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Abstract

I will survey some matters of relevance to
a philosophical discussion of information, tak-
ing into account developments in algorithmic
information theory (AIT). I will propose that
meaning is deep in the sense of Bennett’s logical
depth, and that algorithmic probability may pro-
vide the stability needed for a robust algorithmic
definition of meaning, one that takes into con-
sideration the interpretation and the recipient’s
own knowledge encoded in the story attached to
a message.
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1 Introduction

Information can be a cornerstone for interpreting all
manner of phenomena, as it can constitute the basis
for a description of objects. While it is legitimate to
study ideas and concepts related to information in their
broadest sense, that the use of information outside for-
mal contexts amounts to misuse cannot and should not
be overlooked. It is not unusual to come across surveys
and volumes devoted to information (in the larger sense)
in which the mathematical discussion does not venture
beyond the state of the field as Shannon [30] left it some

60 years ago. Recent breakthroughs in the development
of information theory in its algorithmic form—both the-
oretical and empirical developments possessing applica-
tions in diverse domains (e.g. [22, 23, 24, 37])—are often
overlooked in the semantic study of information, and it
is philosophy and logic (e.g. epistemic temporal logic)
that are resorted to in attempting to account for what
is said to be the semantic formalism of information. As
examples one may cite the work of [14, 15, 32]. In the
best of cases, algorithmic information theory (AIT) is
not given due weight. Its basic definitions are sometimes
inaccurately rendered (e.g. the incomplete definition of
Bennett’s logical depth [3] in [29] (p. 25)).

In [15], for example, the only reference to AIT as a
formal context for the discussion of information content
and meaning is a negative one—appearing in van Ben-
them’s contribution (p. 171 [15]). It reads:

To me, the idea that one can measure infor-
mation flow one-dimensionally in terms of a
number of bits, or some other measure, seems
patently absurd...

I think this position is misguided. When Descartes
transformed the notion of space into an infinite set of
ordered numbers (coordinates), he did not deprive the
discussion and study of space of any of its interest. On
the contrary, he advanced and expanded the philosophi-
cal discussion to encompass concepts such as dimension
and curvature– which would not have been possible with-
out the Cartesian intervention. Perhaps this answers
the question that Benthem poses immediately after the
above remark (p. 171 [15]):

But in reality, this quantitative approach
is spectacularly more successful, often much
more so than anything produced in my world
of logic and semantics. Why?

Accepting a formal framework such as algorithmic
complexity for information content does not mean that
the philosophical discussion of information will be re-
duced to a discussion of the numbers involved, as it
did not in the case of the philosophy of geometry after
Descartes.

The foundational thesis upon which information the-
ory rests today (derived from Shannon’s work) is that
information can be reduced to a sequence of symbols.
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Despite the possibility of legitimate discussions of infor-
mation on the basis of different foundational hypotheses,
in its purely syntactic variant, information theory can be
considered in large part achieved by Shannon’s theory of
communication (see Box 1).

Epistemological discussions are, however, impossible
to conceive of in the absence of a notion of semantics.
Much work has been done in logic to capture the concept
of meaning in a broader and formal sense. However, lit-
tle or nothing has been done to explain meaning using
pure computational models—whether to extend Shan-
non’s work on information, to explain meaning in light
of Turing’s merging of information and computation, or
to explain meaning in light of current developments, as
epitomized by the theory of AIT.

Semantics is concerned with content. Both the syn-
tactic and semantic components of information theory
are concerned with order, the former particularly with
the number of symbols and their combinations, while the
latter is intimately related to structure. The theory of
computation is the context provided by the theory of
algorithmic information for discussion of the concept of
information. Within this context the description of a
message is interpreted in terms of a program. The fol-
lowing sections are an overview of the different formal
directions in which information has developed in the last
decades. They leave plenty of room for fruitful philo-
sophical discussion, discussion focusing on information
per se as well as on its connections to aspects of physical
reality.

2 Communication, diversity and
complexity

Shannon’s conception of information inherits the pitfalls
of probability (see Box 1). Which is to say that one
cannot talk about the information content of individual
strings. However, misinterpretations have dogged Shan-
non’s information measure from the inception, especially
around the use of the term entropy, as Shannon himself
acknowledged. The problem has been that Shannon’s
entropy is taken to be a measure of order (or disorder),
as if it were a complexity measure (analogous to physical
entropy in classical thermodynamics). Shannon acknowl-
edges that his theory is a theory of communication and
transmission and not one of information [30].

Unlike algorithmic complexity (see Box 2) Shan-
non’s entropy does not take into consideration the in-
ternal structure of the message. Consider the strings

0101010101 and 0100101100. They both have exactly
the same Shannon entropy because the number of occur-
rences of 1 and of 0 is the same in both strings. As a
second example, consider the sentence “A quick brown
fox jumps over the lazy dog” and the scrambled ver-
sion “rl y feawhojkouq A vdpegsxioz r cmunotb”. They
both have the same Shannon entropy value even though
clearly one tells us something while the other is nonsen-
sical. Shannon’s Entropy basically says that because the
members of each of these pairs of messages use about
the same number of symbols, one needs a communication
channel of about the same size for both members of the
pair.

Box 1. Shannon’s entropy is defined as a measure
of the average information content associated with a
random outcome. Formally, Let d = (p1, p2, . . . , pn)
be a finite discrete probability distribution. That is,
suppose pk ≥ 0 for k = 1, 2, . . . , n and Σn

k=1pk =
1. The uncertainty concerning a possible outcome
with probabilities p1, p2, . . . , pn is called the entropy
of the distribution P and is measured by H(P ) =
H(p1, p2, . . . , pn) as introduced by Shannon [30] and
defined by H(p1, p2, . . . , pn) = Σn

k=1pk log2 1/pk. It
indicates how many bits are required to encode a
message in order to send it through a communication
channel with minimum capacity. It counts how many
different symbols a message has, weighted by their
probability distribution. It is therefore a measure of
diversity, not of order or disorder.

That Shannon’s measure is computable and easily
calculable in practice may account for its frequent and
unreasonable application as a complexity measure. The
fact that algorithmic complexity is not computable, how-
ever, doesn’t mean that one cannot approximate it.

Shannon’s approach doesn’t help to define informa-
tion content or meaning. For example, think of a number
like π which is believed to be normal (that is, that its
digits are equally distributed), and therefore has little or
no redundancy. The number π has no repeating pattern
(because it is an irrational number). Lacking a pattern,
there is no way to optimize a channel through which to
transmit it. π, however, can be greatly compressed using
any of the known briefly describable formulas generating
its digits, so that one can send the formula rather than
the digits. But this kind of optimization is not within the
scope of Shannon’s communication theory. Unlike Shan-
non’s treatment of π, one can think of π as a meaningful
number because of what it represents: the relationship
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between any circumference and its diameter. I will argue
that meaning can be treated formally, using concepts of
AIT to approach these matters.

The main point of relevance to us made by Shannon
when formulating his measure in the context of commu-
nication is that in practice a message with no redundancy
is more likely to carry information if one assumes one is
transmitting more than just random bits. If something is
random-looking, then it will usually be considered mean-
ingless. To say that something is meaningful usually im-
plies that one can somehow arrive at a conclusion based
on it. Information has meaning only if it has a context, a
story behind it. Meaning, in a causal world, is the story
attached to a message.

3 Data + program is message +
interpretation

Among the several contributions made by Alan Turing
on the basis of his concept of computational universality
is the unification of the concepts of data and program.
Turing machines are extremely basic abstract symbol-
manipulating devices, which despite their simplicity, can
be adapted to simulate the logic of any computer that
could possibly be constructed. While one can think of
a Turing machine input as data, and a Turing machine
rule table as its program, each of them being separate en-
tities, they are in fact interchangeable as a consequence
of universal computation, as shown by Turing himself,
since for any input s for a Turing machine M , one can
construct M ′ with empty input such that M and M ′

accept the same language, with M ′ a (universal) Tur-
ing machine accepting an encoding of M as input and
emulating it for an input s for M in M ′.

In other words, one can always embed data as part
of the rule table of another machine. The identification
of something as data or a program is therefore merely
a customary convention and not a fundamental distinc-
tion. This is noteworthy because though it may seem
that a message is to data as an interpretation is to a pro-
gram, part of the argument is that the message cannot be
formally captured in both computational and semantic
terms if the interpretation is not part of it. So even if on
the surface we may make a distinction, just as we make
a distinction between a message and its recipient in the
real world, the difference is not essential. Hence subsum-
ing everything under the heading of ’message’ will allow
us to define the concept of meaning on the basis of the
theory of computation and algorithmic information. For

example, messages (inputs) for which a Turing machine
halts can be taken to be messages that have been under-
stood. It is certain that in the case of a universal Turing
machine there will be messages for which the machine
will halt and others for which it will not halt, a desirable
property insofar as we are concerned with defining mean-
ing. Which is to say that no matter what the meaning
of a message, there should always be recipients that are
capable of interpreting it and others that are not. That
some understand a message by halting (i.e., convention-
ally) doesn’t mean, however, that all of them understand
it in the same way, since each may react to it in a different
way–which is desirable insofar as we are seeking to de-
fine a concept of subjective meaning. These simple first
conventions will allow us to apply several concepts from
algorithmic information theory, notably the concepts of
conditional complexity, algorithmic probability and logi-
cal depth, in order to impart sense and robustness to our
algorithmic approach to the concept of meaning from a
computational perspective.

4 Information content and mean-
ing

Nevertheless, Shannon’s notion of information makes it
clear that information content is subjective (Shannon
himself):

Frequently the messages have meaning: that
is they are referred to or correlated according
to some system with certain physical or con-
ceptual entities. These semantic aspects of
communication are irrelevant to the engineer-
ing problem. The significant aspect is that
the actual message is one selected from a set
of possible messages. [30].

Subjective doesn’t mean, however, that one cannot
define information content formally, only that one should
include a plausible interpretation in the definition, a
point we will explore in the next section.

Shannon’s contribution is seminal in that he defined
the bit as the basic unit of information, as do our best
current theories of informational complexity. Any se-
quence of symbols can be translated into a binary se-
quence, thereby preserving the original content, as it
can be translated back and forth from the original to
the binary and vice versa. Shannon’s information theory
approaches information syntactically: whether and how

3



much information (rather than what information) is con-
veyed. And as a physical phenomenon: the basic idea is
to make the communication channel more efficient.

Unlike Shannon’s entropy, algorithmic complexity
considers individual objects independent of any probabil-
ity distribution. For example, different initial segments
of the Fibonacci sequence have each a different entropy.
Each of the 10 segments having 10 more values of the
Fibonacci sequence correspond to the following sequence
of Shannon’s entropy values: 2.163, 2.926, 3.354, 3.654,
3.88, 4.071, 4.228, 4.36, 4.484, 4.591– simply because the
longer the sequence of numbers, the more bits are re-
quired to encode them as such through a communication
channel. Yet one can decide that in order to recover the
same message at about the same size, it would be prefer-
able to send the formula together with the number of
Fibonacci numbers to generate. The sequence can be ex-
pressed as F (n) = F (n−1)+F (n−2) for n = {3, 4, 5, ...},
F (1) = 1, F (2) = 1. Which as a formula has a low and
constant algorithmic complexity for any segment of the
Fibonacci sequence. This example reveals that this is
a significant difference: two messages of arbitrarily dif-
ferent algorithmic complexity can have the same Shan-
non entropy. Shannon’s entropy represents an absolute
limit on the best possible lossless compression of the algo-
rithmic complexity, i.e. C(s) (program-size algorithmic
complexity) cannot be smaller than H(s) (Shannon’s en-
tropy). However, the Fibonacci sequence as a message
has the same meaning for algorithmic complexity, again
another desirable feature of algorithmic complexity (and
clearly one that would be unavailable were the problem
to be approached through Shannon’s entropy). Further
information about Shannon’s entropy in comparison to
algorithmic complexity is available in [18].

5 Information content and intrin-
sic meaning

As an attempt to define lack of meaning, think of a single
bit. A single bit does not carry any information, and
so it cannot but be meaningless if there is no recipient
to interpret it as something richer. The Shannon en-
tropy of a single bit is 0 because one cannot establish
a communication channel–no message can be encoded
or transmitted with a single letter of the alphabet. It
is intrinsically meaningless because there is no context.
The same is true for a string of n identical bits (either 1s
or 0s). To give it a meaning one would likely be forced to
make an external interpretation, because even if it car-

ries a message it cannot be intrinsically very rich, simply
because it cannot carry much information. In both cases
Shannon’s entropy and the algorithmic complexity of
such a string is very low.

Box 2. Algorithmic complexity is the length in
bits of the shortest program producing a string s when
running a program p on a universal Turing machine U
upon halting. One refers to C(s) as the algorithmic
complexity of s. Formally, C(s) = min |p| : U(p) = s
where |p| is the length of p measured in bits. Algo-
rithmic complexity formalizes the concept of simplicity
versus complexity. For an introduction to AIT, please
see [7, 22].

At the other extreme, a random string cannot be
usually considered meaningful. What one can say with
certainty is that something meaningful should therefore
lie between these two extremes: no information (trivial)
or complete nonsense (random). Algorithmic complexity
(see Box 2) opposes what is simple to what is complex or
random and can be thought of as a first approximation to
meaning, as opposing what is meaningful in some rough
sense to what is meaningless. However, algorithmic com-
plexity alone does not suffice to define meaning because
it cannot properly oppose complexity to randomness,
only simplicity to complexity or randomness. This is
because algorithmic complexity associates randomness
with the highest level of complexity. But using Bennett’s
logical depth [3] (also rooted on algorithmic complexity)
we are able to distinguish between something that looks
organized and something that looks random or trivial by
introducing time (a parameter that seems unavoidable in
the unfolding of a message, which makes it reasonable to
associate this measure with a measure of physical com-
plexity as Bennett himself suggests [4]). This connection
to Bennett’s logical depth means that a message cannot
be instantaneously meaningful if it is not in a proper
context.

Box 3. Conditional algorithmic complexity is
defined [22] as the shortest program p, for which the
universal Turing machine U outputs s given x, that
is C(s|x) = min |p| : U(x, p) = s. Notice that the defi-
nition of algorithmic complexity in Box 2 is a special
case of the conditional one when there is no x, i.e.
C(s) = C(s|ε), that is the algorithmic complexity of s
given no other information.

It is generally accepted that meaning is imparted by
the observer, that it is the interpretation of the message
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by its recipient. In order for the information conveyed to
have any semantic value, it must in some manner add to
the knowledge of the receiver. I claim that when it comes
to mapping meaning onto information content, these se-
mantic properties can be accounted for using concepts
such as conditional algorithmic complexity (see Box 3)
and logical depth (see Box 4).

For example, conditional algorithmic complexity (see
Box 3) can define a distance measure between messages.
It is clear from the conditional definition that even if a
string s is meaningless, the complexity of s given s is very
low because the length of the shortest program producing
s with input s is the shortest possible.

6 Meaning is logically deep

As is well known, the problem with meaning is that it
is highly dependent on the recipient and its interpre-
tation. Connecting meaning to the concept of logical
depth has the advantage of taking into account the story
and context of a message, and therefore of potentially
accounting for the likely recipient’s interpretation. A
meaningful message (short or long) contains a long com-
putational history when taken together with the associ-
ated computation, otherwise it has little or no meaning.
Hence the pertinence of the introduction of logical depth.

Box 4. Bennett’s logical depth is defined [3] as
the execution time required to generate a string by a
near-incompressible program, i.e. one not produced by
a significantly shorter program. Logically deep objects
contain internal evidence of having been the result of
a long computation and satisfy a slow-growth law (by
definition).

Think of a winning number in a lottery. The number
by itself may be meaningless for a recipient, but if two
parties had shared information on how to interpret it, the
information shared beforehand becomes part of the com-
putational history and as such not unrelated to the sub-
sequent message. The only way to interpret a number as
being the winning number of a lottery is to have a story,
not just a story that relates the number to a process,
but one that narrates the process itself. Since winning a
prize is no longer a matter of apparent chance but has to
do with the release of information (both the number and
the interpretation of the number), it is therefore not the
number alone that represents the content and meaning
of the message (the number), but the story attached to
it.

There are also messages that contain the story in
themselves. If instead of a given number one substitutes
the interpretation of such a number, the message can be
considered meaningful in isolation. But both cases have
the same logical depth, as they have the same output and
computing time and are the result of the same history
(even if in the first case such a history may be rendered
in two separate steps) and origin, hence the definition
seems robust enough.

If a Turing machine randomly performs a lot of work
when provided with a random input, making it look
meaningful, it may seem that our approach is not robust
enough, since something that’s taken to be meaningful
is actually just a random computation. There are, how-
ever, two possible answers to this objection: On the one
hand, the probability of a machine undertaking a long
computation by chance is very low. Calude and Stay
[7] prove that of machines that halt, most will halt af-
ter a few steps. This happens for most strings, meaning
that most messages are meaningless if both the message
and the computation do not somehow resonate with each
other, which recalls an intuitive requirement for consid-
ering something a meaningful message. On the other
hand, also based on the results of Calude and Stay, algo-
rithmic probability almost guarantees the non-existence
of Rube Goldberg machines (amusing machines that do a
lot of work in order to accomplish a trivial task), which
implies that the amount of work performed (the number
of steps and output length) by a Turing machine that
halts will be proportional to the information content of
the input message.

7 An algorithmically robust defi-
nition of meaning

Algorithmic probability, as defined by Solomonoff [31]
and Levin [21] (see Box 5) indicates that every out-
come is likely to be produced by the shortest program(s)
producing that outcome. In other words, meaningful
messages would have little chance of being interpreted
as such by chance.
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Box 5. Algorithmic probability: The algorithmic
probability of a string s is the probability of producing
s with a random program p (a sequence of fair coin flip
inputs) when running on a universal prefix-free Turing
machine [21]. That is, a machine for which a valid pro-
gram is never the beginning of any other program, so
that one can define a convergent probability the sum of
which is at most 1. Formally, m(s) = Σp:U(p)=s2

−|p|,
i.e. the sum over all the programs for which U with p
outputs the string s and halts.

It is algorithmic probability that would account for
the robustness of this algorithmic approach to meaning.
The meaning of a message only makes sense for partic-
ular recipients (not for any random ones). A message
that has meaning for someone may not have meaning for
someone else– just the kind of property one would desire
in a concept entailing the meaning of meaning. This
is what happens when some machines react to a mean-
ingful input rather than to a random one. Algorithmic
probability guarantees that most machines will halt al-
most immediately with no computational history for a
given message. In other words, there is a correspondence
between a meaningful input, computation time and a
structured outcome, given the connection between algo-
rithmic probability and algorithmic complexity (see Box
6).

Box 6. The coding theorem is a theorem connect-
ing algorithmic probability to algorithmic complexity.
Algorithmic probability is related to algorithmic com-
plexity in that m(s) is at least the maximum term
in the summation of programs given that it is the
shortest program that has the greater weight in the
summation of the fractions defining m(s). Formally,
the theorem states that the following relation holds:
− log2m(s) = C(s) + O(1). For technical details see
[7].

8 Finite randomness (just like
meaning) is in the eye of the be-
holder

In a move that parallels the mistaken use and overuse
of Shannon’s measure as a measure of complexity, the
notion of complexity is frequently associated, in the field

of complex systems, with the number of interacting ele-
ments or the number of layers of a system. Researchers
who make such an association should continue using
Shannon’s entropy since it quantifies the distribution of
elements, but they should also be aware that they are
not measuring the complexity of a system or object, but
rather its diversity, which may be a different thing alto-
gether (despite being roughly related).

As has been shown by Stephen Wolfram, it is not al-
ways the case that the greater the number of elements the
greater the complexity, nor is it the case that a greater
number of layers or interactions make for greater com-
plexity, for the simplest computing systems are capable
of the greatest apparent complexity [35].

The theory of algorithmic randomness does not guar-
antee that a string of finite length cannot be algorithmi-
cally compressed. Nonetheless, any string is guaranteed
to occur as a substring (with equal probability) in any
algorithmically random infinite sequence. But this has
to do with the semantic value of AIT, given that a fi-
nite string has meaning only in a particular context, as
a substring of a larger, potentially longer and essentially
different string. Therefore, one can declare a string to be
random-looking only as long as it does not appear as a
substring embedded in another finite or infinite string.

A string may be random at the scale of an infinite
sequence, but since all possible strings are contained in
an infinite random sequence, random blocks of strings
may not always look random. For example, consider the
following pseudo-randomly generated string (generated
with Mathematica’s default random number generator:
1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1,
0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1,
0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1. This string looks quite
random when taken as a whole, but it actually contains
several blocks that do not look random at all (e.g. 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1 from position 19 to position 29; or
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 from position
30 to position 46) if isolated.

On the other hand random-looking strings can always
be part of larger non-random sequences. A string with
period 10 (and therefore compressible to about a tenth
of its size): 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1,
0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1,
0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1,
0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1,
0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1,
0, 1, 1, 0; contains, if isolated, a ’random-looking’ string
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0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0.
The same goes for a message. A message can be

contained in a longer message, and actually its interpre-
tation may change from one context to another. From
the perspective of algorithmic complexity (when inter-
preted in terms of meaning) this property can be seen
as an indication that there cannot be an ultimate in-
terpretation of the meaning of a message– yet another
desirable feature of algorithmic complexity that mirrors
our intuitive sense of the concept of meaning.

Box 7. The Halting problem and Chaitin’s Ω:
As widely known, the Halting problem for Turing ma-
chines is the problem of deciding whether an arbitrary
Turing machine T eventually halts on an arbitrary in-
put s. Halting computations can be recognized by
simply running them for the time they take to halt.
The problem is to detect non-halting programs, about
which one cannot know if the program will run forever
or will eventually halt. An elegant and concise repre-
sentation of the halting problem is Chaitin’s irrational
number Ω [8], defined as the halting probability of a
universal computer programmed by coin tossing. For-
mally, 0 < Ω =

∑
p halts 2−|p| < 1 with |p| the size of p

in bits. Chaitin’s Ω number is the halting probability
of a universal (prefix-free) Turing machine running a
random program (a sequence of fair coin flip bits taken
as a program).

At the other extreme, in this algorithmic context,
there is Chaitin’s Ω number [8] that may be regarded
as entailing the greatest possible meaning because it en-
codes all possible messages in the form of answers to all
possible questions encoded by Turing machines. That
Chaitin’s Ω is in practice inaccessible seems desirable if
we are to avoid a contradiction in the concept of mean-
ing, and also in light of the fact that one cannot expect
to encode all meanings in a single message. In other
words, complete meaningfulness or the apprehension of
all possible meanings is unattainable via this algorith-
mic approach, as it is ultimately uncomputable. Which
is just what one would intuitively expect to be the case
with meaning in the broadest sense.

9 Towards a philosophical agenda

The previous discussion sketches a possible agenda for a
philosophy of information in the context of the current
state of the theory of algorithmic information. Focusing

more on the core of the theory itself, there are several
directions that a deeper exploration of the foundations
of algorithmic information might take.

There is, for example, Levin’s contribution [21] to al-
gorithmic complexity in the form of the eponymous semi-
measure, motivated by a desire to fundamentally amend
Kolmogorov’s plain definition of complexity in light of
the realization that information should follow a law of
non-growth conservation. This is an apparently different
motivation from the one behind Gregory Chaitin’s defi-
nition of algorithmic complexity in its prefix-free version.

There are also laws of symmetry and mutual informa-
tion discovered by Gács [17], and Li and Vitányi [22], for
example, which remain to be explored, fully understood
and philosophically dissected.

Furthermore there are the subtle but important dif-
ferences involved in capturing organization in informa-
tion through the use of algorithmic randomness ver-
sus doing so using Bennett’s logical depth [3], a matter
brought to our attention in, for example [11]. The mo-
tivation behind Bennett’s formulation of his concept of
logical depth was to capture the notion of complexity by
taking into account the history of an object. It had, in
our algorithmic approach to information, the important
consequence of classifying intuitively shallow physical ob-
jects as objects deprived of meaning.

There is also the question of the dependence of the
definitions on the context in which meaning is evaluated
(the choice of universal Turing machine), up to an ad-
ditive constant, a question which has recently been ad-
dressed in [9, 12], who propose that reasonable choices
of computational formalisms actually lead to reasonable
evaluations of complexity [10]. This is the problem of
finding a stable framework for a robust enough evalua-
tion of information content.

In [15], van Benthem highlights an issue of great
philosophical interest when he expresses a desire to un-
derstand the unreasonable effectiveness (a phrase he
claims is borrowed) of quantitative information theories.

Paradoxically, my concern would be with the unrea-
sonable ineffectiveness of qualitative information theo-
ries, notably algorithmic complexity, given that it is
the unreasonable effectiveness of quantitative informa-
tion theories, notably Shannon’s notion of information
entropy, that has mistakenly led researchers to use it in
frameworks in which a true (and universal) measure of
complexity is needed. The connections between Shan-
non’s entropy and Kolmogorov complexity are investi-
gated in detail in [18].

It is the ineffectiveness of algorithmic complexity that
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imbues information content with its deepest character,
given that its full characterization cannot effectively be
achieved even if it can be precisely defined. Hence Van
Benthem opens up a rich vein, this discussion being po-
tentially fruitful and of great interest even if it has hith-
erto been largely ignored. I think the provisional for-
mulations of the laws of information, together with their
underlying motivations should be a central part of the
discussion, if not the main focus of a semantic approach
to information which is more integrally rooted in current
mathematical developments.

It may be objected that a semantic approach to the
study of information should not be reduced to the al-
gorithmic, which is sometimes considered a syntactic-
digital view of information. That, however, would be
rather an odd objection, given that most texts on infor-
mation start with Shannon’s information theory, with-
out however taking the next natural step and undertak-
ing a discussion of the current state of information as
exemplified by AIT. So either the philosophy of infor-
mation ought to take a completely different path from
Shannon’s, which inevitably leads to the current state
of algorithmic information and prompts deeper explo-
ration of it, or else it should steer clear of the algorith-
mic side as being separate from and alien to it1. In other
words, I don’t find it consistent to cover Shannon’s work
while leaving out all further developments of the field by,
among others, Kolmogorov, Chaitin, Solomonoff, Levin,
Bennett, Gács and Landauer. As I have pointed out in
the previous section, there is a legitimate agenda con-
cerning what some may call the syntactic-mechanistic
branch of the study of Information, which, paradoxically,
I think is the most interesting and fruitful part of the
semantic investigation, and one that mainstream Philos-
ophy of Information has traditionally steered clear of for
the most part, a few exceptions notwithstanding[26, 25].

No account of what information might be can be con-
sidered complete without taking into account the inter-
pretations of quantum information. One relevant issue
has been raised by Wheeler [34], though perhaps with
reference to a different scale, and that is whether an ob-
server is necessary for information to exist and for an
observation to have meaning. There does not exist a
universally accepted interpretation of quantum mechan-
ics, although the so-called Copenhagen Interpretation is
considered the mainstream one. Discussions about the
meaning of quantum mechanics and its implications do
not, however, lead to a consensus. It is beyond the scope

of this paper to further discuss the quantum approach
other than to point out its pertinence in an encompass-
ing discussion. See for instance [6].

9.1 Basics to agree upon

We should agree upon fundamental properties of infor-
mation derived from the current state of AIT that, as I’ve
argued, can serve as a basis for a mathematical frame-
work in a philosophical discussion. Although this is not
the place to discuss the several results of the theory of
algorithmic complexity, here is a non-exhaustive list of
some of the points to be agreed upon, together with the
claims that meaning can be captured and at least some
of its properties studied. The list, in a certain order of
logical derivation, is:

• The basic unit of information is the bit, but infor-
mation remains subjective (Shannon [30]).

• Shannon’s information measure cannot capture
content, organization or meaning as it is neither a
measure of information content nor of complexity.

• Algorithmic complexity is an objective and univer-
sal framework for capturing structure and random-
ness.

• Randomness implies the impossibility of informa-
tion extraction (Chaitin [8]).

• Shallowness is meaningless (Kolmogorov [19]).

• Randomness is meaningless (Bennett [3]).

• There are strong connections between logical and
thermodynamic (ir)reversibility to be explored
(Bennett [5], Fredkin [16], Toffoli [16]).

• Information can be transformed into energy and en-
ergy into information (Landauer [20], Bennett [3]).

• Information follows fundamental laws: sym-
metry, non-growth, mutual information and
(ir)reversibility (Gács [17], Zvonkin [38], Levin [21],
Bennett [5], Landauer [20]).

• Matter and information are deeply connected, al-
though it is an open question which of the two
is more fundamental(Wheeler [34], Feynman [13],
Bennett [5], Landauer [20], Fredkin [16], Wolfram
[35]).

Information has also begun playing a major role in
the interpretation of quantum mechanics [28, 6] and is
assuming foundational status in some models of modern

1Pieter Adriaans has presented similar arguments [1] in relation to the often mistaken tendency of semantic approaches to information
to largely ignore the theory of algorithmic information.
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physics [33] as it did in classical physics, notably in ther-
modynamics, and more recently in cosmology [2]. We
shall further survey the listed properties and the con-
nections of information to physics in a follow-up to this
paper.

10 Concluding remarks

A common language and a commonly agreed upon formal
framework seem to be necessary. I’ve claimed that algo-
rithmic information is suitable for defining individual in-
formation content and for providing a characterization of
the concept of meaning in terms of logical depth and al-
gorithmic probability. This rather formal computational
characterization does not mean that a discussion of al-
gorithmic information would be deprived of legitimate
philosophical interest.

I have briefly drawn attention to and discussed some
of the questions germane to a philosophy of algorith-
mic information in connection to a semantic definition of
meaning. I’ve argued that algorithmic complexity and al-
gorithmic probability taken together with Bennett’s log-
ical depth can constitute an appropriate computational
framework within which to discuss information content
and meaning. Nor does the fact that meaning can be
fully formalized mean either that it will lose its most
valuable characteristics, such as subjectivity with respect
to a recipient. Such a subjective and rich dimension can
be computationally grasped as proposed herein, and can
constitute another point of departure for an organized
philosophical discussion accounting for and covering a
field that can no longer be ignored in philosophical dis-
cussions of information.
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