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? Author to whom correspondence should be addressed; michele.campisi@physik.uni-augsburg.de

Version December 12, 2011 submitted to Entropy. Typeset by LATEX using class file mdpi.cls

Abstract: The recent development of the theory of fluctuation relations has led to new in-1

sights into the ever-lasting question of how irreversible behavior emerges from time-reversal2

symmetric microscopic dynamics. We provide an introduction to fluctuation relations, ex-3

amine their relation to dissipation and discuss their impact on the arrow of time question.4
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1. Introduction7

Irreversibility enters the laws of thermodynamics in two distinct ways:8

Equilibrium Principle An isolated, macroscopic system which is placed in an arbitrary initial state9

within a finite fixed volume will attain a unique state of equilibrium.10

Second Law (Clausius) For a non-quasi-static process occurring in a thermally isolated system, the11

entropy change between two equilibrium states is non-negative.12

The first of these two principles is the Equilibrium Principle [1], whereas the second is the Second Law13

of Thermodynamics in the formulation given by Clausius [2,3]. Very often the Equilibrium Principle is14

loosely referred to as the Second Law of Thermodynamics, thus creating a great confusion in the liter-15

ature. So much that proposing to raise the Equilibrium Principle to the rank of one of the fundamental16

laws of thermodynamic became necessary [1]. Indeed it was argued that this Law of Thermodynamics,17
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defining the very concept of state of equilibrium, is the most fundamental of all the Laws of Thermody-18

namics (which in fact are formulated in terms of equilibrium states) and for this reason the nomenclature19

Minus-First Law of Thermodynamics was proposed for it.20

Figure 1. Autonomous vs. nonautonomous dynamics. Top: Autonomous evolution of a gas
from a non-equilibrium state to an equilibrium state (Minus-First Law). Bottom: Nonau-
tonomous evolution of a thermally isolated gas between two equilibrium states. The piston
moves according to a pre-determined protocol specifying its position λt in time. The entropy
change is non-negative (Second Law).

The Minus-First Law of Thermodynamics and the Second Law of Thermodynamics consider two very21

different situations, see Fig. 1. The Minus-First Law deals with a completely isolated system that begins22

in non-equilibrium and ends in equilibrium, following its spontaneous and autonomous evolution. In the23

Second Law one considers a thermally (but not mechanically) isolated system that begins in equilibrium.24

A time-dependent mechanical action perturbs the initial equilibrium, the action is then turned off and a25

final equilibrium will be reached, corresponding to higher entropy.1 At variance with the Minus-First26

Law, here the system does not evolve autonomously, but rather in response to a driving: we speak in this27

case of nonautonomous evolution.28

The use of the qualifiers “autonomous” and “nonautonomous” reflects here the fact that the set of29

differential equations describing the microscopic evolution of the system are autonomous (i.e. they do30

not contain time explicitly) in cases of the type depicted in Fig. 1, top, and are nonautonomous (i.e.31

they contain time explictely) in cases of the type depicted in Fig. 1, bottom. Accordingly the Hamilton32

function is time independent in the former cases and time dependent in the latter ones (see Sec. 2 below).33

In order to illustrate the necessity of clearly distinguishing between the two prototypical evolutions34

depicted in Fig. 1, let us analyze one statement which is often referred to as the second law: after the35

1That such final equilibrium state exists is dictated by the Minus-First Law. Here we see clearly the reason for assigning
a higher rank to the Equilibrium Principle
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removal of a constraint, a system that is initially in equilibrium reaches a new equilibrium at higher36

entropy [4]. While, after the removal of the constraint the system evolves autonomously (hence, in37

accordance to the equilibrium principle will eventually reach a unique equilibrium state), it is often over-38

looked the fact that the overall process is nevertheless described by a set of nonautonomous differential39

equations (because the removal of the constraint is an instance of a external time-dependent mechanical40

intervention) with the constrained equilibrium as initial state. Then, in accordance with Clausius princi-41

ple the final state is of higher or same entropy. Thus, this formulation of the second law can be seen as42

a special case of Clausius formulation that considers only those external interventions which are called43

constraint removals.44

Both the Minus-First Law and the Second Law have to do with irreversibility and the arrow of time.45

While since the seminal works of Boltzmann, the main efforts of those working in the foundations of46

statistical mechanics were directed to reconcile the Minus-First Law with the time-reversal symmetric47

microscopic dynamics, recent developments in the theory of fluctuation relations, have brought new and48

deep insights into the microscopic foundations of the Second Law. As we shall see below, fluctuation49

theorems highlight in a most clear way the fascinating fact that the Second Law is deeply rooted in the50

time-reversal symmetric nature of the microscopic laws of microscopic dynamics [5,6].51

This connection is best seen if one considers the Second Law in the formulation given by Kelvin,52

which is equivalent to Clausius formulation [7]:53

Second Law (Kelvin) No work can be extracted from a closed equilibrium system during a cyclic vari-54

ation of a parameter by an external source.55

The field of fluctuation theorems has recently gained much attention. Many fluctuation theorems have56

been reported in the literature, referring to different scenarios. Fluctuation theorems exist for classical57

dynamics, stochastic dynamics, and for quantum dynamics; for transiently driven systems, as well as58

for non equilibrium steady states; for systems prepared in canonical, micro-canonical, grand-canonical59

ensembles, and even for systems initially in contact with “finite heat baths” [8]; they can refer to dif-60

ferent quantities like work (different kinds), entropy production, exchanged heat, exchanged charge,61

and even information, depending on different set-ups. All these developments including discussions of62

the experimental applications of fluctuation theorems, have been summarized in a number of reviews63

[5,6,9,10].64

In Sec. 2 we will give a brief introduction to the classical work Fluctuation Theorem of Bochkov65

and Kuzovlev [11], which is the first fluctuation theorem reported in the literature. The discussion of66

this theorem suffices for our purpose of highlighting the impact of fluctuation theory on dissipation (Sec.67

3) and on the arrow of time issue (Sec. 4). Remarks of the origin of time’s arrow in this context are68

collected in Sec. (5)69
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2. The fluctuation theorem70

2.1. Autonomous dynamics71

Consider a completely isolated mechanical system composed of f degrees of freedom. Its dynamics72

are dictated by some time independent Hamiltonian H(q,p), which we assume to be time reversal73

symmetric; i.e.,74

H(q,p) = H(q,−p) (1)

Here (q,p) = (q1 . . . qf , p1 . . . pf ) denotes the conjugate pairs of coordinates and momenta describing75

the microscopic state of the system.76

The assumption of time-reversal symmetry implies that if [q(t),p(t)] is a solution of Hamilton equa-77

tions of motion, then, for any τ , [q(τ − t),−p(τ − t)] is also a solution of Hamilton equations of motion.78

This is the well known principle of microreversibility for autonomous systems [12].79

We assume that the system is at equilibrium described by the Gibbs ensemble:80

%(q,p) = e−βH(q,p)/Z(β) (2)

where Z(β) =
∫
dpdqe−βH(q,p) is the canonical partition function, and β−1 = kBT , with kB being the81

Boltzmann constant and T denotes the temperature.82

We next imagine to be able to observe the time evolution of all coordinates and momenta within some83

time span t ∈ [0, τ ]. Fluctuation theorems are concerned with the probability2 P [Γ] that the trajectory84

Γ is observed. We will reserve the symbol Γ to denote the whole trajectory (that is, mathematically85

speaking, to denote a map from the interval [0, τ ] to the 2f dimensional phase space), whereas the86

symbol Γt will be used to denote the specific point in phase space visited by the trajectory Γ at time t.87

The central question is how the probability P [Γ] compares with the probability P [Γ̃] to observe Γ̃, the88

time-reversal companion of Γ: Γ̃t = εΓτ−t where ε(q,p) = (q,−p) denotes the time reversal operator.89

The answer is given by the microreversibility principle which implies:90

P [Γ] = P [Γ̃]. (3)

To see this, consider the Hamiltonian dynamics but for the case that the trajectory Γ is not a solution91

of Hamilton equations, then Γ̃ is also not a solution, and both the probabilities P [Γ] and P [Γ̃] are trivially92

zero. Now consider the case when Γ is solution of Hamilton equations, then also Γ̃ is a solution. Since93

the dynamics are Hamiltonian, there is one and only one solution passing through the point Γ0 at time94

t = 0, then the probability P [Γ] is given by the probability to observe the system at Γ0 at t = 0. By95

our equilibrium assumption this is given by %(Γ0)
3. Likewise the P [Γ̃] is given by %(Γ̃0). Due to time-96

reversal symmetry and energy conservation we have H(Γ̃0) = H(εΓτ ) = H(Γτ ) = H(Γ0) implying97

%(Γ̃0) = %(Γ0), hence Eq. (3).98

To summarize, the micro reversibility principle for autonomous systems in conjunction with the hy-99

pothesis of Gibbsian equilibrium implies that the probability to observe a trajectory and its time-reversal100

2To be more precise, the probability density functional (PDFL)
3To be more precise P [Γ]DΓ = %(Γ0)dΓ0 where DΓ is the measure on the Γ-trajectory space, and dΓ0 is the measure in

phase space
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companion are equal. There is no way to distinguish between past and future in an autonomous system101

at equilibrium. Obviously, this is no longer so when the system is prepared out of equilibrium, as in Fig102

1, top.103

2.2. Nonautonomous dynamics104

Imagine now the nonautonomous case of a thermally insulated system driven through the variation105

of a parameter λt. Thermal insulation guarantees that the dynamics are still Hamiltonian. At variance106

with the autonomous case though, now the Hamiltonian is time dependent. Without loss of generality we107

assume that the varying parameter, denoted by λt couples linearly to some system observable Q(q,p),108

so that the Hamiltonian reads:109

H(q,p;λt) = H0(q,p)− λtQ(q,p) (4)

This is the traditional form employed in the study of the fluctuation-dissipation theorem [13].4 In the110

following we shall reserve the symbol λ (without subscript) to denote the whole parameter variation111

protocol, and use the symbol λt, to denote the specific value taken by the parameter at time t. The112

succession of parameter values is assumed to be pre-specified (the system evolution does not affect the113

parameter evolution).114

We assume that λt = 0 for t = 0 and that the system is prepared at t = 0 in the equilibrium Gibbs115

state116

%0(q,p) = e−βH0(q,p)/Z0(β) , (5)

where Z0(β) =
∫

dqdqe−βH0(q,p). We further assume that at any fixed value of the parameter the117

Hamiltonian is time reversal symmetric:118

H(q,p;λt) = H(q,−p;λt) (6)

Note here the fact that energy is not conserved in the nonautonomous case because the Hamiltonian119

is time-dependent in this case. Microreveresibility, as we have described it above, also does not hold:120

Given a protocol λ, if Γ is a solution of the Hamilton equations of motion, in general Γ̃ is not. However121

Γ̃ is a solution of the equations of motion generated by the time-reversed protocol λ̃, where λ̃t = λτ−t.122

This is the microreversibility principle for nonautonmous systems [5]. It is illustrated in Fig. 2. Despite123

its importance we are not aware of any text-books in classical (or quantum) mechanics that discusses it.124

A classical proof appears in [14, Sec. 1.2.3]. Corresponding quantum proofs were given in Refs. [15]125

and [5, See appendix B].126

As with the autonomous case we can ask how the probability distribution P [Γ, λ] that the trajectory127

Γ is realized under the protocol λ, compares with the probability distribution P [Γ̃, λ̃] that the reversed128

trajectory Γ̃ is realized under the reversed protocol λ̃. The answer to this was first given by Bochkov and129

Kuzovlev [11], who showed that130

P [Γ, λ] = P [Γ̃, λ̃]eβW0 (7)

4 For the sake of clarity we remark that the Hamiltonian describing the expansion of a gas, as depicted in Fig. 1, bottom,
is not of this form. Our arguments however can be generalized to nonlinear couplings [11].
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Figure 2. Microreversibility for nonautonomous classical (Hamiltonian) systems. The initial
condition Γ0 evolves to Γτ under the protocol λ, following the path Γ. The time-reversed
final condition εΓτ evolves to the time-reversed initial condition εΓ0 under the protocol λ̃,
following the path Γ̃.

Γ0

εΓ0

Γτ

εΓτ

Γ, λ

Γ̃, λ̃

p

q

where
W0 =

∫ τ

0

dtλtQ̇t . (8)

Here, Qt = Q(Γt) denotes the evolution of the quantity Q along the trajectory Γ and W0 is the so called131

“exclusive work”. As discussed in [5,16–18] yet another definition of work is possible, the so called132

“inclusive work” W = −
∫
dtλ̇tQt, leading to a different and equally important fluctuation theorem133

involving free energy differences [5,19,20]. Without entering the question about the physical meaning of134

the two quantities W and W0, it suffices for the present propose to notice that for a cyclic transformation135

W0 = W .5 In the remaining of this section we will restrict our analysis to cyclic transformations136

(λ0 = λτ ) in order to make contact with Kelvin postulate and to avoid any ambiguity regarding the137

usage of the word “work”.138

Just like Eq. (3) constitutes a direct expression of the principle of microreversibility for autonomous139

systems, so is Eq. (7) a direct expression of the more general principle of microreversibility for nonau-140

tonomous systems. Remarkably it expresses the second law in a most clear and refined way.141

In order to see this it is important to realize that the work W0 is odd under time-reversal. This is so142

because W0 is linear in a quantity Q̇t, which is the time derivative of an even observable Q. The theorem143

says that the probability to observe a trajectory corresponding to some work W0 > 0 under the driving144

λ is exponentially larger than the probability to observe the reversed trajectory (corresponding to −W0)145

under the driving λ̃. This provides a statistical formulation of the second law146

5For a detailed discussion on the differences between the two work expressions we refer the readers to Sect. III. A in the
colloquium [5].
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Second Law (Fluctuation Theorem) Injecting some amount of energy W0 into a thermally insulated147

system at equilibrium at temperature T by the cyclic variation of a parameter, is exponentially (i.e.148

by a factor eW0/(kBT )) more probable than withdrawing the same amount of energy from it by the149

reversed parameter variation.150

Multiplying Eq. (7) by e−βW0 and integrating over all Γ-trajectories, leads to the relation [11]:151

〈e−βW0〉λ = 1 . (9)

The subscript λ in Eq. (9) is there to recall that the average is taken over the trajectories generated by the152

protocol λ. In particular, the notation 〈·〉λ denotes an nonequilibrium average.6 Combining Eq. (9) with153

Jensen’s inequality, 〈exp(x)〉 ≥ exp(〈x〉), leads to154

〈W0〉λ ≥ 0 , (10)

which now expresses Kelvin’s postulate as a nonequilibrium inequality [11]. The quantum version of155

the fluctuation theorems by Bochkov and Kuzovlev have been given only recently in Ref. [18]. This156

latter reference in addition reports its microcanonical variant, which applies to the case when the system157

begins in a state of well defined energy.158

3. Dissipation: Kubo’s formula159

Before we continue with the implications of the fluctuation theorem for the arrow of time question, it160

is instructive to see in which way the fluctuation theorem relates to dissipation.161

Given the distribution P [Γ, λ], the distribution p[Q, λ] that a trajectory Q of the observable Q(q,p)162

occurs in the time span [0, τ ], can be formally expressed as:163

p[Q, λ] =

∫
DΓP [Γ, λ]δ(Q−Q[Γ]) (11)

where δ denotes Dirac’s delta in the Q-trajectory space, the integration is a functional integration over164

all Γ-trajectories, and Q[Γ] is defined as Q[Γ]t
.
= Q[Γt].165

Multiplying Eq. (3) by e−β
∫
λsQ̇sdsδ(Q−Q[Γ]) and integrating over all Γ-trajectories, one finds:166

p[Q, λ]e−β
∫
λsQ̇sds = p[Q̃, λ̃] , (12)

where Q̃ is the time reversal companion of Q: Q̃t = Qτ−t. Now multiplying both sides of Eq. (12) by167

Qτ and integrating over all Q-trajectories, one obtains:168

〈Qτe
−β

∫
λsQ̇sds〉λ = 〈Q̃τ 〉λ̃ (13)

Note that 〈Q̃τ 〉λ̃ = 〈Q0〉λ̃ and that, due to causality, the value taken by the observable Q(q,p) at time169

t = 0 cannot be influenced by the subsequent evolution of the protocol λ̃. Therefore, the average presents170

6 The nonequilibrium average 〈·〉λ can be understood as an average over the work probability density function p[W0;λ],
that is the probability that the energy W0 is injected in the system during one realization of the driving protocol. It formally
reads[5]: p[W0;λ] =

∫
dq0dp0ρ0(q0,p0)δ[W0 −

∫ τ
0
λtQ̇(qt,pt)], where δ denotes Dirac’s delta function, and (qt,pt) is

the evolved of its initial (q0,p0) under the driving protocol λ.
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a manifest equilibrium average; that is to say that it is an average over the initial canonical equilibrium171

%0(q,p). We denote this equilibrium average by the symbol 〈·〉 (with no subscript). Thus, Eq. (13) reads172

173

〈Qτe
−β

∫
λsQ̇sds〉λ = 〈Q0〉 (14)

By expanding the exponential in Eq. (14) to first order in λ, one obtains:174

〈Qτ 〉λ − 〈Q0〉 = β

〈
Qτ

∫ τ

0

λsQ̇sds

〉

λ

+O(λ2) . (15)

Since the bracketed expression on the rhs is already O(λ) we can replace the non-equilibrium average175

〈·〉λ with the equilibrium average 〈·〉 on the rhs. Further, since averaging commutes with time integration176

one arrives, up to order O(λ2), at:177

〈Qτ 〉λ − 〈Q0〉 = β

∫ τ

0

〈Qτ Q̇s〉λsds , (16)

= −β
∫ τ

0

〈Q̇τ−sQ0〉λsds . (17)

In the second line we made use of the time-homogeneous nature of the equilibrium correlation func-178

tion. This is the celebrated Kubo formula [13] relating the non equilibrium linear response of the quantity179

Q to the equilibrium correlation function φ(s, τ) = 〈Qτ Q̇s〉. As Kubo showed it implies the fluctuation-180

dissipation relation [21], linking, for example, the mobility of a Brownian particle to its diffusion coeffi-181

cient [22], and the resistance of an electrical circuit to its thermal noise [23,24]182

This classical derivation of Kubo’s formula from the fluctuation theorem is a simplified version of the183

derivation given by Bochkov and Kuzovlev [11]. The corresponding quantum derivation was reported184

by Andrieux and Gaspard [15].185

4. Implications for the arrow of time question186

Jarzynski has analyzed in a transparent way how the fluctuation theorem for the inclusive work, W ,187

may be employed to make guesses about the direction of time’s arrow [6]. Here we adapt his reasoning to188

the case of the exclusive work, W0, which appears in the fluctuation relation of Bochkov and Kuzovlev,189

Eq. (7).190

Just imagine we are shown a movie of an experiment in which a system starting at temperature T =

(kBβ)−1 is driven by a protocol, and we are asked to guess whether the movie is displayed in the same
direction as it was filmed or in the backward direction, knowing that tossing of an unbiased coin decided
the direction of the movie. When the outcome is +(−), the movie is shown in the same(opposite)
direction as it was filmed. Imagine next that we can infer from the analysis of each single frame t the
instantaneous values λt and Qt taken by the parameter and its conjugate observable, respectively. With
these we can evaluate the work W0 for the displayed process using Eq. (8). Envision that we find, for
the shown movie that βW0 � 1. If the film was shown in the “correct” direction it means that a process
corresponding to βW0 � 1 occurred. If the film was shown backward then it means that a process
corresponding to βW0 � −1 occurred (recall that W0 is odd under time-reversal). The fluctuation
theorem tells us that the former case occurs with an overwhelmingly higher probability relative to the
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Figure 3. Degree of belief P (+|W0) that a movie showing the nonautonomous evolution of
a system is shown in the same temporal order as it was filmed, given that the work W0 was
observed and that the direction of the movie was decided by the tossing of an unbiased coin.
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−10 −5 0 5 10

W0 [kBT ]

probability of the latter case. Then we can be very much confident that the film was running in the
correct direction. Likewise if we observe βW0 � −1, then we can say with very much confidence the
the film depicts the process in the opposite direction as it happened. Clearly when intermediate values
of βW0 are observed we can still make well informed guesses about the direction of the movie, but with
less confidence. The worst scenario arises when we observe W0 = 0, in which case we cannot make
any reliable guess. The question then arises of how to quantify the confidence of our guesses. This is
a typical problem of Bayesian inference. Before we are shown the movie our degree of belief of the
outcome +, is given by the prior, P (+) = 1/2 (likewise, P (−) = 1−P (+) = 1/2). After we have seen
the movie the prior is updated to the posterior, P (+|W0), which is the degree of belief that the outcome
+ occurred, given the observed work W0. Using Bayes theorem, the posterior is given by

P (+|W0) =
P (W0|+)

P (W0)
P (+) (18)

where P (W0|+) is the conditional probability to observe W0 given that + occurred, and P (W0) is191

the probability to observe W0; i.e., P (W0) = P (W0|+)P (+) + P (W0|−)P (−). According to the192

fluctuation theorem P (W0|+)/P (−W0|+) = eβW0 and sinceW0 is odd under time reversal, P (W0|−) =193

P (−W0|+). Using these relations together with Eq. (18) one obtains:194

P (+|W0) =
1

e−βW0 + 1
(19)

Figure 3 displays P (+|W0) as a function of W0. As it should be P (+|W0) is larger than 1/2 for195

positive W0, and vice versa, and is an increasing function of W0. If W0 is large compared to β−1, then196

P (+|W0) ' 1, and we can be almost certain that the movie was shown in the forward direction. Vice197

versa, if βW0 � −1, then we can say with almost certainty that the movie has been shown backward.198

The transition to certainty of guess occurs quite rapidly (in fact exponentially) around |βW0| ' 5. Note199

that that for an autonomous system W0 = 0, implying P (+|W0) = P (−|W0) = 1/2, meaning that,200

as we have elaborated above, there is no way to discern the direction of time’s arrow in an autonomous201

system at equilibrium.202

Since the fluctuation theorem (7) holds as a general law regardless of the size of the system, it appears203

that our ability to discern the direction of time’s arrow does not depend on the system size. It is also204
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worth mentioning the role played by thermal fluctuations in shaping our guesses. Particularly, with a205

given observed value W0, the lower the temperature, the higher is the confidence (and vice-versa).206

5. Remarks207

It emerges from our discussion regarding the arrow of time (Sec. 4), that the statistical character of208

the Second Law becomes visible when the energies injected in a system, W0, are of the same order of209

magnitude as the thermal fluctuations, kBT , regardless of the system size. This means, that, in contrast to210

what is sometimes believed, work fluctuations happen and are experimentally observable in microscopic211

and macroscopic systems alike. As a matter of fact, experimental verifications of the fluctuation theorem212

have been performed involving both microscopic systems, e.g. a single macromolecule [25,26], and213

macroscopic systems, e.g., a torsional pendulum [27].214

As we have mentioned in the introduction, traditionally the question of the emergence of the arrow of215

time from microscopic dynamics have been addressed within the framework of the Minus-First Law. In216

all existing approaches the arrow of time emerges from the introduction of some extra ingredient which217

in turn then dictates the time direction. Typically, one resorts to a coarse-graining procedure of the218

microscopic phase space to describe some state variables. For example, this is so in the theory of Gibbs219

and related approaches, see, e.g., in Ref. [28]. The time arrow is then generated via the observation that220

such coarse grained quantities no longer obey time-reversal symmetric Hamiltonian dynamics. More221

frequently, one resorts to additional assumptions which are of a probabilistic nature: Typical scenarios222

that come to mind are (i) the use of Boltzmann Stoßahlansatz in the celebrated Boltzmann kinetic theory,223

(ii) the assumption of initial molecular chaos in more general kinetic theories that are in the spirit of224

Bogoliubov, or, likewise, with Fokker-Planck and master equation dynamics that no longer exhibit an225

explicit time-reversal invariant structure [28,29]. All such additional elements then induce the result of226

a direction in time with future not being equivalent with past any longer.227

Having stressed the too often overlooked fact that the Second Law does not refer to the tradition-228

ally considered scenario of autonomously evolving systems, but rather to the case of nonautonomous229

dynamics, here we have focussed on the emergence of time’s arrow in a driven system starting at equi-230

librium. Having based our derivation on the principle of nonautonomous microreversibility, Fig. 2, the231

question arises naturally regarding the origin of the time asymmetry in this case. It originates from232

the combination of the following two elements: i) The introduction of an explicit time dependence of233

the Hamiltonian, Eq. (4), ii) The particular shape of the initial equilibrium state, Eq. (5). The first234

breaks time homogeneity thus determining the emergence of an arrow of time, while the second deter-235

mines its direction. It is in particular the fact that the initial equilibrium is described by a probability236

density function which is a decreasing function of energy, that determines the ≥ sign in Eq. (10). An237

increasing probability density function would result in the opposite sign [7,30,31]. In regard to breaking238

time homogeneity, it is worth commenting that the assumption of nonautonomous evolution has to be239

regarded itself as a convenient and often extremely good approximation in which the evolution λ of the240

external parameter influences the system dynamics without being influenced minimally by the system.7241

This indeed presupposes the intervention of a sort of Maxwell Demon (i.e., the experimentalist), who242

7 In principle, one should treat the external parameter itself as a dynamical coordinate, and consider the autonomous
evolution of the extended system.



Version December 12, 2011 submitted to Entropy 11 of 12

predisposes things in such a way that the wanted protocol actually occurs. This in turn evidences the243

phenomenological nature of the Second Law. It is not a law that dictates how things go by themselves,244

but rather how they go in response to particular experimental investigations.245
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