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APPENDIX: REPRESENTATION THEOREM 
 
For readability, I will repeat all of the technical information from section 5 here, but will omit intuitive 
explanations of the axioms.  MS abbreviates Machina and Schmeidler (1992), and KW abbreviates 
Kobberling and Wakker (2003). 
 
Spaces, Relations and Notation: 
 
State space S = {…, s, …}, a set of states. 
Event space EE = the set of all subsets of S. 
Outcome space X = {…, x, …}, a set of outcomes. 
Act space A = {…, f(.), g(.), …} = the set of all finite-valued functions from S to X, where f-1(x)∈EE.  

For any act f ∈ A, there is some partition of EE into {E1, … En} and some finite set Y ⊆ X such that 
f∈Yn. 

Strictly speaking, f takes states as inputs.  However, I will sometimes write f(E), where E∈EE, if f agrees 
on s∈E.  Thus, f(E) = f(s) for all s∈E. 

For any fixed partition of events M = {E1, …, En}, define AM = {f∈A | (∀Ei∈M)(∃x∈X)(∀s∈Ei)(f(s) = 
x)}, the set of acts on M. 

 
≥ is a two-place relation over the act space.1   

~ and > are defined in the usual way: f ~ g iff f ≥ g and g ≥ f; and f > g if f ≥ g and ¬(g  ≥ f). 
 
For all x∈X, fx denotes the constant function f(i) = x.  Sometimes I will just write x to denote this 

function, so x ≤ y means fx ≤ fy. 
For all x∈X, E∈EE, f∈A, xEf denotes the function that agrees with f on all states not contained in E, and 

yields x on any state contained in E.  That is, xEf(s) = {x if s∈E; f(s) if s∉E}.  Likewise, for two disjoint 
events E1 and E2, xE1yE2f is the function that agrees with f on all states not contained in E1 and E2, and 
yields x on E1 and y on E2: xE1yE2f(s) = {x if s∈E1, y if s∈E2, f(s) if ¬(s∈E1∪ E2)} 

 
We say that an event E is “null” on F⊆A iff ( ∀xE∈F)(∀f∈F)(xEf ~ f).  (MS 749)  
   If I say that an event is (non-)null without stating a particular F, it should be read as (non-)null on the 

entire act space A. 
 
We say that outcomes x1, x2

, … form a standard sequence on F⊆A if there exists an act f∈F, events Ei ≠ 
Ej that are non-null on F, and outcomes y, z with ¬(y ~ z) such that  

  (xk+1)Ei(y)Ejf ~ (xk)Ei(z)Ejf 
with all acts contained in F (KW, pg. 398). 

A standard sequence is bounded if there exist outcomes v and w such that ∀i(v ≥ xi ≥ w)   
 
We say that f,g∈A are comonotonic if (¬∃s1,s2∈S)(f(s1) > f(s2) & g(s1) < g(s2)).  C⊆A is a comoncone if 

every pair f, g∈C is comonotonic.   
Alternatively, take any fixed partition of events M = {E1, …, En}.  A permutation ρ from {1, …, n} to {1, 

…, n} is a rank-ordering permutation of f if f(Eρ(1)) ≥ … ≥ f(Eρ(n)).  So a comoncone is a subset C of AM 

                                                 
1 Note: I use the “≥” symbol for both the preference relation between acts and the greater-than-or-equal-to relation 
between real numbers; but it should be clear from context which I am using. 
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that is rank-ordered by a given permutation: C = {f ∈ AM | f(Eρ(1)) ≥ … ≥ f(Eρ(n))} for some ρ.  For each 
fixed partition of events of size n, there are n! comoncones.  (Definition due to KW, pg. 400). 

 
For each partition M, we define the relation ~*(F) for F ⊆ AM and outcomes x, y, z, w ∈ X as follows: 

xy ~*(F) zw  
iff ∃f,g∈F and ∃E∈EE such that E is non-null on F and xEf ~ yEg and zEf ~ wEg,  
where all four acts are contained in F. (Definition due to KW, pg. 396-397) 
 
We write xy ~*(C) zw if there exists a comonocone F ⊆ AM such that xy ~*(F) zw.  (KW, pg. 400) 
 
p: EE � [0, 1] is a finitely additive probability function iff: 
 ∀E∈EE(0 ≤ p(E) ≤ 1) 
 p(∅) = 0 
 p(S) = 1 

p(E1 ∪ E2 ∪ … ∪ En) = ΣEn for any finite sequence of disjoint events 
 

Let the set of finite-outcome probability distributions over X be denoted by P(X) = {(x1, p1; …; xm, pm) | 

m ≥ 1, ∑
=

=
m

i
ip

1

1, xi∈X, pi ≥ 0})  (Definition due to MS, pg. 753.) 

We say that a probability distribution P = (x1, p1; …; xm, pm) stochastically dominates Q = (y1, q1; …; ym, 
qm) with respect to the order ≥ if for all z∈X, 

∑∑
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}|{}|{ zyj
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p strictly stochastically dominates q if the above holds with strict inequality for some z*∈X. 
(Definition due to MS, pg. 754) 
 
r: [0, 1] � [0, 1] is a risk function iff: 
 r(0) = 0 
 r(1) = 1 
 a ≤ b => r(a) ≤ r(b)  
 a < b => r(a) < r(b)  
 
 
 
Axioms: 
 
Each axiom corresponds to an axiom in either Machina and Schmeidler (1993), pg. 749-750, 761, or 
Kobberling and Wakker (2003), pages noted in the parentheses. 
 
A1. Ordering (MS P1): ≥ is complete, reflexive, and transitive. 
 
(A1) implies that ≥ is a weak ordering.  Note that since the act space is the set of all finite-valued 
functions, completeness implies that the agent must satisfy what is sometimes called the Rectangular 
Field Assumption: he must have preferences over all possible functions from states to outcomes. 
 
A2. Nondegeneracy (MS P5): There exist outcomes x and y such that fx > fy. 
 
A3. State-wise dominance: If f(s) ≥ g(s) for all s∈S, then f ≥ g.  If f(s) ≥ g(s) for all s∈S and f(s) > g(s) 
for all s∈E⊆S, where E is non-null on A, then f > g. 
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A3 + A1 implies event-wise monotonicity (MS P3): 
 
A3’. Event-wise monotonicity (MS P3): For all outcomes x and y, events E that are non-null on A, and 
acts f(.), 
xEf ≥ yEf     iff      x ≥ y   (that is, if fx ≥ fy) 
(So, given A1, xEf > yEf iff  x > y.)    
 
Proof:  (<=) Assume x ≥ y.  Then since xEf (s) = f(s) = yEf(s) for all s∉E and xEf(s) = x ≥ y = yEf(s) for all 
s∈E, we have, by A3, xEf ≥ yEf.  
(=>) Assume ¬(x ≥ y).  Then, by A1, y > x.  Since yEf(s) = xEf(s) for all s∉E and yEf(s) = y > x = xEf(s) 
for all s∈E, we have, by A3, yEf > xEf.  So ¬(xEf ≥ yEf). 
 
A3 implies weak (finite) monotonicity, KW 396: 
  
A3”. Weak (finite) monotonicity (KW 396).  For any fixed partition of events E1, …, En and acts f(E1, …, 
En) on those events (acts that yield a single outcome for all states in those events, i.e. acts f such that 
∀i∃x(∀s∈Ei)(f(s) = x)), 
if f(E j) ≥ g(Ej) for all j, then f ≥ g. 
 
Proof: If f(Ej) ≥ g(Ej) for all j, then f(s) ≥ g(s) for all s∈S, so f ≥ g. 
 
A4. Continuity ((i)KW 398, Solvability, and (ii)MS P6 Small Event Continuity): 
(i) For any fixed partition of events E1, …, En, and for all acts f(E1, …, En), g(E1, …, En) on those events, 
outcomes x, y, and events Ei with xEf > g > yEf, there exists an “intermediate” outcome z such that zEf ~ g. 
(ii) For all acts f > g and outcome x, there exists a finite partition of events {E1, …, En} such that for all i,      
f > xEig and xEif > g 
 
A5. Comonotonic Archimedean Axiom (KW 398, 400):  
For each comoncone F, every bounded standard sequence on F is finite.  
 
A6. Comonotonic Tradeoff Consistency (KW 397, 400): Improving an outcome in any ~*(C) 

relationship breaks that relationship.  In other words, xy ~*(C) zw and y’ > y entails ¬(xy’ ~*(C) zw). 
 
A7. Strong Comparative Probability (MS P4*): For all pairs of disjoint events E1 and E2, outcomes x’ 
> x and y’ > y, and acts g,h∈A,  
 x’E1xE2g ≥ xE1x’ E2g    =>    y’E1yE2h ≥ yE1y’E2h 
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Theorem (Representation): If a relation ≥ satisfies (A1) through (A8), then there exist: 
 

(i) a unique finitely additive, non-atomic probability function p: EE -> [0, 1] 
(ii) a unique risk function r: [0, 1] -> [0, 1] and 
(iii) a utility function unique up to linear transformation such that 

 
for any f∈A, each of which we can write as {O1, F1; …; On, Fn} where for all i, f(s) = Oi for all s∈Fi ⊆ 
S and fO1 ≤ fO2 ≤ … ≤ fOn, 
 
REU(f) =  
 

∑∑
=

−
=

−++−+−+
n

i
nnni

n

i
i OuOuFprOuOuFprOuOuFprOu

3
123

2
121 ))()())(((...))()())((())()())((()(

 
represents the preference relation ≤ on A. 
 
 

That is, there exist a unique probability function p, a unique risk function r, and a utility function 
unique up to linear transformation such that for all outcomes x1, …, xn, y1, …, ym ∈ X and events E1, 
…, En, G1, …, Gm ∈ EE, 
 
{x 1, E1; …; xn, En} ≥ {y1, G1; …; ym, Gm} iff 
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for some rank-ordering permutations ∆ and Ψ such that x∆(1) ≤ … ≤ x∆(n), Oi = x∆(i), and Fi = E∆(i), and 
yΨ(1) ≤ … ≤ yΨ(n), Qi = yΨ(i), and Hi = GΨ(i). 

 
 
If there are three such functions so that REU(f) represents the preference relation, we say that REU holds.   
 
Furthermore, in the presence of (A2) and (A4i), if REU holds with a continuous r-function, then the 
remaining axioms are satisfied.  Therefore, if we assume non-degeneracy (A2) and solvability (A4i), we 
have: 
 

(A1), (A3), (A4ii), (A5), (A6), (A7) are sufficient conditions for REU. 
(A1), (A3), (A4ii), (A5), (A6), (A7) are necessary conditions for REU with continuous r-function. 
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Proof: 
 
Assume we have a preference ordering that satisfies (A1) through (A8). 
 
Part one. Derive a Weighting Function of States (following Kobberling and Wakker (2003)) 
 
Koberling and Wakker (Theorem 8, pg 399-400) show that if the relation ≥ over A satisfies (A1), (A3”), 
(A4i), (A5), and (A6), then for each fixed partition of events M = {E1, …, En} and acts f(E1, …, En) on 
those events which form a subset AM ⊆ A, there exists: 
 
(i) A weighting function W: 2M -> [0, 1] such that W(∅) = 0, W(M) = 1, and A ⊆ B => W(A) ≤ W(B) 
(ii) A utility function u: X -> ℜ  
such that preferences can be represented by: 
 

CEU: ( )∑ = ΦΦ
n

j jj EfUf
1 )()( )(πa  

 
Where the “decision weights” πФj are nonnegative and sum to one.  Furthermore, for some rank-ordering 
permutation Ф on {1, …, n} such that f(EФ(1)) ≥ … ≥ f(EФ(n)), we have: 
πФ(j) = W(EФ(1), …, EФ(j)) - W(EФ(1), …, EФ(j - 1)) for all j  (and πФ(1) = W(EФ(1))). 
 
Furthermore: 
 
Case (i).  In the trivial case where at least one comoncone has only null events, all comoncones only have 
null events, the preference relation is trivial, utility is constant, and the weighting function can be chosen 
arbitrarily. 
 

However, (A2) rules out the case in which the preference relation is trivial, so this case (which is 
possible on Kobberling and Wakker’s axioms) is ruled out by our axioms. 

 
Case (ii).  Kobberling and Wakker consider the degenerate case in which there is exactly one non-null 
event for each comoncone, and they add an additional restriction (that there is a countable order-dense 
subset of X) to determine a unique utility function in this case.  This case corresponds, for example, to the 
preferences of a maximinimizer or a maximaximizer: the only event that will matter in each comoncone 
will be the event with the worst outcome, or the event with the best outcome.  However, this case turns 
out to be ruled out by our other axioms: ruled out by the axioms that are necessary to deriving a 
probability function; I will postpone this proof to Part Two.   
 
Case (iii).  In the nondegenerate case where at least one comoncone has two or more non-null events, 
utility is unique up to linear transformation, and the weighting function is uniquely determined. 

Since this is the only case not ruled out by the other axioms, it is the only case we are concerned with. 
 
In section 5.1 (pg. 402), Kobberling and Wakker extend the result to arbitrary state spaces (i.e. our S), 
with finite valued functions from S to X (i.e. our act space A).  As noted above, every act can be denoted 
as a subset of some AM.  In case (iii), we can again derive a unique weighting function defined over all 
events in EE and a utility function unique up to unit and location.   
 
We can reorganize the terms of Kobberling’s and Wakker’s equation: 
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CEU(f) = ( ) ( )( )( ) ( ) ( )( ) ( ) ( )( )( ) ( )( )( )∑∑
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where, again, Ф orders the states from best to worst.   
 
This is equivalent to  
 

CEU(f) = ( )( )( ) ( ) ( )( )( ) ( )( )( ) ( )( )( )( )∑
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where ∆ is a rank-ordering permutation on {1, …, n} that orders states from worst to best. 
 
 
 
Part Two.  Derive a Probability Function of States (following Machina and Schmeidler (1993)) 
 
Machina and Schmeidler (Theorem 2, pg. 766) show that if the ≥ relation over A satisfies (A1), (A2), 
(A3’), (A4ii), and (A7) then: 
 
There exists a unique, finitely additive, non-atomic probability measure p: EE -> [0, 1] and a non-
constant, mixture continuous preference functional V(P) = V(x1, p1; …; xn, pn) on the set of finite-
outcome probability distributions such that V(.) exhibits monotonicity with respect to stochastic 
dominance (that is, V(P) ≥ V(Q) whenever P stochastically dominates Q and V(P) > V(Q) whenever P 
strictly stochastically dominates Q), such that the relation ≥ can be represented by the preference 
functional: 
 
У(f(.)) = V(x1, p(f-1(x1)); … xn, p(f-1(xn))), where {x1, …, xn} is the outcome set of the act f(.). 
 
That is, for an act f = {x1, E1; …; xn, En}, У(f(.)) = V(x1, p(E1)); … xn, p(En))) 
 
This implies that an agent will be indifferent between two distributions of outcomes over states that give 
rise to the same probability distribution over outcomes (see also Theorem 1, MS, pg. 765).  That is, if p(f-

1(xi)) = p(g-1(xi)) for all i, then f ~ g.  
 
By the claim that p is non-atomic, we mean that for any event E with p(E) > 0 and any c∈(0,1), there 
exists some event E*⊂ E such that p(E*) = c·p(E).  (MS, pg. 751, footnote 12). 
 
We are now in a position to say why case (ii), above, is ruled out: 
 

Recall that case (ii) is the degenerate case in which there is exactly one non-null event for each 
comoncone.  That there is one non-null event for each comoncone implies that there is exactly one non-
null event on AM for each partition M of events.  For assume there are at least two non-null events on 
AM: E1 and E2.  By (A2), ∃x∃y(fx > fy).  Now consider the gamble yE1yE2fy (= fy) and the gamble 
xE1yE2fy (=xE1fy).  Since E1 is non-null, by (A3’) we will have xE1yE2fy > yE1yE2fy.  Now consider the 
gamble xE1xE2fy.  Since E2 is non-null, by (A3’) we will have xE1xE2fy > xE1yE2fy.  But yE1yE2fy, 
xE1yE2fy, and xE1xE2fy are comonotonic: they are part of any comonocone whose rank-ordering 
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permutation orders the events from worst to best starting with any ordering of the events in (¬E1∩¬E2), 
followed by E2, followed by E1.  So there are two non-null events on that comoncone; this is a 
contradiction, so there is only one non-null event on AM.   
 
Thus, for any fixed partition of events M = {E1, …, En}, there is exactly one non-null event on AM (if 
there were no non-null events, we would have case (i), which, as stated above, is ruled out).  Call the 
event E.  Since the event is non-null, p(E) > 0.2  Therefore, since p is non-atomic, there exists some 
event E*⊂ E such that p(E*) = (0.5)p(E).  By definition of a probability function, p(E-E*) = (0.5)p(E).  
By (A3), xE*f > yE*f and xE-E*f > yE-E*f for all f.  Take the partition M* = {E1, …, E*, E-E*, …, En}.  
Both E* and E-E* are non-null on AM, so we have a contradiction. 
 
So case (ii) is impossible given our axioms. 

 
 
 
Part Three. Derive a Risk Function 
 
So far, since case (iii) is the only remaining case that is consistent with our axioms, we know that we will 
be able to find a utility function u: X -> ℜ unique up to linear transformation, a unique weighting function 
W: EE -> [0, 1], and a unique probability function p such that: 
 
(I) ≤ is representable by: 
 

CEU(f) = ( )( )( ) ( ) ( )( )( ) ( )( )( ) ( )( )( )( )∑
=

−∆∆∆∆∆ −+
n

j
jjnj EfUEfUEEWEfU
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where ∆ is a rank-ordering permutation on {1, …, n} that orders states from worst to best. 
 
(II)  If two acts f and g give rise to the same probability distribution over outcomes, i.e. if p(f-1(x)) = p(g-

1(x)) for all x∈X, then f ~ g, so, by (I), CEU(f) = CEU(g). 
 
(III) For all c∈[0,1], ∃N∈EE s.t. p(N) = c.  This holds because p(S) = 1, p(∅) = 0, and since p is non-

atomic, ∀c∈(0,1) there exists E*⊂ S such that p(E*) = c·p(S) = c. 
 
Now for each c∈[0,1], define r(c) = W(A) for any A such that p(A) = c.   
We can show that this is well-defined, since any two events that have the same probability must have the 

same weight: assume there exist A and B such that p(A) = p(B) but W(A) > W(B), and take outcomes x 
> y.  CEU(fx) > CEU(fy), so u(x) > u(y).  CEU(xAy¬A) = u(y) + W(A)[u(x) – u(y)], and CEU(xBy¬B) = 
u(y) + W(B)[u(x) – u(y)], so CEU(xAy¬A) > CEU(xBy¬B), and thus xAy¬A is preferred to xBy¬B because 
CEU(f) represents ≥.  But У(xAy¬A) = У(xBy¬B) because the two acts give rise to the same probability 
distribution over outcomes, so xAy¬A ~ xBy¬B because У represents ≥.  Since this is a contradiction, p(A) 
= p(B) => W(A) = W(B). 

We also know that r is unique, since W and p are unique. 
So for all A∈EE, r(p(A)) = W(A). 
 
Furthermore, r has all the properties of a risk function: 

                                                 
2 Note that by MS Theorem 1, p represents the relationship in (A7), so that p(E1) > p(E2) whenever E1 and E2 satisfy 
x’E1xE2g ≥ xE1x’E2g for all x’ > x and all g∈A; and note further that, by (A3), E1 = E and E2 = ∅ satisfy this 
relationship. 
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(1) r(0) = 0, because p(∅) = 0 (by definition of a probability function), and W(∅) = 0 (by the properties 
of the weighting function, given in part one). 

(2) r(1) = 1, because p(S) = 1 (by definition of a probability function), and W(S) = 1 (by the properties 
of the weighting function). 

(3) r is non-decreasing: Assume a ≤ b.  Pick B such that p(B) = b.  Now pick A ⊆ B such that p(A) = a 
(we know such an A exists because p is non-atomic).  Therefore, by the properties of the weighting 
function, W(A) ≤ W(B).  So r(A) ≤ r(B). 

(4) r is strictly increasing: Assume a < b, and pick A⊂ B such that p(A) = a and p(B) = b.  If r(a) = r(b), 
then for outcomes x > y, we will have CEU(xAfy) = CEU(xBfy), and so xAfy ~ xBfy.  But by 
stochastic dominance, V(xBfy) > V(xAfy), so xBfy is preferred to xAfy.  Since this is a contradiction, 
¬(r(a) = r(b)).  And since r(A) ≤ r(B), r(A) < r(B). 

 
Therefore, for a function f = {x1, E1; …; xn, En}, we have: 
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=

∆

n

ji
iEp  by finite additivity. 

 
 
Now for all members of the act space, finite valued functions f = {x1, E1; …; xn, En} ∈A, where f(s) = xi 
for all s∈Ei let REU(f)=  
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for some rank-ordering permutation ∆ such that x∆(1) ≤ … ≤ x∆(n). 
 
 
Therefore, for any f∈A, each of which we can write as {x1, E1; …; xn, En} where f(s) = xi for all s∈Ei and 
again as {O1, F1; …; On, Fn} where for some rank-ordering permutation ∆ such that x∆(1) ≤ … ≤ x∆(n) we 
have Oi = x∆(i) and Fi = E∆(i), there exists  

(i) a unique finitely additive, non-atomic probability function p: EE -> [0, 1] 
(ii) a unique risk function r: [0, 1] -> [0, 1] and 
(iii) a utility function unique up to linear transformation such that 

 
REU(f) =  
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represents the preference relation ≤ on A. 
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Part Four.  In the presence of (A2) and (A4i), REU with a continuous r-function implies the remaining 
axioms. 
 
Again, REU holds if there is: 

(i) a unique finitely additive, non-atomic probability function p: EE -> [0, 1] 
(ii) a unique risk function r: [0, 1] -> [0, 1] and 
(iii) a utility function unique up to linear transformation such that 

for any f∈A, each of which we can write as {O1, F1; …; On, Fn} where for all i, f(s) = Oi for all s∈Fi ⊆ 
S and fO1 ≤ fO2 ≤ … ≤ fOn,  REU(f) =  
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represents the preference relation ≤ on A. 
 
(i) KW’s axioms: (A3”), (A5), and (A6). 

 
If REU holds, then CEU holds; let W(A) = r(p(A)). 
KW’s Theorem 8 (pg. 400) states that if (A4i) holds, and if CEU holds, then (A3”), (A5), and 
(A6) hold.   

 
(ii) MS’s axioms: (A1), (A2), (A3’), (A4ii), and (A7). 

 
MS’s Theorem 2 (pg. 766) states that if there exists a unique, finitely additive, non-atomic 
probability measure p: EE -> [0, 1] and a non-constant, mixture continuous preference functional 
V(P) = V(x1, p1; …; xn, pn) on the set of finite-outcome probability distributions such that V(.) 
exhibits monotonicity with respect to stochastic dominance (that is, V(P) ≥ V(Q) whenever P 
stochastically dominates Q and V(P) > V(Q) whenever P strictly stochastically dominates Q), 
such that the relation ≥ can be represented by the preference functional У(f(.)) = V(x1, p(f-1(x1)); 
… xn, p(f-1(xn))), then (A1), (A2), (A3’), (A4ii), and (A7) hold. 
 
We know that p is unique, finitely additive, non-atomic, and by (A2), we know that REU(f) is 
non-constant.  We must show that (1) REU(f) is mixture continuous and (2) REU(f) ≥ REU(g) 
whenever f stochastically dominates g and REU(f) > REU(g) whenever f strictly stochastically 
dominates g: 

 
(1) Since we have a probability function of states, we can identify an act f with its probability 
distribution f*∈P(X) such that all acts identified with that probability distribution have the 
same REU; we can write REU(f*).  As defined on pg. 755 of MS, REU(f) is mixture 
continuous if, for any probability distributions f*, g*, and h* in P(X), the sets {λ∈[0,1] | 
REU(λf* + (1 – λ)g*) ≥ REU(h*)} and  {λ∈[0,1] | REU(λf* + (1 – λ)g*) ≤ REU(h*)} are both 
closed. 
 
Consider the set of outcomes {x1, …, xn} such that xi is an outcome of f* or an outcome of g*, 
and fx1 ≤ fx2 ≤ … ≤ fxn.  Then we have: 

f* = {p 1, x1; …; pn, xn} for some {p1, …, pn} 
g* = {q1, x1; …; qn, xn} for some {q1, …, qn} 
λf* + (1 – λ)g* = {(λp1 + (1 – λ)q1, x1; …; λpn + (1 – λ)qn} 
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For each i, λpi + (1 – λ)qi is continuous in λ.  So for each k, ( )( )∑
=

−+
n

ki
ii qp λλ 1  is continuous 

in λ.  Since r is continuous, r( ( )( )∑
=

−+
n

ki
ii qp λλ 1 ) is continuous in λ.  So , 

r( ( )( )∑
=

−+
n

ki
ii qp λλ 1 )[u(xk) – u(xk-1)] is continuous in λ.  So the sum of these terms from k = 

2 to n is continuous in λ.  So REU(f) is continuous in λ.  Therefore, {λ∈[0,1] | REU(λf* + (1 – 
λ)g*) ≥ m} and  {λ∈[0,1] | REU(λf* + (1 – λ)g*) ≤ m} are closed for all m, in particular for m 
= REU(h*), so REU(f) is mixture continuous. 
 
(2) Take two acts f and g, such that f stochastically dominates g.  Consider the set of outcomes 
{x 1, …, xn} such that xi is an outcome of f or an outcome of g, and fx1 ≤ fx2 ≤ … ≤ fxn.  Then 
we have: 

f* = {p 1, x1; …; pn, xn} for some {p1, …, pn} 
g* = {q1, x1; …; qn, xn} for some {q1, …, qn} 

Since f stochastically dominates g, for all k,
{ } { }

∑∑
≤≤

≤
kiki xxi

i
xxi

i qp
||

   

Since 
{ }

1==∑∑
i

i
i

i qp , we have, for all k,
{ } { }

∑∑
>>

≥
kiki xxi

i
xxi

i qp
||

. 

Thus, since r is strictly increasing, we have 
{ } { }

)()(
||
∑∑

>>

≥
kiki xxi

i
xxi

i qrpr for all k. 

Since u(xk) is non-decreasing, 

 
{ } { }

))()()(())()()(( 1
||

1 kk
xxi

i
xxi

kki xuxuqrxuxupr
kiki

−≥− +
>>

+ ∑∑  for all k.   

For each k, the above terms will either be equal to the kth term in the REU equation for REU(f) 
and REU(g), respectively, or else in the kth terms of REU(f) or REU(g), the “r” coefficient will 
be different than the above but the difference u(xk+1) – u(xk) will be zero. 
So REU(f) ≥ REU(g) 
 

If f strictly stochastically dominates g, then 
{ } { }

∑∑
≤≤

<
mimi xxi

i
xxi

i qp
||

for some m. 

So, by the same chain of reasoning, 
{ } { }

)()(
||
∑∑

>>

>
mimi xxi

i
xxi

i qrpr for some m. 

Take the least m for which the strict inequality holds.  Then, for the least k such that xk is 
preferred to xm (we know there is some such k, otherwise both sums would be 1), the difference 
u(xk) – u(xk-1) will be non-zero, so we have: 

 
{ } { }

))()()(())()()(( 1
||

1 −
>>

− −>− ∑∑ kk
xxi

i
xxi

kki xuxuqrxuxupr
mimi

 

This will be the kth term in the REU equation for REU(f) and REU(g), respectively; and for all 
other terms, the weak inequality will hold, i.e. the jth term of REU(f) will be greater than or 
equal to the jth term of REU(g). 
 

Therefore, by MS Theorem 2, (A1), (A2), (A3’), (A4ii), and (A7) hold. 
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(iii) (A3).  We want to show that if f(s) ≥ g(s) for all s∈S, then f ≥ g.  If f(s) ≥ g(s) for all s∈S and f(s) > 
g(s) for all s∈E⊆S, where E is some non-null event on A, then f > g. 
 

Assume f(s) ≥ g(s) for all s∈S.  Then, for all x, {s | g(s) > x} ⊆ {s | f(s) > x}, since if g(s) > x, 
then f(s) > x.  Consequently, for all x, p({s | g(s) > x}) ≤ p({s | f(s) > x}), by definition of a 
probability function.  That is, f stochastically dominates g.  To put it in directly in terms of our 
definition of stochastic dominance: take a partition of M = {E1, …, En} of S such that 
∀i∃xi∃yi(∀s∈Ei)(f(s) = xi & g(s) = yi).  Then {s | g(s) ≥ x} and {s | f(s) ≥ x} are subsets of that 

partition, and
{ } { }

∑∑
>>

≤
xxi

j
yyi

i

ji

EpEp
||

)()( .  So 
{ } { }

∑∑
≤≤

≥
xxi

j
yyi

i

ji

EpEp
||

)()( .  That is, f stochastically 

dominates g.  So, by (2ii) in part four, REU(f) ≥ REU(g).  So f is weakly preferred to g. 
 
Now assume f(s) ≥ g(s) for all s∈S and f(s) > g(s) for all s∈E⊆S, where E is some non-null event 
of A.  Take the set {x | (∃s∈E)(g(s) = x)}.  We know this set is non-empty.  We also know this set 
is finite, because the outcomes space of g is finite; so we can pick the greatest member of the set, 
x*.  Now we want to show that {r | f(r) ≤ x*} ⊂ {r | g(r) ≤ x*}.  Consider some element t∈{r | f(r) 
≤ x*}.  Since f(t) ≤ x*, we have g(t) ≤ x*, so {r | f(r) ≤ x} ⊆ {r | g(r) ≤ x}.  Now consider some 
element t*∈E such that g(t*) = x*.  We have t*∈{r | g(r) ≤ x*}, but we have f(t*) > x*, so we 
have ¬(t*∈{r | f(r) ≤ x*}).  Therefore, {r | f(r) ≤ x*} ⊂ {r | g(r) ≤ x*}.  Consequently, f strictly 
stochastically dominates g.  Again by (2ii) in part four, REU(f) > REU(g).  So f is weakly 
preferred to g. 
 
Therefore, (A3) holds. 
 

So, assuming (A2), (A4i), REU implies (A1), (A3), (A4ii), (A5), (A6), and (A7).  
 
 
Therefore, if we assume non-degeneracy (A2) and solvability (A4i), we have: 
 
(A1), (A3), (A4ii), (A5), (A6), (A7) are sufficient conditions for REU. 
(A1), (A3), (A4ii), (A5), (A6), (A7) are necessary conditions for REU with continuous r-function. 
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APPENDIX B.  Tradeoff Equality and Utility Differences. 
 
Claim: For REU maximizers, xy ~*(C)zw holds just in case u(x) – u(y) = u(z) – u(w).  
 
Proof:  Assume the agent is an REU maximizer, and xy ~*(C)zw.  Then xEf ~ yEg and zEf ~ wEg for some 
xEf, yEg, zEf, wEg that are comonotonic.  Therefore, there is some set of states {E1, …, En} and some rank-
ordering permutation Φ such that xEf(EФ(1)) ≥ … ≥ xEf (EФ(n)), yEg(EФ(1)) ≥ … ≥ yEg(EФ(n)), zEf(EФ(1)) ≥ … 
≥ zEf (EФ(n)), wEg(EФ(1)) ≥ … ≥ wEg(EФ(n)) and: 
 
(1) EФ(i) = E for some i. 

(2) ( ) ( )( )( ) ( ) ( )( )( )( ) ( )( )( ) =−∑
=

Φ−ΦΦΦΦ

n

j
jEjj EfxuEEprEEpr

1
111 ,...,,...,  

( ) ( )( )( ) ( ) ( )( )( )( ) ( )( )( )∑
=

Φ−ΦΦΦΦ −
n

j
jEjj EgyuEEprEEpr

1
111 ,...,,...,  

 
 

(3) ( ) ( )( )( ) ( ) ( )( )( )( ) ( )( )( ) =−∑
=

Φ−ΦΦΦΦ

n

j
jEjj EfzuEEprEEpr

1
111 ,...,,...,  

 

( ) ( )( )( ) ( ) ( )( )( )( ) ( )( )( )∑
=

Φ−ΦΦΦΦ −
n

j
jEjj EgwuEEprEEpr

1
111 ,...,,...,  

See part (i) and (iii) of the proof in Appendix A. 
 
Since xEf and zEf only differ on EФ(i), and yEg and wEg only differ on EФ(i), subtracting equation (3) from 
equation (2) yields:  

( ) ( )( )( ) ( ) ( )( )( )[ ][ ] ( ) ( )( )( ) ( ) ( )( )( )[ ][ ])()(,...,,...,)()(,...,,..., 111111 wuyuEEprEEprzuxuEEprEEpr iiii −−=−− −ΦΦΦΦ−ΦΦΦΦ

 
This simplifies to u(x) – u(z) = u(y) – u(w). 
 
Claim: For EU maximizers, xy~*(A)zw holds just in case u(x) – u(y) = u(z) – u(w). 
Proof: Assume the agent is an EU maximizer, and xy ~*(A)zw.  Then xEf ~ yEg and zEf ~ wEg for some 
xEf, yEg, zEf, wEg in A.  Therefore, there is some set of states {E1, …, En} such that: 
(1) Ei = E for some i. 

(2) ∑∑
==

=
n

j
jEj

n

j
jEj EgyuEpEfxuEp

11

))(()())(()(  

(3) ∑∑
==

=
n

j
jEj

n

j
jEj EgwuEpEfzuEp

11

))(()())(()(  

Since xEf and zEf only differ on Ei, and yEg and wEg only differ on Ei, subtracting equation (3) from 
equation (2) yields:  
p(Ei)[u(x) – u(z)] = p(Ei)[u(y) – u(z)]. 
This simplifies to u(x) – u(z) = u(y) – u(w). 
 
 
 


