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1. Introduction 
 Proponents of Bayesian confirmation theory believe that they have the solution to a 

significant, recalcitrant problem in philosophy of science. It is the identification of the logic that 

governs evidence and its inductive bearing in science. That is the logic that lets us say that our 

catalog of planetary observations strongly confirms Copernicus’ heliocentric hypothesis; or that 

the fossil record is good evidence for the theory of evolution; or that the 3oK cosmic background 

radiation supports big bang cosmology. The definitive solution to this problem would be a 

significant achievement. The problem is of central importance to philosophy of science, for, in 

the end, what distinguishes science from myth making is that we have good evidence for the 

content of science, or at least of mature sciences, whereas myths are evidentially ungrounded 

fictions.  

 The core ideas shared by all versions of Bayesian confirmation theory are, at a good first 

approximation, that a scientist’s beliefs are or should conform to a probability measure; and that 

the incorporation of new evidence is through conditionalization using Bayes’ theorem. While the 

burden of this chapter will be to inventory why critics believe this theory may not be the solution 

after all, it is worthwhile first to summarize here the most appealing virtues of this simple 

account. There are three. First, the theory reduces the often nebulous notion of a logic of 
                                                
1 I am grateful to Malcolm Forster for helpful discussion on an earlier draft. 
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induction to a single, unambiguous calculus, the probability calculus. Second, the theory has 

proven to be spacious, with a remarkable ability to absorb, systematize and vindicate what 

elsewhere appear as independent evidential truisms. Third is its most important virtue, an 

assurance of consistency. The larger our compass, the more we must digest evidence of diverse 

form and we must do it consistently. Most accounts of evidence provide no assurance of 

consistency in their treatment of larger bodies of evidence.2 Bayesian confirmation theory 

affords us a simple picture: the entire bearing of evidence at any moment is captured by a 

probability distribution. No matter how large a body of evidence we contemplate, we will not be 

led to contradictions in our evidential judgments as long as we form and update our beliefs in 

conformity with the probability calculus. 

 Perhaps because of these virtues, Bayesian confirmation theory now enjoys the status of 

the leading account of induction and confirmation in the philosophy of science literature. Those 

who expect this circumstance to persist should recall that the present success of Bayesianism is 

relatively momentary. The probability calculus was born over 350 years ago in the seventeenth 

century in correspondence between Pascal and Fermat. One hundred years later, in the eighteenth 

century, the Reverend Thomas Bayes published his theorem as part of a proposal that probability 

theory be used to answer Hume’s inductive skepticism. Nonetheless, the idea that the probability 

calculus afforded the right way to understand inductive inference remained a minority view. The 

dominant view of induction in the nineteenth century followed in the tradition of Bacon and his 

tables, with its most influential expression in John Stuart Mills’ System of Logic (1891). This 

dominance persisted through to the mid twentieth century.3 It competed with hypothetico-
                                                
2 Some even fail in simple cases. Consider an enumerative induction on the white swans of 

Europe, which lets us conclude that all swans are white; and an enumerative induction on the 

black swans of Western Australia, which leads us to the contradictory conclusion that all swans 

are black. 
3 Mill’s methods remain to this day the single most important methodological idea for computer 

repair people and auto mechanics seeking to diagnose problems. Their reach persists in the 

methodological literature at least to Skyrms (1975), whose Ch. IV gives a detailed development. 

See the historical survey of Blake, Ducasse and Madden (1960) for a broader sense of the minor 

role probability theory has played in the longer term history of ideas of scientific methodology. 
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deductive approach to inductive inference. That view’s venerable history can be traced through 

Descartes’ method of hypothesis to ancient Athens were astronomers were, as legend has it, 

asked by Plato to find the geometrical planetary constructions that would “save the phenomena” 

of astronomy (Duhem, 1969). As recently as a few decades ago, the philosophy of science 

literature was filled with proposals for dealing with Hempel’s (1945) notorious “paradox of the 

raven.” That paradox arose within a development of Hempel’s “satisfaction” criterion of 

confirmation, that was itself merely the ancient notion of enumerative induction transported from 

the context of Aristotle’s syllogistic logic to modern, first order predicate logic. These differing 

approaches played out against persistent claims by Popper (1959) and his followers that the very 

notion of a logic of induction is mistaken. The Bayesian approach to induction and confirmation 

rose to dominance in philosophy of science only slowly in the course of the second half of the 

twentieth century,4 with its importance codified by such works as Howson and Urbach (2006). 

 Given this history of competing traditions in induction and confirmation rising and falling 

over the centuries, it seems only prudent to expect that the Bayesian approach will recede from 

its present prominence and once again be merely one of several useful instruments for assessing 

inductive inference relations. The goal of this chapter is to review the weaknesses recounted in 

the literature that may drive this decline. It will draw on two sources. First are those outside the 

Bayesian fold who present direct challenges; second are shortcomings identified by Bayesians, 

who in turn have sought modifications within the Bayesian system. These two literatures overlap 

sufficiently for it to be impractical for me to disentangle them.5 

 The survey will proceed from larger to smaller issues. Section 2 will review global 

challenges to Bayesian confirmation theory. These challenges derive from differences in the 

basic conception of inductive inference and the principles that govern it. They include the view 

that notions of inductive inference are merely artifacts subservient to whatever methods may 

reliably get us to the truth; and the proposal that there is no universally valid logic of induction, 

but only localized logics adapted to individual domains. Section 3, 4 and 5 are based on a 

decomposition of Bayesian confirmation theory into independent, components, which are 
                                                
4 Glymour (1980, p. 64) identifies the influence of Carnap (1950) as decisive. 
5 Hence I apologize in advance to Bayesians who feel that their work has been mischaracterized 

as a challenge to Bayesianism. 
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presented as intuitive notions pertaining to confirmation. Additivity amounts to a decision that 

degrees of probability span belief and disbelief, not belief and ignorance; the essence of 

Bayesian dynamics is glossed as the incorporation of new evidence by a simple rule of “refute 

and rescale” prior belief. This decomposition supports a catalog of challenges to the specific 

Bayesian commitment. Among them is “the problems of the priors,” which proves to be multiple 

problems aggregated under one label. One—here called first problem—is that additivity 

precludes prior probabilities that represent a state of complete ignorance. The second problem 

derives from the simplicity of refute and rescale dynamics. It precludes specification of a neutral 

prior probability distribution that exerts little influence on the future course of conditionalization. 

Section 6 reports some further challenges and Section 7 is a brief conclusion. 

 Some topics lie largely outside the compass of this chapter. In statistical practice, as 

opposed to philosophy of science, an epochal battle continues to be waged between proponents 

of traditional Neyman-Pearson hypothesis testing and Bayesian approaches. That debate has 

been of far less importance in philosophy of science and will be addressed by Deborah Mayo and 

Aris Spanos (this volume).6 Within the Bayesian literature itself, the dominant problem has been 

to find the correct interpretation of probability: subjective, objective or logical? To someone who 

is at a slight distance from Bayesianism, the debate seems misdirected in setting standards of 

precision for the interpretation of a central term of a theory that are rarely achieved elsewhere 

and are probably unachievable for probability. Its energy is reminiscent of an internecine feud 

among sect members who agree vastly more than they differ, but nonetheless tolerate no 

doctrinal deviations. This topic will be addressed only in so far as it arises in broader challenges 

to the Bayesian approach. These debates are addressed by Sandy Zabell (This Volume) and 

Philip Dawid (This Volume) as well as survey volumes (Galavotti, 2005; Gillies, 2000; Mellor, 

2005). 

                                                
6 For a brief account from the perspective of a philosopher sympathetic with the Bayesian 

approach, see Howson (1997); and for a brief history from someone with opposing sympathies, 

see Mayo (manuscript). 
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2. Competing Accounts of the Nature of Inductive Inference 
 Any theory of inductive inference depends upon one or more principles or presumptions 

that distinguish the right inductive inference relations. These principles must be there, whether 

they are made explicit, or, as is the more usual case, left tacit. The most fundamental of the 

challenges to Bayesian confirmation theory come from differing views of these principles.  

2.1 Alternatives 

 Given the large number of approaches to inductive inference, one might imagine that 

there is a plethora of competing principles. A recent survey (Norton, 2005), however, shows that 

most accounts of inductive inference can be grouped into one of three families, there called 

“inductive generalization,” “hypothetical induction” and “probabilistic induction.” Each family 

is based upon a distinct inductive principal and the different members emerge from efforts to 

remedy the deficiencies of the principle. 

 While it is impossible to give detailed descriptions of each family, it is useful here to 

indicate the breadth and longevity of the first two, which compete with the third probabilistic 

family. Accounts of induction belonging to inductive generalization depend on the principle that 

the instance of a hypothesis confirms the generalization. This ancient notion was implemented in 

syllogistic logic as enumerative induction: an A that is B confirms that all As are B. The 

principal weakness of this archetype of the family is that it may allow rather little to be inferred. 

We cannot use it to pass from the evidence of a 3oK cosmic background radiation to the theory 

of big bang cosmology. The embellishments of the archetype are devoted to extending the reach 

of enumerative induction. Hempel’s satisfaction criterion reformulates the basic notion within 

the richer, first order predicate logic. Mill’s methods extend it by licensing the inference to a new 

notion, cause. In the Method of Agreement, if A is seen to follow a, then we infer this pattern 

will persist generally and label a as the cause of A. Glymour’s “bootstrap” account of 

confirmation uses instance confirmation to enable evidence to confirm hypotheses that employ 

theoretical notions than are not explicitly mentioned in the evidence. For our purposes, what 

matters is that all these approaches to induction depend upon the basic principle that an instance 

confirms the generalization. 

 Accounts of induction belonging to hypothetical induction depend on the principle that 

the ability of an hypothesis deductively to entail the evidence is a mark of its truth. The 
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archetype of accounts is this family is the saving of the phenomena in astronomy. That some 

model of planetary motions correctly fits and predicts the observed positions of the planets is a 

mark of its truth. The principal weakness of this principle is that it assigns the mark too 

indiscriminately. There are many planetary systems—geocentric, heliocentric and more—that 

can save the phenomena of astronomical appearances. They are all equally assigned the mark of 

truth, even though there must be some sense in which one saves the appearances better than 

another. Embellishments of this basic notion are intended to rein in the reach of hypothetical 

induction by adding further conditions that must be met to earn the mark. The hypothesis that 

saves the phenomena must be simple, or simpler than its competitors; or we must in addition be 

assured of an exclusionary clause: that were the hypothesis that saves the phenomena false, then 

it would be unlikely for the phenomena to obtain.7 Other versions require hypotheses not just 

deductively to entail the evidence, but also to explain it. Ptolemy’s model of planetary motion 

entails that Venus and Mercury will always appear close to the sun. Copernicus’ model explains 

why: these planets orbit the sun. Finally, another sort of embellishment enjoins us to take into 

account the historical process through which the hypothesis was generated. It must be generated 

by a method known to be reliable. Generating hypotheses ad hoc is not judged reliable. 

Parapsychologists hypothesize retrospectively that their experiments failed in the presence of 

skeptics because of the unintended obstructive influence emanating from the skeptics. We are 

free to discount this as an ad hoc hypothesis. 

2.2 Bayesian Annexation 

 All these accounts represent challenges to Bayesian confirmation theory in that they are 

grounded in and can be developed in a framework that does not need the familiar structures of 

                                                
7 One important form of this is Mayo’s (1996) error statistical approach to inductive inference in 

science. It requires evidence to provide a “severe test” of an hypothesis. The above exclusionary 

clause is realized in Mayo’s (1996, p. 180) severity requirement: “There is a very low probability 

that test procedure T would yield such a passing  result, if [the hypothesis] H is false.” It of 

special interest here since its debate with Bayesian confirmation theory replicates in philosophy 

of inductive logic the tensions between Neyman-Pearson hypothesis testing and Bayesian 

approaches in statistics. For a Bayesian rejoinder, see Howson (1997, §4). 
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Bayesian confirmation theory. The natural Bayesian rejoinder is that the two basic principles and 

their embellishments can be absorbed and vindicated by the Bayesian system. 

 Whether one finds this possibility compelling depends on whether one finds this gain 

worth the cost of adopting the extra structures and commitments that Bayesian confirmation 

theory requires (such as will be discussed in Sections 3-5 below). The absorption and vindication 

can sometimes be quite successful. The clearest case is the success of the Bayesian analysis of 

when the success of an hypothesis H entailing true evidence E should count as inductive support 

for H. (Earman and Salmon (1992, §2.7) A familiar application of Bayes’ theorem8 

! 

P(H | E)

P(~ H | E)
=
P(E | H )

P(E |~ H )

P(H )

P(~ H )
 

shows that the degree of support is controlled essentially by the likelihood ratio P(E|H)/P(E|~H). 

If it is high, so that the evidence is much less likely to come about if H is false than if it is true, 

then the posterior probability P(H|E) increases correspondingly with respect to the prior 

probability P(H). If the likelihood ratio is close to one so that E is pretty much as likely to come 

about whether or not H is true, then P(H|E) enjoys no such increase. The analysis is appealing in 

that it vindicates the basic principle of hypothetical induction, as well as going beyond it in 

indicating when it will not work. 

 Other efforts at absorption have been less successful. In Section 5 below, we shall the 

difficulties facing Bayesian efforts to explicate notions like predictive power and simplicity. The 

problem is that the simple structures of the Bayesian theory do not have enough resources to 

distinguish the case of an hypothesis H merely entailing evidence E from it entailing it in a 

virtuous way that merits confirmatory rewards. 

 There also seems to be some troubling elasticity in the way that a Bayesian vindication of 

independent inductive norms is achieved. Sometimes it seems that almost any norm could be 

justified. The problem is illustrated by difficulties faced in a simple example due to Carnap, as 

summarized by Earman and Salmon (1992, pp. 85-89). The traditional form of inductive 

inference called “example” is a weakening of enumerative induction that merely infers from 

                                                
8 The terms have their obvious meanings. For example, P(H|E) is the (posterior) probability of H 

conditioned on E; P(H) is the (prior) probability of H against the tacit background. See Section 5 

below. 
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instances to instances: these cases of x are X; so that new case of x will also be X. The 

illustration deals with finitely many individuals a, b, c, … that may carry a property F (written 

“Fa” etc.) or fail to carry it (written “~Fa” etc.) The individual possibilities are described by state 

descriptions, such as Fa&Fb&~Fc&…. Carnap initially assigned equal probability to each state 

description. The immediate outcome was that the argument form “example” failed. Learning that 

Fa and Fb are true leaves the probabilities of Fc and ~Fc unaffected. That could be offered as a 

proof of the failure of “example,” if one was inclined against the argument form. Carnap, 

however, was not so inclined. He chose to readjust the probabilities on the state descriptions in a 

way that favored correlations between the properties, so that “example” ends up being 

vindicated. 

 Closer reflection on Carnap’s illustration shows that the vindication (or otherwise) of the 

inductive argument form “example” does not depend on anything inherent in the probability 

calculus. Rather it depends upon additional assumptions we make. In this case it is our 

determination of whether the individuals under consideration are correlated in the loose sense 

that one individual carrying F tends to go with another also doing so. If we decide they are so 

correlated, then “example” is vindicated, whether we express the vindication formally within a 

probabilistic analysis or merely as a restatement of the informal notion of correlation. 

 This suggests that the Bayesian vindication of inductive norms is less a matter of 

extracting them from the probability calculus and more one of our introducing them as 

independent assumptions that can be expressed in probabilistic language.9 That makes them far 

less impressive than they initially seemed. One virtue does persist: since we are likely to want to 

combine many possibly competing inductive principles, if we do it within the framework of the 

probability calculus, we have some assurance that they will be combined consistently. 

                                                
9 Other examples are easy to find. The Bayesian analysis of hypothetical induction above 

depended essentially on our specifying as an independent assumption that the ratio 

P(E|H)/P(E|~H) is large. That amounts to the external assumption that E would much more likely 

likely come about if H is the case than if it is not, which already pretty much gives us the 

principle wanted. 
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2.3 Bayesian Foundational Principles 

 The strongest response to these challenges of other principled accounts would be for 

Bayesian confirmation theory to display its own principled foundation, justify it and argue for its 

superiority. However prospects here are not strong. Bayesian confirmation theory is distinctive 

among accounts of confirmation theory in that a great deal of effort as been expended in seeking 

to justify it. These efforts are usually associated with different interpretations of probability and 

vary markedly in character according to the interpretation. While the literature on this problem is 

enormous, there seems to be no vindication that is widely agreed to be successful. Rather the 

agreement lies only with the conclusion that has to be reached—that the probability calculus is 

the logic of induction. Each Bayesian seems to find his or her own path to this conclusion, often 

from widely diverging starting points and with critical dismissal of other starting points. 

 A few examples will illustrate the divergences in the starting points and their difficulties. 

The most promising approach is associated with a relative frequency interpretation of 

probability, such as sought in Salmon (1966, pp. 83-96). In it, the probability of a scientific 

hypothesis would simply be the relative frequency of true hypotheses in a reference class of 

hypotheses of the appropriate type. Since relative frequencies behave mostly like probabilities, 

it is easy to conclude that the probability calculus is the natural logic of induction, which is 

largely reduced to the simple task keeping count of truth in relevant reference classes. The 

proposal fails because of the insurmountable difficulty of defining which are the appropriate 

reference classes, let alone assuring that the appropriate relative frequencies are unique and well 

defined in the resulting infinite sets. 

 Another popular approach seeks to identify necessary conditions that any inductive logic 

must meet. A version has recently been developed by Jaynes (2003) following Cox (1961). The 

attendant interpretation of probability is objective, in the sense that, in any one circumstance, 

there is one correct probability assignment, even though we may not know it; and is “logical” in 

the sense that the probabilities are treated as degrees of a logical relationship of support. The 

approach is strong in that, if there is a unique logic of induction to be found, circumscribing it by 

an ever-narrowing fence of necessary conditions will isolate it. Its difficulty is that it needs to 

convince the reader of the necessity of a list of conditions: that belief comes in numerical degrees 

that are always comparable; that the degree of belief assigned some proposition must be a 

function of those assigned to its disjunctive parts; and further, more specialized suppositions. We 
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shall dissect these sorts of conditions in Sections 3, 4 and 5 below and find that they seem 

necessary only if one believes from the start that degrees of belief are probabilities.10 

 Finally, in association with a subjective approach to probability, there are arguments that 

arrive at the probability calculus by urging that any distribution of belief not in accord with the 

probability calculus exposes us to the danger of a combination of wagers that assure a loss. 

These are the Dutch book arguments, best known from the work of de Finetti (1937). In a related 

approach, such as Savage (1972), natural conditions on our actions are translated into conditions 

on beliefs. The first and most evident weakness of these proposals is that they require a quite 

substantial body of presumptions on our actions and preferences and the rules that should be 

used to relate them to our beliefs. The arguments can be defeated by denying a major 

presumption. I may simply be unwilling to bet; or I may never find a bet such that I am 

indifferent to which side I take; or I may harbor intransitive preferences.11 
                                                
10 For example, the belief assigned to A&B is assumed to be a function of the belief assigned to 

A and to B given A. It is natural to assume this if one imagines all along that “belief” is just a 

code word for probabilities or frequencies. However, if one does not prejudge what “belief” must 

be, the assumption of this specific functional dependency is alien and arbitrary. For a natural 

counterexample that violates the rule, see Norton (2007, p. 144, fn. 6). Similar difficulties arise 

for attempts to use “loss functions” or “scoring rules” as a means of vindicating the Bayesian 

system, such as in Joyce (1998). They depend on using a scoring rule that picks out the subspace 

of additive measures as local optima in the larger space of all belief functions. Any such scoring 

rule must be selected carefully so as to enforce a coupling between belief in an outcome A and 

its negation ~A; for an arbitrary change in the belief assigned to A must force a suitable change 

in the belief in ~A to ensure that optimal scoring occurs only in the subspace of additive 

measures. That coupling is just the sort of dependency noted in Section 4.1 and in (A’) that is 

tantamount to choosing additivity. However natural they may seem, the specific conditions 

chosen to endow scoring rules with this particular property amount to a prior decision to interpret 

low belief values as disbelief rather than ignorance or some mix of disbelief and ignorance. In 

the latter case, belief in an outcome is no longer closely coupled to the belief in its negation.  
11 Hájek (2008) argues that four of the principal means of vindicating Bayesianism fail, each in 

the same way. The means are the Dutch book arguments, representation theorem arguments, 
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 However there is a deeper problem. These approaches fundamentally change the question 

asked. It was: when is this observation good evidence for that hypothesis? The presumption of 

the question is that evidential support obtains independently of our beliefs and actions. These 

arguments then change the question in two steps that introduce dependencies on our beliefs and 

actions. First, the question of evidential support (Does the fossil record support evolution 

theory?) is replaced by the question of distributions of belief (How do we distribute our belief 

over evolutionary theory and its competitors?). At this stage, prior to consideration of actions, we 

are to accept that there is no one right distribution of belief. Yours is presumed as good as mine. 

Second, rules are provided for translating beliefs into actions, so that the consequences of our 

actions can be assessed and used to restrict how we distribute our beliefs, while in general never 

eliminating the possibility of different belief distributions. These rules make most sense if we are 

at a racetrack or engaged in an engineering project where beliefs must be translated into design 

decisions. They are strained if our concern is the question originally asked: whether, for 

example, the observed motion of the galaxies provides good evidence for the hypothesized heat 

death of the universe, billions of years in the future—a circumstance independent of our beliefs 

and actions. The two-step process has produced an answer to a question, but it is not the question 

with which we started. 12 

                                                                                                                                                       

calibration arguments and gradational accuracy arguments. Each depends on displaying a 

theorem that is interpreted to show that rationality forces Bayesianism. Each vindication, Hájek 

urges, overlooks a “mirror-image” theorem that shows the reverse, that rationality requires 

degrees of belief not to be probabilities. For example, the Dutch book theorem assures the 

existence of a combination of fair bets that forces a sure loss for you if your numerical beliefs are 

not probabilities. Its mirror-image is the “Czech book theorem.” It assures that a benevolent 

Czech bookie can find a combination of fair bets that assures a certain gain for you just if your 

numerical degrees of belief are not probabilities. 
12 For a spirited assault on Dutch book arguments, see Bacchus et al. (1990). They urge these 

arguments fail since an agent should simply refuse to accept a combination of bets that assures a 

loss; it is (pp. 504-505) “a matter of deductive logic and not of propriety of belief.” Schick’s 

(1986) view is similar. 
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2.4 Is There a Unique Logic of Inductive Inference? 

 So far, all the approaches considered—Bayesian and otherwise—have presumed that 

there is a unique logic of induction to be found. Another type of challenge to Bayesian 

confirmation theory denies this. Rather these challenges portray the conditions surrounding 

individual problems as determining which are the appropriate inductive strategies and, from this 

perspective, it turns out that there is no single logic of induction to be identified. Rather than 

having principled grounds for identifying the right inductive logic, these approaches offer 

principled grounds for denying that such a thing is possible. 

 A well articulated version of this approach is the learning theoretic paradigm, as 

developed in Kelly (1996). It presumes that our goal is getting to the truth through some reliable 

method of discovery. At its simplest, an agent receives a potentially unlimited stream of data and 

must formulate hypotheses expressing the pertinent truths of the world, as the data accumulates. 

The central problem of the literature is to discern the sorts of strategies that will lead to 

convergence to the truth in the hypotheses formulated successively, with more rapid convergence 

prized. In certain simple worlds, these methods can be governed by familiar inductive notions. A 

data stream “day, night, day, night, day, …” rapidly succumbs to the hypothesis that day follows 

night and night follows day. In this case, enumerative induction is all that an agent needs to 

formulate the true hypothesis quite early. Matters get more complicated as the problems get 

harder. Looking for regularities in what follows what leads to limited statistical success if the 

problem is weather prediction at one location and the data stream is “rain, shine, shine, shine, 

rain, …”; or stock market prediction with a data stream “up 3 points, up 2 points, down 20 

points, up 3 points, …” There is a small amount of inertia in both the weather and the stock 

market, so that conditions one day tend somewhat to be replicated the next. These methods fail 

completely in inhospitable worlds. If the data stream is derived from a well-designed roulette 

wheel, “red, black, black, red, red, …,” no hypotheses on when red will follow black (other than 

chance) can succeed. And matters can be worse in a demonic universe, which delivers data 

maliciously tailored to deceive the particular agent in question. 

 In this reliabilist paradigm, inductive norms are parasitic on convergence to the truth. It is 

simply a matter of ingenuity to conceive universes in which a given inductive norm will be 

fruitful or harmful. For example, a standard supposition of scientific methodology is that we 

should only advance hypotheses that are consistent with the data at hand. However it turns out 



13 

that, once we allow for the computational limitations of agents, a demand for consistency can 

conflict with reliability. So it may be efficient for us to offer an hypothesis inconsistent with the 

evidence, even though most accounts of induction, including the Bayesian, insists the hypothesis 

has been refuted. For a critique of Bayesian confirmation theory from the reliabilist perspective, 

see Kelly and Glymour (2004). 

 The idea that inductive strategies will vary according to the domain at hand is the central 

idea of the “material theory of induction” (Norton, 2003). Its name derives from the idea that the 

license of an inductive inference does not come from the form of the sentences involved, as it 

does in deductive logic. Rather the license comes from the subject matter of the inference. 

Therefore the inductive logic applicable will vary from domain to domain as the licensing facts 

change; there is no universally applicable logic of induction. 

 In one restricted area, this notion of material facts fixing the inductive logic is already 

familiar to subjective Bayesians through Lewis’ (1980) “principal principle.” For processes for 

which objective chances are available, the principle enjoins subjective Bayesians to match their 

subjective degrees of belief to the physical chances. Quantum mechanical laws deliver chances 

for the timing of the decay of a radioactive atom. If we match our subjective degrees of belief 

concerning those timings to the quantum mechanical chances, then we are assured high belief in 

outcomes that are most likely to happen and low belief in those unlikely to happen. A by-product 

is that our degrees of belief automatically conform to the probability calculus.13 

 The principal principle naturally generalizes to the central claim of the material theory of 

induction: that the factual properties of the system under consideration will determine the 

appropriate inductive logic. It follows that there may be systems whose facts dictate that the 

applicable logic of induction is not probabilistic. Norton (2007, §8.3; manuscript) describes 

                                                
13 The facts that license probabilistic inferences need not be the sorts of physical chances 

recovered from stochastic theories like quantum mechanics. For example, imagine that one is a 

bookmaker accepting wagers on a definite matter of presently unknown fact: say, whether some 

recently discovered infectious illness is viral or bacterial in origin. If the factual conditions 

surrounding the bookmaking conform to all those assumed in Dutch book arguments, then those 

facts determine that one’s degree of belief ought to conform to the probability calculus, on pain 

of exposure to a sure loss. 
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certain physical systems whose governing laws are indeterministic in the sense that the complete 

specification of the present state of the system does not fix the future state; yet these governing 

laws provide no probabilities for the various possible futures. They simply tell us that, given 

such-and-such a present state, this or that future state is possible. In the corresponding inference 

problem, we are required to distribute beliefs over these possible futures, knowing the state of 

the present. If we distributed beliefs as probabilities rather than in some weaker form, we end up 

with beliefs that outstrip the full physical specification as given by the initial conditions and the 

applicable physical laws. We must assert that one possible outcome is twice as probable as 

another; or as probable as another; or half as probable. That is, we must pretend to know more 

than the physical laws, which are only able to assert that each outcome is possible, without any 

sense of “twice as possible” or “half as possible.” 

3. Challenges to Framework Assumptions 
 The challenges considered so far in Section 2 above have been global in the sense that 

they arise from tensions between Bayesian confirmation theory as a whole and other approaches 

to inductive inference. If we recall that Bayesian confirmation theory is a composite of many 

assumptions, then another class of challenges to Bayesian confirmation theory is identifiable. 

These are challenges to specific assumptions of Bayesian confirmation theory. In order to 

structure the inventory of these challenges, the assumptions comprising Bayesian confirmation 

theory will be divided into three parts, called: “Framework,” to be discussed in this section; 

“Additivity,” to be discussed in Section 4; and “Bayes’ dynamics: to be discussed in Section 5.14 

3.1 Framework Assumptions 

 What is common to all versions of Bayesian confirmation theory is the assumption that 

there is a real-valued magnitude, P(H|E), that is one’s subjective degree of belief or some 

objective measure of support for the hypothesis H from evidence E. This apparently simple 

assumption of a real valued magnitude can be decomposed further into a series of assumptions, 

each of which presumes the one before: 

                                                
14 This disassembly is similar to the one effected in Norton (2007), which in turn draws on an 

extensive literature in qualitative probability. For surveys see Fine (1973) and Fishburn (1986). 
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Precision. There is a magnitude P(A|B) that represents the degree of belief or support 

accrued to A given B. 

Universal comparability. It is always possible to compare two such degrees, finding one 

to be less than, equal to or greater than the other. 

Partial order. The comparison relation “no less than” ≤ is a partial order: it is reflexive15, 

antisymmetric16 and transitive17. 

Real values. The degrees are real-valued. 

Different challenges would require us to halt at different stages as we pass up this hierarchy. Lest 

that seem odd, the notion that a cautious ascent is needed may be more palatable if we consider 

an analogous problem of assigning degrees of simplicity to hypotheses. The same hierarchy can 

be formed, but few are likely to ascend all the way to the idea of single real value that measures 

the degree of simplicity of all hypotheses we encounter. We may stall at the start, judging the 

very idea of a degree of simplicity inadmissible. Or we may allow comparison among closely 

related hypotheses only. Jeffreys (1961, p.47), for example, wished to assign greater prior 

probability to simpler hypotheses. So he defined the complexity m of certain differential 

equations as the sum of their order, degree and the absolute values of their coefficients. Unit 

prior probability was then distributed over the resulting complexity classes as a decreasing 

function of m, such as 2-m or 6/π2m2. Jeffreys’ degree is defined only for a specific class of 

equations. It would not sustain universal comparability in that we could not compare the degree 

of simplicity of the hypothesis of a linear relationship between the velocity and distance to the 

galaxies with that of the hypothesis of the germ theory of disease. 

3.2 The Very Idea. 

 The most fundamental objection is that there is something mistaken about the very idea 

of a degree of belief or support that evidence lends to a hypothesis. This objection can rest on the 
                                                
15 For all admissible A, B, P(A|B) ≤ P(A|B). 
16 For all admissible A, B, C and D, if P(A|B) ≤ P(C|D) and P(C|D) ≤ P(A|B), then P(A|B) = 

P(C|D). 
17 For all admissible A, B, C, D, E and F, if P(A|B) ≤ P(C|D) and P(C|D) ≤ P(E|F), then P(A|B) ≤ 

P(E|F). 
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visceral sense that such assignments are simply spurious precision: that we can conjure up a 

number does not mean that we are measuring something. A colorful statement of the mismatch 

of Bayesian analysis with diagnostic clinical practice is Feinstein’s (1977) “The haze of Bayes, 

the aerial palaces of decision analysis, and the computerized Ouija board.” 

 In a different direction, Glymour’s (1980, Ch. III) “problem of old evidence” speaks 

against the idea that the fundamental quantity P(A|B) presumed in the framework is an adequate 

basis for an account of inductive inferences. The import of evidence E on hypothesis H is gauged 

by comparing the prior probability P(H|B) with the posterior P(H|E&B), where B is the totality 

of background knowledge. It frequently happens that the evidence E is already part of our 

background knowledge. The celebrated case concerns the motion of Mercury, which, at the start 

of the 20th century, was know to deviate slightly from the predictions of Newtonian gravitation 

theory. In November 1915, Einstein found that his newborn general theory of relativity “H” 

predicted exactly the observed deviations “E”. The universal agreement is that E provided strong 

support for H. However, since E is part of the background then known to Einstein, we have 

E&B = B 

so that 

P(H|E&B) = P(H|B) 

which shows that E is evidentially inert. 

 If this objection is sustained, it means that a confirmation theory employing only the 

quantities P(H|E) and P(H|E&B) cannot support the judgment that E is good evidence for H.18 

The obvious escape is to replace the prior P(H|B) with an adjusted prior P(H|B’), where B’ is the 

background B with E somehow excised. Glymour’s original presentation sought to block this 

escape by urging that it is quite unclear how this excision could be effected. Other, more 

elaborate escapes are reviewed in Earman (1992, Ch. 5), including the notion that we assign 

evidential value to learning the logical relation between some hypothesis H and the evidence E 

that is already, unbeknown to us, part of our background B. 

                                                
18 Glymour’s original presentation used Bayes’ theorem to deduce P(H|E&B) = P(H|B), although 

the problem is independent of Bayes’ theorem. 
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3.3 Universal Comparability 

 Once we allow that the degree P(A|B) is always defined, it may still not follow that all 

degrees are comparable. Keynes (1921, pp. 37-40) allows that all degrees will lie between those 

assigned to impossibility and certainty, but urges that not all intermediate degrees are mutually 

comparable.  

 The clearest way that comparability can fail is when we conditionalize on very different 

sorts of backgrounds so that we are distributing belief over incommensurable possibilities. For 

example, Norton (2007, pp. 147-48) expands a concern expressed by Humphreys (1985) in the 

context of propensity interpretations to suggest that the direct degrees P(E|H) and the inverse 

P(H|E) may measure very different things. P(E|H) may be derived from the computing of a 

quantity in a stochastic theory: the chance, E, of decay of a radioactive atom in some time as 

deduced from H, the laws of quantum physics. The inverse P(H|E) assigns degrees to different 

physical laws on the basis of the evidence of radioactive decay. The first deals with possibilities 

licensed by a known theory and is grounded in the science; the second deals with speculation on 

how the world might admit different laws whose range is delimited by our imagination. Even if 

we can find protocols that allow us to assign numbers in each case, it is not clear that there is 

anything meaningful in the comparison of those numbers—just as it is meaningless to compare 

degree of temperature and degrees Baumé of specific gravity, even though both are real numbers 

and arithmetic allows the comparison.19 

  That there are different sorts of uncertainty even in decision theoretic contexts is 

illustrated by Ellsberg’s (1961) urns. Consider two urns, each containing 100 balls. The first has 

some combination of red and black balls. Any ratio from 0-100% red is possible and we are 

completely uncertain over which. The second urn has exactly 50 red and 50 black balls. A ball 

will be drawn from each urn. What is our belief that it will be red? For both urns, the symmetry 

of the arrangements requires that we be equally certain of a red or a black, so, in drawing from 

both urns we should be indifferent to making bets on red or on black. Any protocol for 
                                                
19 On the basis of their being “sufficiently disparate,” Fishburn (1986, p. 339) offers the 

following pair as candidates for failure of comparability: “A=Mexico’s City’s population will 

exceed 20,000,000 by 1994; B=The first card drawn from this old and probably incomplete 

bridge deck will be a heart.” 
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converting these inclinations to bet into degrees of belief must respect that symmetry. Therefore, 

if the protocol generates probabilities solely on the basis of these inclinations, in each case it will 

return a probability of 0.5. However Ellsberg suggests that most of us prefer the bet on the urn of 

known composition, so that the degrees of belief assigned to red ought to differ in the two cases. 

For our purposes, this illustrates the possibility of different senses of uncertainty that may not be 

readily comparable if we try to characterize them in a single magnitude. These difference senses 

reflect a distinction to be made in Section 4 below between disbelief and ignorance. 

 Jaynes (2003, pp. 658-59) regards such quibbles over different senses of uncertainty with 

characteristic, entertaining distain. He makes an analogy to a mineralogist who may classify 

rocks with different parameters but can still find a way to trade off changes in one parameter 

against the other to recover a single scale of comparison. 

 The idea that universal comparability must be discarded is a consequence of a significant 

development of the Bayesian approach that has adopted several forms. What they have in 

common is the notion that a single number may not be rich enough to capture the extent of 

belief. That concern is readily motivated whenever we are pressed to assign a definite probability 

to some outcome—say, whether it will rain tomorrow. Assigning a probability 0.6 is too precise. 

Our belief is better represented by something vaguer, a probability somewhere around 0.6. In one 

approach, we might replace definite values by intervals of values; the probability of rain is 0.5 to 

0.7. In another we might take set of probability measures as representing our belief states—say 

the set of all probability measures that assign a probability of 0.5 to 0.7 to rain tomorrow. 

Developing these proposals into well functioning theories is not straightforward. For 

developments of these notions, see Kaplan (1998), Kyburg (1959), Kyburg and Teng (2001), 

Levi (1974; 1980, Ch. 9), Walley (1991). 

 For our purposes, what matters is that these proposals break with the framework sketched 

in that they deny universal comparability. Take the simplest case of interval-valued degrees of 

belief. The belief in some outcome represented by the interval [0.8, 0.9] is greater (in the sense 

of being closer to certainty) than the interval [0.1, 0.2]. But the intervals [0.3, 0.7] and [0.4, 0.6] 

are none of greater than, less than or equal to each other. Analogous effects arise for richer 

structures that dispense with single valued degrees of belief. 
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3.4 Transitivity 

 If we allow that the degrees are always comparable, it does not yet follow that they form 

a partial order, which is reflexive, antisymmetric and transitive. Of these three properties, 

transitivity is of the greatest concern. Norton (2007, §3.2.2) has suggested that transitivity may 

fail in certain complicated cases if common wisdoms on inductive support obtain. That is, if we 

have a case of evidence entailed by several different hypotheses, it is routine to say that the 

evidence supports one of these hypotheses more than another if the first hypothesis displays 

more of some relevant virtue, such as greater simplicity, greater explanatory power or greater 

fecundity. Using three hypotheses and three virtues, it is easy to envisage structures in which the 

first hypothesis is better confirmed than the second, the second better than the third and the third 

better than the first. This violates transitivity.20 

3.5 Real Values. 

 Once it is allowed that the degrees may be partially ordered, it is still not assured that 

they must be real valued, or isomorphic to the reals or some interval of real numbers. A great 

deal of effort has been expended in determining what additional assumptions are needed to 

assure that the degrees are real valued. These additional assumptions have been given many 

forms and are generally known as “Archimedean axioms.” (Fishburn, 1986, pp. 341-42.) Their 

function is to block the possibility of value sets that extend beyond real values in admitting 

infinitesimally small or infinitely large values. 

 The familiar illustration in this literature of how partially ordered degrees may fail to be 

real valued is generate by degrees that are ordered pairs <x,y> of reals x and y. (Jeffreys, 1961, 

pp. 19-20) They are partially ordered by the rule 

<X,Y>   >   <x,y>   when X > x, no matter the values of Y,y 

or, if X=x, when Y > y 
                                                
20 For the example of a slightly bent coin, Fishburn (1986, p. 339) describes three propositions 

for which intransitivity “do[es] not seem unreasonable”: “A=The next 101 flips will give at least 

40 heads; B=The next 100 flips will give at least 40 heads; C=The next 1000 flips will give at 

least 460 heads.” The suggestion is that we could have the same belief in A and in C; the same 

belief in C and in B, but that we must have more belief in A than B. 
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There is no way to map these degrees <x,y> onto the reals so that the partial order is preserved.  

 We could imagine a two parameter family of hypotheses Hx,y such that our degrees of 

belief in the various hypotheses may be ordered according to the rule just sketched. One might 

doubt whether such a family could arise in realistic problems take that doubt as a reason to 

discount the challenge. Or one might be concerned that adopting a Bayesian confirmation theory 

presumes in advance that such a distribution of belief is inadmissible. Such a presumption is not 

compatible with the universal applicability supposed for the theory. 

4. Additivity 

4.1 The Property 

 Probability measures are additive measures. That means that they conform to the 

condition: 

If A and B are mutually exclusive then, for any C, 

P(AvB|C) = P(A|C) + P(B|C).                                                                         (A) 

Additivity is the most distinctive feature of the probability calculus. In the context of 

confirmation theory, it amounts to assigning a particular character to the degrees of belief of the 

theory. The degrees of this additive measure will span from a maximum value for an assured 

outcome (conventionally chosen as one) to a minimum value for an impossible outcome (which 

must be zero21). If the high values are interpreted as belief with unit probability certainty, then it 

follows that the low values must represent disbelief, with zero probability complete disbelief. To 

see this, recall that near certain or certain belief in A corresponds to near complete or complete 

disbelief in its negation, ~A. 22 If we assign high probability 0.99 or unit probability to some 

outcome A, then by additivity the probability assigned to the negation ~A is 0.01 or zero, so that 

these low or zero values correspond to near complete disbelief or complete disbelief.  

                                                
21 If Imp is an impossible outcome, we have Imp = Imp v Imp. Since Imp and Imp are mutually 

exclusive in the sense that Imp & Imp = Imp, additivity applies so that P(Imp) = P(Imp) + 

P(Imp), from which we have P(Imp)=0. 
22 I take it as a definition that disbelief in A is the same thing as belief in not-A. 
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 This interpretation of low probability as disbelief is already expressed in the functional 

dependency between the probabilities of outcomes and those of their negations. We have 

P(~A|C) = 1-P(A|C), which entails 

P(~A|C) is a strictly decreasing function of P(A|C)                                      (A’) 

More generally, taking relative negations, P(~A&B|C) = P(B|C) – P(A&B|C), we recover the 

more functional dependency 

P(~A&B|C) is a strictly decreasing function of P(A&B|C)                          (A’’) 

and a strictly increasing function of P(B|C) 

These dependencies tell us that a high probability assigned to an outcome corresponds to a low 

probability assigned to its negation or relative negation, which is the characteristic property of a 

scale of degrees that spans from belief to disbelief. 

 While additivity (A) entails weaker functional dependencies (A’) and (A’’), the gap 

between them and (A) is not great. If the functional dependencies (A’) and (A’’) are embedded 

in a natural context, it is a standard result in the literature that the resulting degrees can be 

rescaled to an additive measure satisfying (A). (See Aczel, 1966, pp. 319-24; Norton, 2007, §7.) 

4.2 Non-Additive Measures: Disbelief versus Ignorance 

 Once it is recognized that the additivity (A) of the probability calculus amounts to 

selecting a particular interpretation of the degrees, then the ensuing challenge becomes 

inevitable. In many epistemic situations, we may want low degrees to represent ignorance or 

some mix of ignorance and disbelief, where ignorance amounts to a failure to commit to belief 

or, more simply, an absence of belief or disbelief. Shafer (1976, pp. 22-25) considers how we 

might assign degrees of belief to the proposition that there are living beings in orbit around 

Sirius, an issue about which we should suppose we know nothing. No additive measure is 

appropriate. If we assign low probability to “life,” additivity then requires us to assign high 

probability to “no-life.” That asserts high certainty in there being no life, something we do know. 

The natural intermediate of probability 1/2 for each of the two outcomes “life” and “no-life” fails 

to be a usable ignorance value since it cannot be used if we are ignorant over more than two 

mutually exclusive outcomes. 

 This example makes clear that introducing an element of ignorance requires a relaxation 

of the functional dependencies (A’) and (A’’). It must be possible to assign a low degree of belief 
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to some outcome without being thereby forced to assign a high degree to its negation. Measures 

that allow this sort of violation of additivity are “superadditive”: if A and B are mutually 

exclusive then, for any C, P(AvB|C) ≥ P(A|C) + P(B|C). The extent to which the equality is 

replaced by an inequality is the extent to which the measure allows representation of ignorance. 

 The best-known superadditive calculus is the Shafer-Dempster calculus. In it, an additive 

measure m, called a “ basic probability assignment,” is defined over power set of the “frame of 

discernment” Θ, so that ΣA⊆Θm(A) = 1, where the summation extends overall all subsets of Θ, 

and m({})=0. This measure basic probability assignment is used to generate the quantity of 

interest, the “belief function” Bel, which is defined as 

Bel(A) = ΣB⊆A Bel(B) 

for any A in Θ, where the summation is taken over all subsets B of A. These belief functions 

allow blending of disbelief and ignorance. For example, that we are largely ignorant over the 

truth of “life” can be represented by 

m(life) = 0.1      m(~life) = 0.1     m(life v ~life) = 0.8 

which induces the belief function 

Bel(life) = 0.1      Bel(~life) = 0.1     Bel(life v ~life) = 1 

4.3 Complete Ignorance: The First Problem of the Priors 

 In Bayesian confirmation theory, prior probability distributions are adjusted by Bayes’ 

theorem to posterior probability distributions that incorporate new evidence learned. As we trace 

this chain back, the prior probability distributions represent states of greater ignorance. Bayesian 

confirmation theory can only give a complete account of this learning process if it admits an 

initial state representing complete ignorance. However representing ignorance is a long-standing 

difficulty for Bayesian confirmation theory and the case of complete ignorance has been 

especially recalcitrant. It is designated here as the first problem of the priors, to distinguish it 

from another problem with prior probability delineated below in Section 5.6 below. 

 There are two instruments already in the probability literature that are able to delimit the 

representation of this extreme case, the epistemic state of complete ignorance. Norton 

(forthcoming b) has given an extended analysis of how the two may be used to do this. The first 

instrument is the principle of indifference. It asserts that if we have no grounds for preferring one 
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outcome to a second, then we should assign equal belief to both. This platitude of evidence is 

routinely used to ground the classical interpretation of probability and famously runs into trouble 

when we redescribe the outcome space. Complete ignorance in one description is equivalent to 

complete ignorance in another. That fact allows one to infer quite rapidly that the degree of 

belief assigned to some compound proposition AvB should be the same as the degree of belief 

assigned to each of the disjunctive parts A and B, even though A and B may be mutually 

exclusively.23 Since no probability distribution can have this property, it is generally concluded 

that there is something wrong with the principle of indifference. 

 The difficulty is that the principle of indifference is not so easily discarded. It is a 

platitude of evidence. If beliefs are grounded in reasons and we have no reasons to distinguish 

two outcomes, then we should have the same belief in each. The alternative is to retain the 

principle of indifference and discard the notion that a probability distribution can adequately 

represent complete ignorance. Instead we are led to a representation of complete ignorance by a 

non-probabilistic distribution with three values: Max and Min for the extreme values of certainty 

and complete disbelief and Ig (“ignorance”) for everything in between 

Degree (A) = Max,      for A an assuredly true outcome                                 (I) 

= Min,      for A an assuredly false outcome 

= Ig,         for A any contingent24 outcome 

The essential property here is that we can assign the ignorance degree Ig to some contingent 

outcome AvB and that same ignorance degree to each its mutually exclusive, disjunctive parts, A 

and B. This is the only distribution for which this is true over all contingent outcomes. 
                                                
23 An example is von Mises’ famous wine-water problem. We have a glass with a mixture of 

wine and water, knowing only that the ratio of wine to water lies in 1/2 to 2. So we are 

indifferent to each of the intervals wine to water: (a) 1/2 to 1, (b) 1 to 1 1/2, (c) 1 1/2 to 2; and 

assign equal probability of 1/3 to each. However if we redescribe the problem in terms of the 

ratio of water to wine, we end up assigning equal probability of 1/3 to the intervals water to wine 

(a’) 1/2 to 1, (b’) 1 to 1 1/2, (c’) 1 1/2 to 2. Now the interval (a) describes the same outcome as 

the disjunction (b’) v (c’). So we assign probability 1/3 to the disjunction (b’) v (c’) and also to 

each of its parts. 
24 Contingent propositions are defined here as propositions that may be either true of false. 
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 The second instrument used to delineate the epistemic state of complete ignorance is the 

notion of invariance, used so effectively by objective Bayesians, but here used in a way that 

objective Bayesians may not endorse. The notion ultimately produces serious problems for 

Bayesian confirmation theory. The greater our ignorance, the more symmetries we have under 

which the epistemic state should be invariant. It is quite easy to accumulate so many symmetries 

that the epistemic state cannot be a probability distribution. For example, let us say we know 

only 

x is a real number the interval (0,1).                                  (DATUM) 

This information (DATUM) remains true if x is replaced by x’ = 1-x, where the function x’(x) is 

self-inverting. It also remains true if x is replaced by x’’ = 1 – (1 – (1-x)2)1/2, where once again 

the function x’’(x) is self-inverting. So our epistemic state must remain unchanged under each of 

these transformations. It is easy to show that no probability distribution can be invariant under 

both. (See Norton, forthcoming b, §3.2) 

 Invariance requirements can be used to pick out the unique state of complete ignorance, 

which turns out to be (I) above. To see the relevant invariance, consider some proposition A over 

whose truth we may be completely ignorant. Our belief would be unchanged were A replaced by 

~A.25 That is, the state of complete ignorance remains unchanged under a transformation that 

replaces every contingent proposition with its negation. It can readily be seen that the ignorance 

distribution (I) satisfies this invariance requirement. Each contingent proposition and its negation 

are assigned the same degree Ig.26 That this ignorance distribution (I) is the only distribution 
                                                
25 Describing this transformation more figuratively makes the invariance intuitive. Imagine that 

the content of proposition A has been written in a normal English sentence by a scribe on a slip 

of paper, folded before us on the table. We form our belief over the truth of the sentence on the 

paper: it is complete ignorance because we have no idea what the sentence says. We are now told 

that the scribe erred and mistakenly wrote the content of ~A on the paper instead. That new 

information would not change our belief state at all. 
26 It is assumed that the ignorance does not extend to logical truths, so that we know which 

propositions are assuredly true and false and we assign Max and Min to them. We could define a 

broader ignorance state in which logical truths are presumed unknown as well by assigning the 

same value Ig to all propositions. 
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satisfying this invariance that we are likely to encounter is made more precise by the 

demonstration that it is the only monotonic27 distribution of belief with the requisite invariance 

(Norton, forthcoming b, §6). 

 The negation map--the transformation that replaces each contingent proposition with its 

negation--is a little more complicated than it may initially seem. To see the difficulty, imagine 

that the outcome space is exhausted by n mutually exclusive atomic propositions, A1, A2, … , 

An. The transformation replaces atomic propositions, such as A1 by compound propositions, 

such as A2vA3v … vAn, so it may not be evident that the transformation is a symmetry of the 

outcome space. It is, in the sense that it maps the outcome space back to itself and is self-

inverting; A2vA3v … vAn is mapped to A1. However, it does not preserve additive measures. 

The transformation takes an additive measure m to what Norton (forthcoming a) describes as a 

“dual additive measure” M. These dual additive measures have properties that are, on first 

acquaintance, odd looking. They are additive, but their additivity is attached to conjunctions. If 

we have propositions A and B such that AvB is always true, then we can add their measures as 

M(A&B) = M(A) + M(B). The notion of a dual measure allows a simple characterization of the 

ignorance distribution (I): it is the unique, monotonic measure that is self-dual. 

 If one does not see that an epistemic state of complete ignorance is represented by the 

non-probabilistic (I), one is susceptible to the “inductive disjunctive fallacy” (Norton, manuscript 

c). Let a1, a2, a3, … be a large number of mutually exclusive outcomes over which we are in 

complete ignorance. According to (I), we remain in that state of complete ignorance for any 

contingent disjunction of these outcomes, a1v a2v a3v … If one applies probabilities 

thoughtlessly, one might try to represent the state of complete ignorance by a broadly spread 

probability distribution over the outcomes. Then the probability of the disjunction can be brought  

close to unity merely by adding more outcomes. Hence one would infer fallaciously to near 

certainty for a sufficiently large contingent disjunction of outcomes over which we are 

individually in complete ignorance. The fallacy is surprisingly widespread. A striking example is 

supplied by van Inwagen (1996) in answer to the cosmic question “Why is there anything at all?” 

                                                
27 A distribution of belief “degree (.)” is monotonic if, whenever A logically entails B, degree 

(A) ≤ degree (B). 
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There is, he asserts, one way for no thing to be, but infinitely many ways for different things to 

be. Distributing probabilities over these outcomes fairly uniformly, we infer that the disjunction 

representing the infinitely many ways things can be must attract all the probability mass so that 

we assign probability one to it. 

4.4 Bayesian Responses 

 The literature in Bayesian confirmation theory has long grappled with this problem of 

representing ignorance. That is especially so for prior probability distributions, where the 

presumption that ignorance must be representable is most pressing. Perhaps the most satisfactory 

response comes through the basic supposition of subjective Bayesians that the probabilities are 

subjective and may vary from person to person as long as the axioms of the probability calculus 

are respected. So the necessary deviation from the non-probabilistic ignorance distribution (I) in 

some agent’s prior probability distribution is discounted as an individual aberration not reflecting 

the true evidential situation. The price paid in adopting this response, the injection of subjectivity 

and necessity of every prior being aberrant, is too high a price for objective Bayesians, who are 

committed to there being one probability distribution appropriate for each circumstance. 

 However objective Bayesian methods have not proven able to deliver true “ignorance 

priors,” even though the term does appear over-optimistically in the objective Bayesian literature 

(Jaynes, 2003, Ch.12). One approach is to identify the ignorance priors by invariance properties. 

That meets only with limited success, since greater ignorance generates more invariances and, as 

we saw in Section 4.3 above, eventually there are so many invariances that no probability 

measure is admissible. An alternative approach is to seek ignorance priors in distributions of 

maximum entropy.28 Maximum entropy distributions do supply what are, in an intuitive sense, 

the most uniform distributions admissible. If, for example, we have an outcome space 

comprising n atomic propositions, without further constraints, the maximum entropy distribution 

is the one uniform distribution that assigns probability 1/n to each atomic proposition. However, 

if there is sufficient ignorance, there will be invariances under which the property of having 

attainted maximum entropy will not be preserved. In the end, it is inevitable that these methods 

cannot deliver the ignorance distribution (I), for (I) is not a probability distribution. So the best 

                                                
28 For further objections to maximum entropy methods, see Seidenfeld (1979). 
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that can be expected is that they will deliver a distribution that captures ignorance over one 

aspect of the problem, but not all. The tendency in the literature now is to replace the misleading 

terminology of “ignorance prior” by more neutral terms such as “noninformative priors,” 

“reference priors” or, most clearly “priors constructed by some formal rule” (Kass and 

Wasserman, 1996). 

 Another popular approach to representing ignorance with Bayesian confirmation theory is 

to allow that an agent’s epistemic state is not given by any one probability measure, but by a set 

of them, possibly convex. (See for example Levi (1980, Ch. 9).) The deepest concern with this 

strategy is that it amounts to an attempt to simulate the failure of additivity that is associated with 

the representation of ignorance. Something like the complete ignorance state (I) can be 

simulated, for example, by taking the set of all probability measures over the same outcome 

space. The resulting structure is vastly more complicated than (I), the state it tries to simulate. It 

has become non-local in the sense that a single ignorance value is no longer attributed to an 

outcome. Each of the many probabilities assigned to some outcome must be interpreted in the 

context of the other values assigned to other propositions and in cognizance that there are many 

other distributions in the set.29 

 Finally, as pointed out in Norton (forthcoming a, b), a set of probability measures 

necessarily falls short of simulating (I). For no set of additive measures can have the requisite 

invariance property of a complete ignorance state—invariance under the negation map. For a set 

of additive measures is transformed by the negation map into a set of dual additive measures. In 

informal terms, any set of additive measures on an outcome space preserves a directedness. For 

each measure in the set, as one proceeds from the assuredly false proposition to the assuredly 

true by taking disjunctions, the measures assigned are non-decreasing and must, at some point, 

increase strictly. Invariance under the negation map precludes such directedness. 

4.5 Ignorance over a Countable Infinity of Outcomes 

 The difficulties of representing ignorance have been explored in the literature in some 

detail in the particular problem of identifying a state of ignorance over a countable infinity of 

                                                
29 For a discussion of convex sets of probability measures and the how they contain the Shafer 

Dempster belief functions as a special case, see Kyburg (1987). 
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outcomes. It has driven Bayesians to some extreme proposals none of which appear able to 

handle the problem in its most intractable form. 30 

 The traditional starting place—already “well-known” when de Finetti (1972, p.86) 

outlined it-- is to determine our beliefs concerning a natural number “chosen at random.” Its 

more figurative version is “de Finetti’s Lottery” (Bartha 2004) in which a lottery ticket is picked 

at random from a countable infinity of tickets. If we write the prior probability for numbers 1, 2, 

3, … as p1, p2, p3, …, we cannot reconcile two conditions. First, since we have no preference for 

any number over any other, we assign the same probability to each number 

pi  =  pk      all i, k 

Second, the sum of all probabilities must be unity 

p1 + p2 + p3 +…  =  1                                                      (CA) 

No set of values for pi can satisfy both conditions.31 

 De Finetti’s own solution was to note that the condition (CA), “countable additivity” (as 

applied to this example), is logically stronger than finite additivity (A). The latter applies only to 

a finite set of outcomes—say, that the number chosen is a number in {1, 2, … , n}. It asserts that 

                                                
30 The problem of ignorance over a countable infinity of outcomes is actually no worse than the 

corresponding problem with a continuum outcome space. The latter problem contains the former 

in that a continuum outcome space can be partitioned into a countable infinity of subsets. 

Perhaps the countable case is deemed more problematic since outcomes can still be counted so it 

appears (incorrectly) that there will be a unique, natural probability measure recoverable from 

ratios of counts. In the continuum case, no such illusions are possible. The continuum case is 

more problematic in the sense that in it non-zero probabilities cannot be assigned to individual 

outcomes. Instead a probability density is used to assign probabilities to certain sets of outcomes. 

That presumes the outcome space has a topology that admits an additive measure. This device of 

a probability density becomes harder to use as the outcome space becomes larger. If the space 

consists of all real numbers, then the only uniform probability density is an improper density that 

cannot be normalized to unity. 
31 Let p = pi = pk, then p1 + p2 + p3 + …  = 0 or ∞, according to whether p is zero or non-zero, 

both of which contradict (CA). 
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the probability of this finite set is the finite sum p1 + p2 + p3 +… + pn. Condition (CA) adds the 

requirement that this relation continues to hold in the limit of n→∞. De Finetti asserted that the 

probability distribution representing our epistemic state in this problem need only be finitely 

additive, not countably additive. That allows us to set pi = 0 for all i, without forcing the 

probability of infinite sets of outcomes to be zero. So if odd = {1, 3, 5, …} and even = {2, 4, 6, 

…} we can still set P(odd) = P(eve) = 0.5. 

 Solving the problem by dropping countable additivity has proven to be a popular and 

well-understood solution. While proponents of the restriction to finite additivity are typically not 

frequentists (who identify probabilities with relative frequencies), the connection to frequentism 

is natural. The frequency of any particular natural number among all is zero and the frequency of 

even numbers is 1/2, in a naturally defined limit. Kadane and O’Hagan (1995) have mapped out 

which uniform, finitely additive probability distributions are possible over the natural numbers, 

noting how these are delimited by natural conditions such as agreement with limiting frequencies 

and invariance of probability under translation of a set of numbers. There are also variant forms 

of the proposal, such as the use of Popper functions and the notion of “relative probability” 

(Bartha, and Johns, 2001, Bartha, 2004). However dropping countable additivity is not without 

disadvantages and enthusiasm for it is not universal. There are Dutch book arguments that favor 

countable additivity; and important limit theorems, including Bayesian convergence of opinion 

theorems, depend upon countable additivity. See Williamson (1999), Howson and Urbach (2006, 

pp. 26-29) and Kelly (1996, Ch. 13).32 Other approaches explore the possibility of assigning 

infinitesimally small probabilities to what would otherwise be zero probability outcomes. 

(McGee, 1994). 

 While all these solutions come at some cost, they are eventually unavailing. For they 

have not addressed the problem in its most acute form. They deal only with the case of ignorance 

                                                
32 To someone with an interest in physics, where probabilities are routinely summed over 

infinitely many outcomes, the restriction to finite additivity appears ruinous to ordinary physical 

theorizing. Countable additivity is hidden in many places. It is presumed whenever we normalize 

a probability distribution p(x) over some real-valued parameter x. For example 
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over natural numbers, where this set of a countable infinity of outcomes has a natural order. If 

we presume that we know of no such natural order, then all these solutions fail, as has been 

shown in a paradox reported by Bartha (2004, §5.1) and in the work of Arntzenius (manuscript). 

 Imagine that we have a countable infinity of outcomes with no way to order them. If we 

have some labeling of the outcomes by natural numbers, that numbering is completely 

arbitrary.33 Let us pick some arbitrary labeling of the outcomes, 1, 2, 3, …, and seek an 

ignorance distribution over these labels. That ignorance distribution should be unaffected by any 

one-to-one relabeling of the outcomes; that is, the ignorance distribution is invariant under a 

permutation of the labels, for permutations are a symmetry of this system. Consider the outcomes 

odd = {1, 3, 5, …} and even = {2, 4, 6, …}. There is a permutation that simply switches the 

labels of the two sets (1↔2, 3↔4, 5↔6, …), so that outcomes in each set are exchanged. Since 

our belief distribution is invariant under such a permutation, it follows that the permutation does 

not alter our belief and we must have the same belief in each outcome set odd and even. Now 

consider the four outcome sets 

one = {1, 5, 9, 13, …} = {4i + 1: i = 0, 1, 2, 3, …} 

two = {2, 6, 10, 14, …} = {4i + 2: i = 0, 1, 2, 3, …} 

three = {3, 7, 11, 15, …} = {4i + 3: i = 0, 1, 2, 3, …} 

three = {4, 8, 12, 16, …} = {4i + 4: i = 0, 1, 2, 3, …} 

There is a permutation that switches labels of one and two; so we have equal belief in one and 

two. Proceeding pairwise through the sets, we find we must have equal belief in each of one, two, 

three and four. Now there is also a pairwise permutation that switches the labels of one with 

those of two ∪ three ∪ four, where 

two ∪ three ∪ four = {2, 3, 4, 6, 7, 8, 10, 11, 12, 14, 15, 16, …} 

It is just the obvious permutation read off the above sets 

1↔2, 5↔3, 9↔4, 13↔6, 17↔7, 21↔8, … 

                                                
33 For a concrete example, imagine that an infinite space is partitioned into a countable infinity 

of geometrically identical cubes and that our cosmology tells us that a single hydrogen atom will 

appear in one of them without favoring any one of them. We arbitrarily labeling the cubes as 1, 

2, 3,  …. 
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So we now infer that we must have the same belief in one as in two ∪ three ∪ four. Combining 

we find: we must have the same belief in two ∪ three ∪ four and in each of its disjunctive parts 

two, three and four. This requirement cannot be met by a probability distribution for it 

contradicts (finite) additivity.34 It is however compatible with the ignorance distribution (I). 

 Finally, it is sometimes remarked that the very idea of uniform ignorance over a 

countable set is somehow illicit for there is no mechanical contrivance that could select outcomes 

so that they have equal chances. No lottery commission could build a device that would 

implement the de Finetti lottery. For references to these concerns, see Bartha, 2004, pp. 304-305, 

who correctly objects that the inevitable non-unformity of probabilities of the lottery machine 

does not force non-uniformity of beliefs. What needs to be added is that the entire objection is 

based on a circularity. In it, the notion of a mechanical contrivance tacitly supposes a contrivance 

whose outcomes are governed by a probability distribution. So it amounts to saying that no 

machine whose outcomes are governed by a probability distribution can generate outcomes 

governed by a non-probabilistic distribution. Recent work in philosophy of physics has identified 

idealized physical mechanisms that produce indeterministic outcomes that are not governed by a 

probability distribution. An example is the “dome,” described in Norton (2007, §8.3; 

manuscript), where it is shown that the dome’s outcomes are governed by a non-probabilistic 

distribution with the same structure as (I). There are many more examples of these sorts of 

indeterministic systems in the “supertask” literature. (For a survey, see Laraudogoitia, 2004.) 

Many of these mechanisms conform with Newtonian mechanics, but depend on idealizations 

some find “unphysical” for their distinctive behavior.35 These processes could be the physical 

basis of an idealized contrivance that implements something like the de Finetti lottery. 

                                                
34 Another possibility is the improper probability distribution that assigns some small probability 

ε to each, individual outcome and infinite probability to the total outcome space. This improper 

distribution is badly behaved under conditionalization. For example P(2|even) = 0, not ε/2; and 

P(two|even) = ∞/∞ = undefined, not 1/2. 
35 For an analysis of the notion of “physical” in this context and the suggestion that we discount 

these concerns, see Norton (manuscript a). 
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5. Bayesian Dynamics 

5.1 The Property: Refute and Rescale 

 The properties investigated so far—framework and additivity—are essential to Bayesian 

confirmation theory. However we are still missing the essential part of the theory from which its 

name is derived. For so far, we have no means to relate probability measures conditioned on 

different propositions, so that we cannot yet relate the posterior probability P(H|E) of some 

hypothesis H conditioned on evidence E with its prior probability P(H) =P(H|B), for some 

background B. (Here and henceforth, for notational convenience, “P(A)” will be written as 

shorthand for “P(A|B)”, for some assumed background B.) 

 These means for relating prior and posterior probabilities are supplied by two properties. 

The first property is “narrowness” and asserts for any A and C that 

P(A&C|C) = P(A|C)                                                                (N) 

The second property is “multiplication,” which asserts for any A and C that 

P(A&C) = P(A&C|C).P(C) = P(C&A|A).P(C)                                           (M) 

These properties combined entail36 

P(A|C) = P(A&C)/P(C) 

when P(C) is not zero. That this formula arises through compounding the two properties (N) and 

(M) is not generally reported. That compounding is important in the discussion that follows, 

since these two properties make distinct assertions in the context of confirmation theory and 

require separate analysis. 

 These two properties (N) and (M) can also be combined to yield Bayes’ theorem. For 

hypothesis H and evidence E: 

P(H&E) = P(H&E|E).P(E) = P(H|E).P(E) 

= P(E&H) = P(E&H|H).P(H) = P(E|H).P(H) 

so that when P(E) is not zero we have Bayes’ theorem 
                                                
36 The combined formula is sometimes regarded as the definition of conditional probability in 

terms of unconditional probability. That view is not taken here since P(A) is not unconditional, 

but shorthand for P(A|B).Hájek (2003) has objected that this candidate definition fails to yield an 

everywhere serviceable notion of conditional probability. 



33 

! 

P(H | E) =
P(E | H )

P(E)
P(H )                                                         (B) 

It tells us how learning evidence E should lead us to update our beliefs, as expressed in the 

transition from the prior P(H) to the posterior probability P(H|E). 

 Bayes’ theorem embodies a very simple model of belief dynamics whose two steps 

essentially correspond to the two properties (N) and (M) above. 

Refute. When evidence E is learned, those parts of the hypothesis H logically 

incompatible with the evidence are discarded as irrelevant to the bearing of evidence. 

That is, the hypothesis H has two parts in relation to evidence E: H = (H&E) v (H&~E). 

The second part (H&~E) is that part which is refuted by E. The first part (H&E) is the 

part of H that entails E. H can only accrue support through this part, since we have from 

(N) that P(H|E) = P(H&E|E).  

Rescale. The import of evidence E on competing hypotheses H, H’, … is then simply the 

prior probability P(H&E), P(H’&E), … of those parts of the hypotheses logically 

compatible with the evidence, linearly rescaled so as to preserve normalization to unity; 

for, we have from (B) and (N) that 

! 

P(H | E)

P(H '| E)
=
P(H & E | E)

P(H '&E | E)
=
P(E | H & E).P(H & E)

P(E | H '&E).P(H '&E)
=
P(H & E)

P(H '&E)
 

since P(E|H&E) = 1 = P(E|H’&E). 

A figurative model of this dynamics underscore its very great simplicity. In his “muddy Venn 

diagram,” Van Fraassen’s (1990. p. 161-62) pictures the total outcome space as a surface, such 

as a table top, and the degrees of belief assigned to outcome sets are represented by volumes of 

mud piled over the areas corresponding to each outcome. Conditionalization on evidence E 

occurs in two steps, as shown in Figure 1. First (“refute”), all the mud piled outside E is carefully 

swept away. Second (“rescale”), that swept-away mud is redeposited on E in such a way that the 

proportions in the contours over E are retained.37 

                                                
37 For example, if the mud is twice as high at one spot in relation to another prior to the 

redepositing of the mud, it will be piled twice as high after, as well. 
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Figure 1. Muddy Venn diagram illustrates rescale and refute dynamics 

 

 It is informally evident that this qualitative notion of refute and rescale dynamics captures 

the essence of Bayesian dynamics. That informal idea has been made more precise in Norton 

(2007, §4), where the dependencies of refute and rescale dynamics are used to generate an axiom 

system for degrees, which turn out to be ordinary probabilities up to monotonic rescalings. 

5.2 Non- Bayesian Shifts 

 Under refute and rescale dynamics, the import of evidence is always to modify prior 

beliefs. Earman (1992, pp. 195-198) and Brown (1996) state the obvious difficulty. The 

dynamics cannot apply if there is no prior belief since the hypothesis or outcome in question is 

not in the outcome space. Just such a circumstance occurs at decisive moments in the history of 

science. At moments of rapid change—best known through Thomas Kuhn’s notion of a scientific 

revolution—the inconceivable becomes conceivable and, we are told, that evidence compels us 

to believe it. When Einstein proposed his special theory of relativity in 1905, he urged that there 

is no absolute fact as to whether spatially separated events are simultaneous; the simultaneity of 

events depends upon the inertial reference frame from which they are assessed. That notion was 

regarded as bizarre by Einstein’s critics, many of whom continued to refuse to take it seriously 

long after 1905. Another example is Bohr’s theory of the atom of 1913. That theory seemed to 

require commitment to an inconsistency: in different processes, accelerated electrons bound in an 

atom would be supposed to radiate, as classical electrodynamics required, or would be supposed 
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not to radiate, in contradiction with classical electrodynamics, according to which supposition 

was expedient for the recovery of the results Bohr needed. 

 Closely connected to the problem of outcomes not in the space are those to which it is 

natural to assign zero probability. A logical inconsistency, such as Bohr’s theory, is a natural 

candidate. It follows immediately from Bayes’ theorem that, once we have assigned a zero prior 

probability to any hypothesis, conditionalization cannot change its probability from zero. The 

only recovery is to reassign a non-zero probability to the hypothesis by a process that contradicts 

Bayes’ theorem. 

 We might discount as rarities these inversions of what is conceivable and the oddity of 

accepting inconsistencies as established law. However even if they are rarities, they are 

important rarities that reappear throughout the history of our science and cannot be neglected by 

a comprehensive account of scientific rationality. The natural Bayesian rejoinder is to protest that 

too much is being asked of it. The formation of new outcome spaces belongs to Reichenbach’s 

context of discovery. Bayesian confirmation theory, indeed any logic at all, cannot be 

responsible both for logical relations among propositions and also for the discovery methods 

used to create new outcome spaces. 

5.3 Is Bayes’ Theorem Sensitive Enough to the Connections between 

Evidence and Theory? 

 The simplicity of refute and rescale dynamics invites the next challenge: the dynamics is 

too simple and too insensitive to the ways that evidence and theory can relate. 

5.3.1 Problems Arising from “Refute….” 

 The first “refute” step of Bayesian conditionalization depends essentially on the idea that 

the disjunctive part of H  = (H&E) v (H&~E) that extends beyond the total evidence E, that is 

H&~E, does not affect the bearing of evidence E on H. That is, “narrowness” directly asserts that 

P(H|E) = P(H&E|E). While this idea is so familiar as generally to pass without comment, it does 

represent a blindness in Bayesian confirmation theory. As an illustration of it, imagine that we 

seek to identify some animal. Our evidence is that it is a bird. What support does that evidence 

lend to the possibility that the animal is a canary or, alternatively, a canary or a whale? 

Narrowness asserts that it lends the same support: 
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P(canary or whale | bird) = P(canary | bird) 

In some scenarios, this can make sense. As we check instances of birds, we will find the 

frequency of “canary or whale” to arise exactly as often as “canary.” If these frequencies are all 

that matters, then we would say the two outcomes are equally supported. However few would 

halt there. We would discount the “whale” disjunct as a nuisance embellishment that should be 

dismissed as a distraction precisely because it is deductively refuted by the evidence “bird.” The 

frequency count just mentioned is blind to its nuisance character in so far as it assigns the same 

frequency of success to “canary” as to “canary or whale.” 

 It is possible to devise a logic that is sensitive to this problem and punishes an hypothesis 

in the degree that it extends beyond the evidence. An example38 is the “specific conditioning” 

logic defined in Norton (manuscript b, Section 10.2). In a formulation compatible with 

developments here, the logic amounts to a new definition for the conditional probability P(H|E). 

It starts with an additive measure P(.) on the background and defines the alternative 

PSC(H|E)  =  P(H&E)2/(P(E).P(H))   =   P(H&E)/(P(E) . P(H&E)/(P(H)                       (SC) 

This alternative rule of conditionalization rewards hypotheses H with more support the closer 

they come to the total evidence E = (E and background)—hence the term “specific 

conditioning.” PSC(H|E) = 1 only when H=E excepting measure zero differences. H can differ 

from E in two ways and the logic of (SC) penalizes it for both. In the first way, H can fail to 

exhaust E in measure. Then the first factor of (SC), that is, P(H&E)/(P(E), is less than one 

(which alone would correspond to the usual case of Bayesian conditionalization). In the second 

way, H can extend beyond E in measure. Then the second factor of (SC), that is P(H&E)/(P(H), 

is less than one. Deviations in both ways are penalized equally and it turns out that this is 

expressed in a striking symmetry in PSC. That is PSC(H|E)  =  PSC(E|H). 

                                                
38 Specific conditioning resembles some of the measures of incremental support that have been 

investigated in the Bayesian literature, such as the ratio measure r(H,E) = P(H|E)/P(H) = 

P(H&E)/(P(E).P(H)). (See Eels and Fitelson, 2002.) These incremental measures seek only to 

identify how much support is accorded specifically by evidence E. The conditional probability 

P(H|E) is still taken as the measure of support for the total evidence E = (E and background), 

which includes E. PSC(.|E) seeks to measure the support from the total evidence that includes E. 
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 Returning to the bird example, with plausible values for PSC(.), we will have 

PSC(canary or whale | bird) < PSC(canary | bird) 

Indeed we will have 

PSC(canary or whale | canary) < PSC(canary | canary) = 1 

That is, even though “canary” deductively entails “canary or whale,” the latter is not accorded 

full support from “canary.” The logic of (SC) judges “canary or whale” to be supported less 

specifically by the evidence “canary.” In the case of Bayesian confirmation theory, evidence 

accords unit support to any of its deductive consequences, no matter how much they are 

weakened logically. PSC reduces the support accorded to these deductive consequences 

according to how much they are weakened logically. 

5.3.2 Problems Arising from “…Rescale” 

 In the special case in which they hypothesis H deductively entails the evidence E, the first 

“refute” step of Bayesian conditionalization is not invoked and the process reduces to rescaling 

only by means of the property “multiplication” (M). This special case provides a means of 

isolating the second step and plumbing its problems. 

 Consider two hypotheses H and H’ both of which entail the evidence E. In that case, it 

follows from Bayes’ theorem that the ratio of the posterior probabilities P(H|E)/P(H’|E) is the 

same as the ratio of the priors. It now follows that the incremental confirmation, as measured by 

the ratio of posterior and prior P(H|E)/P(H), is the same in both cases. That is, when two 

hypotheses both entail the same true evidence, they get the same confirmatory boost. In 

particular, if H is more probable than, less probable than or just as probable as H’ prior to 

conditionalization, it will remain so afterwards. 

 This failure to separate H and H’ evidentially, according to critics, is to overlook that 

their entailments of the evidence E can differ in more subtle qualities that have epistemic import. 

For example, recall efforts in the late 19th century to detect the earth’s motion through the 

luminiferous ether. These experiments yielded a null result (E). We may entertain two 

hypotheses: 

H: There is no ether state of rest against which the earth can move. 

H’: There is an ether state of rest but we happen to be motionless with respect to it each 

time the experiments are performed. 
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Each of H and H’ entail the evidence E, but it seems wrong that both should receive the same 

support from E. H succeeds, as it were, by honest toil; but H’ by theft. There are many ways that 

this metaphor of honest toil and theft is explicated. 

 One way notes that H succeeds because it explains why the experiments yielded null 

results, where as H’ does not. Considerations like this lead Achinstein (2001, Ch. 7) to argue that 

it is not sufficient to count as evidence that some datum incrementally increases the probability 

of an hypothesis or that the probability of the hypothesis conditioned on the datum is high.39 In 

addition there must be an explanatory connection. 

 Other approaches are variants of this idea that some successful entailments are virtuous 

and others not. The hypothesis H makes the prediction that all ether current experiments will fail 

and that prediction is verified by the evidence. Since H’ supposes that it is by happenstance that 

we were at rest in the ether just at the moment of the experiments, H’ simply accommodates the 

evidence in the sense that it has been adjusted to accommodate experimental reports at hand. 

Predictions, for example, are virtuous and their success merits an increase in belief; 

accommodations are not virtuous and are epistemically inert. See Horwich (1982, Ch. 5) for 

discussion and an argument that we should not differentially reward prediction and 

accommodation. Another way of expressing these concerns is to note that H’ (but not H) was 

cooked up “ad hoc” specifically to match the evidence. A classic example is the creationist 

hypothesis that the world was created in 4004 BC, complete with a fossil record that perfectly 

simulates a more ancient, evolutionary past. It is an evidential truism that such ad hoc hypotheses 

gain no support from the observations they accommodate. For an account of how ad hoc 

hypotheses can be treated in a Bayesian context, see Howson and Urbach (2006, pp. 121-126), 

who also suggest that sometimes there are “good” ad hoc hypotheses that deserve support. 

 The literature on these evidential virtues in Bayesian confirmation theory is large and 

convoluted. In general, however, there are two broad strategies that Bayesian confirmation 

theory can employ when faced with a virtuous and non-virtuous pair of hypotheses. The first is 

to expand the outcome space so that there are more resources available to pick the hypotheses 

                                                
39 See Achinstein (2001, Ch.7 and passim) for numerous examples. For example, learning that 

most lottery tickets were unsold may increase greatly my belief that mine is the winning ticket, 

even though the absolute probability may remain small. See also Laudan (1997). 
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apart.40 That risks merely postponing the problem since it may now return for another pair of 

hypotheses in the larger space. The second is to use prior probabilities to reward virtuous 

hypotheses and punish non-virtuous ones. That is, since the ratio of the posterior probabilities 

P(H|E)/P(H’|E) equals the ratio of the priors P(H)/P(H’), we may reward the explanatory, 

predictive or non-ad hoc H by making the ratio P(H)/P(H’) very large, so that there is a 

corresponding advantage for H in the posterior probabilities. As observed in Norton (2007, 

§5.3.3), this use of prior probabilities requires a curious prescience: we are to penalize the prior 

probability of an ad hoc hypothesis in advance in just the right degree so that the punishment 

perfectly cancels the as yet unknown confirmatory reward that will be accorded to the 

hypotheses by Bayes’ theorem. Further, prior probabilities for hypotheses or theories are 

assigned once, globally, whereas virtues are manifested locally and may differ from domain to 

domain. So we may find a theory explanatory in one domain and want to reward it with a high 

prior probability; but may find it explanatorily deficient in another, and may want to punish it 

with a low prior probability. 

5.4 The Likelihood Theory of Evidence” and “Likelihoodism” 

 The above discussion has dealt with the case of hypotheses that entail the evidence. 

Matters are slightly more complicated when the hypothesis only makes the evidence more or less 

probable. In that case, Bayes’ theorem allows us to compare the import of evidence E for two 

hypotheses H and H’ as 

! 

P(H | E)

P(H '| E)
=
P(E | H )

P(E | H ' )

P(H )

P(H ' )
                                                   (B’) 

It follows that the relative import of the evidence E is fully determined by the two likelihoods, 

P(E|H) and P(E|H’). For the ratio of the prior probabilities P(H)/P(H’) reflects our comparative 

belief in H and H’ prior to any consideration of evidence E; the ratio of the posteriors 

P(H|E)/P(H|E’) reflects our comparative belief in H and H’ after the import of evidence E has 

                                                
40 For example Maher treats prediction and accommodation by supposing that hypotheses are 

generated by methods that may or may not have certain items of evidence available to them 

when they generate the hypotheses. He then shifts assessment to the credibility of the methods. 

See Achinstein (2001, pp. 215-221) for discussion. 
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been accommodated. The ratio of the likelihoods P(E|H)/P(E|H’) is what takes us from the  ratio 

of the prior to the ratio of the posteriors. Therefore, it expresses the relative import of evidence E 

on these two hypotheses. 

 That the likelihoods capture all needed information for evaluating the bearing of evidence 

is the core notion of a “likelihood theory of evidence.” (In the special case in which the 

hypotheses entail the evidence, P(E|H) = P(E|H’) = 1. Then the ratio of the posteriors equals the 

ratio of the priors and E cannot discriminate evidentially between H and H’.)  

 Since so many of the problems of Bayesian confirmation theory focus on prior 

probabilities, an attractive modification to the theory is a view that excises prior probabilities but 

leaves the rest intact. The view, popularly known as “likelihoodism,” has been advocated by 

Edwards (1972) and Royall (1997). As we have just seen, in Bayes’ theorem (B’), the evidence E 

favors the hypothesis H over H’ just in the ratio of their likelihoods, P(E|H)/P(E|H’). The 

proposal is that this consequence of Bayes’ theorem be extracted and elevated to an independent 

principle, the “law of likelihood.” The judgment of evidential import is always comparative—

evidence favors this hypothesis more or less than that—and the troublesome prior probabilities 

never need enter. 

 The principal difficulty for likelihoodism is that it faces all the problems of the Bayesian 

refute and rescale dynamics recounted here, but without the resources of prior probabilities to 

ameliorate them. In particular, likelihoodists must say that evidence entailed by two hypotheses 

is equally favorable to both hypotheses no matter what their virtues or vices. For likelihoodists 

have lost the Bayesian mechanism of using prior probabilities to reward simpler hypotheses or 

ones with anticipated predictive power and to penalize ad hoc or contrived hypotheses. Royall 

(1997, §1.7) considers and offers likelihoodist rejoinders to such concerns. 

5.5 Model Selection, Prediction and Simplicity 

 While the notion that the likelihoods capture the incremental import of evidence has 

enjoyed notable successes, its overall history has been troubled. There are recalcitrant cases in 

which the likelihoods alone are clearly too coarse a measure of the import of evidence. 

Likelihood rewards only accuracy in fitting data at hand. It has difficulty accommodating our 

common preference for simpler hypotheses that may be less accurate. In rewarding fit to the data 

at hand, likelihood may be a weaker guide to the greater truth sought that extends beyond these 
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data; that is, likelihood tends to favor accommodation to present data as opposed to predictive 

success with future data. 

 The familiar and long-standing illustration of these difficulties comes in the problem of 

curve fitting. Let us say that we wish to find the relationship between variables x and y. We have 

measured values of x and y:41 

<x1,y1> = <0.7, 1.0>,    <x2,y2> = <1.5, 1.8>,    <x3,y3> = <2.1, 2.0>,     …,         (DATA) 

which are shown on the graph of Figure 2 below. Our presumption is that these data were 

generated by the relation 

yi  =  f(xi) + errori 

where errori is a random error term affecting the i-th pair of x-y values. (It is common to assume 

that these error terms are normally distributed and independent of one another.) The goal of our 

analysis is identification of the function f(x). The standard method is to find that function that 

generates a curve of best fit to the data. For data such as in Figure 2, we would normally seek a 

straight line. That is, we would assume that the unknown function is linear, so that the data was 

generated by 

yi  =  A + Bxi + errori                                                 (LIN) 

That straight line turns out to be 

yi  =  -0.332 + 0.997xi + errori                                  (LINbest) 

The straight line LINbest is the best fit to the data in the sense that it is the straight line drawn 

from LIN that makes the DATA most probable. That is, its values of A and B maximize the 

likelihood P(DATA | LINbest); and A = -0.332  and B = 0.997 are the “maximum likelihood 

estimators” of A and B. 

 

                                                
41 The full data set is <0.7, 1.0>, <1.5, 1.8>, <2.1, 2.0>, <2.3, 0.6>, <2.6, 1.0>, <3.8, 2.1>, <4.5, 

3.1>, <4.7, 6.0>, <5.6, 6.9>, <5.6, 7.7>, <5.8, 4.9>, <6.2, 4.4>, <7.1, 7.7>, <7.6, 6.7>, <8.8, 

10.1>, <8.9, 8.2>, <9.1, 8.1>, <9.3, 7.4> 
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Figure 2. Linear and cubic curves of best fit. 

 

 The complication is that we can find other functions f(x) that fit the data more closely and 

make it even more probable. Consider, for example, cubic functions 

yi  =  A + Bxi + Cxi2 + Dxi3 + errori                                                 (CUB) 

The particular cubic plotted in Figure 2 against the background of the same data, 

yi  =  1.952 - 1.377xi + 0.581xi2 – 0.0389xi3 + errori                            (CUBbest) 

maximizes the likelihood P(DATA | CUBbest). 

 As one can see from comparing the two curves visually, the cubic CUBbest fits the data 

more closely that the linear LINbest and it turns out that  

P(DATA | CUBbest)   >   P(DATA | LINbest) 

Therefore, according to the likelihood theory of evidence, we should conclude that the data better 

supports the cubic CUBbest over the linear LINbest. 

 It is evident from a cursory scan of the data that this is most likely a mistake. Whatever 

trend f(x) may be embodied within the data, it is heavily confounded by noise from the error 

term. While the data definitely gives us warrant to believe that f(x) is an increasing function of x, 
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we have no warrant for the specifics of the cubic CUBbest.42 We should be much more modest in 

what we infer from data this noisy. The better fit of the cubic CUBbest has been achieved by the 

greater ability of a cubic to conform to random fluctuations from the trend induced by noise; that 

is, the curve is “overfitted.” This overfitting is most evident around x=1, where the curve 

reverses direction; and again around x=9, where the curve also reverses direction. Given the 

sparsity and scattering of the data, cubic CUBbest is merely tracking noise at these places, 

whereas the linear LINbest is responding to a real increase with x in the trend. 

 The informal discussion of the last paragraph captures the practical thinking of curve 

fitting. It is grounded tacitly in the considerations of simplicity and prediction at issue here. We 

know that we can always find a curve that fits the data better by looking to more complicated 

functional forms, such as higher order polynomials. However, at some stage, we judge that we 

should prefer the simpler curve over the more complicated one that fits the data better. The 

reason is that our interests extend beyond the narrow problem of finding a curve the merely fits 

this particular data set well. Our data is only a sample of many more values of x and y; and we 

are interested in finding a function f(x) that will also fit these other as yet unseen values. That is, 

our goal is to find a function f(x) that will support prediction. We expect that we can best achieve 

that goal by forgoing some accuracy of fit with the present data of an overfitted curve in favor of 

a simpler functional form for f(x) that will enable future data to be fitted better. For an overfitted 

curve responds to random noise whose specific patterns of deviations will probably not reappear 

in future data; however a curve drawn from the simpler model responds more to the real relation 

that drives present and, we suppose, future data as well. 

 The challenge to a Bayesian analysis is to find a way of capturing these last informal 

thoughts in a more precise analysis. The natural way to do this is to break up the inference 

problem into two parts.43 The first part requires us to consider only models. These are sets of 

                                                
42 Perhaps it is unfair to introduce a more elevated perspective that affirms this judgment against 

the cubic CUBbest. The data plotted was generated artificially from the model yi = xi + errori, so 

the linear LINbest has actually done a very good job of identifying the trend y=x. 

43 Traditional non-Bayesian statistical methodology implements this two part procedure by 

testing whether deviations in the coefficients B and C of CUB from zero are statistically 
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hypotheses indexed by parameters. For example, LIN above is the set of linear functions with 

parameters A and B taking all real values. CUB above is the set of all cubic functions with the 

parameters A, B, C and D taking all real values. In the first part we decide which model is 

appropriate to the data. For DATA above, we presume that would turn out to be LIN and not 

CUB. In the second part of the inference problem, we then find the curve that fits the data best 

just within that selected model. 

 Implementing this program within Bayesianism runs into several difficulties. The 

functions of LIN are a subset of those of CUB, for CUB reverts to LIN if we set C=D=0. So if 

we compute the posterior probabilities of the models on the DATA, we will always find 

P(LIN | DATA)  ≤ P(CUB | DATA) 

from which it follows that that the model LIN can never be more probable on the DATA than the 

model CUB. So it seems that we cannot have a straightforward Bayesian justification for 

preferring LIN over CUB. 

 Slightly less than straightforward grounds can be found. We compare not the posterior 

probabilities of models, but the boosts in probability each model sustains upon conditionalizing 

on the data. That is, in this modified approach, we would prefer LIN over CUB if the ratio P(LIN 

| DATA) / P(LIN) exceeds P(CUB | DATA) / P(CUB). The ratio of these two ratios is itself 

called the “Bayes’ factor.” 

 This modified criterion of the Bayes’ factor has some plausibility since it conforms to the 

spirit of the likelihood theory in that we consider changes in probability under conditionalization, 

not absolute values of the posterior probability. However the modified criterion rapidly runs into 

difficulties with prior probabilities. To compute P(LIN | DATA), for example, we would use 

Bayes’ theorem, in which the likelihood P(DATA | LIN) appears. This likelihood is really a 

compound quantity. It is a summation over the infinitely many curves that appear in the model 

LIN, corresponding to all possible values of A and B. That is, 

! 

P(DATA | LIN ) = p(DATA | A,B)p(A,B)dAdB
all  A,B
"  

The problematic term is p(A,B), which is the prior probability density for the parameters A and 

B given that LIN is the correct model. Since it expresses our distribution of belief over different 
                                                                                                                                                       

significant. If they are not, the null hypothesis of B=C=0 is accepted and estimation proceeds 

with the simple model LIN. 
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values of A and B prior to evidence, p(A,B) should favor no particular values of A or B. 

However it is familiar problem that no probability distribution can do this. If p(A,B) is any non-

zero constant, then it cannot be normalized to unity when we integrate over all possible values of 

A and B. 

 While no unqualified solution to these problems has emerged, it has proven possible to 

show that, for large data sets, the Bayes factor depends only weakly on the choice of the prior 

probability density. In that case, the model favored by the Bayes factor is the one that maximizes 

what is known as the Bayes Information Criterion (BIC): 

BIC = log Lbest – (k/2) log n 

where the maximum likelihood Lbest is the likelihood of the data when conditionalized on the 

best fitting curve in the model, k is the number of parameters in the model and n is the size of the 

data set. (For LIN, k is 2; for CUB, k is 4.) For further discussion, see Wasserman (2000). 

 In maximizing BIC, we tradeoff accuracy of fit (expressed in the maximizing of 

likelihood) against the simplicity of the model (expressed in the number of parameters k). This 

was not the goal in constructing BIC; it was generated from an analysis that seeks the most 

probable model on the evidence. An analogous criterion can be generated by directly seeking the 

model with the greatest predictive power, as opposed to the one that is most probable. This 

criterion, the Akaike Information Criterion (AIC), advocated by Forster and Sober (1994), is 

given by 

AIC = log Lbest – k 

The rationale is that overtly seeking predictive power is a surer way to get to a truth that extends 

beyond the particular data at hand. Seeking the most probable model risks favoring the vagaries 

of the particular data at hand. 

 The connection to prediction is achieved through the notion of “cross-validation.” While 

we cannot now test the predictive powers of a model against presently unknown data, we can 

simulate such a test by dividing the data at hand into two parts. We use the first part to generate a 

best fitting hypothesis in the model and then we check how well the resulting hypothesis fits the 

remaining data. In a large set of N data, we leave out one datum and use the remaining N-1 to 

generate hypotheses from the model. We then average the errors in fitting the original datum. If 

we allow each datum successively to be left out in the procedure and average the resulting 

scores, we recover an estimate of the predictive powers of the model. That estimate turns out to 



46 

approach the AIC statistic for large N. (Forster, 2002, p. S128; Browne, 2000.) The presumption 

is that predictive powers manifested within a known data set in this computation will persist 

beyond the confines of that data set. 

 It remains an open question whether likelihoods may be used as the basis of assessment 

of models when we need to find an appropriate accommodation of accuracy, simplicity and 

predictive power. That all the proposals above fail has been suggested recently by Forster 

(forthcoming, manuscript). He has devised examples of pairs of models with the same number of 

parameters k that also deliver the same likelihood and maximum likelihood for a specified set of 

data. As a result, considerations of likelihood alone or the more refined BIC or AIC are unable to 

discriminate between the models. However it is evident from informal considerations that one 

model is predictively superior to the other. 

 Forster’s simplest example44 draws on a set of data with three points <xi,yi>: 

<1, 1>,  <2,2>,  <3,3>                                                    (DATA’) 

The first model, Ha: yi = axi, comprises four functions 

H1/2: yi = (1/2) xi      H1: yi = xi      H2: yi = 2xi      H3: yi = 3xi 

corresponding to the parameter values a = 1/2, 1, 2, 3. The relation of this model to DATA’ is 

shown in Figure 3. 

 

                                                
44 This example was presented in a talk by Malcolm Forster, “Is Scientific Reasoning Really that 

Simple?” in “Confirmation, Induction and Science” London School of Economics, March 8 – 

March 10, 2007, on March 8. 
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Figure 3. Models  H and K 

 

The second model, Ka:yi = xi/a + (a-1)2/a, comprises four functions 

K1: yi = xi     K2: yi = xi/2 + 1/2     K3: yi = xi/3 + 4/3      K4: yi = xi/4 + 9/4 

The relation of this model to DATA’ is shown in Figure 3. 

 Which model does DATA’ favor? The computation of the likelihoods of the individual 

functions is easy since they are all zero or one. The only non-zero likelihoods are 

P(DATA’ | H1)  =  1        P(DATA’ | K1)  =  1 

We assume that the prior probabilities of functions within each model is the same. That is45 

P(Ha | H)  =  1/4     for a = 1/2, 1, 2, 3 

P(Ka | K)  =  1/4     for a = 1, 2, 3, 4 

Thus the likelihood associated with each model is the same 

P(DATA’ | H)  = P(DATA’ | H1) x P(H1 | H)  =  1/4 

P(DATA’ | K)  = P(DATA’ | K1) x P(H1 | K)  =  1/4 

Hence, we cannot use DATA’ to discriminate between the two models H and K by means of 

their maximum likelihoods or the likelihoods of the models. Moreover, we cannot discriminate 

between them by means of BIC or AIC; for both models agree on the maximum likelihood and 

the number of parameters, k=1. 
                                                
45 In these formulae, read H = H1/2v H1v H2v H3 and K = K1v K2v K3 v K4. 
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 While all the likelihood based instruments fail to discriminate between the models, 

informal considerations favor the model H. For it requires only one datum from DATA’, such as 

<1,1>, to fix the function y=x in H that fits the remaining data. The remaining two data points act 

as tests of the model; or, we may view them as successful predictions. However it takes two data 

points from DATA’ to fix the function in K that fits the remaining data. The datum <1,1>, for 

example, is compatible with both K1 and K2. A second datum is needed to decide between them. 

Hence only one datum remains to test the function fitted; or the model needs more data before it 

can make successful predictions. As a result we informally judge that the model H is better tested 

and predictively stronger and thus better warranted by the evidence. (For discussion of this 

aspect of curve fitting, see Glymour, 1980, Ch. VIII.)46 

 For further discussion of Bayesian and Likelihood based analyses of this problem, see 

Howson and Urbach (2006, 288-96) and Forster and Sober (2004) (which includes commentary 

by Michael Kruse and Robert J. Boik). 

5.6 A Neutral Starting Point: The Second Problem of the Priors 

 Bayesian confirmation theory depicts learning from evidence as the successive 

conditionalization of a prior probability distribution on evidence so that the resulting posterior 

probability distributions increasingly reflect just the evidence learned. As we trace back along 

this chain of conditionalization, we expect to come to epistemically more neutral probability 

distributions, reflecting our lesser knowledge earlier in the process. The problem of the priors in 

both forms developed here is that the structure of Bayeisan confirmation theory essentially 

precludes neutral probability distributions. In the first problem of the priors (Section 4.3 above), 

we saw that the additivity of probability measures precludes their representing epistemic states of 

complete ignorance. Here we shall see that the Bayesian dynamics of refute and rescale also 

precludes a different sort of neutrality of the probability distribution. Bayesian dynamics makes 

                                                
46 The informal considerations invoked here may appear more familiar if we vary the example 

slightly. Imagine that we are to choose between the model H: y=ax and L:y=ax +b for DATA’. 

Then we would allow that H is better warranted since a single datum is needed to fix the 

parameter a in H; whereas two data are needed to fix the two parameters a and b in L. 
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it impossible to select a prior probability distribution that does not exercise a controlling 

influence on subsequent course of conditionalization. 47 

 The essential problem is suggested by the notion of refute and rescale dynamics. The 

results of conditionalization must already be present in the prior probability; all that 

conditionalization does is to remove those parts of the prior probability distribution attached to 

outcomes refuted by the evidence to reveal the pre-existing distribution of belief between the 

unrefuted outcomes. This same point is evident if we recall the formula governing conditional 

probabilities 

P(H|E) = P(H&E)/P(H) 

This formula tells us that P(H|E), the degree of belief we should have in H given that we have 

learned E, is fixed by the two prior probabilities P(H&E) and P(H). That means that if we fully 

specify our prior probabilities over some outcome space, we have also delivered an exhaustive 

catalog of what our belief in each outcome would be, given that we have learned some other 

outcome. For from being neutral, the prior probability distribution anticipates how our beliefs 

will evolve as we learn any sequence of admissible outcomes and different prior probability 

distributions can yield courses that differ greatly. This consideration gives further grounds for the 

abandoning of such terms as “ignorance priors” or “informationless priors” in favor of “priors 

constructed by some formal rule” as reported in Section 4.4 above. 

 As with the first problem, objectivists have the most acute difficulty with this second 

problem of the priors. For they are committed to there being one, appropriate prior probability 

distribution in any given epistemic situation. Yet none can supply the neutral starting point 

appropriate in the absence of all evidence. So the objectivist must either accept the unpalatable 

conclusion that the initial prior probability contains information without evidential warrant; or 

that Bayesian dynamics can only be used once we have learned enough by other means to make 

a properly grounded selection of the prior probability. 

 Subjectivists at first seem to have a better response. For them, a prior probability is 

simply a statement of personal opinion with no pretensions of evidential warrant. As evidence 

accumulates and is incorporated into the probability distributions by conditionalization, limit 

                                                
47 The phrase “problem of the priors” seems to mean somewhat different to things to different 

authors. For further discussion, see Earman (1992, pp. 57-59) and Mellor (2005, pp. 94-95). 
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theorems assures us of a merging of opinion onto a unique distribution that properly represents 

the bearing of evidence. (For discussion of these theorems, see Earman (1992, Ch. 6).) However 

this solution comes at some cost. At any finite stage of the process, the posterior probability 

distribution is an unknown mix of unwarranted opinion and warranted support. While the limit 

theorems may assure us that, in particular circumstances, the mix will eventually converge onto 

warranted support, at any definite state we may be arbitrarily far from it. 48 Imagine that we have 

collected some very large set of evidence Elarge and we are interested in its bearing on some 

hypothesis H. It will always be possible for a determined mischief maker to identify some prior 

probabilities for P(H&Elarge) and P(Elarge) so that P(H|Elarge) is as close to one as you like or as 

close to zero as you like. 

5.7 The Prior Probability of Universal Generalizations 

 Neither objectivist nor subjectivist fares well if zero or unit prior probability has been 

assigned injudiciously to some outcome. Then Bayesian dynamics becomes completely 

dogmatic. For once they have been assigned zero or unit probability, it follows from Bayes’ 

theorem that these assignments are unrevisable by conditionalization.49 The complete disbelief 

of a zero prior probability and the complete belief of a unit probability will persist indefinitely. 

In concrete terms, this sort of dogmatism is a familiar if unwelcome phenomenon. Consider the 

dogmatic conspiracy theorist who discounts the benign explanation of a catastrophe in favor of 

an elaborate conspiracy committed by some secret agency. Once a zero prior probability has 

been assigned to the benign explanation, no failure to reveal the secret agency’s intervention or 

even existence can restore belief in the benign explanation. Rather Bayes’ theorem will provide 

mounting assurance that each failure is further evidence of the perfection of the secret agency’s 

cover-up. 

 While the best Bayesian advice would seem to be very cautious before assigning a zero 

prior probability, there are suggestions, reviewed in more detail in Earman (1992, §4.2, 4.3), that 
                                                
48 Here is the obligatory reporting of Keynes’ quip: “In the long run we are all dead.” 
49 Once P(H)=0, Bayes’ theorem (B) requires P(H|E)=0 for all admissible E. (Conditionalizing 

on evidence E for which P(E)=0 leads to an undefined posterior P(H|E).) It follows that for any 

H’=~H for which P(H’)=1, P(H’|E)=1 as well. 
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hypotheses with the power of universal generalizations ought to be assigned a zero prior 

probability. These concerns arise for any hypotheses H that entails a countable infinity of 

consequences E1, E2, … 50 Considering only the first n consequences we have 

P(H) = P(H|E1&…&En). P(En|E1&…&En-1). P(En-1|E1&…&En-2). … P(E2| E1). P(E1) 

Popper (1959, Appendix VII) urged that we should expect the instances E1, E2, … of a universal 

generalization H to be equiprobable and independent of one another. That is, 

P(En|E1&…&En-1). P(En-1|E1&…&En-2). … P(E2| E1). P(E1) 

= P(En). P(En-1). … P(E2).P(E1) = P(E1)n 

But since this must hold for arbitrarily large n and with P(E1)<1, it follows that the prior P(H)=0. 

The obvious weakness of Popper’s proposal is that the very fact that E1, E2, … are instances of a 

universal generalization H suggests that they are not independent. However, just a little 

dependence between E1, E2, … is not enough to allow a non-zero prior for H. Inspection of the 

above expression for P(H) shows that P(H)>0 entails 

Limn∞ P(En|E1&…&En-1) = 1 

That is, finitely many favorable instances of H eventually make us arbitrarily sure that the next 

instance will be favorable. That was an outcome that Jeffrey (1983, p. 194) felt sufficiently akin 

to “jumping to conclusions” to want to renounce non-zero prior probabilities on universal 

hypotheses. 

 Lest this commitment to the projectability of the hypothesis not seem immodest, the 

analysis needs only a slight modification to make it more striking. Group the instances E1, E2, … 

into sets that grow very rapidly in size. For example 

F1=E1   F2=E2&…&E10     F3= E11&…&E100      … 

so that 

F1&…&Fn = E1&…&E(10n-1) 

Each of the Fi is a consequence of H, so the above analysis can be repeated with Fi substituted 

for Ei to infer that p(H)>0 entails 

                                                
50 The simplest example is a universal generalization that asserts, “For all x, Q(x).” where x 

ranges over a countably infinite set of individuals a, b, c, … Its consequences are Q(a), Q(b), … 
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Limn∞ P(E1&…&E(10n+1)|E1&…&E(10n)) = 1 

That is, if we assign non-zero prior probability to an hypotheses with the power of a universal 

generalization, eventually we are willing to project from some finite set of its positive instances 

to arbitrarily many more at arbitrarily high probability. 

 The point is not that there is something intrinsically wrong with such immodesty. Indeed 

for the right hypothesis, this may be just the appropriate epistemic attitude. The point is that 

assigning a zero or a non-zero prior probability to a hypothesis with the power of a universal 

generalization is never neutral. The former commits us dogmatically never to learning the 

hypothesis; the second, no matter how small the non-zero prior, commits us to its arbitrary 

projectability on finite favorable evidence. There is no intermediate value to assign that leaves 

our options open. Our inductive course is set once the prior is assigned. 

 Finally, one sees that some significant prior knowledge is needed if we are to assign the 

non-zero prior probabilities prudently. For a countably infinite set of outcomes E1, E2, … 

corresponds to an uncountable infinity of universal hypotheses: each hypothesis corresponds to 

one of the uncountably many combinations of the Ei and their negations ~Ei. However we can 

assign non-zero prior probability to at most countably many of these hypotheses. That is, loosely 

speaking, when we assign our priors, we are selecting in advance the measure zero subset that we 

will be prepared to learn and dogmatically banishing the rest to disbelief no matter what 

evidence may accrue. 

5.8 Uncertain Evidence 

 The versions of Bayesian confirmation theory considered so far depict learning as an 

absolute: if we are given evidence E, it cannot be doubted. That is quite unrealistic. No datum is 

ever certain and it is not uncommon in science that the accumulation of later evidence leads one 

to doubt the correctness of evidence collected earlier. Something like this could be incorporated 

into traditional Bayesianism if we separate, say, the inerrant sense datum D: “my retina senses a 

plesiosaur like shape on the surface of Loch Ness” from the fallible evidence E: “I saw a 

plesiosaur on Loch Ness.” That fallibility could then enter the analysis through the conditional 

probability P(E|D). This solution complicates the analysis without ultimately allowing that all 

evidence is fallible, for it merely pushes the inerrancy deeper into an elaborated outcome space. 
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 A direct solution has been proposed by Jeffrey (1983, Ch. 11). Standard Bayesianism 

introduced evidence E by by conditionalizing, which forces unit probability onto E. Jeffrey 

instead proposed that we merely shift a lesser amount of probability to E, commensurate with our 

confidence in it. This non-Bayesian shift from initial probability Pi to final probability Pf is then 

propagated through the outcome space by Jeffrey’s rule. For this simplest case of evidence that 

partitions the outcome space into {E, ~E}, the rule asserts that, for each proposition A, 

Pf(H) = Pi(H|E).Pf(E) + Pi(H|~E).Pf(~E) 

The distinctive property of this rule is that it leaves unaffected our judgments what the 

probability of H would be were E definitely true or definitely false. That is, for all H, it satisfies 

Pi(H|E)= Pf(H|E) and Pi(H|~E)= Pf(H|~E). The uniqueness of Jeffrey’s rule follows in that it 

proves to be the only rule that satisfies these two conditions (Jeffrey, 1983, p. 169; Howson and 

Urbach, 2006, p. 85). Jeffrey’s rule reduces to ordinary conditionalization if the evidence E is 

certain, Pf(E)=1. 

 One unappealing aspect of Jeffrey’s rule is that the order in which it is applied in 

successive applications matters. That is, if we apply it first on a partition {E,~E} and then 

{F,~F}, in general we do not arrive at the same final probability distribution as when the order is 

reversed. (See Diaconis and Zabell, 1982.) 

 In the context of the Shafer-Dempster theory (Section 4.2 above), Dempster’s rule of 

combination allows uncertain evidence to be combined with other belief distributions in an 

analogous way, but one that is independent of the order of combining. With appropriate 

restrictions, Dempster’s rule of combination can yield ordinary Bayesian conditionalization as a 

special case. See Diaconis and Zabell (1986) for discussion of the relationship between Jeffrey’s 

rule and Dempster’s rules. 

6. Further Challenges 
 This concluding collects mention of some of the many further challenges to Bayesian 

confirmation theory that can be found in the literature. 

 In a letter to Nature and a subsequent article, Popper and Miller (1983, 1987) urged that 

the probabilistic support evidence E provides an hypothesis H in Bayesian confirmation theory is 
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not inductive support. Their argument depended upon decomposing H into conjunctive parts by 

the logical identity 

H = (H←E)&(HvE) 

where the first conjunct, “H, if E,” is (H←E) = (Hv~E). Since the second conjunct (HvE) is 

deductively entailed by E, they identify the first, (H←E), as “containing all of [H] that goes 

beyond [E]” (1983, p. 687) and require that E supplies inductive support for H only in so far as it 

supports this part that is not deductively entailed by E. However it is easy to show that 

P(H←E|E) ≤ P(H←E) so that (H←E) never accrues probabilistic support from E. 

 While Popper and Miller’s argument drew much discussion (for a survey see Earman, 

1992, pp. 95-98), the decisive flaw was already identified immediately by Jeffrey (1984), who 

objected that (H←E) is not the part of H that goes beyond E. It is rests on a confusion of “part” 

with “deductive consequence.” While we might think of theorems as logical parts of the axioms 

that entail them, that sense of part no longer works when inductive relations are the concern. For 

example, let H be that my lost keys are in my office (“office”) or in my bedroom (“bedroom”) 

and E is the evidence that they are in my house. Then (H←E) is the enormous disjunction 

office v bedroom v Mars v Jupiter v Saturn v … 

where the ellipses include all places not in my house. It is as peculiar to call this disjunction a 

part of the original hypothesis as it is unsurprising that it is not probabilistically confirmed by the 

evidence. 

 Another challenge to Bayesian confirmation theory comes from what first appears as an 

unlikely source. Over recent decades, there has been a mounting body of evidence that people do 

not assess uncertainty in accord with the strictures of probability theory. The most famous 

example comes from Kahneman and Tversky’s (1982) experiments that showed that people are 

quite ready to contradict the monotonicity of a probability measure—the property that an 

outcome is never less probable that each of its logical consequences. In the case of “Linda,” they 

found that people would affirm that a suitably described character Linda is more likely to be a 

bank teller and feminist than a consequence of this possibility, that she is a bank teller. One 

response to this body of work is to lament the unreliability of people’s intuitions about 

uncertainty and the need for them to receive training in the probability calculus. Another 

response notes that we humans have been dealing more of less successfully with uncertainty for 

a long time; this success extends to much of science, where uncertainties are rarely treated by 
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systematic Bayesian methods. So perhaps we should seek another approach based a little more 

closely on what people naturally do. Cases like “Linda” suggest that we naturally try to select the 

one conclusion that best balances the risk of error against informativeness and detach it from the 

evidence. That is quite compatible with preferring to detach less probable outcomes. When told a 

coin was tossed, most people would infer to the outcome “heads or tails” as opposed to “heads or 

tails or on edge” even though the latter is more probable and a certainty. 

 In philosophy of science, if a numerical calculus is used to assess the bearing of evidence, 

it is most often the probability calculus. In other domains, that is less so. In the artificial 

intelligence literature, alternative calculi proliferate. They include the Shafer-Dempster theory, 

possibility theory (Zadeh, 1978) as well as numerical systems generated for particular contexts, 

such as the MYCIN system applied in medical diagnostics (Shortliffe and Buchanan1985). One 

motivating factor has been pragmatic. A probabilistic analysis requires a prohibitively large 

number of quantities to be fixed for the general case. In an outcome space with n atomic 

propositions, there are of the order of n! conditional probabilities. Seen from that perspective, 

possibility theory’s simple rule for disjunction is appealing: the possibility of AvB is just the 

larger of the possibilities of A or B individually. That same rule would seem disastrous to the 

systematic philosopher of science schooled with Bayesian intuitions, who will wonder why the 

rule does not distinguish the cases of A and B coincident or mutually exclusive and all those in 

between. The debate between proponents of the different calculi, including probabilistic systems, 

has been fierce. The principle goal seems to be to establish that each proponent’s system has the 

same or greater expressive power than another’s. (See for example Cheeseman, 1986; Zadeh, 

1986.) 

 The issue of “stopping rules” has entered the philosophy of science literature from the 

debate between Bayesian and Neyman-Pearson statisticians. It pertains to a deceptively simple 

plan for assuring belief in a false hypothesis. Assume we have a fair coin. On average, on 

repeated tosses, it will show heads with a frequency of about 0.5. The actual frequency will 

fluctuate from this expected 0.5 and there will always be some definite but small probability that 

the observed frequency is arbitrarily far removed from the expected. In order to advance the 

misperception that the coin is not fair, we toss it repeatedly, waiting mischievously for chance to 

realize one of these rare removals that is possible but very unlikely for a fair coin. That is our 

“stopping rule.” When the rare removal happens we report the resulting count of heads and tails 
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as evidence that the coin is not fair. The plan can be generalized to seek disconfirmation of any 

statistical hypothesis. We accumulate observations, waiting for chance fluctuations to deliver 

results that can only arise with low probability if the hypothesis is true. 

 The result is troubling for Bayesians. For them, the import of evidence is fully 

determined by the likelihood ratio and that likelihood ratio has been contrived to favor arbitrarily 

strongly the falsity of the hypothesis. That the experimenter intended to generate a deceptive 

result is irrelevant; the intentions of the experimenter collecting the data do not appear in Bayes’ 

theorem. Neyman-Pearson statisticians have a ready escape that is not available to the Bayeisan: 

the strategy of “try and try again until you get a statistically significant result” is not a good test 

of the hypothesis. Correspondingly, the procedure that uses this stopping rule does not count as a 

severe test of the hypothesis in the sense of Mayo (1996, §11.3, 11.4). 

 The Bayesian response has been to reaffirm that the likelihoods are all that is relevant to 

discerning the bearing of evidence and also to point out that the stopping rule may never be 

satisfied, so that the planned disconfirmation can fail. That is, assume that a Bayesian agent 

assigns a prior probability p to some hypothesis and decides to accumulate evidence concerning 

the hypothesis until the posterior probability has risen to q>p. Kadane, Schervisch and 

Seidenfeld (1996) show that, if the hypothesis is false, the agent’s probability that the stopping 

rule is eventually satisfied is given by 

Probability of stopping ≤

! 

p(1" q)

q(1" p)
 

Therefore, the closer the desired posterior probability q is set to one, the closer the probability of 

stopping comes to zero; that is, the probability as assessed by the agent approaches one that the 

experiment will continue indefinitely without returning the result sought in the stopping rule.51 

For more discussion see see Savage et al., (1962, pp. 17-20 and subsequence discussion), Mayo 

(1996, §11.3, 11.4) and Kadane, Schervish, and Seidenfeld, (1996). 

                                                
51 If a tenfold boost in probability is sought, so q/p = 10, we must have p≤0.1 to start with and 

the formula assures us that the probability of stopping is less than (p/q – p)/(1-p) = (0.1-p)/(1-p) 

< 0.1. 
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7. Conclusion 
 This chapter has reviewed many challenges to Bayesian confirmation theory. Some are 

global, reflecting differences in the very conception of inductive inference and the inductive 

enterprise in science. Others are more narrowly targeted to specific commitments of Bayesian 

confirmation theory. That there are so many challenges is a reflection of the dominance that 

Bayesian confirmation theory now enjoys in philosophy of science. It offers a well-articulated 

account of inductive inference in science that is of unrivalled precision, scope and power. In this 

regard it greatly outshines its competitors. Abductive accounts—inference to the best 

explanation—are still stalled by the demand for a precise account of their central notion, 

explanation, whereas Bayesian confirmation theory suffers from the reverse: excessive 

elucidation of its central notion, probability. This precision and depth of articulation is part of 

what enables the challenges to Bayesian confirmation theory to be mounted. For it is only after a 

position is clearly articulated that its weaknesses may also be discerned. When a new Goliath 

enters the arena, many would be Davids come with their pebbles. 
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