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Galileo's Refutation of the Speed-Distance Law of Fall 
Rehabilitated 

 
John D. Norton and Bryan W. Roberts* 

 
Abstract. 

Galileo's refutation of the speed-distance law of fall in his Two New Sciences is routinely 
dismissed as a moment of confused argumentation. We urge that Galileo's argument 
correctly identified why the speed-distance law is untenable, failing only in its very last 
step. Using an ingenious combination of scaling and self-similarity arguments, Galileo 
found correctly that bodies, falling from rest according to this law, fall all distances in 
equal times. What he failed to recognize in the last step is that this time is infinite, the 
result of an exponential dependence of distance on time. Instead, Galileo conflated it with 
the other motion that satisfies this ‘equal time’ property, instantaneous motion. 
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1. Introduction 

 Our concern is a single paragraph in Galileo's Two New Sciences, in which Galileo 

purports to refute the law of fall that sets speed proportional to distance fallen. After 

Sagredo admits to finding this speed-distance law reasonable, Salviati responds with some 

unusual consolation, revealing that ‘your reasoning has in it so much of the plausible and 

probable, that our Author himself did not deny… that he had labored for some time under 

the same fallacy.’ Salviati now promises to dispose of the speed-distance law ‘as false and 

impossible as [it is] that motion should be made instantaneously, and here is very clear 

proof of it.’ He then presents the following now-infamous argument.  

When speeds have the same ratio as the spaces passed or to be passed, 

those spaces come to be passed in equal times; if therefore the speeds with 

which the falling body passed the space of four braccia were the doubles of 
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the speeds with which it passed the first two braccia, as one space is double 

the other space, then the times of those passages are equal; but for the same 

moveable to pass the four braccia and the two in the same time cannot take 

place except in instantaneous motion. But we see that the falling heavy 

body makes its motion in time, and passes the two braccia in less [time] 

than the four; therefore it is false that its speed increases as the space. 

(Galilei, 1974, pp. 160.) 

This is an important moment in the dialogue. The path to one of the main results of the 

work, the final law of fall, is impeded by the speed-distance law of fall. In his own 

investigations Galileo needed to pass beyond it. Presumbaly it was a significant obstacle, 

since it is one of the two instances in the Two New Sciences in which an error or confusion 

by the Author himself is reported. 1  

 The proof or demonstration (dimostrazione) is designed to enable the reader to pass 

beyond this erronous view. We do not know if this is the proof that convinced Galileo of 

the inadmissibility of the speed-distance law in his own development; all we know is that 

he did reject it. Nonetheless, it is the only known text, published or otherwise, in which 

Galileo discusses the rejection of the speed-distance law. So, it is an important passage that 

we should make special efforts to understand. Hence, it is a matter of some awkwardness 

that later commentators to the present day have found Galileo's text puzzling, and have 

strained to discern how Galileo's argument was intended to proceed. These efforts often 

collapsed into the accusation that Galileo was guilty of a transparent fallacy. 

 We shall urge here that there is a reading of Galileo's argument in which it does 

precisely what he suggests and does it quite cogently. In particular, we hold that Galileo’s 

argument passes through the following three steps. 

1. Scaling. Galileo states a general result of the equal time of passage for two motions 

when one is produced by scaling the other. 

2. Self Similarity. Galileo notes that the scaling appears as a self-similarity within the 

one motion governed by the speed distance law of fall; and that this entails that for 

it, all spaces are covered in the same time. 
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3. Downfall. Galileo concludes that this condition is compatible only with 

instantaneous motion. The sole error of the analysis enters here in that Galileo 

overlooked, as other commentators as far back as Mach have remarked, that this 

equal time condition is compatible with an infinite time of fall as well. 

That Galileo’s first step asserts a scaling relation between two motions is where our 

analysis diverges from earlier treatments. Although the importance of translating Galileo’s 

velocità in the plural as speeds has been recognized after Drake (1970, pp. 21-43), these 

speeds are usually assumed to pertain to the same motion. On that reading, Galileo’s first 

premise is little different from his conclusion, in which case he has no ‘proof’ at all, much 

less a very clear one. In contrast, our analysis develops out of the idea that the speeds 

pertain to a pair of distinct motions. It is this difference of starting point that allows us to 

read Galileo’s text as presenting a cogent argument. 

2. Confusions over Galileo's Refutation 

 It’s worth briefly reflecting on the three-and-a-half centuries of consternation 

caused by the challenge of interpreting this passage. Galileo’s critics rejected it outright, 

along with most of his other discussions of freefall. Pierre le Cazré even suggested that 

Galileo erroneously applied a rule of uniform speed to accelerated motion.2 Galileo’s 

supporters found his argument just as puzzling. Marin Mersenne thought that the law 

Galileo claimed to refute ‘can nevertheless be understood in a correct way’ (Mersenne, 

[1639] 1973a, pp. 184, our translation). Even the careful Pierre de Fermat suggested that, if 

this passage really did hint at a precise demonstration, then Galileo ‘saw or believed 

himself to see the demonstration in obscurity’ (Fermat, [1646?] 1894, vol.2, 268, our 

translation).3 At least Tenneur (1649) seemed to recognize one significant part of Galileo’s 

argument, which involves a technique we call self-similarity. But in order to recover 

Galileo’s conclusion, Tenneur assumed that Galileo was implicitly reasoning about 

average velocities, a claim that is poorly supported by Galileo’s text.4 

 Modern commentators have not fared much better than Galileo’s contemporaries. 

Ernst Mach renewed scholarly interest in Galileo's argument, but called it ‘a course of 
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fallacious reasoning’ (Mach, 1919, pp. 247). In particular, Mach thought that Galileo’s 

result disagreed with modern classical mechanics, suggesting that the law Galileo 

purported to refute is not inherently absurd, but simply does not accord with experience 

(Mach, 1919, pp. 248). Damerow et al. have recently echoed this sentiment.5 

 Cohen and Hall each later suggested Galileo’s passage could be correctly 

understood as a clever one-line argument, as long as we take Galileo to use the mean-speed 

theorem implicitly.6 This interpretation was convincingly refuted by Drake (1970), who 

showed that it was based on an incorrect translation, and argued that the mean-speed 

theorem played no role in Galileo’s text, or in his unpublished manuscripts on freefall. 

 Later commentators seem to have recycled many of the mistakes of Galileo’s 

contemporaries. Drake thought that Tenneur had already ‘understood Galileo’s reasoning 

exactly’ (1970, pp. 35). However, the reasoning Drake reconstructed from Tenneur is not 

enough to recover Galileo’s conclusion7. Recent Mersenne commentators later sided with 

Cazré, suggesting that Galileo’s argument was either a ‘slight of pen,’ or else that Galileo 

was ‘applying the law of uniform motion to a motion which is not so’ (Mersenne, 1973b, 

pp. 250, our translation). 

Most recently, Damerow et al. argue that Galileo had applied a rule of 

‘proportionality between distance and velocity in the sense of the Aristotelian concept’ 

(Damerow et al., 1992, pp. 235), referring to a concept of velocity they take Galileo to 

have evidenced in a famous 1604 letter to Sarpi.8 They conclude that Galileo’s argument 

does not really work, and that this provides evidence for the incompatibility of Galileo’s 

mechanics with classical mechanics: 

The refutation of space proportionality in the Discorsi is thus no refutation 

of these proofs but of the proportionality between the degree of velocity 

and distance under the presupposition of a proportionality between overall 

velocity and degree of velocity. But Galileo’s argument is also 

incompatible with classical mechanics… (Damerow et al. 1992, 236.) 

Let us now see how these difficulties can be avoided. 
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3. Galileo's Argument 

 Our contention is that Galileo's refutation works almost exactly as he said and was 

very much less confused than later commentators have suggested. More precisely, 

Galileo's argument may be divided into three steps. The first two work exactly as Galileo 

intended and are by themselves sufficient to demonstrate the untenability of the speed-

distance law for ordinary fall. The third step almost works; it is defeated at the last moment 

by a natural, but false assumption. The three steps are described below. 

3.1 Scaling 

 Galileo begins the argument by asserting: 

When speeds have the same ratio as the spaces passed or to be passed, 

those spaces come to be passed in equal times (Galilei, 1974, pp. 160). 

Here Galileo is noting a scaling property of speed and distance. Start with a motion 

described by fixing which speed a body has at each point of the space traversed. We can 

scale up the motion by increasing the speed in the same proportion as the space. This 

results in a new motion in general distinct from the one we started with. For example, we 

might double the space traversed and also double the corresponding speeds at each position 

to create a new motion. The scaling result asserts that the time required by the scaled up 

motion to traverse the new, scaled up space is the same as is required by the original 

motion to traverse the original, unscaled space with the unscaled speeds. See Figure 1 for a 

representation of the scaling. 

 This scaling result is a very general result. It holds, obviously, for a constant speed. 

It is not hard to convince yourself that it also holds for variable speeds, no matter how the 

speed may vary with the space9. 
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Figure 1. Scaling a motion. 

3.2 Self Similarity 

 Galileo continues: 

...if therefore the speeds with which the falling body passed the space of 

four braccia were the doubles of the speeds with which it passed the first 

two braccia, as one space is double the other space, then the times of those 

passages are equal 

Galileo is now considering a result that holds just for the particular case of a law of fall in 

which the speed is proportional to the space fallen. This motion has the property of self-

similarity. Take that portion of the motion that covers the first four braccia fallen and scale 

it up by doubling. The result is not a new motion but merely the same motion now 

extending to eight braccia. That is, the whole is a scaled-up version of the part. Figure 2 

shows how the original motion is contained within the scaled-up motion as a part. 

 Galileo can now apply the earlier scaling result to infer to the ‘Equal Time’ result: 

 (ET)  The time taken to cover the first four braccia is the same as the time 

required to cover the full eight braccia. 

So far, Galileo's reasoning has been flawless. He has correctly discerned the properties of 

the speed-distance law of fall, where by ‘correctly’ we merely mean that he has found 

properties logically entailed by the law and discernible with techniques routinely used by 
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him. Moreover, the result (ET) already establishes that the law is not a viable candidate as 

the law governing the fall of bodies of ordinary experience. For we know from ordinary 

experience that bodies take longer to fall eight braccia than they do to fall four braccia. 

 

 

Figure 2. Original motion as a part of the scaled up motion. 

 

3.3 Downfall 

It is only in the third stage of his reasoning that Galileo stumbles. He now seeks to 

find the single time interval that satisfies the condition (ET). He continues: 

but for the same moveable to pass the four braccia and the two in the same 

time cannot take place except in instantaneous [discontinuous] motion 

Here Galileo correctly notes one possible value for this unique time that the falling body 

requires to traverse four braccia, eight braccia and all other spaces. It is zero time, so that 

the motion is instantaneous; that is, it is a motion that covers a non-zero space in zero time. 
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This value of zero time, with its associated instantaneous motion, is a degenerate solution 

to condition (ET) for motions governed by the velocity-distance law. The law is still 

satisfied but only through an awkward reading. If we double the space fallen, then the 

speed at the second position must be double the speed at the first. However the motions at 

both positions are instantaneous. We can conceive of the speed in the second motion as 

double that of the first in the sense that the second motion can cover twice the space as the 

first motion in the same zero time. We will not ponder this issue further since Galileo does 

not indicate it as a problem. 

 There is another solution to (ET) that obtains in all non-degenerate cases of the 

speed-distance law. That is that the time to fall to four braccia from rest or to fall eight 

braccia from rest is, in both cases, infinite. This is a solution of (ET) that Galileo does not 

mention and, we believe, did not consider seriously. On first acquaintance, it may seem 

odd that the body would need an infinity of time to fall a finite space from rest under this 

law. Excepting the degeneracy noted, it is an unavoidable consequence of the speed-

distance law of fall, as we will indicate below. 

 Galileo's failure to consider this infinite solution is the only flaw in his refutation of 

the speed-distance law. The failing was the tacit assumption that the law always leads to a 

finite time for a body to fall some distance from rest. Under that assumption, the only finite 

time that solves (ET) is zero time. So proceeding from that false assumption, Galileo 

concluded validly that instantaneous motion is the only motion possible under the speed-

distance law. If, however, Galileo were to discard that false assumption, the non-

degenerate motions could be restored, all of which require infinite time to fall any finite 

distance from rest and thus do solve (ET). 

 It is unfortunate that Galileo failed to consider these non-degenerate solutions since 

they would have completed what would otherwise have been a flawless refutation of the 

speed-distance law. Nevertheless, by arriving at (ET), Galileo has already correctly shown 

from the first two steps of his argument that the speed-distance law is not viable.  
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4 Did Galileo Really Intend this Argument? 

 Is it really plausible that the argument just outlined is the one Galileo intended? We 

believe so and will try to make it more plausible by considering each of the steps of the 

argument. 

4.1 Evidence of Scaling 

 Galileo’s first step is to observe: ‘When speeds have the same ratio as the spaces 

passed or to be passed, those spaces come to be passed in equal times’. A difficulty in 

interpreting this assertion is its brevity. Galileo does not specify to which motion or 

motions the speeds belong. Attending to that is key to interpreting this first step. 

 The interpretation most ready to hand is that the speeds belong to just one motion, 

that of fall under the speed-distance law, and that Galileo refers to ratios between different 

speeds at different spaces in this one motion. If that is all Galileo intended, the passage is 

not delivering what was promised in the immediately preceding sentence. That sentence 

asserts that the speed-distance law is ‘as false and impossible as [it is] that motion should 

be made instantaneously, and here is very clear proof of it.’ Under the one motion 

interpretation, Galileo’s next step is just to declare in general terms the penultimate 

puzzling result, that the same time is needed for the motion to pass all spaces. The 

continuation of the sentence10 is then merely giving an instance of the general claim. Under 

this reading, Galileo’s text is far from the ‘very clear proof’ promised; it is a blatant 

excerise in circular reasoning. For the reader is not given a good reason to believe the 

general and troubling result that all spaces are passed in the same time. It is just asserted.  

 On our reading this awkwardness is escaped. The ‘speeds’ of Galileo’s first step are 

associated with two motions. The second motion is a scaled up version of the first, in 

which speeds are scaled up in proportion to the spaces. There is no presumption that the 

motions obey the speed-distance law. The scaling result holds for any motions. The two 

motions, Galileo reports, require the same time. On this reading, the conclusion is no 

longer a mere instance of the first premise. 

 So far there is nothing troubling. Galileo is merely reporting a benign fact 
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concerning the scaling of motions. It is obviously correct for the case of the scaling up of a 

uniform motion. Then doubling the speed and doubling the distance will have exactly 

compensating effects on the time, so the time of passage will remain the same. Galileo 

knew this result. He states it for the case of uniform motion just a few pages before as his 

Proposition II, Theorem II11.  

 

Figure 3. Scaling one part of the motion. 

 

 Galileo’s present argument pertains to non-uniform motion. In this more general 

case, the scaling of speed and distance will still have exactly compensating effects, so the 

scaling result still holds. It is not hard to see that the extension is licit. Informally, consider 

just one small part of the space traversed in the motion prior to the scaling. Under the 

scaling by, let us say, a doubling of scale, that small part of the space will correspond to a 

small part of double the size in the rescaled space of the rescaled motion, as shown in 

Figure 4. Now the scaling also doubles the speed. As a result the time to traverse the small 

space in the original and scaled motion will stay the same. Finally, the original space can 

be decomposed exhaustively into many such small parts; and the rescaled space is 

decomposed into the same number of corresponding rescaled parts. In each case, the time 

to traverse the total space is the sum of the times to traverse their parts. Therefore the time 

to traverse the space before and after the scaling remains unchanged. (This informal 

argument can be made more precise using notions from the calculus, as shown in the 

appendix.) 

 Galileo, we maintain, was asserting the scaling result for the case of non-uniform 

motions. The extreme brevity of Galileo’s statements leaves unclear whether he thought 



11 
the result trivially obvious or hard won. Whichever, this result is certainly within his 

compass. Perhaps he could convince himself of it by an argument similar to the one just 

sketched. Perhaps he deemed the result so obvious that it could be asserted without further 

ado. Or perhaps he found that a proof was beyond the reach of his methods so he hoped his 

readers would accept his declaration of it. Many commentators have noted the 

awkwardness of Galileo’s proof a few pages later of the mean speed theorem that involves 

the somewhat dubious summing of infinitely many lines.  

 Whatever may have been behind the brevity of Galileo’s presentation, we cannot 

doubt that this sort of scaling result was one for which Galileo demonstrated great facility. 

The analysis of laws of fall in the Third Day of the Two New Sciences is followed a few 

pages later in the Fourth Day with a number of scaling arguments for non-uniform motions 

on inclined planes12. The analysis is moreover preceded by an extended treatment of the 

strength of structural members in the Second Day, and before that with a discussion of the 

scaling of boats on the very first page of the First Day. The treatment of the strength of 

structural members was concerned centrally with how the strength of these members varied 

as they were scaled up in size. Galileo's analysis was carried out for regular shapes like 

prisms and cylinders. However Galileo showed no hesitation13 in applying these results to 

very much less regular shapes. Immediately following his treatment of the strength of 

cylinders under scaling, he declared results applying to the very irregular shapes of bones. 

Figure 5 is an illustration from the Two New Sciences14. If irregular figures like this did not 

daunt him when it came to scaling, presumably neither would non-uniform motions. 

 

 

Figure 4. Scaling Bones in Galileo's Two New Sciences. 
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 What we learn from this analysis in the Second Day is that Galileo was accustomed 

to thinking in terms of scaling, that he was quite adept at scaling arguments and that he 

was quite willing to extend scaling results from regular to irregular figures. Therefore it 

seems quite reasonable that Galileo would be comfortable thinking of the speed-distance 

law in terms of scaling arguments and that he would take the scaling result for constant 

motion that he had stated in his Proposition II. Theorem II and extend it to non-uniform 

motion. 

4.2. Getting to Galileo's Conclusion 

 Galileo’s opening remark, ‘When speeds have the same ratio as the spaces passed 

or to be passed, those spaces come to be passed in equal times,’ refers to two general 

motions, one scaled into the other. The remark then continues to note that the scaling 

relation holds within the one more specific motion of fall governed by the speed-distance 

law: 

…if therefore the speeds with which the falling body passed the space of 

four braccia were the doubles of the speeds with which it passed the first 

two braccia, as one space is double the other space,… 

Therefore the scaling result applies through self-similarity to the motion and he can now 

conclude: ‘… then the times of those passages are equal…’ 

This identification of self-similarity of Step 2 and its outcome (ET) follows without 

need for further comment. What does bear comment is the concern that Galileo’s 

conception of speed does not coincide exactly with our modern notion. Our analysis does 

not require it to coincide, but only that it agree enough to sustain the inferences we report, 

as we believe it does. For example, the idea of a speed-distance law of fall and that it is a 

self-similar motion requires only that the magnitude, speed, be representable geometrically 

in Galileo's standard manner. Galileo routinely depicted the speed-time law of fall with the 

figure of a triangle15. A similar representation is possible for the speed-distance law. Such 

a diagram is shown in Figure 5. In such a diagram, one side of the triangle represents the 
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distance fallen OA, OB, OC, … and another side the speed at corresponding instants, AA', 

BB', CC', … : 

 

Figure 5. A Galilean representation of the speed-distance law. 
 

The speed-distance law is expressed in the similarity of the triangles OAA', OBB', OCC'... 

If the distance fallen OB is twice the distance OA, the similarity of triangles OAA' and 

OBB' assures us that the speed gained, BB', is twice the speed AA', at the corresponding 

moments. The self similarity of the motion is expressed in the fact that the triangle OCC' is 

similar to triangles that represent only parts of the motion, OAA' and OBB'. 

 Finally, further comment is needed on the failure in Step 3 of Galileo's argument in 

which he overlooks that non-degenerate forms of the speed-distance law lead to infinite 

times of fall from rest. That he did neglect it can be affirmed by his discussion elsewhere 

in the Third Day. Why he might neglect this possibility can also be explained; the reason 

may be his use of a particular conservative notion of infinity. 

 Shortly after Galileo's refutation of the speed-distance law is laid out, Simplicio 

explains some concerns relating to the infinite variability of speed in laws of fall. His 

concern is expressed in the context of a reversal of a motion of fall, a rising body that 

comes to rest. If the rising body must pass through an unlimited number of different 
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degrees of speed to come to rest, Simplicio asserts that the body will continue moving 

indefinitely and never come to rest. 

 Galileo responds in the voice of Salviati: 

This would be so, Simplicio, if the moveable were to hold itself for any 

time in each degree; but it merely passes there, without remaining beyond 

an instant. And since in any finite time [tempo quanto], however small, 

there are infinitely many instants, there are enough to correspond to the 

infinitely many degrees of diminished speed. (Galilei, 1974, pp. 157.) 

 We need not ponder just yet how Galileo's argument here works. For present 

purposes, the essential point is that Galileo discounts the possibility of a law of fall 

requiring infinite time for the rising body to come to rest. That is equivalent to asserting 

that a falling body always requires a finite time to fall a finite distance from rest. Therefore 

we know that, had Galileo considered the possibility that infinite time solves the condition 

(ET), he would have discounted it as inapplicable to the motion of fall. 

 The reason why Galileo discounted this possibility may have something to do with 

his concept of infinity. One must distinguish Galileo's use of infinity to count a number of 

objects from his use of infinity to quantify a continuous physical magnitude, like force or 

speed. In discussions of the former, Galileo is perfectly happy to talk about an actual 

infinity of objects16. But in discussions of the latter, Galileo seems to restrict himself to 

some kind of potential infinity. For example, he imagines (through Salviati) that one might 

‘increase in infinitum the force applied’ or that ‘speed may be increased or diminished in 

infinitum’ (Galilei, 1974, pp. 132 and pp. 156). Galileo's use of words like ‘increase’ and 

‘decrease’ in these cases suggests an unwillingness to consider the possibility that 

continuous physical magnitudes might actually be infinite. Galileo's failure to consider an 

infinite time solution may thus be due to this conservative notion of infinity. 

 In addition, it is worth examining Galileo's argument for the finitude of times of 

fall, for the argument is fallacious. The fallacy can be seen in Galileo's terms. To see it this 

way, consider some body falling from rest under the speed-distance law. We can divide the 

space through which it falls without limit into spaces that are related in geometric ratio. 
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That is, they are bounded by the positions 

..., 1/16, 1/8, 1/4, 1/2, 1, 2, 4, 8, ... braccia 

 Now recall the Galileo’s self-similarity result. The motion over the space from 1/4 

to 1/2 braccio scales up by a factor of 4 to the motion over the space from 1 to 2 braccia; 

therefore the two spaces are passed in the same time. Repeatedly applying this result, we 

infer that the time to space the space from 1 to 2 braccia is the same as required for 1/2 to 1 

braccia; and for 1/4 to 1/2 braccio; and for 1/8 to 1/4 braccio; and so on indefinitely. In 

order to reach any finite position past the initial zero position, the body must fall through 

an unlimited number of these spaces, each requiring the same time for passage. Therefore 

the body will require unlimited time to fall to any finite position. (If a motion of this type is 

discomforting, see the Appendix for further discussion.) 

 

5. Conclusion 

 It has long been recognized by commentators that the speed-distance law of fall 

yields an exponential dependence of distance on time that does not admit the case of a 

body falling from an initial state of rest. Indeed the result can be made evident to anyone 

who has the barest familiarity with the differential calculus. It arises as the solution to a 

simple differential equation, which sets the rate of change of distance proportional to 

distance. For this reason, it is now evident to everyone that the speed-distance law fails as 

a law of fall. 

 What we urge in this note is that Galileo essentially discovered this good reason to 

dismiss the law. Unlike modern commentators, he did not have the methods of differential 

calculus to call upon. He had to explore the properties of motions, such as those prescribed 

by the speed distance law, using the methods of geometry. His geometrical approach all 

but succeeded. By using a combination of a scaling and self-similarity arguments, Galileo 

identified the property of its motion that dismisses it as a candidate law of fall: a body 

requires the same (infinite) time to fall from rest to any nominated distance. 

 Galileo's geometrical arguments identified this key disqualifying property. But he 
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failed to realize that the one fixed time taken to fall to any nominated distance is infinite. 

In the last step of the analysis, he confused this case with the one other that shares this 

property, instantaneous motion, in which a falling body takes no time to pass all finite 

distances. 

Appendix 

A.1 Scaling 

 We can readily see, using more modern methods, that Galileo's scaling result for 

motion is correct. To see it, let a body move through a distance L with coordinates x 

extending from x=0 to x=L such that it has speed v(x) at each value of x. We may use any 

well-behaved function for v(x). (‘Well-behaved’ here just means that the inverse speed is 

integrable.) We consider a second  motion in which both distances and speeds are scaled 

up by a factor of 2. This motion covers the interval x'=0 to x'=2L with the velocity v'(x'), 

where this function is specified by the condition v'(x') = v'(2x) = 2·v(x). 

 The scaling result is that the two motions will require the same time. The quickest 

way to see it uses infinitesimal argumentation. The time required to cover some small 

interval x to x+dx is dt = dx/v. This small interval of space scaled up is the interval x'=2x to 

x'+dx' = 2x + 2dx, where the velocity is v'(x') = v'(2x) = 2·v(x). The time to traverse it is 

just dt' = dx'/v' = (2·dx)/(2v) = dt. Since the distance L of the unscaled motion and the 

distance L' = 2L of the scaled motion can be decomposed into infinitely many paired, small 

intervals, each requiring the same time dt'=dt, it follows that both motions require the same 

time overall. 

 A more precise rendering of this analysis employs integral calculus. The time T' for 

the scaled motion to traverse the distance L'=2L is given by 

€ 

" T =
d " x 
" v ( " x )

=
d(2x)
2 ⋅ v(x)

=
dx

v(x)
= T

0

L

∫
0

2L

∫
0

" L 

∫ . 

As the computation shows, T' equals the time T required for the unscaled motion. 

 There is also a graphical way to see this same result. The time required for some 
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motion is just the area under the curve arising when we plot the inverse of speed against 

distance. Figure 6 shows a plot of inverse speed against distance for some motion that 

passes from x=0 to x=L. It also shows the scaled motion that now covers double the 

distance from x=0 to x=2L, but at twice the speed. This doubling of the speed has the effect 

of halving the inverse speed. As a result the area associated with the scaled motion is the 

same as the area associated with the unscaled motion. That is, the traversal times are the 

same. 

 

Figure 6. Original and scaled motions require the same time. 

A.2 Infinite Time of Fall 

 That the speed-distance law requires a body to fall for an infinite time from rest to 

achieve any finite distance is most easily seen with a little calculus. For simplicity, let us 

take the case of speed v=dx/dt numerically equal to distance x. Then the fall is governed by 

the differential equation dx/dt = x. This equation has the familiar solution 

€ 

x
x1

= exp(t − t1) . 

It tells us that, if a body has arrived as position x1 at time t1, then, if it continues to fall for 

an additional time t – t1, it will have arrived at position x. If we select x1=0 as our initial 

point, then the ratio x/x1 diverges. It follows immediately that the time t - t1 needed to fall 

to any finite position x>0 is infinite. 
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 Alternatively, one can invert the above relation between distance fallen x and the 

time required t to recover the relation t = log x. The motion that arrives at x>0 started at 

position x=0 at time log 0, which is negative infinity. Therefore to arrive at x>0, the body 

has been falling for infinite time. 

 This same result can be seen graphically if we plot inverse speed against distance. 

Figure 7 below on the left shows a plot of speed versus distance for the case of motion in 

which speed=distance over the distance x=0 to x=4; it also shows the scaled motion over 

x=0 to x=8. The two curves coincide in the region x=0 to x=4 because of the self-similarity. 

The figure on the right shows the corresponding motions with inverse speed plotted against 

distance. 

 

Figure 7. 

 

The inverse speed curve is a hyperbola and the area under it is infinite; that entails 

that the time required to cover the distance is infinite. The area under the curve between 

x=0 and x=4 is the same as the area under the curve between x=0 and x=8; they are both 

infinite. As a result, this motion satisfies the condition (ET). 

 There is, of course, a metaphorical element in this talk of ‘falling for an infinite 

time.’ More precisely what this locution indicates is that the body has been falling for all 

times in the past. At any finite time in the past, the mass was already underway in its fall; 

there is no finite time in the past at which it was at rest. Since all times in our history are at 
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finite times in the past, there is no moment in time at which the mass was at rest. It has 

always been moving. The idea of its rest an infinite time ago merely arises in a limit 

process that describes a state never actualized. 

 Finally, if the idea of a motion that requires infinite time to be completed is 

troubling, it might be helpful to note that just such a motion can arise in a Newtonian 

model. That model consists of a perfectly frictionless hemisphere in a gravitational field 

over which a point mass slides17. The point mass is projected up the hemisphere with 

exactly the initial velocity needed to have it come to rest at the hemisphere's apex. A short 

calculation shows that this motion will require an infinity of time be completed. Because of 

the time reversibility of Newtonian theory, the rise of the mass to rest at the apex can be 

reversed in time to yield a falling motion admitted by the theory. If we conceive this 

reversed motion as starting at the apex, it must have been underway for infinite time for it 

to have arrived at any position away from the apex. The law of fall governing the mass in 

the surface of the hemisphere corresponds to the speed-distance law in the vicinity of the 

apex, in so far as we can use  the approximation that sin A equals A, for small angles A.  
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Notes 

                                                
1 The other instance occurs in Day 4, when Galileo admits to having ‘long remained in the 
same shadows’ in trying to understand the nature of impact. 
2 For a discussion of Galileo’s early critics, see (Galluzzi, 2001). 
3 See Roberts (2011) for an exposition of Fermat’s reconstruction of Galileo. 
4 Palmieri has pointed out that Galileo's celebrated student, Evangelista Torricelli, worked 
on a structure whose properties are analogous to the motions conforming to the speed-
distance law. In a geometric spiral, the radial distance of the curve from the origin grows 
geometrically with each angular cycle completed. Taking each angular cycle to correspond 
to a unit of time elapsed, this radial component turns out to implement the motion 
prescribed by the speed-distance law.  Torricelli's demonstration of the possibility of the 
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geometric spiral amounted to an indirect repudiation of Galileo's argument against the 
speed distance law and, Palmieri suggests, this fact may have played a role in Torricelli's 
treatment of the spiral. See (Palmieri, 2009, pp. 131-142). 
5 They write: ‘Galileo’s argument is also incompatible with classical mechanics, since, in 
classical mechanics, it does not follow that a motion whose velocity increases in 
proportion to the distance traversed must be instantaneous but rather that such a motion 
cannot begin at all from the state of rest’ (Damerow et al., 1992, pp. 236). 
6 Also called the ‘Merton rule,’ the mean speed theorem says that the average speed of a 
uniformly accelerated body is equal to the average of its initial and its final speeds. See 
(Cohen, 1956, pp. 231-235) and (Hall, 1958, pp. 342-349). 
7 Drake interpreted Galileo:  ‘If each conceivable velocity passed through in the whole 
descent is the double of a velocity passed through in the first half of the descent, then there 
is no way of accounting for a difference in the time required for one descent as against the 
other. That is all there is to his argument’ (Drake, 1970, pp. 33). But of course, Galileo’s 
conclusion does not follow from this alone. 
8 The argument Galileo develops in this letter, although interesting, will play no role in the 
interpretation we present. For a discussion, see (Drake, 1969) and (Damerow et al., 1992). 
9 In the context of this argument, Sylla (1986, 79-80) has noted that Galileo applied a result 
derived for uniform motion directly to the case of non-uniform motion in his 
demonstration of Proposition III Theorem III in Day Three. She suggests (p.80, fn 86) that 
it is a "fairly standard move" by Galileo to transform results proved for uniform motion to 
accelerated motion. Sylla (pp. 81-84) proceeds to suggest that an argument close to the one 
we have sketched here would have been acceptable to Galileo, although her discussion 
does not allow for the infinite time motions. She continues, however, to discount the 
argument as "suspect" since she believes that it can also be applied to demonstrate the 
untenability of motion governed by the speed-time law of fall. However the argument 
cannot be applied to this latter motion. While these motions do conform to the scaling 
result described here, they do not support the self-similarity property and that self-
similarity is essential if the argument is to proceed. 
10 ‘…if therefore the speeds with which the falling body passed the space of four braccia 
were the doubles of the speeds with which it passed the first two braccia, as one space is 
double the other space, then the times of those passages are equal…’ 
11 ‘PROPOSITION II. THEOREM II. If a moveable passes through two spaces in equal 
times, these spaces will be to one another as the speeds. And if the spaces are as the 
speeds, the time will be equal’ (Galilei, 1974, pp. 150). While the statement of the 
proposition does not mention a restriction to uniform motion, it is clear that this restriction 
was intended. The discussion comes from the section labeled ‘Equable [Uniform] Motion’ 
and, subsequently, Salviati closes the section with the remark, ‘What we have just seen is 
all that our Author has written of equable [uniform] motion’. (Galilei, 1974, pp. 152). 
12  Of particular interest is Proposition VI Theorem VI of the Fourth Day, in which the final 
distances and speeds are scaled in equal proportion, and the resulting motions shown to 
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occur in equal times.  
13 For example, see (Galilei, 1974, pp. 126-128). 
14 Public domain image from (Galilei, 1914, pp. 131). 
15 For an overview of Galileo’s standard triangular depiction of speed and distance, as well 
as a comparison of his concept of speed to the modern notion, see (Damerow et al., 2002). 
16 For example, in the discussion of Aristotle's ‘wheel paradox,’ Salviati argues that a 
rolling wheel may cross ‘infinitely many voids’ as it rolls along (Galilei, 1974, pp. 38). 
More famously, Galileo later points out that the ‘square numbers are as numerous as all the 
numbers’, both infinite (Galilei, 1974, pp. 40). 
17 To preclude confusion, this Newtonian example is not the pathological case of the 
indeterministic dome of (Norton, 2008). 
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