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Abstract

While it is legitimate to study ideas and concepts related to

information in their broadest sense, that formal approaches properly

belong in specific contexts is a fact that is too often ignored. That

their use outside these contexts amounts to misuse or imprecise

use cannot and should not be overlooked. This paper presents a

framework based on algorithmic information theory for discussing

concepts of relevance to information in philosophical contexts. Special

attention will be paid to the intersection of syntactic and semantic

variants and connections.
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1 Introduction

It is not unusual to come across surveys and volumes devoted to information
(in the larger sense) in which the mathematical discussion does not venture
beyond the state of the field as Shannon [36] left it some 60 years ago, who
together with Wiener [41], first recognized that communication is a statistical
problem, yet made clear that little had to do with information content (the
semantical side of information). Recent breakthroughs in the development of
information theory in its algorithmic form—both theoretical and empirical
developments possessing applications in diverse domains (e.g. [28, 29, 30,
44])—are often overlooked in the semantical study of information, and it
is philosophy and logic (e.g. epistemic temporal logic) what has been, one
would say, forced to account for what is said to be the semantic formalism
of information. As examples one may cite the work of [19, 20, 37]. Such
partial and ill-considered accounts of a field can be dangerous when they
become the exclusive focus of attention of semantic information. Even in
the best of cases, algorithmic information theory is not given due weight.
Cursorily treated, its basic definitions are inaccurately rendered, as, to cite
one instance, the definition of Bennett’s [3] logical depth in (p. 25 [35])—
the definition provided being incomplete and therefore incorrect. This is
unacceptable in a book on information, and is a reflection of the author’s
being ill-equipped to discuss the connection of the theory to nature.

In Floridi’s works, to cite another instance [20], the only reference to
algorithmic information theory as a formal context for the discussion of in-
formation content and meaning is a negative one–appearing in van Benthem’s
contribution (p. 171 [20]). It reads:

To me, the idea that one can measure information flow one-
dimensionally in terms of a number of bits, or some other mea-
sure, seems patently absurd...

I think this position is misguided. When Descartes transformed the no-
tion of space into an infinite set of ordered numbers (coordinates), he did
not deprive the discussion and study of space of any interest, but on the
contrary advanced and expanded the philosophical discussion to encompass
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concepts such as dimension and curvature, which wouldn’t be seriously pos-
sible otherwise in the light of the development of Descartes. Perhaps this
answers the following question that Benthem poses (immediately after the
above comment p. 171 [20]):

But in reality, this quantitative approach is spectacularly more
successful, often much more so than anything produced in my
world of logic and semantics. Why?

On the other hand, accepting a formal framework such as algorithmic
complexity for information content does not mean that the philosophical
discussion of information will be reduced to the discussion of the numbers
involved, just as it did not in the case of the philosophy of geometry after
Descartes.

The foundational thesis upon which the state of information theory rests
today, thanks to Shannon’s seminal contribution, is that information can be
reduced to a sequence of symbols, with the bit being the most basic unit, since
any sequence of symbols can be translated into a binary sequence, thereby
preserving the original content (as it can be translated back and forth from
the original to the binary and vice versa). Despite the possibility of legitimate
discussions of information on the basis of different foundational hypotheses,
in its syntactic variant, information theory can be considered in large part
achieved by Shannon’s theory of communication. Epistemological discussions
are, however, impossible to conceive of in the absence of a notion of semantics.
There is prolific work from the side of logic to capture the concept of meaning
in a broader and formal sense. Too few or nothing has, however, been done
to explain meaning with pure computational models as a natural extension
of Shannon’s work on information and the later developments by Turing
merging information and computation and, in its current state, epitomized
by the theory of algorithmic information theory.

Semantics is concerned with content. Both the syntactic and semantic
components of information theory are concerned with order, the former par-
ticularly with the number of symbols and their combinations, while the latter
is intimately related to structure. The context provided by the theory of al-
gorithmic information to discuss the concept of information is the theory of
computation, in which the description of a message is interpreted in terms of
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a program. The following sections are an overview of the different formal di-
rections in which information has developed in the last decades. They leave
plenty of room for fruitful philosophical discussion, discussion focusing on
information per se as well as on its connections to aspects of physical reality.

2 Information, computation and communica-

tion

Among the several contributions made by Alan Turing on the basis of his
concept of computational universality is the unification of the concepts of
data and program. Turing machines are extremely basic abstract symbol-
manipulating devices, which despite their simplicity, can be adapted to sim-
ulate the logic of any computer that could possibly be constructed. While
one can think of a Turing machine input as data, and a Turing machine rule
table as its program, each of them being separate entities, they are in fact
interchangeable as a consequence of universal computation, as shown by Tur-
ing himself, since for any input x for a Turing machine M , one can construct
M ′ with empty input such that M and M ′ accept the same language, with
M ′ a (universal) Turing machine accepting an encoding of M as input and
emulating it for an input x for M in M ′. In other words, one can always
embed data as part of the rule table another machine. The identification of
something as data or a program is, therefore, merely a customary convention
and not a fundamental distinction.

On the other hand, Shannon’s conception of information inherits the pit-
falls of probability. Which is to say that one cannot talk about the informa-
tion content of individual strings. However, misinterpretations have dogged
Shannon’s information measure from the inception, especially around the
use of the term entropy, as Shannon himself acknowledged. The problem has
been that Shannon’s entropy is taken to be a measure of order (or disorder),
as if it were a complexity measure (and in analogy to physical entropy in
classical thermodynamics). Measures based in probability theory inherit the
limitation that they can only study distributions but not individual objects.
This is the case, for example, with both Shannon’s entropy and Fisher’s no-
tion of information. Shannon acknowledges that his theory is a theory of
communication and transmission and not one of information.
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That Shannon’s measure is computable and easily calculable in practice
may account for its frequent and unreasonable application as a complexity
measure. The fact that algorithmic complexity is not computable, however,
doesn’t mean that one cannot approximate it—and get a much better result
when it comes to the measurement of an object’s complexity than a trivial
upper bound offered by Shannon’s measure.

3 Information content and algorithmic mean-

ing

But Shannon’s notion of information makes it clear that information content
is subjective (Shannon himself):

Frequently the messages have meaning: that is they are referred
to or correlated according to some system with certain physical
or conceptual entities. These semantic aspects of communication
are irrelevant to the engineering problem. The significant aspect
is that the actual message is one selected from a set of possible
messages. [36].

Subjective doesn’t mean, however, that one cannot define information
content formally, only that one should include the plausible interpretation in
the definition, a point we will explore in the next section.

Shannon’s contribution is seminal in that he defined the bit as the basic
unit of information, as do our best current theories of information complex-
ity. Shannon’s information theory approaches information syntactically as
a physical phenomenon: whether and how much information (rather than
what information) is conveyed. The basic idea is that if a message contains
some redundancy, this redundancy can be removed to make the channel more
efficient. The elimination of redundancy is one among many possible ways
to compress a message. Just as it is in algorithmic complexity.

But Shannon’s doesn’t help to define meaning. Think of a number like
π which is believed to be normal (that is, that its digits are equally dis-
tributed), and therefore has little or no redundancy. π, however, can be
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greatly compressed using any of the known briefly describable formulae and
processes generating its digits. Some redundancy, in the way of patterns, is
usually expected of something that is meaningful, but π has no repeating
pattern (because is an irrational number) yet it seems highly meaningful as
the relationship between any circumference and its diameter. It is generally
accepted that meaning is imparted by the observer. While meaning is se-
mantic by definition, I will argue that meaning can be treated formally and
syntactically.

3.1 Defining lack of intrinsic meaning

As an attempt to define lack of meaning think of a single bit, a single bit
does not carry any information, and so it cannot but be meaningless if there
is no recipient to interpret it as something that does not lack a message.
The Shannon entropy of a single bit is 0 because one cannot implement a
communication channel of 1 bit only, 1 and 0 having the same meaning both
for Shannon and for algorithmic complexity if isolated, it cannot have any
information content. In other words, it is intrinsically meaningless because
there is no context (one cannot interpret a single bit if is not preceded or
followed by anything else). A string of n identical bits (either 1s or 0s) is
also intrinsically meaningless (one is forced to make an arbitrary external
interpretation to give it some meaning), because even if it carries a message
it cannot be intrinsically rich (neither by the standards of algorithmic com-
plexity nor by those of Shannon’s entropy), because it cannot carry much
information.

At the other extreme, a random string may or may not be taken to be
meaningful depending on the measure. What one can say with certainty is
that something lying in between the two extremes would definitely represent
what we may consider to be meaningful, the two extremes in question be-
ing: no information (trivial) or complete nonsense (random). Algorithmic
complexity associates randomness with the highest level of complexity, but
Bennett’s logical depth [3] (also based on algorithmic complexity) is able to
distinguish between something that looks organized and something that looks
random or trivial by introducing time (a parameter that seems unavoidable
in reality, which makes it reasonable to associate this measure with physical
complexity).

6



In order for the information conveyed to have any semantical value, it
must in some manner add to the knowledge of the receiver. I claim that
logical depth is the measure to be resorted to when it comes to mapping
meaning onto information content in the real world. Logical depth is defined
as the execution time required to generate a string by a near-incompressible
program, i.e. one not produced by a significantly shorter program. Logically
deep objects contain internal evidence of having been the result of a long
computation and satisfy a slow-growth law (by definition).

3.2 Meaning is logically deep

The main point made by Shannon when formulating his measure in the con-
text of communication is that in practice a message with no redundancy is
more likely to carry information if one assumes one is transmitting more
than just random bits. If something is random-looking, then it will usually
be considered meaningless. To say that something is meaningful usually im-
plies that one can somehow arrive at a conclusion based on it. Information
has meaning only if it has a context, a story behind it. Connecting meaning
to the concept of logical depth has the advantage of taking into account the
context of a message, and therefore of potentially accounting for the plau-
sible recipient’s interpretation. As is known, the problem with meaning is
that it is highly dependent on the recipient and its interpretation. Even if
incompressible, a single bit has low algorithmic complexity when evaluated
through algorithmic probability [17]. However, a single bit can still trigger
a long calculation if a computing machine is designed to perform a lot of
work when provided with the single bit. But taking into account both the
message (in this case the single bit) and the computation associated with
it (the interpretation) one can measure the organized complexity of the re-
sulting outcome from a combination of its program-size complexity and the
computing time. If the result is not trivial, nor algorithmically random, one
can say that the message is meaningful. A meaningful message (short or
long) contains a long computational history when taken together with the
associated computation, otherwise it has little or no meaning. Hence the
pertinence of the introduction of logical depth.

One might think that the approach may not be robust enough if a Turing
machine performs a lot of computation when provided with a random input,
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in which case something that would be taken as meaningful may actually
be just a random computation triggered by a random meaningless message.
There are, however, two acceptable answers to this objection. The probability
of a machine to undertake a long computation by chance is very low. Among
the machines that halt, most machines will halt after a few steps [8]. This
happens for most strings, meaning that most messages are meaningless if both
the message and the computation do not somehow resonate to each other,
something close to what one intuitively may think for a meaningful message,
for example, among human beings. Algorithmic probability guarantees the
almost non-existence of Rube Goldberg machines (a toy machine that does a
lot of stuff for achieving a trivial task). In other words, strings tend to be
generated by short program implementations.

So it is algorithmic probability that provides the robustness of this algo-
rithmic approach to meaning. On the one hand, the meaning of a message
makes only sense in the context of the recipient, a message that has meaning
for someone may have not for someone else. This is what happens when some
machines react to a meaningful input. In other words, the study of meaning is
dependable of the recipient subject to the way in which a particular machine
interprets the message. On the other hand, algorithmic probability guaran-
tees that most machines will halt almost immediately with no computational
history at the same time that most machines, for what we have defined as a
meaningful input will perform a computation resulting in a structured out-
put. In other words, there will be some correspondence between a meaningful
input, a computation and a structured output.

A more down-to-earth example is a winning number in a lottery. The
number by itself may be meaningless for a recipient, but if two parties had
shared information on how to interpret it, the information shared beforehand
becomes part of the computational history and as such not unrelated to
the subsequent message. The only way to interpret a number as being the
winning number of a lottery is to have a story, not just a story that relates the
number to a process, but one that narrates the process itself. Since winning a
prize is no longer a matter of apparent chance but has to do with the release
of information (both the number and the interpretation of the number) it is
therefore not the number alone that represents the content and meaning of
the message (the number), but the story around it.

There are also messages that contain the story in themselves. If instead
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of a given number one substitutes the interpretation of such a number, the
message can be considered meaningful in isolation. But both cases have the
same logical depth, as they have the same output and computing time and
are the result of the same history (even if in the first case such a history may
be rendered in two separate steps) and origin.

In a move that parallels the mistaken use and overuse of Shannon’s mea-
sure as a measure of complexity, the notion of complexity is frequently as-
sociated, in the field of complex systems, with the number of interacting
elements or the number of layers of a system. Researchers who make such
an association should continue using Shannon’s entropy since it quantifies
the distribution of elements, but they should also be aware that they are
not measuring the complexity of a system or object, but rather its diversity,
which may be a different thing altogether (despite being grossly related).

Of course this sketch of a possible algorithmic approach may or may not
solve all problems related to meaning, but it is worth trying. The contri-
bution is, however, to provide a formal computational framework to discuss
these matters.

3.3 Finite randomness is in the beholder eye

As has been shown by Stephen Wolfram [42], it is not always the case that
the greater the number of elements the greater the complexity, nor is it the
case that a greater number of layers or interactions make for greater complex-
ity, for the simplest computing systems are capable of the greatest apparent
complexity. Despite what reservations one may legitimately entertain about
it, it is clear that Wolfram’s work has been misunderstood by a large sector
of the complex systems community, as is epitomized by the misuse and mis-
application of basic concepts of information and complexity in contexts that
are properly the domain of probability.

If it is true that the complexity manifest in the systems studied by Wol-
fram is not identical to the complexity studied by algorithmic information
theory, this does not mean that they are essentially incompatible. As an
example, there is Wolfram’s elementary cellular automaton, Rule 30. While
the evolution of Rule 30 from the simplest possible initial configuration (a
single black cell) looks random, the generating code has very low algorith-
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mic complexity, given that it can be encoded in, at most, 8 bits (plus the
program interpreting those 8 bits as a cellular automaton rule). Hence it is
highly compressible.

Algorithmic randomness, however, does not guarantee that a string of
finite length cannot be algorithmically compressed. Nonetheless, any string
is guaranteed to occur as a substring (with equal probability) in any algo-
rithmically random infinite sequence. But this has to do with the semantic
value of algorithmic information theory, given that a finite string has meaning
only in a particular context, as a substring of a larger, potentially complex
sequence. Therefore, one can declare a string to be random-looking only as
long as it does not appear as a substring embedded in another finite or infi-
nite string. One can, however, declare a string non-random if the length of a
shorter program (measured in bits) is significantly shorter than the string it-
self. Hence, Wolfram deterministic randomness is of epistemological nature,
compatible with the fact that algorithmic randomness can only be guaran-
teed for infinite sequences given than any finite sequence can only be declared
random-looking (as far as no short program producing it is known).

At the other extreme, Chaitin’s Ω number [10] has the greatest possible
meaning because it encodes all possible messages in the form of answers to
all possible questions encoded by Turing machines. That Chaitin’s Ω is in
practice inaccessible seems a necessary characteristic, given the algorithmic
definition, and accords with our intuitive notion of meaning. In other words,
the meaning of all, or all possible meanings, is unattainable in this algorithmic
approach, as it is ultimately uncomputable. Just as one would intuitively
expect as a main feature of meaning in its broadest (and philosophical) sense.

4 A philosophical agenda

The previous discussion sketches a possible agenda for a philosophy of in-
formation in the context of the current state of the theory of algorithmic
information. Focusing more on the core of the theory itself, there are sev-
eral directions that a deeper exploration of the foundations of algorithmic
information might take.

There is, for example, Levin’s contribution to algorithmic complexity in
the form of the eponymous semi-measure, motivated by a desire to fun-
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damentally amend Kolmogorov’s plain definition of complexity in light of
the realization that information should follow a law of non-growth conserva-
tion. This is an apparently different motivation from the one behind Gregory
Chaitin’s definition of algorithmic complexity in its prefix-free version.

There are also laws of symmetry and mutual information discovered by
Gács [22], and Li and Vitányi [28], for example, which remain to be explored,
fully understoood and philosophically dissected.

Furthermore there are the subtle but important differences involved in
capturing organization in information through the use of algorithmic ran-
domness versus doing so using Bennett’s logical depth [3], a matter brought
to our attention in, for example [16]. The motivation behind Bennett’s formu-
lation of his concept of logical depth was to capture the notion of complexity
taking into account the history of an object. It had the important conse-
quence of classifying intuitively shallow physical objects as objects deprived
of meaning.

There is also the question of the dependence of the definitions on the con-
text in which meaning is evaluated (the choice of universal Turing machine),
up to an additive constant, which has recently been addressed in [14, 17],
who propose reasonable choices leading to reasonable evaluations (e.g. the
comparison of different computational formalisms producing strongly corre-
lated measures as shown in [15]). In other words, the problem of a stable
framework for the measurement of information content. Also the connections
of the theory of algorithmic information to the cognitive sciences [23] and to
the physical world [15].

Van Benthem in [20] highlights an issue of great philosophical interest
when he expresses a desire to understand the unreasonable effectiveness—a
phrase he claims is borrowed—of quantitative information theories.

Paradoxically, my concern would be with the unreasonable ineffectiveness
of qualitative information theories, notably algorithmic complexity, given
that it is the unreasonable effectiveness of quantitative information theories,
notably Shannon’s notion of information entropy, that has mistakenly led
researchers to use it in frameworks in which a true (and universal) measure
of complexity is needed (Shannon’s measure is, in the best of cases, a gross
upper bound of algorithmic complexity [24], and almost anything can be an
upper bound).
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On the other hand, it is the ineffectiveness of algorithmic complexity
that imbues information content with its deepest character, given that its
full characterization cannot effectively be achieved even if it can be precisely
defined. Van Benthem opens up, hence, a rich vein, this discussion being
potentially fruitful and of great interest, even if it has been largely ignored
so far.

I think the provisional formulations of the laws of information, together
with their underlying motivations should be a central part of a discussion,
if not the main focus of the semantics approaches to information as closer
based on current mathematical developments.

It may be objected that the study of information aligned with the so-
called semantic wing should not be reduced to the algorithmic, sometimes
considered syntactic digital view of information. That, however, would be
rather an odd objection, given that most texts on the information start with
Shannon’s information theory, without however taking the next natural step
and engaging the current state of information as exemplified by algorith-
mic information theory. So either the philosophy of information ought to
take a completely different path from Shannon’s, which inevitably leads to
the current state of algorithmic information and prompts deeper exploration
of it, or else it should steer clear of the algorithmic side as being separate
and strange to it1. In other words, I don’t find it consistent to cover Shan-
non’s work while leaving out all further developments of the field by, among
others, Kolmogorov, Chaitin, Solomonoff, Levin, Bennett, Gács and Lan-
dauer. As I have pointed out in the previous section, there is a legitimate
agenda concerning what some may call the syntactic mechanistic branch of
the study of Information, which paradoxically, I think is the most interesting
and fruitful part of the semantic investigation, that mainstream Philosophy
of Information has traditionally steered clear of for the most part. It must
be acknowledged, however, that some philosophical papers do try to more
closely follow the current mathematical developments, engaging them in a
philosophical discussion. Examples are Parrochia [32] and McAllister [31]
(even if I do not agree with McAllister’s conclusions), to mention just two.

No complete account of what information might be can be considered

1Pieter Adriaans has presented similar arguments [1] in relation to the current main-
stream trend of semantics approaches to information.
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complete without taking into account the interpretations of quantum infor-
mation. One issue is the one partially raised by Wheeler, although perhaps
at a different scale, that is whether an observer is necessary for information to
exist and the meaning of an observation. There does not exist a universally
accepted interpretation of quantum mechanics, although the “Copenhagen
Interpretation” is considered the mainstream. Discussions about the mean-
ing of quantum mechanics and its implications do not, however, lead to a
consensus. It is, however, beyond the scope of this paper to further dis-
cuss the quantum approach other than for pointing out its pertinence in an
encompassing discussion.

4.1 The basics to agree upon

One can agree upon fundamental developments from the theory of informa-
tion and the theory of algorithmic information that can serve as the basis of
a mathematical framework for a philosophical discussion.

• The basic unit is the bit and information is subjective (Shannon [36])

• Shallowness is meaningless (Kolmogorov [25])

• Randomness implies the impossibility of information extraction
(Chaitin [10])

• Randomness is structurally meaningless (Bennett [3])

• Meaningful information can be transformed into energy (Landauer [26],
Bennett [3])

• There are strong connections between logical and thermodynamic
(ir)reversibility (Landauer [26], Bennett [5], Fredkin [21], Toffoli [21])

• Information follows fundamental laws: symmetry, non-growth, mutual
information and (ir)reversibility (Gács [22], Zvonkin [46], Levin [27],
Bennett [5], Landauer [26])

• Physics and information are related (Wheeler [40], Feynman [18], Ben-
nett [5], Landauer [26], Fredkin [21])

The current state of the theory and the framework for a discussion of
algorithmic information to be agreed upon:
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• Shannon’s information measure cannot capture content, organization
or meaning as largerly accepted, but neither complexity.

• Shannon’s measure is only incidentally connected to random complex-
ity, and not at all to structured complexity.

• Shannon’s measure is only a gross upper bound of random complexity.

• Information follows rules, e.g. conservation, non-additivity, symmetry.

• Algorithmic complexity is a universal framework for information con-
tent.

• Bennett’s logical depth is a fruitful framework for an acceptable defi-
nition of meaning.

• Information (and mostly its nature) has played a major role in quantum
mechanics and is assuming foundational status in modern physics as it
did in classical physics, notably in thermodynamics.

5 Concluding remarks

A common language and formal framework to agree upon seems to be nec-
essary to reach maturity for a fruitful and rich discussion of information,
information content and meaning from the perspective of algorithmic infor-
mation theory.

I’ve claimed that algorithmic information is suitable for defining individ-
ual information content and for providing a characterization of the concept of
meaning in terms of, for example, logical depth. This rather syntactic char-
acterization reduced to a number (size of a program, decompression time or
algorithmic probability of output production) does not mean that a discus-
sion of algorithmic information would be deprived of legitimate philosophical
interest.

I have briefly drawn attention to and discussed some of the questions
germane to a philosophy of algorithmic information. If our mapping of infor-
mation and information content is well understood, it will be clear why we
can claim that meaning is context (recipient) dependent in a rather objective,
eventually formalizable way. Levin’s universal distribution, taken together
with Bennett’s concept of logical depth, can constitute an appropriate infor-
mational framework within which to discuss these concepts. That meaning
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can be fully formalized doesn’t mean, however, that it loses its subjectivity
with respect to the recipient. On the contrary, such a subjective dimension
can also be captured by the formal framework and can constitute a point of
departure for an organized philosophical discussion.
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[24] P. Grünwald and P. Vitányi, Shannon Information and Kolmogorov
Complexity, Computing Research Repository - CORR, 2004.

[25] A. N. Kolmogorov, Three approaches to the quantitative definition of
information Problems of Information and Transmission, 1(1):1–7, 1965.

[26] R. Landauer, Irreversibility and heat generation in the computing pro-
cess, IBM Journal of Research and Development, vol. 5, pp. 183–191,
1961.

[27] L. Levin, Laws of information conservation (non-growth) and aspects
of the foundation of probability theory, Problems of Information Trans-
mission, 10(3):206–210, 1974.
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