (to be discussed below) that can be brought to bear on whether a generalization has this feature.  By contrast, it is less clear   there are similar procedures for answering questions about whether a generalization would remain a law under various conditions.  Asking about whether the nomological status of a generalization (rather than just its truth) is contingent on other conditions seems to require  a framework  in which it makes sense to embed the “it is a law” operator in more complex modal claims and put law-claims into the consequents of  counterfactuals.   (So that we can ask whether L would be a law under counterfactual conditions C etc.) If   we can capture the role that laws play in science without journeying into such modal thickets, it would be desirable to do so
. 


 If we adopt the view that lawfulness has to do  simply with whether a generalization would continue to be true under some appropriate  range of conditions,     this makes it  easier to understand how there can be evidence supporting law claims.  Consider the following example from Earman and Roberts (2005, p 257): 


Of the four Maxwell equations, the two curl equation entail that if the two divergence equations are true at one time, then they are true at all times.  So we can consider two distinct physical theories:  M, which says that all four Maxwell equations are laws of nature, and M*, which says that only the two curl equations are laws of nature, and the two divergence equations are contingently true at some particular time, from which it follows that they are true at all times, though only contingently so.  

Like Earman and Roberts, I would not regard M and M* as distinct alternatives. Suppose  we interpret their argument in the following way: if the curl equations are true at all times over the range of circumstances and conditions that constitute the domain of classical electromagnetism (hence invariant under these conditions) and the divergence equations hold at a particular time, then the divergence equations must also be true at all times over the range of circumstances that constitute the domain of classical electromagnetism (hence also invariant). I would say this   argument   shows, assuming these premises,  that the divergence equations are laws –   there is, so to speak, no   gap between their being laws and their holding only contingently over all conditions (including those produced by interventions) in the domain of classical magnetism.  
 
I turn now to another   feature of my characterization which will seem unsatisfactory to some. This is that in characterizing invariance in terms of stability under a range of ICs and background conditions,  I have presupposed some notion of physical possibility.  This feature has seemed “circular”   to some commentators.  Psillos  (2004, p.300) writes:


Naturally, when checking whether a generalisation or a relationship among magnitudes or variables is invariant we need to subject it to some variations/changes/interventions. What changes will it be subjected to? The obvious answer is: those that are permitted, or are permissible, by the laws of nature. Suppose that we test Ohm’s law. Suppose also that one of the interventions envisaged was to see whether it would remain invariant, if the measurement of the 
intensity of the current was made on a spaceship, which moved faster than light. This, of course, cannot be done, because it is a law that nothing travels faster than 
light. So, some laws must be in place before, based on considerations of invariance, it is established that some generalisation is invariant under some interventions. 
Hence, Woodward’s notion of “invariance under interventions” cannot offer an adequate analysis of lawhood, since laws are required to determine what interventions are possible.  

  As emphasized above, my proposal is not intended as an “analysis” of   lawhood   if analysis means (as I believe Psillos intends)  “reductive  analysis”.  I will add, however,   that the non-reductive character of my proposal  does not mean  that it is epistemically viciously circular or unilluminating.  One reason   is   that we have (partial) independent access to whether  the   conditions  we  wish to consider in assessing invariance  are physically possible on the basis of the consideration that whatever is actual must be physically possible. When an experimenter  introduces a non-copper wire onto L’s table and discovers that it does not become copper;  hence that (W) is not invariant under  an intervention leading to this IC, it is not as though   she has to worry  that she may  by mistake have realized a condition that is not physically possible and hence one that is inappropriate for assessing invariance. In other words,  from the point of view of methodology and epistemic access, we don’t have to already know whether it is physically possible  for a non-copper wire to be on L’s desk in order to carry out the envisioned intervention—the intervention and its upshot tell us that this is physically possible.  A parallel point holds if one simply observes   that some generalization   fails to hold when some condition is realized—this   is enough to establish that the generalization is not stable/invariant under   that condition.



Psillos’ comments do, however, raise some important questions about the epistemology of laws, to which I now turn.  Aside from some brief references to the role of experimental interventions, I have so far said little systematic about how one can tell whether or not a generalization exhibits the sort of invariance that  qualifies it as a law. In fact, the whole question of the kinds of evidence and other considerations that (as a matter of empirical fact) lead scientists to conclude that some generalization is or is not a law has received surprisingly little attention from philosophers interested in laws.   One place to begin would be with already existing   historical studies of the considerations that led scientific communities to the judgment that universal gravitation, Maxwell’s equations, the field equations of GR and so on, were laws of nature. What one would like to see is the extraction from these studies of general patterns of reasoning that led to the identification of laws.
In the absence of such work, I offer instead some very sketchy suggestions, which abstract from the much more complex considerations at work in real cases and which I hope may merit further exploration.


1) Obviously one way of supporting the claim that a generalization continues to hold under some range of conditions is  to observe that this is the case. Particularly when the range of conditions is substantial and some of these result from experimental manipulations, this can provide evidence for some non-trivial range of invariance.  When Faraday found that under a variety of different conditions, experimentally manipulating a conductor by moving it through a magnetic field induced a current in it, with the magnitude of the current depending on the strength of the field, and the velocity of the conductor, there were obvious questions about the range of applicability of this generalization and about how to accurately represent it mathematically, but the hypothesis that this relationship was “accidental” in the sense of  being a misleading sample from an underlying population or  in the sense that  the relationship reflected an association between two factors that were  causally unrelated but correlated because of the operation of some additional common cause, was effectively ruled out. This is because for the association to be produced by a third factor in this way,  the factor would itself have to be correlated both with Faraday’s manipulations and  the various other  features of the experiment in a way that  it is enormously implausible. 

 
2)  In many other cases one relies on “theoretical” assumptions  (including nomological assumptions) to evaluate claims about invariance.  Appeal to such   assumptions need not be circular in the sense that their application requires that we must already know   whether the generalization of interest is invariant. Instead, we may be able to  use known laws in conjunction with other information to determine whether  other, distinct generalizations are invariant or not. (The example from Earman and Roberts involving Maxwell’s equations provides one illustration.) Similarly,   making use of known laws in delimiting the range of physically possible conditions  relevant to assessing the invariance of some generalization,  does not  require that we must have already settled all questions about the invariance of that generalization.   


  As an  illustration
,  consider the status  of various cosmological generalizations such as the large scale flatness of the universe and the uniformity of the microwave background (apart from small inhomogeneities) in all directions in space. Most cosmologists do not regard these as laws of nature, despite their apparent simplicity and very wide scope.  One reason is that, according to current understanding, these uniformities are contingent on initial conditions holding in the very early universe,     these conditions might have been different,  and  had they been different, the cosmological uniformities would not have held.  This in itself is taken to be enough to show that these cosmological generalizations are not   invariant in the way that fundamental laws are expected to be.  Of course one relies on previously accepted theoretical considerations to tell us that early initial conditions might have been different, but to reach this conclusion one does not have to already know or presuppose that the cosmological uniformities themselves are physically contingent.  


It is interesting to note that this conclusion is very different from the conclusion apparently suggested by the BSA, which seems to imply these cosmological generalizations are laws, basically on the grounds that they are both very simple and very informative
.  Assuming the BSA account is not  being misapplied in such cases,  this suggests that a generalization’s having the property of being  an axiom or theorem in a systemization that best balances simplicity and strength is a very different property than the property of being stable/invariant. Roughly, the difference is this: an invariant generalization  continues to hold over a large range of possible ICs and background conditions, including those that are rarely or never realized—we want to be able to combine the generalization with these different ICs to explain and predict. By contrast, it looks as though a generalization might  be both simple and strong  without having this sort of stability property. This might happen if the generalization is simple and strong with respect to  those  conditions that actually  or usually obtain but is not invariant under possible but unrealized  or rarely realized conditions. The cosmological generalizations illustrate this.   


 I turn now to the bearing of these observations on a common philosophical argument.  (Cf. Roberts, 2009) Take a theory, T,   having as part of its content  the claim that L is a law.   Rewrite T as

T1: It is a law that L and X  (where X is whatever T says in addition to the claim that L is a law) 

and also as

T2: L is true but not a law and X
It is then argued that no evidence  could (even in principle) discriminate between T1  and T2.  

  
  Much   might be said about this argument, but I   will focus just on the following point:  As an empirical matter, there seem to be few if any real-life cases of    fundamental scientific theories that differ only in the way that T1 and T2 do. Instead when two theories disagree about the nomological status of some true claim L,  they will, in realistic cases,  typically
  disagree in other ways as well and this   allows for the possibility that empirical evidence may be used to discriminate between them.   


   One reason is that  while there may be cases in which   T1 and T2  both regard    L as  true but differ over whether it is a law, it is not regarded as methodologically acceptable  for T2  to simply postulate as a brute fact that L holds but not as a law. Or at least this is so if L describes some relatively structured global uniformity,  which presumably will be the case if L is even a prima-facie candidate for a law.  Instead, if L is true but not a law,  it is  taken to be extremely important for T2 to   explain    why  L holds, where this is taken to involve showing how L arises from the working of other generalizations that are laws on  some prior set of initial conditions. In providing such an explanation T2 will typically differ from T1 in a variety of other ways, in addition to  disagreeing about whether L is a law.   In particular, if L is  true  but non-lawful, then   since it  is  not (extensively) invariant, there must be possible ICs under which it fails to hold, in which case it makes sense to identify these conditions  and  to exhibit  how whether   L holds depends on which ICs obtain. This will typically involve additional differences between T1 and T2 besides their disagreement about the nomological status of L.  


As an illustration,  although the cosmological generalizations discussed above are generally taken to be true but non- lawful,   few  scientists are willing to take them to be “brute” accidents,    holding without  further explanation.   Instead various explanations are proposed for why these generalizations hold  (involving different claims about earlier initial conditions) and these have distinctive evidential implications.  For example, one popular class of explanations invokes a period of extremely rapid inflation in the very early universe. If some version of cosmic inflation is correct, we should expect to see evidence of this in the fine grained detail of the microwave background, evidence that would not be present if the cosmological uniformities have some other explanation.  


If this is correct,  we can avoid two opposed but equally unattractive consequences that suggested by a comparison of T1 and T2. The first is that because T1 and T2 are equally compatible with all evidence, there is no difference in literal content between them (and our account of law should reflect this fact, which presumably leads to some sophisticated version of a regularity theory). The other, diametrically opposed conclusion is that because T1  and T2  seem to have different content, we must opt for some trans-empirical conception of law to reflect this.   On my view, both of these conclusions are unmotivated,  in the absence of reasons to   suppose  there are  actual examples of legitimate theories that differ only in the way that T1 and T2 are alleged to. 

These points are closely related to another feature of “initial conditions” and their relationship to laws that has received little philosophical attention.  Many philosophers write as though all there is to the notion of an initial condition is that such conditions are “contingent” or “not (nomically) necessary”. But in fact the notion has more  structure than this. To illustrate, consider some additional observations from Wigner (1979). He observes that while scientists try to formulate laws that describe structured regularities, it is also thought desirable, as a constraint on initial conditions, that these exhibit as little structure and regularity as possible.  In other words,  one looks for a split between laws and ICs such that as much structure as possible is put  into the laws and as little as possible into the ICs.  As Wigner  puts it:  

 [the] existence of regularities in the initial conditions is considered so unsatisfactory that it is considered necessary to show that the regularities  are but a consequence of  a situation in which there were no regularities  ( p. 41, 1979) 

Elsewhere,  he suggests that, ideally,  initial conditions should be as “random as possible”  and that when one is presented with apparent   regularities in initial conditions, the ideal should be to show that “this was preceded by a state in which the uncontrolled initial conditions were random”,  the more organized initial conditions   arising from the operation of  the laws on this random preceding  state. (1979, p. 41).  


If, as I assume, this is an accurate description of how initial conditions are treated in science, it   suggests that insofar as considerations of simplicity (and recall that the relevant notions of simplicity will be a domain-dependent notions)  and  informativeness matter in science, they  may have very different implications for hypotheses about laws and hypotheses about initial conditions
.  If we think of a relatively random or structureless arrangement of ICs as   non-simple in the sense that a great deal of information is required for its specification, then complexity in initial conditions may be desirable, or at least not  something to be avoided.   To the extent that simplicity  is  desirable in science,    it is typically simplicity in laws rather than in initial conditions that is to be sought. To put the matter in the context of the BSA , rather than considering  systemizations that lump together (what will later be identified as) hypotheses about both laws and ICs, asking which of these best balances simplicity and strength, and  then using the results to identify the laws, perhaps we should think of ourselves as looking for a systemization according to which the  laws  come out relatively simple and informative, but hypotheses about  ICs are allowed to be complex, or at least random and unstructured, if that is required for successful explanation of what is observed.


 This is related to another feature of initial conditions worth emphasizing. As Hall (forthcoming)  notes, strength  is generally interpreted by Lewisians as a matter of excluding possibilities not actually realized in the HSB—the more  such possibilities an assumption rules out, the  “stronger” it is taken to be. When applied indiscriminately to assumptions about initial conditions, this has consequences that seem  at odds with assessments reached in scientific practice. To illustrate, consider some true global constraint on initial conditions (e.g. some cosmological uniformity) that is both simple and   excludes many possibilities.  As  argued above,  it seems  misguided to conclude just on this  basis  that the constraint is   nomologically necessary.     


As Hall suggests,  there is another, more plausible way of  thinking of informativeness  besides the exclusion of  possibilities. As noted earlier,  it is usually taken to be  a desirable feature of   fundamental theories that they can be combined with a range of different assumptions about initial conditions to yield accurate predictions about what would happen under those conditions.   This is closely connected to the idea that the fundamental laws   should be   invariant over different initial conditions and also to the idea (which I have emphasized elsewhere
) that ability of a theory to provide accurate answers to counterfactual or  “what-if-things-had-been-different” questions concerning what would happen under initial conditions is a mark of its ability to provide successful explanations.  For example, understanding the impact of the moon’s gravitational force on the tides is in part a matter of understanding how that impact would have been different if the mass of the moon or its distance from the earth had been different. As this example illustrates, the “what if things had been different” questions a theory is expected to answer are not confined just to questions involving initial conditions that are actually realized.  


This feature of theorizing is in considerable tension with the conception of strength as the exclusion of alternatives.  On this conception,  it is a virtue rather than a defect in a theory that it fails to answer questions about what would happen under unrealized possibilities. Indeed, on the BSA conception, the ideal theory seems to be one that simply postulates that actually obtaining initial conditions ( insofar as these are both simple and strong and correspond to regularities) are physically necessary and lawful. An alternative conception  which seems more in accord with scientific practice is that it adds to the informativeness of a theory if its laws tell us what would happen under ranges of initial conditions that are not actually realized (assuming   there is good reason to believe what the theory says about this, as there sometimes is
). 
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* Thanks to John Norton for very helpful comments on an earlier draft.


� Causal background knowledge in this context includes predispositions to take certain correlational relations as causal. Arguably such predispositions play an important role in cognitive development.


� For example, F rules out causal structures that are non-simple in the sense of postulating  certain kinds of complex coincidences in which e. g., X affects Y via two different routes which just happen to cancel.


� In particular I make no claim that these notions are metaphysically primitive or brute—I have no idea what this might mean.


�  There are other ways of understanding the notion of “accidental”. See  Section 2 and discussion below.


� See MTH, pp. 246ff.





� Although the matter deserves more attention than I can give it here,  it is worth noting that  many familiar philosophical thought experiments bearing on Humean supervenience    presuppose that claims about whether it is “possible” that under certain conditions various claims L are laws  are coherent and well-posed.  They thus presuppose the legitimacy of embedding of “it is a law that” in modal contexts.   


� Many other examples of the same overall pattern of reasoning are provided by cases of so-called deduction from the phenomena such as Newton’s deduction  of the gravitational inverse square law from the conjunction of  his laws of motion and Kepler’s result that the times for the planets to orbit the sun are in the ratio of the 3/2 power of the �HYPERLINK "http://en.wikipedia.org/wiki/Semi-major_axis"��semi-major axis� of their orbits. 


�  The conclusion that the BSA implies that cosmological facts  (such  as the existence of a low entropy past) are laws is endorsed by Callender, 2004 and Loewer, 2007. John Norton has suggested to me that this conclusion might be avoided by advocates of the BSA by denying that such cosmological claims are “regularities”, on the grounds that they are only instantiated once. But many cosmological  claims can   be written as though they are multiply instantiated regularities (“For each region of spacetime…”) and there are independent reasons for not wanting whether or not a claim is a law to turn on the number of “instances” it has. 


� I acknowledge that I have no proof that there are no real-life cases which differ only in the way that T1 and T2 do. However, in view of the considerations rehearsed below, it seems to me   the burden of proof is very much on believers to actually produce such cases.


� See Hall (forthcoming) for similar observations.


� See MTH, Chapter 4. 


� Some  may find it  tempting to argue  there are  no legitimate reasons to ever accept what a theory says about what would happen under initial conditions that are never realized. However, this involves unduly restrictive assumptions about empirical support. We may come to believe what a theory says about unrealized conditions on the basis of  correct predictions it makes about actually realized phenomena. 
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