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APPENDIX: REPRESENTATION THEOREM

For readability, | will repeat all of the technidgaformation from section 5 here, but will omit iitive
explanations of the axioms. MS abbreviates MachimhSchmeidler (1992), and KW abbreviates
Kobberling and Wakker (2003).

Spaces, Relations and Notation:

State space S ={..., s, ...}, a set of states.

Event space EE = the set of all subsets of S.

Outcome space X ={..., X, ...}, a set of outcomes.

Act space A = {..., f(.), g(.), ...} = the set of alhfte-valued functions from S to X, wher&%)JEE.
For any act f1 A, there is some partition of EE into {E.. E;} and some finite set Y1 X such that
foy™"

Strictly speaking, f takes states as inputs. Hanewvill sometimes write f(E), wherellEE, if f agrees
on §1E. Thus, f(E) = f(s) for allSE.

For any fixed partition of events M = {E..., E}, define Ay = {fOA | (QEOM)(IXOX)(OsOE)(f(s) =
X)}, the set of acts on M.

> is a two-place relation over the act space.
~ and > are defined in the usual way: f ~ g #fd and g>f; and f > g if f> g and =(g>f).

For all XJX, fx denotes the constant function f(i) = x. Saimes | will just write x to denote this
function, so xx y means fx fy.

For all XOX, ECEE, fOA, xef denotes the function that agrees with f on altest not contained in E, and
yields x on any state contained in E. That i§(s} = {x if sUE; f(s) if S1E}. Likewise, for two disjoint
events Eand B, xg1yef is the function that agrees with f on all states contained in Eand &, and
yields x on Eand y on B Xg1yeof(s) = {x if SUEy, y if SOE,, f(s) if =(JE.0 Ey)}

We say that an event E is “null” oA iff (Oxg0OF)(OfOF)(xef ~ ). (MS 749)
If | say that an event is (non-)null withouttstg a particular F, it should be read as (non{)anlthe
entire act space A.

We say that outcomeé,xxz, ... form astandard sequenaan FJA if there exists an actlF, events B
E; that are non-null on F, and outcomes y, z with—(@) such that
KDl ~ (Oei@)gf
with all acts contained in F (KW, pg. 398).
A standard sequence is bounded if there exist masos and w such thai(v > x' > w)

We say that f,gA are comonotonic if (B5,,50S)(f(s) > f() & g(s1) < g(s)). COA is a comoncone if
every pair f, §IC is comonotonic.

Alternatively, take any fixed partition of eventsME,, ..., E}. A permutatiorp from {1, ..., n} to {1,
..., N} is arank-orderingpermutation of f if f(E1)) > ... > f(E,m). So a comoncone is a subset C gf A

! Note: | use the*” symbol for both the preference relation betweets and the greater-than-or-equal-to relation
between real numbers; but it should be clear frontext which | am using.



that is rank-ordered by a given permutation: C E{y | f(E,w) > ... > f(Eyn)} for somep. For each
fixed partition of events of size n, there are oinoncones. (Definition due to KW, pg. 400).

For each partition M, we define the relation ~*{&) F 0 Ay and outcomes X, y, z, W X as follows:
Xy ~*(F) zw

iff (f,g0F andCELEE such that E is non-null on F and * yeg and &f ~ weg,

where all four acts are contained in F. (Definitthre to KW, pg. 396-397)

We write xy ~*(C) zw if there exists a comonoconE A such that xy ~*(F) zw. (KW, pg. 400)

p: EE-> [0, 1] is afinitely additiveprobability functioniff:
DEDEE(O< p(E)< 1)
pd) =0
p(S)=1
p(E. 0 E; O ... O E,) =XZE, for any finite sequence of disjoint events

Let the set of finite-outcome probability distritorts over X be denoted by P(X) = {{p; ...; Xm» Pm) |
m
m>1,> p =1, x0X, p>0}) (Definition due to MS, pg. 753.)

i=1
We say that a probability distribution P =,(g; ...; Xm, Pm) Stochastically dominate® = (i, & .-} Y
Om) With respect to the orderif for all zOOX,
2. < 2
{ix<2} {iy<z
p strictly stochastically dominates q if the ab&edds with strict inequality for some ZX.
(Definition due to MS, pg. 754)

r: [0, 1] = [O, 1] is arisk functioniff:
r0)=0
rl)=1
a<b=>r(a@<r(b)
a<b=>r(a)<rb)

AXioms:

Each axiom corresponds to an axiom in either Machimd Schmeidler (1993), pg. 749-750, 761, or
Kobberling and Wakker (2003), pages noted in thremtheses.

Al Ordering (MSP1): > is complete, reflexive, and transitive.

(A1) implies that> is a weak ordering. Note that since the act sjttee set oéll finite-valued
functions, completeness implies that the agent satify what is sometimes called the Rectangular
Field Assumption: he must have preferences overaaibible functions from states to outcomes.

A2. Nondegeneracy (M SP5): There exist outcomes x and y such that fx > fy.

A3. State-wise dominance: If f(s) > g(s) for all §1S, then £ g. If f(s)> g(s) for all §£1S and f(s) > g(s)
for all £1EOS, where E is non-null on A, then f > g.



A3 + Al implies event-wise monotonicity (MS P3):

A3'. Event-wise monotonicity (MS P3): For all outnes x and y, events E that are non-null on A, and
acts f(),

xegf >yef  iff x>y (thatis, if fx> fy)

(So, given AL, ¥ > yefiff x> y.)

Proof: (<=) Assume x y. Then sincegt (s) = f(s) = ¥f(s) for all 1E and xf(s) = x>y = yf(s) for all
sUJE, we have, by A3,k > yef.

(=>) Assume =(& y). Then, by Al, y > X. Sincef§s) = xf(s) for all £1E and ¥f(s) = y > x = %f(s)
for all SJE, we have, by A3,5 > xf. S0 —(¢f > yef).

A3 implies weak (finite) monotonicity, KW 396:

A3". Weak (finite) monotonicity (KW 396). For ariixed partition of events £ ..., E, and acts f(g ...,
E,) on those events (acts that yield a single outcfamall states in those events, i.e. acts f shelh t
Oix(OsOE)(f(s) = x)),

if f(E;) > g(E) for all j, then > g.

Proof: If f(§) > g(E) for all j, then f(s}> g(s) for all §1S, so £ g.

A4. Continuity ((I))KW 398, Solvability, and (ii)M S P6 Small Event Continuity):

() For any fixed partition of events E..., E,, and for all acts f(E ..., E), g(E, ..., E) on those events,
outcomes X, y, and events\lidth x:f > g > \tf, there exists an “intermediate” outcome z suet #f ~ g.
(i) For all acts f > g and outcome X, there exasfiite partition of events {E ..., E;} such that for all i,
f>xgg and xf>g

A5. Comonotonic Archimedean Axiom (KW 398, 400):
For each comoncone F, every bounded standard sezjoart is finite.

A6. Comonotonic Tradeoff Consistency (KW 397, 400): Improving an outcome in any ~*(C)
relationship breaks that relationship. In otherdgsoxy ~*(C) zw and y' >y entails —(xy’' ~*(C) zw)

A7. Strong Compar ative Praobability (M S P4*): For all pairs of disjoint events,and &, outcomes x’
>xandy' >y, and acts ¢,1A,
XeXed = XeX 20 => YYD = Yery'ech



Theorem (Representation): If a relation> satisfies (A1) through (A8), then there exist:
() a unique finitely additive, non-atomic probatyilfunction p: EE -> [0, 1]
(i) a unique risk function r: [0, 1] -> [0, 1] and
(i) a utility function unique up to linear trarsimation such that

for any fJA, each of which we can write as {O; ...; O,, R} where for all i, f(s) = Qfor all <1F O
Sand fQ<fO,< ... < fO,,

REU(f) =
u(o,) + r(i‘, pP(F))(U(O;) —u(0Q)) + r(i‘, P(F))U(O;) —u(0,)) +...+r(p(F,))U(G,) —u(O,,))
represents the preference relatoon A.

That is, there exist a unique probability functmra unique risk function r, and a utility function
unique up to linear transformation such that fooatcomes x ..., X%, Y1, ..., ¥m O X and events £

vy BEny Gy, ..., Gy O EE,

{Xla El! 1 Xn: En} z{yla Gl: l ym: Gm} Iﬁ

u(G,) + f(i P(F)(U(G,) —u(0,)) + r(i P(F))(U(O;) —u(Oy)) +...+ 1 (p(F,)U(O,) —u(O,,))

>

u(Q) + r(i P(H(U(Q,) —u(Q)) + r(i P(H))(U(Qs) —u(Q,)) + ...+ r(p(H))(U(Q,) — u(Qy))

for some rank-ordering permutatiohsand¥ such that x1) < ... < Xam), O = Xa), and F= Exg), and
Yo S .. < Yoy, Q = Yeg, and H= Gy,

If there are three such functions so that REU(fyesents the preference relation, we say that Rittish

Furthermore, in the presence of (A2) and (A4iREU holds with a continuous r-function, then the
remaining axioms are satisfied. Therefore, if weusne non-degeneracy (A2) and solvability (A4i), we
have:

(A1), (A3), (Adii), (A5), (AB), (A7) are sufficientonditions for REU.
(A1), (A3), (Adii), (A5), (AB), (A7) are necessacpnditions for REU with continuous r-function.



Proof:
Assume we have a preference ordering that satigiBsthrough (A8).
Part one. Derive a Weighting Function of Statefiqfeing Kobberling and Wakker (2003))

Koberling and Wakker (Theorem 8, pg 399-400) shuat if the relatior> over A satisfies (Al), (A3"),
(A4i), (AB), and (A6), then for each fixed partiiof events M = {E, ..., E} and acts (g, ..., E) on
those events which form a subsgf & A, there exists:

(i) A weighting functiorw: 2" -> [0, 1] such that W{) = 0, W(M) = 1, and A1 B => W(A) < W(B)
(i) A utility functionu: X ->0
such that preferences can be represented by:

CEU: f HZ?:lﬂq,(j)U(f(Ew))

Where the “decision weightsiy,; are nonnegative and sum to one. Furthermorediore rank-ordering
permutation® on {1, ..., n} such that f(ky)) > ... > f(Eem), we have:
o) = W(Eoq), - Bog) - W(Esqy, ., Exg-1) forallj (andmeq) = W(Eaq)))-

Furthermore:

Case (i). Inthe trivial case where at least amaancone has only null events, all comoncones loale
null events, the preference relation is triviallitytis constant, and the weighting function candhosen
arbitrarily.

However, (A2) rules out the case in which the mexfee relation is trivial, so this case (which is
possible on Kobberling and Wakker's axioms) is dubeit by our axioms.

Case (ii). Kobberling and Wakker consider the degate case in which there is exactly one non-null
event for each comoncone, and they add an additiestiction (that there is a countable order-gens
subset of X) to determine a unique utility functiarthis case. This case corresponds, for exartplbe
preferences of a maximinimizer or a maximaximitiee: only event that will matter in each comoncone
will be the event with the worst outcome, or themwvith the best outcome. However, this casesturn
out to be ruled out by our other axioms: ruledmuthe axioms that are necessary to deriving a
probability function; | will postpone this proof fart Two.

Case (iii). In the nondegenerate case where sit ¢ee comoncone has two or more non-null events,
utility is unique up to linear transformation, aheé weighting function is uniquely determined.
Since this is the only case not ruled out by tieoaxioms, it is the only case we are concerndial wi

In section 5.1 (pg. 402), Kobberling and Wakkeeext the result to arbitrary state spaces (i.eSpur
with finite valued functions from S to X (i.e. oact space A). As noted above, every act can beteén
as a subset of somé”A In case (iii), we can again derive a unique Weig function defined over all
events in EE and a utility function unique up tdt @amd location.

We can reorganize the terms of Kobberling’'s and kggk equation:



n

CEU(f) = jZ;:%(;)U (1 (Em(j))) = Z(VV(ECD(l)""’Ew(j))_W(ECD(l)""’EG’(J' )))J (1 (Ew(j)))

=

= U(f(E¢(n)))+EM(Eaa(l)v--’Ew(j)) U(f(Ea()) -0 (F (Eafrn)

j=1
where, againgd orders the states from best to worst.

This is equivalent to

ceu(H = U (f (EA(l)))+ZHZ:(VV(EA(j)""’EA(n)))(U (1 (EA(i)))_U (1 (EA(j— ))))
=
whereA is a rank-ordering permutation on {1, ..., n} thatlers states froworstto best

Part Two. Derive a Probability Function of Sta{ésllowing Machina and Schmeidler (1993))

Machina and Schmeidler (Theorem 2, pg. 766) shawvitlihe> relation over A satisfies (A1), (A2),
(A3), (Adii), and (A7) then:

There exists a unique, finitely additive, non-atomiobability measure p: EE -> [0, 1] and a non-
constant, mixture continuous preference functidi®) = V(xy, ps; ...; X py) on the set of finite-
outcome probability distributions such that V( hibits monotonicity with respect to stochastic
dominance (that is, V(P) V(Q) whenever P stochastically dominates Q and ¥(P(Q) whenever P
strictly stochastically dominates Q), such thatrélation> can be represented by the preference
functional:

V(f(.)) = V(x1, p(F(x0); ... Xn, P(F(Xn))), Where {x, ..., x} is the outcome set of the act f(.).

That is, foran actf ={x E;; ...; X, B}, Y(f(.)) = V(X1, p(B)); ... X, P(E)))

This implies that an agent will be indifferent betm two distributions of outcomes over statesdhe
rise to the same probability distribution over autes (see also Theorem 1, MS, pg. 765). Thdtpsf i
(%)) = p(g*(x)) for all i, then f ~ g.

By the claim that p is non-atomic, we mean thatfioy event E with p(E) > 0 and any(©,1), there
exists some event E*¥ E such that p(E*) = c-p(E). (MS, pg. 751, footnb#.

We are now in a position to say why case (ii), ahdw ruled out:

Recall that case (ii) is the degenerate case iotwihiere is exactly one non-null event for each
comoncone. That there is one non-null event foh@amoncone implies that there is exactly one non-
null event on A, for each partition M of events. For assume tlagesat least two non-null events on
Aw: Epand B. By (A2), (kOy(fx > fy). Now consider the gambleyefy (= fy) and the gamble

Xe1YeofY (=Xeify). Since g is non-null, by (A3") we will have peyefy > yeryefy. Now consider the
gamble x:xefy. Since Eis non-null, by (A3’) we will have gexe fy > Xe1yefy. But Veryedfy,

Xe1YeAfY, and xxg.fy are comonotonic: they are part of any comonoaghese rank-ordering



permutation orders the events from worst to bestisg with any ordering of the events in (r&E,),
followed by E, followed by E. So there are two non-null events on that comoacthis is a
contradiction, so there is only one non-null evamy.

Thus, for any fixed partition of events M ={E.., E}, there is exactly one non-null event og Af
there were no non-null events, we would have daselfich, as stated above, is ruled out). Call th
event E. Since the event is non-null, p(E)% Dherefore, since p is non-atomic, there existseso
event E*1 E such that p(E*) = (0.5)p(E). By definition opeobability function, p(E-E*) = (0.5)p(E).
By (A3), xe:f > ye:f and x.ef > yeef for all f. Take the partition M* = {E;, ..., E*, E-E*, ..., E}.
Both E* and E-E* are non-null onyA so we have a contradiction.

So case (i) is impossible given our axioms.

Part Three. Derive a Risk Function

So far, since case (iii) is the only remaining désé is consistent with our axioms, we know thatwil
be able to find a utility function u: X -3 unique up to linear transformation, a unique weigghfunction
W: EE -> [0, 1], and a unique probability functiprsuch that:

() < is representable by:

CEU(f) =U (f (EA(l)))+Zn;,(VV(EA(j)!---’EA(n)) U (f (EA(i)))_U (f (EA(j—l))))
=
whereA is a rank-ordering permutation on {1, ..., n} thatlers states from workt best.

(1) If two acts f and g give rise to the samelbility distribution over outcomes, i.e. if (k) = p(d
Y(x)) for all xOX, then f ~ g, so, by (I), CEU(f) = CEU(g).

(11N For all cO[0,1], INOEE s.t. p(N) = c. This holds because p(S) = )pf 0, and since p is non-
atomic,[Jc](0,1) there exists B* S such that p(E*) = c-p(S) = c.

Now for each €][0,1], define r(c) = W(A) for any A such that p(&)c.

We can show that this is well-defined, since any éwents that have the same probability must Have t
same weight: assume there exist A and B such (Bat=pp(B) but W(A) > W(B), and take outcomes x
>y. CEU(fx) > CEU(fy), so u(x) > u(y). CEU(x-a) = u(y) + W(A)[u(x) — u(y)], and CEUgy-g) =
u(y) + W(B)[u(x) — u(y)], so CEU(xy-a) > CEU(gY-s), and thus xy-a is preferred to gy-g because
CEU(f) represents. ButY(xay-a) = V(Xsy-g) because the two acts give rise to the same pildpab
distribution over outcomes, say.a ~ Xgy-s becaus& represents. Since this is a contradiction, p(A)
= p(B) => W(A) = W(B).

We also know that r is unique, since W and p aigum

So for all AEE, r(p(A)) = W(A).

Furthermore, r has all the properties of a riskcfiom:

2 Note that by MS Theorem 1, p represents the celsliip in (A7), so that pglE> p(E,) whenever Eand E satisfy
X' e1Xe2g > Xe1X g20 for all X' > x and all @A; and note further that, by (A3),E E and k=0 satisfy this
relationship.



(1) r(0) =0, because pl) = 0 (by definition of a probability function), diwW(d) = 0 (by the properties
of the weighting function, given in part one).

(2) r(1) = 1, because p(S) = 1 (by definition of a @doitity function), and W(S) = 1 (by the properties
of the weighting function).

(3) ris non-decreasing: Assumesd. Pick B such that p(B) = b. Now pick[AB such that p(A) = a
(we know such an A exists because p is non-atonibgrefore, by the properties of the weighting
function, W(A)< W(B). So r(A)< r(B).

(4) ris strictly increasing: Assume a < b, and pickl B such that p(A) = a and p(B) = b. Ifr(a) = r(b),
then for outcomes x >y, we will have CEW{Y) = CEU(x:fy), and so xfy ~ xgfy. But by
stochastic dominance, \Hfy) > V(Xafy), so xfy is preferred to xfy. Since this is a contradiction,
=(r(a) = r(b)). And since r(Ax r(B), r(A) < r(B).

Therefore, for a function f = {x E;; ...; X, E.}, we have:

n

U(f (Ba))+ X W (Eugys o Bui U ( (Ba) -0 (£ (Eng) =

: U )+, r(P(Eg) o Eatm MU Brag) U (2 0)

Note that p(&g...., Exw) = 3 P(Es)) by finite additivity.
i

Now for all members of the act space, finite valtgtttions f = {x, Ei; ...; X, E;} A, where f(s) = x
for all £1E; let REU(f)=

W0ka) + (3" P (Uka) ~ Uk 1 (Y P (UX) = Uka)) - (P (UX) = UKo )

for some rank-ordering permutatiansuch that xi) < ... < Xx().-

Therefore, for anydA, each of which we can write as;{X&;; ...; X, E.} where f(s) = xfor all 41E; and
again as {Q, F; ...; O,, R} where for some rank-ordering permutativrsuch that xi) < ... < Xyn we
have Q= x5 and k= E,, there exists

() a unique finitely additive, non-atomic probatyilfunction p: EE -> [0, 1]

(i) a unique risk function r: [0, 1] -> [0, 1] and

(i) a utility function unique up to linear trarsimation such that

REU(f) =

u(G,) + r(i P(F))(U(G;) —u(0,)) + r(i P(F))(U(O;) —u(O,)) +...+1(p(F,)U(O,) —u(O,4))

represents the preference relatoon A.



Part Four. In the presence of (A2) and (A4i), REU with a tonous r-function implies the remaining
axioms.

Again, REU holds if there is:
(i) a unique finitely additive, non-atomic probatyilfunction p: EE -> [0, 1]
(i) a unique risk function r: [0, 1] -> [0, 1] and
(i) a utility function unique up to linear trarsimation such that
for any fJA, each of which we can write as {O; ...; O,, R} where for all i, f(s) = Qfor all <1F O
Sand fQ<fO, < ... <fO,, REU(f) =

u(o,) + r(i pP(F))(U(O;) —u(0Qy)) + r(i‘, P(F))(U(O;) —u(0,)) +...+r(p(F,))U(G,) —u(0,,))
represents the preference relatioon A.
() KW’s axioms: (A3"), (A5), and (A6).

If REU holds, then CEU holds; let W(A) = r(p(A)).
KW'’s Theorem 8 (pg. 400) states that if (A4i) hgldad if CEU holds, then (A3"), (A5), and
(A6) hold.

(i) MS’s axioms: (A1), (A2), (A3"), (Aii), and TA

MS’s Theorem 2 (pg. 766) states that if there exastinique, finitely additive, non-atomic
probability measure p: EE -> [0, 1] and a non-cantstmixture continuous preference functional
V(P) = V(x, pi; -.-; X Pn) ON the set of finite-outcome probability distrilmns such that V(.)
exhibits monotonicity with respect to stochastieniltance (that is, V(P} V(Q) whenever P
stochastically dominates Q and V(P) > V(Q) whend¥sitrictly stochastically dominates Q),
such that the relation can be represented by the preference functié(f@l) = V(x1, p(f*(x));

... Xn, P(FY(X0))), then (A1), (A2), (A3, (A4ii), and (A7) hold.

We know that p is unique, finitely additive, nomiatic, and by (A2), we know that REU(f) is
non-constant. We must show that (1) REU(f) is omiztcontinuous and (2) REUE)REU(Q)
whenever f stochastically dominates g and REUREU(g) whenever f strictly stochastically
dominates g:

(1) Since we have a probability function of states,can identify an act f with its probability
distribution P (X) such that all acts identified with that probi#gpdistribution have the
same REU; we can write REU(f*). As defined on pg5 of MS, REU(f) is mixture
continuous if, for any probability distributions, fy*, and h* in P(X), the sets\{][0,1] |
REUQ* + (1 —1)g*) > REU(h*)} and {.0[0,1] | REULF* + (1 —2)g*) < REU(h*)} are both
closed.

Consider the set of outcomes {x.., X} such that xis an outcome of f* or an outcome of g*,
and e <X, < ... <fx,. Then we have:

*={pwy Xy ...; pn X fOr some {p, ..., p}

0* ={qu, X3} ...; Oh, X} for some {q, ..., 0}

AP+ (1 =1)g* = {(Aps + (1 —A)q, X4 - APn + (1 =A)0n}
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For each iAp + (1 —A)q; is continuous in.. So for each kz (Api + (1—/])qi) is continuous
i=k

n
in. Sinceris continuous,E (/1pi + (1— )I)qi )) is continuous in.. So,

i=k
r(z ()Ipi + (1— /1)qi ))[u(xk) — u(%.)] is continuous irk. So the sum of these terms from k =
i=k

2 to nis continuous ih. So REU(f) is continuous th Therefore, 0[0,1] | REUAf* + (1 —
Mg*) >m}and {0[0,1] | REULS* + (1 —A)g*) < m} are closed for all m, in particular for m
= REU(h*), so REU(f) is mixture continuous.

(2) Take two acts f and g, such that f stochadyickiminates g. Consider the set of outcomes
{X1, ..., %} such that xis an outcome of f or an outcome of g, anckff, < ... <fx,. Then
we have:
*={p1, X ...; Pn X} fOr some {p, ..., g}
0* ={q1, X4} ...; Oh, X} for some {q, ..., 0}
Since f stochastically dominates g, forall B p < > g
{ibx=xc} {ix=xc}
Since Y p, = qu 1, we have, forallk,> p; 2 > q .
{i} {ix>x}  {i>xd
Thus, since r is strictly increasing, we ha\(ez p)=r( Zqi)for all k.
{iix>xc} {ix>xc}
Since u(x) is non-decreasing,
r({ > {0. )(U(Xer) —U(X)) 2 r({ qu (U(X.p) —U(x,)) for all k.
i1%>% i >}
For each k, the above terms will either be equéhédd” term in the REU equation for REU(f)
and REU(g), respectively, or else in tHeterms of REU(f) or REU(g), the “r” coefficient Wil
be different than the above but the difference.u> u(x) will be zero.
So REU(f)> REU(g)

If f strictly stochastically dominates g, therE P < Zqi for some m.
{ixsxat iy}
So, by the same chain of reasoning, > p,) >r( > q;) for some m.
{ix>xn} {ix>xn}

Take the least m for which the strict inequalitydso Then, for the least k such thaix
preferred to x (we know there is some such k, otherwise both sumgd be 1), the difference
u(X) — u(%.1) will be non-zero, so we have:

r( D P)U(X) —u(%)) > r( ZQ.)(U(Xk) (X))

{il%>%n} {ilx>xn}

This will be the K term in the REU equation for REU(f) and REU(g}spectively; and for all
other terms, the weak inequality will hold, i.ee i term of REU(f) will be greater than or
equal to the'jterm of REU(g).

Therefore, by MS Theorem 2, (A1), (A2), (A3"), (Adiand (A7) hold.
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(iii) (A3). We want to show that if f(¢) g(s) for all §1S, then £ g. If f(s)> g(s) for all §1S and f(s) >
g(s) for all §IECS, where E is some non-null event on A, then f > g.

Assume f(s¥ g(s) for all §1S. Then, for all x, {s | g(s) > X} {s | f(s) > x}, since if g(s) > X,

then f(s) > x. Consequently, for all x, p({s |)#sx}) < p({s | f(s) > x}), by definition of a

probability function. That is, f stochasticallyrdimates g. To put it in directly in terms of our

definition of stochastic dominance: take a panitodd M = {Ej, ..., B} of S such that

OiOxOyi(OsOE) (f(s) = % & g(s) = ). Then {s | g(s¥ x} and {s | f(s)> x} are subsets of that

partition, and > p(E;) < > p(E;). So D> p(E)= D> p(E;). Thatis, f stochastically
{ily>y} X >x {ily<y} X <x

dominates g. So, by (2ii) in part four, REWREU(g). So fis weakly preferred to g.

Now assume f(s} g(s) for all §1S and f(s) > g(s) for all3ECS, where E is some non-null event
of A. Take the set {x [BOE)(g(s) = X)}. We know this set is non-empty. \&lso know this set

is finite, because the outcomes space of g i€fisib we can pick the greatest member of the set,
x*. Now we want to show that {r | f(g x*} O{r | g(r) < x*}. Consider some elemeriii{fr | f(r)
<x*}. Since f(t) < x*, we have g(tg x*, so {r | f(r)<x} O {r | g(r) < x}. Now consider some
element tflE such that g(t*) = x*. We have®r | g(r) < x*}, but we have f(t*) > x*, so we

have —(tf{r | f(r) < x*}). Therefore, {r | f(<x*} U{r | g(r) <x*}. Consequently, f strictly
stochastically dominates g. Again by (2ii) in pfadr, REU(f) > REU(g). So fis weakly
preferred to g.

Therefore, (A3) holds.

So, assuming (A2), (Adi), REU implies (A1), (A3R4ii), (A5), (A6), and (A7).

Therefore, if we assume non-degeneracy (A2) angbiity (A4i), we have:

(A1), (A3), (Adii), (A5), (AB), (A7) are sufficientonditions for REU.
(A1), (A3), (Adii), (A5), (AB), (A7) are necessacpnditions for REU with continuous r-function.
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APPENDI X B. Tradeoff Equality and Utility Differences.
Claim: For REU maximizers, xy ~*(C)zw holds just in cagg)u u(y) = u(z) — u(w).

Proof: Assume the agent is an REU maximizer, and xy ~*(C)Zhen xf ~ yeg and gf ~ weg for some
xef, Ve, Zf, weg that are comonotonic. Therefore, there is sahefsstates {E, ..., E} and some rank-
ordering permutatio® such that ¥(Eq)) > ... > Xef (Eom), Ye9(Eo@) > -.- > Yed(Eom), Zf(Eo@) > ...

> Zef (Eam), Wed(Eoq) = .. = Weg(Eom) and:

(1) Epg = E for some i.

2) Z(r(p(EﬂJ(l)""’E@(j)))_ r(p(EGJ(l)’""EGJ(j—l) )))U(XE f (Em(j))) =
j=1

i=

Z (r(p(EtD(l)""’ E¢(J’)))_ r(p(EtD(l)""’ Eo(i-y) )))U(VE g(Em(i)))

[y

(3) g(r(p(Ecb(l)v'"EMi)))_ r(p(Ecb(l)1""E¢(J"1))))U(ZE f (Ew(J))) =

n

Z(r(p(EfD(l)"”’EQ(i)))_ r(p(EG)(l)""'E@(J—l))))‘J(WEg(EGD(J)))

i=1
See part (i) and (iii) of the proof in Appendix A.

Since xf and zf only differ on E,;, and ¥g and wg only differ on &, subtracting equation (3) from
equation (2) yields:

[r(p(Eq,(l),...,Eq)(i)))— r(p(Eq,(l),...,Eq,(i_l) ))J[u(x) - u(z)] = [r(p(Eq,(l),...,Eq)(i)))— r(p(Eq,(l),...,Eq,(i_l) ))J[u(y) - u(w)]

This simplifies to u(x) — u(z) = u(y) — u(w).

Claim: For EU maximizers, xy~*(A)zw holds just in case)ut u(y) = u(z) — u(w).

Proof: Assume the agent is an EU maximizer, and xy ~*(A)Zwen xf ~ yeg and &f ~ wgg for some
xef, Ye@, Zf, weg in A. Therefore, there is some set of states {E, E} such that:

(1) E = E for some i.

@) 3 PE,ulxe T (E)) = X PEU(YeO(E))

@) 3 P(E Uz (E)) = Y. PIE Ju(We g (E,)

Since xf and zf only differ on g, and ¥g and wg only differ on E subtracting equation (3) from
equation (2) yields:

P(EN[U(x) — u(z)] = p(B[uly) — u(2)].

This simplifies to u(x) — u(z) = u(y) — u(w).



