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1 The riddle of the statistical turn

1.1 The received view

In 1872 Ludwig Boltzmann published a lengthy memoir containing two funda-
mental results: an integro-differential equation describing the time evolution of
an ideal gas (Boltzmann equation) and a mathematical argument proving that
such evolution must reach, sooner or later, the state of equilibrium described
by the Maxwell distribution. The latter achievement, later called the H-theorem,
expressed in mechanistic language the essence of the second law of thermody-
namics according to which thermodynamic systems tend irreversibly toward a
final state. Five years later, in 1877, Boltzmann tackled the equilibrium problem
from a completely different angle and emphasized that the evolution toward the
Maxwell distribution is a matter of probability: the equilibrium is reached and
maintained because is the overwhelmingly most probable state. How Boltzmann
moved from the kinetic language of 1872 to the overtly statistical terminology of
1877 has been the subject of a long debate among the specialists.

Following the lead of Paul and Tatiana Ehrenfest,1 many working physicists
and historians have supported a narrative according to which, while in 1872 Boltz-
mann believed the H-theorem to be free of exceptions, he was abruptly awoken
from his ‘mechanistic slumber’ in 1876 by a brilliant argument of Josef Loschmidt.
This criticism made him realize that the H-theorem, as well as the second law,
have merely a statistical meaning, which he eventually spelled out in his 1877
paper. Martin Klein has been the first upholder of this narrative. He pointed
out that ‘it was often the pressure of external criticism that forced Boltzmann
to re-examine his position and refine his understanding.’2 These objections led
‘Boltzmann to rethink the very basis of his proof of the second law’,3 that is the
H-theorem. Klein’s main argument hinges on a literal reading of the 1872 paper:
‘I find no indication in his 1872 memoir that Boltzmann conceived of possible ex-
ceptions to the H-theorem, as he later called it. His argument made essential use

∗Email: mbadino@mpiwg-berlin.mpg.de
1Ehrenfest and Ehrenfest (1911).
2(Klein, 1973, 55); in his book on Ehfenfest (Klein, 1970, 94-112), Klein had taken a more

prudent stance although still on the line of the mechanistic slumber narrative.
3(Klein, 1973, 71).
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of the distribution function, to be sure, but his conclusion was presented in abso-
lute form.’4 Starting from this reading, Boltzmann’s extensive use of probabilistic
concepts in 1877 must necessarily appear as a radical turn.

This interpretation has been endorsed by the majority of the commentators
and it still represents the standard view. H. Brown, W. Myrvold, and J. Uffink, for
example, agree with Klein that the importance of Boltzmann’s shift from 1872
to 1877 ‘cannot be overstressed.’5 Their argument, like Klein’s, also relies on
the lack of evidence: ‘there is no paper of Boltzmann that clearly states that his
H-theorem should be read as merely a probable decrease rather than a strict one
before 1877.’6

The number of the critics of the ‘mechanistic slumber’ narrative is not as
much large. Jan von Plato has been one of the first to claim that Boltzmann
might have envisioned a statistical meaning of the H-theorem from the very be-
ginning,7 while Michel Janssen has pointed out the role of the authority of the
Ehrenfests in making the mechanistic slumber narrative popular among the histo-
rians. More particularly, he has suggested that Klein committed a sort of ‘creative
misreading’ by superimposing Ehrenfests’s account on his reading of Boltzmann
somewhat in the same way as he also superimposed Ehrenfests’s account on his
reading of Planck.8

1.2 Two puzzles

Appealing though the mechanistic slumber narrative may appear, it does not
fit too well some historical facts. First, if in 1877 Boltzmann abandoned the
strict mechanistic view in favor of the probabilistic one, why did he keep con-
sistently using the 1872 approach throughout his publications until his death?
The insistence on Loschmidt’s criticism as a watershed leads us to think that the
probabilistic approach dominated the late work of a finally converted Boltzmann.
However even a cursory examination reveals that he hardly used his probabilis-
tic theory again after 1877.9 Turning the argument of the mechanistic slumber
narrative against itself we can ask: why do not we find any Boltzmann’s pro-
nouncement of his own statistical turn? In response to this puzzle historians
have disappointingly appealed to an alleged unreliability of Boltzmann’s style.
Klein stressed that Boltzmann ‘changed his point of view without informing the
reader’,10 while Brown et al. went so far as to claim that a radical change actually
occurred ‘despite some very misleading remarks by Boltzmann to the contrary.’11

4(Klein, 1973, 73); a similar account can be found in (Kuhn, 1978, 39-54).
5(Brown et al., 2009, 185); see also (Uffink, 2007, 967-971).
6(Brown et al., 2009, 187); the same argument can be found in (Uffink, 2007, 967): ‘I can

find no evidence in the paper [of Boltzmann] that he intended this claim [the strict validity of the
H-theorem] to be read with a pinch of salt’.

7(Von Plato, 1994, 77-82).
8Janssen (2002). In effect, the historiographical case of Boltzmann resembles closely that of

Planck, cf. Darrigol (2001), Badino (2009).
9As an effective working tool it appears again in (Boltzmann, 1884, 1909, III, 66-100) where

it is used to deal with dissociation theory, a subject particularly suitable for the combinatorial
formalism.

10(Klein, 1973, 83).
11(Brown et al., 2009, 185).
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Obviously this liberality in interpreting post-1877 Boltzmann’s own words
conflicts with the literal reading that was requested to handle the 1872 theory.
This brings me to the second point. The main argument for the mechanistic
slumber claims that Boltzmann meant his H-theorem to be strictly true because
in 1872 he did not mention any exception. But the lack of evidence is seldom
evidence of the lack and, in this specific case, we have historical testimony that
Boltzmann was aware of exceptions to the second law well before Loschmidt’s
1876 fatal argument. To understand this point we have to look deeper into the
relation between Boltzmann and Loschmidt.

The issue of the statistical meaning of the second law is usually related to
the thought experiment of the Maxwell demon published in 1871: an imaginary
being able to select gas particles from either side of a partition in order to turn
equilibrium state into non-equilibrium ones.12 However, as early as 1869, Josef
Loschmidt, Boltzmann’s colleague at the Physics Department of the University of
Vienna and his close personal friend, published a paper in which an ‘inanimate’
version of the Maxwell demon was presented.13 Loschmidt argued that the physi-
cal descriptions given by kinetic theory deploy average values, for instance of the
energy, and this means that at a microscopic level some particles have an energy
above the average, some have one under the average. It is therefore possible
to induce macroscopic changes in the system by a suitable selection procedure.
Loschmidt supposes a volume V separated by a partition from a sub-volume , a
setup quite similar to Maxwell’s. The selection procedure works as follows:14

If the initial states of all molecules in V are known, then the molecules
hitting on a particular unit surface σ at any ensuing instant are com-
pletely determined. Now we assume that at the position of σ an open-
ing in the partition is placed, which is able to open and close at delib-
erate moments; it is thus possible to arrange this device so that only
those molecules will enter [a sub-volume ] whose velocity is higher
that the mean value c and will be even possible to increase their num-
ber so that also the gas density in  will become higher than that in
V. It is therefore theoretically possible to raise a gas from a lower to a
higher temperature or to increase its density without expense of work
or specific compensations.

We know for certain that Boltzmann knew this argument from the outset.
During his stay in Berlin he published a long review paper in Die Forschritte der
Physik, the official journal of the Berlin Physical Society, in which he discussed
the most significant publications on the theory of heat for the years 1869-1870.15

Loschmidt’s paper is awarded of a long and detailed review that focuses chiefly
upon some chemical consequences. At the end of the review Boltzmann sum-
marized the argument of the ‘demonic’ device and pointed out the main conse-
quence:16

12(Maxwell, 1871, 308-309).
13Loschmidt (1869).
14(Loschmidt, 1869, 401).
15Boltzmann (1870). Note that this article has not been included in Boltzmann’s Collected Pa-

pers.
16(Boltzmann, 1870, 470).

3



For example, if a gas at constant temperature is divided into two
parts by a partition with a small hole, it would be possible to place a
device before the hole which lets the faster molecules enter in a part,
the slower in the other and separates the gas into a warmer and colder
part, which would contradict the second law.

We also know that the issue of the second law was lively debated at the
Viennese Physics Department. In a speech in memory of Loschmidt held on July
8, 1895, Boltzmann colorfully related that Loschmidt speculated on the violation
of the second law before Maxwell and that his argument was superior to that of
the English physicist. In fact, Boltzmann did not like the dependence on a foreign
intelligence because:17

[I]f all differences in temperature have been equalized, no intelligent
entity could any longer exist. In a cellar at uniform temperature, I
said, no intelligence can be present. As it were today, I see before
me Stefan [the director of the Physics Department], who had remained
silent during our lively quarrel, commenting laconically: ‘Now I realize
why your experiments with the big glass tubes in the cellar have failed
so deplorably.’

Thus discussions on the limitations of the second law were order of the day
in Stefan’s department. Since these discussions started already before 1872,
Boltzmann had to conceive his H-theorem with the issue of exceptions in mind.
More interestingly, in Boltzmann’s passionate recollections of Loschmidt’s accom-
plishments the 1876 argument was repeatedly mentioned, but he never alludes
to any effect on his own outlook of the problem. There would have been no bet-
ter occasion than a memorial speech in honor of his lifelong colleague and friend
to admit a change in his conception of the second law and H-theorem due to
the force of Loschmidt’s argument. But nothing similar happened.18 Loschmidt’s
argument is presented as an intriguing reflection, but not as a decisive step to-
ward a new understanding of the nature of the second law. In sum, there is no
single line written by Boltzmann in which he admits a radical conversion toward
probability of the sort supposed by the mechanistic slumber narrative.

1.3 Out of the mechanistic slumber

The thesis of the mechanistic slumber provides us with a narrative able to link
together Boltzmann’s apparent deterministic phraseology in 1872 with the abun-
dance of probabilistic concepts in 1877. But it proves itself untenable after a
closer scrutiny. Thus the problem is to find a new narrative able to reconcile the
body of evidence at our disposal. Since the material gathered in the previous sec-
tion seems to rule out the thesis of a sudden conversion, we are led to conclude
that it is Boltzmann’s pronouncements in 1872 that need to be reinterpreted. In
the next sections I will present an alternative reading which relies on the following

17(Boltzmann, 1905, 231).
18The same is true for a second speech Boltzmann held on November 5, 1895 (Boltzmann, 1905,

240-252).
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claim: Boltzmann’s 1872 deterministic phraseology does not refer to a physical
situation, but to a logical relation. This claim calls for a bit of explanation.

Due to the huge complications and to the necessity of using statistical tools,
physicists of mid-1800 customarily described gaseous systems in a suitable con-
ceptual space defined by assumptions of asymptotic nature: they supposed num-
bers sufficiently large of molecules, time periods sufficiently long, volumes suffi-
ciently extended, and so forth. Practically all arguments involving systems with
many degrees of freedom such as gases explicitly or implicitly deployed these as-
sumptions. The reason was that asymptotic assumptions provide a natural way to
avoid issues of fluctuations and exceptions implicit in the use of averaging proce-
dures. This tendency to create a fictitious conceptual space in which probability
theory can be applied rigorously eventually originated the ensemble approach
to kinetic theory. I will argue that Boltzmann’s apparently deterministic phrasing
in 1872 is mostly due to the fact that he framed his theory within the frame-
work of proper asymptotic conditions. Boltzmann understood the H-theorem as
a rigorous probabilistic law following from suitable hypotheses. According to this
reading, Boltzmann did not overlook the probabilistic meaning of the H-theorem,
he formulated the law within a conceptual space in which exceptions had been
excluded from the beginning.

The upholders of the mechanistic slumber narrative might here raise an
objection. They can argue that Loschmidt’s 1876 argument provides exceptions
to the H-theorem that are remarkably different from those usually avoided by
asymptotic assumptions. The reversibility argument, as it is often called, does
not only show that there are microscopical arrangements of molecules that lead
to pathological behaviors of the system, it shows that we can contrive a possible
violation of the second law whatever the microstate of the system. Thus, after
all, Loschmidt’s argument did change Boltzmann’s view, as testified in the 1877
combinatorial paper.

This ameliorated version of the mechanistic slumber, though, suffers from
the same shortcomings as the original one. It is incompatible with historical
evidence because, as I will show in section 5, the reversibility argument was
not Loschmidt’s original discover. It had been already used in 1874 by William
Thomson. More importantly, this new version superimposes on the original de-
bate later understandings of the problem of irreversibility. If we look carefully
into Loschmidt’s 1876 paper and into Boltzmann’s 1877 response, we realize
that their debate was not about the H-theorem at all. Instead, it concerned
Loschmidt’s idiosyncratic polemic against the use of the distribution function.

Finally, part of the problem with the mechanistic slumber narrative is that
it considers the 1872 paper as a self-contained and complete theory. In reality,
it was the culmination of a research program that Boltzmann had begun back in
1868 and had developed through three important articles published in 1871. The
reconstruction of this route, which I carry out in the sections 2 - 3, will illustrate
two important points. First, it will clarify the way in which asymptotic assump-
tions entered Boltzmann’s theory and will contextualize the logical structure of
the 1872 paper. Second, it will show that the great results of 1872, the Boltz-
mann equation and the H-theorem, grew out of a continuous interplay between
mechanical and probabilistic arguments and were by no means understood as
mere mechanical laws.
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2 Many ways to the same target

In 1868 Boltzmann published a paper devoted to a thorough study of the equilib-
rium in gases.19 This paper has been often regarded by the historians as a sort of
exercise in mechanics aiming merely at extending Maxwell’s distribution to more
realistic cases.20 By contrast, I will argue that in this paper Boltzmann did more
than furthering Maxwell’s line of thought: he elaborated a general theorem which
led him to prove the necessity of the Maxwell distribution.

2.1 Playing with collisions

The first five sections of the paper, amounting to 31 pages out of 47, are occupied
by the study of mechanical collisions between material particles. Following a
suggestion of ter Haar, I will call it the kinetic approach to equilibrium.21 The
main concept is the distribution function of velocity ƒ ()d defined as the fraction
of time during which a certain particle has velocity . If N is the average number
of particles in the unit volume (or surface), Nƒ ()d is the number of particles
in such volume or surface moving with velocity .22 Boltzmann alternated two
notions of probability. Preferably he treated the probability for a particle to have
velocity  as a fraction of time, but occasionally he defined the same probability
as the fraction of particles having that velocity. In both cases, the distribution
function has a clear probabilistic meaning.

In addition, all positions and directions of motion in the space are assumed
equally probable (homogeneity and isotropy). To make the calculation easier
Boltzmann introduced some asymptotic conditions: the number of particles, the
volume at disposal, and the energy of the system are infinite. Furthermore, the
time over which he calculated the averages was supposed very long.23

The kinetic argument is simple. Let us consider an arbitrary collision in
which molecules enter with velocities 1, 2 and come out with ′1, 

′
2. The in-

verse collision has the latter as initial velocities and the former as final ones.
Boltzmann calculated the numbers of direct and inverse collisions occurring in
a unit volume, which turned out to be proportional to ƒ (1) · ƒ (2)ϕd1d2 and
ƒ (′1) · ƒ (

′
2)ϕ

′d′1d
′
2 respectively, where ϕ,ϕ′ are functions expressing the geo-

metrical details of the collision (differential cross section). To arrive at this result
Boltzmann made use of the hypothesis of Stosszahlansatz (assumption on the
number of collisions, SZA for short) according to which the number of collisions
involving molecules of velocities 1, 2 depends only on the product of the proba-
bilities (and therefore the distribution functions) of each velocity. This hypothesis
had been already successfully deployed both by Clausius and by Maxwell and
was a basic assumption of kinetic theory.

19(Boltzmann, 1868, 1909, I, 49-96).
20See for example (Klein, 1973, 61-62) and (Brush, 1983, 62).
21(ter Haar, 1954, 359).
22To be sure, Boltzmann worked with cells in the velocity space defined by the values  and

 + d. I will speak of exact velocity for brevity’s sake.
23The consequence of these assumptions is that one can interpret ƒ ()d and Nƒ ()d as actual

fraction of time and density of particles respectively. This is a clear example of how the asymptotic
assumptions can turn the probabilistic phraseology in the deterministic one.
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If the number of direct collisions is equal to that of inverse collisions, the dis-
tribution of velocity will remain stable over time, therefore a sufficient condition
of equilibrium reads:

ƒ (1) · ƒ (2)12 = ƒ (′1) · ƒ (
′
2)

′
1
′
2 (1)

Equation (1) represents the kinetic condition of equilibrium in case of no
constraint on the total energy of the system. The collisions are also subject to
the conservation of energy 21 + 22 = ′21 + ′22 . These two requirements can
be fulfilled at the same time if the distribution function has an exponential form
ƒ () ∝ e−h

2
, where h is a constant. If the geometrical details of the collision are

taken into account it is easy to arrive at the Maxwell distribution.

2.2 The combinatorial procedure

In the first part of the article Boltzmann repeated this argument for more and
more complicated systems, but at some point he stopped and stated that there
was no need to examine other examples because, in actuality, all cases could be
derived from a more general theorem. This theorem constitutes the subject of
the second part of the paper. Boltzmann’s construction of the theorem moves
through the analysis of some specific problems. For the sake of clarity I will turn
the order upside down: I will first present Boltzmann’s general theorem and then
discuss the single cases.24

The theorem is formulated in the final section significantly entitled Allge-
meine Lösung des Problems des Gleichgewichtes der lebendigen Kraft (General
solution to the problem of equilibrium of kinetic energy). Boltzmann considered
a system made up of n particles moving in a volume and interacting according
to an arbitrary potential function. Furthermore, the total energy of the system is
now a fixed quantity. This last requirement modifies substantially the condition
(1) because the probability for a particle to have a certain velocity is no longer
independent of the velocities of the remaining particles:25

[T]he probability that the velocity of one point lies within given limits
and, at the same time, the velocity of another lies within other limits
will be by no means the product of the two individual probabilities;
rather, the second one will depend on the quantity of velocity of the
first point.

The equilibrium condition must be modified accordingly: Boltzmann has
to shift his focus from the distribution function of a single velocity to the dis-
tribution function expressing the state of the system as a whole. By replac-
ing Boltzmann’s inconvenient notation with modern phase space terminology,

24The second part of Boltzmann (1868) is hardly mentioned in classical studies like Klein (1973)
or Brush (1976) especially because of its obscurity. The combinatorial procedure presented in it
has been object of some statistical analyses in Bach (1990), Costantini et al. (1996), and Costantini
and Garibaldi (1997), but, to the best of my knowledge, the only historical accounts in which it has
been (partly) analyzed are Uffink (2007) and Badino (2009).

25(Boltzmann, 1909, I, 80-81).
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this means that the description of the system is now provided by the func-
tion ƒ (q1, . . . , qn, p1, . . . , pn)dqdp, which gives the fraction of time spent by the
system in the 2n-dimensional phase space region characterized by the values
(q, q+dq) of the generalized coordinates and (p, p+dp) of the conjugate mo-
menta ( = 1, . . . n).26 This phase region is transformed under the effect of the
equations of motion: after a time interval δt, the system will lie in the region
(q′ , q

′
 + dq′ ;p

′
 , p

′
 + dp′ ) and the function becomes ƒ (q′ , p

′
 )dq

′dp′, after 2δt it
becomes ƒ (q′′ , p

′′
 )dq

′′dp′′ and so on. Since the time intervals are equal, Boltz-
mann argued, the system spends equal amount of time in each region, therefore
ƒ (q, p)dqdp = ƒ (q′ , p

′
 )dq

′dp′ = ƒ (q′′ , p
′′
 )dq

′′dp′′ = . . . and so on. Next, Boltz-
mann calculated how the phase volume is transformed by the evolution of the
system. The result is a special case of the Liouville theorem according to which
the phase space volume singled out by the particles of the system does not
change with time, that is dqdp = dq′dp′. It must be noticed that here Boltzmann
did not give a rigorous demonstration of this proposition, but confined himself
to a very synthetic — and obscure — calculation.27 Putting together all these
results, Boltzmann arrived at the general condition of stationarity for a system
under the constraint of the total energy:

ƒ (q, p) = ƒ (q′ , p
′
 ) (2)

Now, since this condition holds for the entire trajectory, it entails that the
stationary distribution function must be a constant of motion, ƒ (q, p) = h. From
this theorem Boltzmann drew important consequences.28 First, the probability for
a system to be in a certain state is proportional to the volume dqdp of the state:
ƒ (q, p)dqdp ∝ dqdp. In other words, equal volume states are equiprobable.
Second, the distribution is a function of the total energy only.29

This theorem founds a completely new approach to the calculation of the
specific form of the equilibrium distribution. Instead of investigating the average
behavior of the system during mechanical collisions, one can divide the space
of the allowed states into regions of equal volume and evaluate the probability
for a single particle to be into a certain region. This probability, according to
Boltzmann, is proportional to the number of ways in which the remaining particles
can be arranged into the remaining regions. Because of the energy constraint,
the fact that a particle lies in a certain state entails that some of the states are
no longer reachable for the rest of the system. As an extreme example, if one
particle owns the whole energy of the system, only the states with zero energy
are allowed to the other particles. Thus, the number of combinations that the
rest of the system can assume is a measure of the probability for a particle to lie

26I adopt the notation dq = dq1 · · ·dqn, and analogously for the momenta p, to indicate syn-
thetically the volume of the phase region.

27In a paper published few weeks later, Boltzmann came back to the problem, but only for the
case of particles under the effect of a force (?Boltzmann, 1909, I, 97-105). It is interesting to note,
incidentally, that in Liouville (1838) the main stress is on the application of the theorem to a system
of differential equations. Only around 1855 Liouville became fully aware of the possible application
of his result to analytical mechanics (cf. Lützen (1990)). Boltzmann does not mention Liouville in
his early papers, he however refers to the Liouville theorem in the Gastheorie (Boltzmann (1898)).

28(Boltzmann, 1909, I, 95).
29Boltzmann implicitly assumed that the total energy is the only independent constant of motion.

As a matter of fact, the theorem is more general because in 1871 Boltzmann would prove that each
arbitrary function of the constants of motion is stationary. On this point see also (?, 70-71).
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in a certain state. This procedure is fully combinatorial and relies on the fact that
the distribution is a function of the total energy only.

Boltzmann developed this procedures for a system of particles moving on
a surface (two-dimensional case) and in a volume (three-dimensional case). The
first example is very instructive because Boltzmann arrived at the final formula
by increasing progressively the complexity of the system. He assumed the en-
ergy be divided into p elements of magnitude ε and calculated the probability for
a molecule to have energy between ε and (+1)ε. He began with two molecules
(n = 2) and showed how to construct the combinatorial formula for increasing n.
The general expression turned out to be a special case of the Polya distribution.30

To obtain the Maxwell distribution in two dimensions, Boltzmann calculated the
limits n → ∞ and p → ∞. For the three-dimensional case the procedure is com-
pletely analogous except that Boltzmann considered infinitesimal energy cells
and replaced the combinatorial formula with integrals. Again, the idea is that the
probability for a particle to lie in a certain state is given by integrating over all
possible states accessible to the remaining particles.31 The result is a complex
expression containing Gamma functions which can be reduced to the Maxwell
distribution by taking the limit n→∞.32

The theorem of the Allegemein Lösung and the combinatorial argument
represent a remarkable step forward that ‘fills a gap of all others derivations’
because they entail ‘not only that for [Maxwell’s] distribution of velocity the equi-
librium takes place, but also that the [equilibrium] is possible in no other way.’33

This statement of Boltzmann has not been emphasized enough by the commen-
tators. Here the Austrian physicist claims that, contrary to the kinetic approach,
the combinatorial argument yields a proof of the necessity of the Maxwell dis-
tribution. The necessity relies, obviously, on the fact that this distribution is the
most probable among the possible ways to distribute the time spent by a single
particle in each state.34 This result would mark Boltzmann’s research program in
the subsequent years.

There is a broad point that I think we can derive from this second part of the
1868 paper: Boltzmann did not appear to draw a clear-cut line between mecha-
nistic and probability-based approach to equilibrium. Especially in the Allgemeine
Lösung he seemed to look for the general conditions under which a mechanical
system, such as a gas, can be fruitfully described using combinatorial and prob-
abilistic means. As we will see better in the next few sessions, probability and
mechanics are neither alternative nor in competition, but rather complementary
tools to clarify the nature of equilibrium. Specifically, in 1871 Boltzmann would
try to isolate and clarify the various ingredients of the combinatorial approach in

30For the details see (Costantini et al., 1996; Badino, 2009, 83-85).
31This part of the argument has been analyzed in (Uffink, 2007, 955-956). Incidentally, Boltz-

mann’s procedure is totally equivalent to the technique used today to obtain the canonical distri-
bution. Normally, one calculates the distribution for a system combined with a heat reservoir by
integrating out the states of the reservoir. Boltzmann proceeds in the same way, because if n is
large enough, the single particle can be considered as immersed in a heat bath.

32(Boltzmann, 1909, I, 88-89).
33(Boltzmann, 1909, I, 96).
34The adoption of a ‘time’ definition of probability prevents Boltzmann from comparing possi-

ble distributions as he would do in 1877. The Maxwell distribution is however the most probable
because any other partition of the time would force the remaining particles into improbable con-
figurations.
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order to integrate them with the kinetic one and to reach a kinetic proof of the
uniqueness of the equilibrium.

A further important point is that the rigorous derivation of the equilibrium
distribution requires asymptotic conditions. Only when the number of particles
becomes infinite the combinatorial formula turns into the usual Maxwell distribu-
tion. On the last page of the paper Boltzmann discussed the limitations of his
procedure. The combinatorial calculation relies on the assumption that all states
allowed by the total energy condition will be eventually passed through by the
system. This assumption will come to be known as ‘ergodic hypothesis’35 and is
essential to the combinatorial procedure. If the actual trajectory of the system
is constrained into a fraction of the possible states, the combinatorial procedure
does not provide any information on the equilibrium. Boltzmann argued that this
occurs when the phase variables are not independent, but are interwoven by
some constraint. Specifically, there are two cases in which such a phenomenon
can happen. First, the system is strictly periodic and the trajectory closes itself
‘without having assumed all values compatible with the principle of energy.’36

This is a case of stable ‘false equilibrium’ to which the combinatorial procedure
does not apply.37 Alternatively, the system can present an unstable ‘false equilib-
rium’. This occurs when the particles are arranged in a very peculiar way, which
forces the system into a weird, pathological behavior. Boltzmann mentioned the
example of gas molecules lined on a straight line. If the line is perfectly straight
and the molecules are properly directed, they will continue to oscillate along
it without reaching the homogeneous and isotropic distribution they are theo-
retically capable of. Boltzmann clearly considered these microarrangements as
improbable. Although he could not provide a formal proof, he appeared to think
that an increasing number of particles would make these arrangements even
more unstable and therefore improbable. Here we can see a second important
role played by the asymptotic conditions: they are able to rule out theoretical
exceptions to the rigorous derivation of the equilibrium distribution.

3 Toward the Boltzmann equation

In 1870 and 1871, Boltzmann went to Heidelberg and Berlin to work with G. Kirch-
hoff and H. Helmholtz chiefly on problems of electrodynamics.38 He was however
still struggling with the problem of understanding the results achieved in 1868.
The year 1871 was particularly productive for Boltzmann. I will especially discuss
a trilogy of papers in which he explored the interplay between the kinetic ap-
proach and the combinatorial procedure. As we have seen, the general theorem
of equilibrium had been developed for a very abstract system of particles. In the
first two papers Boltzmann elaborated a more specific kinetic model (polyatomic
molecule) and unfolded the dynamic characteristics of the ergodic hypothesis.
In the last one, he generalized the collision mechanism. These reflections would
lead to Boltzmann’s theory of irreversibility.

35Maxwell (1879); Ehrenfest and Ehrenfest (1911); Von Plato (1991).
36(Boltzmann, 1909, I, 96).
37These periodic trajectories had been the subject of Boltzmann’s first important paper (Boltz-

mann, 1866, 1909, I, 9-33).
38(Hörz and Laass, 1989; Höflechner, 1994, 20-24).
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3.1 The polyatomic molecule and the ergodic hypothesis

The general theorem of equilibrium relied on two pillars: the invariance of the
phase volume, which is today called the Liouville theorem, and the ergodic hy-
pothesis. In 1868 Boltzmann had given only a cursory discussion of these two
ingredients. At the beginning of 1871 he came back to the topic. In the first
paper of the trilogy39 Boltzmann provided a more rigorous and elegant proof of
the Liouville theorem for a general kinetic model, the polyatomic molecule. A
polyatomic molecule is a system of non-interacting atoms in free motion within
the molecule. In turn the molecules collide so that one can apply the usual kinetic
formalism. Boltzmann showed that the invariance of the phase volume holds true
both for the free motion and for the molecular collisions. To prove the theorem
Boltzmann calculated the change of the phase volume under the effect of the
equations of motion. The transformation of the phase variables is given by the
Jacobian determinant:

dqdp =
∂(q′1, . . . , p

′
n)

∂(q1, . . . , pn)
· dq′dp′ (3)

Next he proved that the Jacobian must be 1, so that the phase volume
remains the same.40 The extension to collision is possible by understanding two
interacting molecules as a new complex system in free motion ruled by suitable
equations that fulfill the Liouville theorem. This procedure leads easily to retrieve
the kinetic equilibrium condition (1). Thus, by combining the Liouville theorem
with a realistic kinetic model, Boltzmann was able to extend the kinetic formalism
to systems with a constrained total energy.

The second paper of the trilogy is dedicated to understanding better the
features of ergodicity.41 In the first part Boltzmann generalized the theorem
presented in the Allgemeine Lösung. Let us study a system of non-interacting
polyatomic molecules. The state of each molecule is described by n generalized
variables (s1, . . . , sn). The number of molecules in a given state ds = ds1 . . . dsn
at an instant t is dN = ƒ (t,s)ds. Under these conditions, and applying the Liou-
ville theorem, Boltzmann showed that the stationary distribution depends only
on the constants of motion ϕ1, . . . , ϕn:

dN =
ƒ (ϕ1, . . . , ϕn)

∂(ϕ1,...,ϕn)
∂(s1...sn)

dϕ1 . . . dϕn (4)

Boltzmann understood that this result represented a bridge between kinetic
theory and the general theory of differential equations. He mentioned an impor-
tant relation between the Liouville theorem and Jacobi’s principle of last multiplier

39(Boltzmann, 1871c, 1909, I, 237-258).
40Though, Boltzmann’s proof relies on a restrictive assumption on the equations of motion. He

supposed that the time evolution of a set of phase variables, say the generalized coordinates, de-
pends on a function the other variables only, that is the momenta, and vice-versa. This assumption
allows Boltzmann to simplify the Jacobian matrix. Modern proofs do not deploy the Jacobian, but
use the Hamiltonian (which is a function of both sets of variables) and the equation of continuity.

41(Boltzmann, 1871b, 1909, I, 259-287).
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according to which if one knows n−1 integrals of a set of n differential equations,
it is possible to construct the integrating factor of the remaining equation.42

In the second part of the paper Boltzmann investigated the ergodic hypoth-
esis he had already mentioned in passing in 1868. He noticed that, in mechanics,
we usually deal with trajectories whereby if one knows a certain number of vari-
ables, the remaining ones may be established via equations of motion. But one
can conceive cases in which the information deriving from some variables is in-
sufficient to fix the others. To substantiate this thought Boltzmann imagined a
point orbiting a centre of force by which it is attracted with a force (/r) + (b/r2).
The resulting motion is a series of ellipses. If the angle formed by the apsidal
lines of two consecutive ellipses is an irrational multiple of π, a precession of the
elliptical orbit takes place and the resulting trajectory will tend to fill all the circu-
lar region between the circumferences described by the major apsis and the one
described by the minor apsis. A second example concerns an oscillatory system
with equation 2+by2. Also in this case, if /b is irrational, the system tends to
cover densely all the allowed space.

These simple examples display an important feature of the ergodic (in this
case ‘quasi-ergodic’) motion, namely that the coordinates ‘are mutually indepen-
dent (except that they confine each other within given limits)’:43 knowing one
variable is not sufficient to establish the other. In an ergodic system the integrals
of motion fix some variables, but the remaining are free to assume whatever
value.

This brings Boltzmann to a further remark about his extension of the 1868
general theorem. In fact, it is now simple to distinguish between dependent
variables (fixed by the constraints) and independent variables (free to change).
Let us assume that s1, . . . , sk variables are independent and the remaining n− k
are fixed by the integrals ϕk+1, . . . , ϕn. By applying the same argument as before,
Boltzmann demonstrated that one can express the average time spent by the
system in a certain state of the independent variables in terms of the integrals of
motion:

ƒ (s1, . . . , sk)ds1, . . . , dsk =
Cds1, . . . , dsk

∂(ϕk+1...ϕn)
∂(sk+1...sn)

(5)

where C is a constant. Since the independent variables s1, . . . , sk may assume
all values consistent with the general constraints of the problem, one needs only
to know the integrals of motion ‘without that be necessary to know something
on the way in which s1, . . . , sk actually change’.44 Equation (5) is actually an-
other expression of the 1868 general theorem. As Boltzmann pointed out, the

42Jacobi (1844); for a modern perspective see Nucci and Leach (2008). Historically, this relation
is remarkable. Boltzmann envisioned — and actually used, for instance in (Boltzmann, 1871d,
1909, I, 200-227) — the connection between Jacobi’s principle and the concept of invariant integral
(cf. Berrone and Giacomini (2003)) that would be formalized by Poincaré many years later in a
work that, ironically, was to lead to the recurrence theorem, the basis of Zermelo’s objection to
Boltzmann’s approach in mid-1890s. Both Liouville and Jacobi had seen the same connection (cf.
Lützen (1990)), but it seems that Boltzmann was the first to figure out physical applications of the
theorem.

43(Boltzmann, 1909, I, 270).
44(Boltzmann, 1909, I, 277).
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specific form of the distribution might be now determined by integrating out all
allowed states of the independent variables, which is precisely the combinatorial
procedure developed in 1868. But what is the physical justification of the ergodic
hypothesis? On this issue, Boltzmann had to offer little more than a vague appeal
to the disorder of the motion:45

The great irregularity of the thermal motion and the multiplicity of
the forces acting on the body from outwards make probable that its
atoms [. . . ] pass through all the possible positions and speeds consis-
tent with the equation of energy.

The ergodic behavior is related to the internal irregularity of the gas and
to the large number of degrees of freedom, but a definite proof of the ergodic
hypothesis is still a desideratum.

3.2 Generalizing the collisions

The third paper, the Analytischer Beweis, is the most widely studied of the 1871
trilogy, especially because the title allegedly suggests a shift of emphasis to the
problem of irreversibility.46 Here, however, I am not interested in the analytical
proof of the second law, but rather in the collision theory presented in the first
part of the article. This collision theory presents some novelties directly related
to the combinatorial procedure and, more importantly, is a crucial ingredient of
the Boltzmann equation.

In the 1868 Studien, Boltzmann had investigated the collision process be-
tween two particles of arbitrary velocities. This investigation had led to the equi-
librium relation (1), but it had not given any clue about the evolution toward the
equilibrium. In the Analytischer Beweis Boltzmann changed tack: he zoomed
in on a single molecule and investigated its behavior when colliding with other
molecules under all possible conditions. This new approach resembles closely
the essence of the combinatorial procedure. In that case Boltzmann had sought
for the probability for a single particle to lie in a certain state independently of
the state of the remaining particles. To do that, he calculated the probability by
integrating out all the allowed states of the rest of the system. This calculation
yielded a distribution law that, in the asymptotic condition of infinitely many par-
ticles, coincided with Maxwell’s. In the Analytischer Beweis Boltzmann framed a
sort of kinetic analogon of that combinatorial procedure: he followed the behav-
ior of a single molecule in collision over time with the remaining molecules in all
possible conditions. For his calculation he made also use of the Liouville theorem
and of the ergodic hypothesis.

Let us briefly see the new collision theory. The main idea boils down to eval-
uate two processes. First, one has to compute the number of collisions that take
a molecule47 from an arbitrary initial state to a certain final state dqdp. To do
this it is sufficient to integrate the usual number of collisions that end up in dqdp
over all possible initial states. Analogously, the number of collisions that take a

45(Boltzmann, 1909, I, 284).
46(Boltzmann, 1871a, 1909, I, 288-308).
47Boltzmann considered polyatomic molecules of the kind examined in Boltzmann (1871c).
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molecule away from dqdp is given by the integration of the possible collisions
that have dqdp as the initial state. The equilibrium state is of course reached
when the number of molecules entering the arbitrary state dqdp is equal to the
number of those getting out of it. Boltzmann showed that this condition yields a
Maxwellian form of the distribution function. But this new collision theory does
more, because it also gives a characterization of all intermediate steps between
an arbitrary state and the equilibrium. In the next section we will see how Boltz-
mann used this theory to construct the equation named after him. Here I want
to point out that also this new collision theory is embedded in the framework
of asymptotic conditions. For example Boltzmann stated that there must be ‘in-
finitely many gas molecules’ in the system.48 Even more importantly for what
follows, Boltzmann assumed that the time span over which he calculated the
collisions was ‘very large’. This asymptotic condition on the time will become
extremely relevant in the next section to interpret the thorniest passage of the
1872 paper.

4 The Boltzmann Equation and the H-theorem

The foregoing sections have established two main points. First, in the wake of
the results achieved in 1868, Boltzmann took a pluralistic strategy according to
which elements of the successful combinatorial procedure were clarified and in-
tegrated with the established kinetic approach. This process led to important
ingredients of the Boltzmann equation that we will meet again in this section.
Broadly speaking, this process shows that the 1872 theory emerged by the inter-
play between a kinetic model and a combinatorial procedure which was imbued
with probabilistic language. Since, for historical reasons that we will see in a mo-
ment, the 1872 paper was completely contiguous to the 1871 trilogy, one has
to conclude that Boltzmann could not possibly consider the 1872 theory as an
exclusively mechanical theory.

The second point concerns the asymptotic conditions. They are used con-
sistently during the period 1868-1871. They ensure a rigorous derivation of the
equilibrium distribution, they make pathological microarrangements improbable,
and they represent the framework of the collision theory. Unsurprisingly, they
will play a crucial role in our interpretation of Boltzmann’s attitude toward the
H-theorem.

4.1 Putting the mosaic together

We do not know much about the historical background of the famous 1872 paper
in which Boltzmann put forward his equation and the H-theorem.49 It is estab-
lished that the essence of the paper was elaborated during his stay in Berlin. In
a famous letter to his mother Katharina on 27 January 1872, Boltzmann wrote
about having presented an outline of the paper before the Berliner Physikalische

48(Boltzmann, 1909, I, 289).
49(Boltzmann, 1872, 1909, I, 316-402). The title of the article, “Further studies on the equilibrium

between the gas molecules”, characterizes it as a direct continuation of the 1868 paper.
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Gesellschaft. However, the talk attracted no attention, except for some remarks
of Helmholtz:50

Yesterday I spoke at the Berlin Physical Society. You can imagine how
hard I tried to do my best not to put our homeland in a bad light. Thus,
in the previous days, my head was full of integrals. [. . . ] Incidentally
there was no need for such an effort, because most of the listeners
would have not understood my talk anyway. However, Helmholtz was
also present and an interesting discussion developed between the two
of us.

From another letter to Josef Stefan on 2 February 1872 we are also informed
that Boltzmann was bothered about loosing the priority, after all an understand-
able worry for an ambitious young scholar. For this reason he had worked out
the paper in a hurry: he intended to publish the talk in the Annalen der Physik
and a lengthier, elaborated version in the Wiener Berichte.51 On the insistence
of Stefan, Boltzmann eventually resolved to publish the paper only in the Wiener
Berichte and sent off to Annalen an account of his studies on electrodynamics.

These scant pieces of information establish two points relevant for our dis-
cussion. First, the 1872 paper was elaborated together with the cluster of re-
flections that found place in the 1871 series and it should be read together with
its 1871 predecessors. Secondly, for contingent reasons — worries about the
career, concomitant work on other subjects — the paper was written under pres-
sure. This circumstance should encourage a contextualization of the work and
discourage too literal a reading.

Let us now see how the different threads elaborated in 1871 are interwoven
in the 1872 paper. In the introduction Boltzmann laid down the essential message
of the work. The aim is to find the necessary and sufficient conditions for the
Maxwell distribution. Accordingly, the argument has a strong emphasis on the
inferential structure: Boltzmann wants to investigate the logical relation between
some assumptions and their consequences. Moreover the argument he is about
to present is essentially probabilistic in nature and this fact deserves a specific
discussion:52

[T]he problems of the mechanical theory of heat are also problems
of probability theory. It would, however, be erroneous to believe that
the mechanical theory of heat is therefore afflicted with some uncer-
tainty because the principles of probability theory are used. One must
not confuse an incompletely known law, whose validity is therefore in
doubt, with a completely known law of the calculus of probabilities; the
latter, like the result of any other calculus, is a necessary consequence
of definite premises, and it is confirmed, insofar as these are correct, by
experiment, provided sufficiently many observations have been made,
which is always the case in the mechanical theory of heat because of
the enormous number of molecules involved.

50(Höflechner, 1994, II, 9), (Cercignani, 1998, 10).
51(Höflechner, 1994, II, 10-11).
52(Boltzmann, 1909, I, 316-317).

15



This passage shows very explicitly the tight relation between theory of heat
and probability and the inferential structure of the argument. Boltzmann saw
a probabilistic theory as a perfectly exact theory in the sense that the conse-
quences follow logically from the premises, therefore the conclusions that one
can draw from the initial assumptions are not undermined by the fact that one
is using probabilistic arguments. Another point mentioned in the quotation con-
cerns the physical plausibility of these assumptions. The alleged uncertainty that
might plague a probability-based theory of heat lies obviously in the presence
of exceptions. The fact that something is merely ‘probable’ means that there
are exceptions to its occurrence. After all, it was well known that, in statistical
reasoning, pathological microscopic arrangements exist that can possibly lead to
odd behaviors. Boltzmann himself had discussed examples of these pathological
arrangements at the end of Boltzmann (1868) (section 2.2). However Boltzmann
here explicitly excludes the exceptions on the ground of the asymptotically large
number of molecules. Gases are constituted of a huge number of molecules, we
can take volumes and observation time as large as we please. These conditions,
as far as all experimental outcomes are concerned, ensure that exceptions will
not occur, hence we can consider the theory as strictly valid. Cast in the frame-
work of asymptotic conditions, Boltzmann’s argument becomes a purely logical
and mathematical argument. The asymptotic conditions are supposed to dis-
pose of these arrangements or, at least, to confine them to the realm of purely
theoretical possibilities. Thus, the previous quotation clarifies that when Boltz-
mann ascribes ‘necessity’ to his conclusions he means the internal necessity of
his inferential argument, namely the logical necessity and the physical necessity
insofar the asymptotic conditions are fulfilled.

As an illustration of how Boltzmann constructed his 1872 theory we can
take the case of monoatomic gas. He insisted that there are only two general as-
sumptions. First, all directions of motion are equally probable (isotropy), second,
the molecules are uniformly distributed over all possible positions (homogeneity).
Boltzmann pointed out that, even though at the beginning such conditions may
not hold true, the effect of the collisions is precisely to equalize directions and
positions. This means that the equiprobability should be understood as an equal
tendency of the molecules to assume directions and positions as a consequence
of the collisions. This point is important because in the second part of the paper
Boltzmann planned to deal with transport phenomena and the equal tendency
based on collisions allowed him to introduce a non-homogeneous distribution
function without major changes in the mechanism of equilibration. Hence, the
inferential structure of Boltzmann’s argument is the following: he showed that
the equilibration of velocity follows from the assumed equilibration of positions
and directions of motion.

The derivation of the Boltzmann equation is well known. Let us focus on the
function ƒ (v1, t)dv1 which gives the number of molecules that have velocity v1
at the time t. Boltzmann evaluated the time variation of ƒ (v1, t)dv1 by applying
a version of the collision mechanism worked out in the Analytischer Beweis. The
change of the distribution depends on the balancing between the molecules gain-
ing velocity v1 and those loosing it as an effect of collisions. Therefore Boltzmann
calculated the total number of collisions during the infinitesimal time interval τ
that have v1 as starting velocity (that is, molecules that leave the corresponding
velocity cell) and compared it with the number of collisions that have v1 as final
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velocity (that is, molecules that enter the corresponding velocity cell). As in the
Analytischer Beweis, this calculation requires to integrate out the other possible
velocities occurring in the collision. The sought-for numbers are, respectively:

∫

dn1 = τdv1

∞
∫

0

v1+v2
∫

0

dv2dv′1ψ(v1,v2,v
′
1)ƒ (v1, t)ƒ (v2, t) (6)

∫

dn2 = τdv1

∞
∫

0

v1+v2
∫

0

dv2dv′1ψ(v
′
1,v

′
2,v2)ƒ (v

′
1, t)ƒ (v

′
2, t) (7)

where v2 is the velocity of the second colliding molecule, v′1,v
′
2 are the velocities

of the molecules after the collision and ψ is the differential cross-section.53 By
series expanding ƒ (v1, t) at the point v1 of the velocity space and neglecting
higher order differentials, it can be shown that:

∂ƒ (v1, t)

∂t
=
∫

dn2 −
∫

dn1 (8)

therefore a time equation for ƒ (v1, t) may be obtained by directly comparing
the two numbers of collisions. Here Boltzmann deployed the results arrived at
in Boltzmann (1871b) and Boltzmann (1871c) and noticed that the function ψ
must fulfill the Liouville theorem. This means that ψ remains the same for both
types of collisions. The Liouville theorem allows a remarkable simplification of
the integrals. Now the time variation of the distribution function can be written
as a unique integro-differential equation of balancing between the distributions
of the velocities involved in the collision:

∂ƒ (v1, t)

∂t
=

∞
∫

0

v1+v2
∫

0

dv2dv′1ψ(v1,v2,v
′
1)[ƒ (v

′
1, t)ƒ (v

′
2, t) +

− ƒ (v1, t)ƒ (v2, t)]

This is the famous Boltzmann equation. It is easy to prove that the Maxwell
distribution fulfills the equilibrium requirement ∂ƒ (v1, t)/∂t = 0, therefore the ini-
tial conditions assumed by Boltzmann are sufficient. To prove that they are also
necessary, Boltzmann must show that the Maxwell distribution is the only equi-
librium distribution. To accomplish that, he stated the H-theorem. He introduced
a special function of ƒ , namely H(ƒ , t) =

∫

dvƒ (v, t) log ƒ (v, t) and showed that its
time derivative must decrease monotonically to a minimum value, corresponding
to the Maxwell distribution.54 I will say more on the H function in the next section,
but now I would like to discuss Boltzmann’s comments on this outstanding result.

53The second colliding molecule can assume whatever value, therefore its integration ranges
from zero to infinity. On the contrary, the exit velocities are constrained by the condition on the
total energy. In effect, one of these velocities, in this case v′2, is uniquely determined by the others.

54Famously in 1872 Boltzmann proposed the letter E whereas the letter H we used today
was first introduced by Burbury. Moreover, in Boltzmann’s paper the function reads H =
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After pointing out that ‘[H] must necessarily decrease’, Boltzmann stated:55

It has been rigorously proved that, whatever may be the initial dis-
tribution of kinetic energy, in the course of a very long time, it must
always necessarily approach the one found by Maxwell.

I have highlighted this sentence because most of the strength of the mech-
anistic slumber narrative relies on it. Here Boltzmann does not mention any
exception to his theorem. On the contrary he emphasizes the necessity of the
conclusion. Is thus Boltzmann denying the existence of exceptions? The forego-
ing analysis suggests that this is not the case. In reality, the issue of physical
exceptions has no room whatever here: Boltzmann is talking about the logical
necessity of the relation between the initial assumptions and the conclusions of
the theorem. In fact, he states that the theorem holds for any arbitrary dis-
tribution of velocity, not for any arbitrary microscopic arrangement. The hasty
inference that, if it holds for each distribution, then it must hold for each mi-
croarrangement (because each distribution corresponds to many arrangements,
included the pathological ones) misses the important point that the problem of
the pathological arrangements has already been left out of the inferential argu-
ment: Boltzmann focuses only on the transformation of the distribution and does
not mention exceptions because they are excluded from the start. Put in other
words: Boltzmann knew that exceptions to the second law are possible. The ev-
idence displayed in section 1.2 demonstrates this point beyond doubt, I think.
For this reason, he formulated his H-theorem under conditions apt to immunize it
from the exceptional cases.

Now, one of the consequences of the mechanistic slumber narrative, on
the basis of the previous quotation, is that Boltzmann realized a clear distinction
between distribution and microarrangements only around 1877, thus his state-
ments about distribution in 1872 should be read as statements about microar-
rangements. However the previous sections have presented several reasons to
dispute this reading. For one, the combinatorial procedure relies precisely on pic-
turing the distribution as a combination of microscopic arrangements. Further,
Boltzmann’s explicit mention of exceptions as early as 1868 suggests that he
knew well that some of them might be exceptional. So much so that he repeated
this point in 1872 when he turned to the discrete case. After the derivation
we have examined before, Boltzmann analyzed the system under the assump-
tion that the molecules posses only discrete amounts of energy. In this case
he pointed out that the distribution tends to reach the equilibrium after a very
long time ‘with the exception of very special cases’, namely pathological mi-
croarrangements.56 In addition, we have seen that Boltzmann’s way to dispose
of the exceptions was to cast the argument in the framework of asymptotic condi-
tions. The use of these conditions in 1872 signalizes Boltzmann’s awareness that
his reasoning does not concern the transformation of individual microscopic ar-
rangements, but rather the transformation of the distribution function as a whole.
∫

dvƒ (v, t)[log ƒ (v, t) − 1] because the term −1 simplifies a bit the calculation. The term, how-
ever, is not strictly necessary because the additional integral

∫

∂ƒ (v, t)/∂t coming out from the
time derivative of H can be eliminated by appealing to the conservation of the total number of
molecules. Boltzmann mentioned this point in a footnote.

55(Boltzmann, 1909, I, 345).
56(Boltzmann, 1909, I, 357-358).
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Finally, Boltzmann himself cautioned the reader against too a literal understand-
ing of the theorem for the monoatomic gas. He stressed that, in this case, ‘the
procedure used [. . . ] is of course nothing more than a mathematical artifice.’ A
physical meaning of this argument, Boltzmann stated, can be gained by applying
it to the case of polyatomic molecule, his favored kinetic model.

One further important clue for my reading comes from the apparently mys-
terious proviso that the monotonic decrease of H takes place ‘in the course of a
very long time.’ Why is Boltzmann stating this condition? Nothing in his theory
justifies such a scale evaluation: Boltzmann has given no reason to conclude that
a very long time is necessary to reach the equilibrium. Even more strikingly, if
taken as a physical pronouncement, this condition is wrong! It is well known that
the collision term of the generalized Boltzmann equation changes very rapidly
and the system reaches the equilibrium in a fraction of second.57 The conclusion
is that we should not read Boltzmann’s remark on the long time as referring to
a physical situation at all. Instead, it is another example of the same asymp-
totic condition we have already met in the Analytischer Beweis. As in that case,
Boltzmann is assuming an asymptotically long time to transform an uncertain
statement in a purely logical proposition of probability calculus.

In the second and third part of the paper Boltzmann made extensive use of
the analytical machinery developed in 1871. To treat the transport phenomena,
for instance, he exploited concepts introduced for the polyatomic molecule. He
introduced the generalized distribution function ƒ (q,v, t)dqdv depending on the
velocity as well as on the position because of the local differences in density.
Then he obtained a generalized Boltzmann equation by combining the free evo-
lution of the local volumes (streaming term) with the collision term and applied
the analytic arsenal developed for the polyatomic molecule to the problem of
transport phenomena. The same arsenal came explicitly to the fore in the third
part where Boltzmann generalized the H-theorem to the polyatomic molecule.
However also in these cases, he showed that the argument retains its inferential
structure.

4.2 The origin of the H-function

The emergence of the H-theorem is a long-standing mystery. As it stands in 1872,
the theorem consists merely in stating the suitable H-function and in using the
Boltzmann equation to show that it has the desired properties. In other words,
given the correct H-function the theorem becomes an analytical statement whose
validity is constrained by the conditions of validity of the Boltzmann equation. It
is clear that Boltzmann had no argument to derive that function on the ground
of the dynamics of the system. Therefore, the question: how did he find out the
correct H-function? The usual answer resorts to a pure flash of genius. Stephen
Brush has ventured the hypothesis that the H-function was ‘a brilliant inspiration’
and suggested that it was ‘probably the result of educated guesses on his pre-
vious work with entropy formulae, combined with some trial-and-error work.’58

Most of other historians have simply restrained from advancing hypotheses and
have taken the H-function as a miraculous gift of Boltzmann’s ingenuity.

57See for example Cohen (1962).
58(Brush, 1976, 600).
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The mechanistic slumber narrative is a serious obtacle to any plausible
guess on the birth of the H-function. Indeed, it pictures Boltzmann’s pre-1877
work as purely mechanical and, since there is no clear mechanical way to arrive
at the function, we are only left with the option of the flash of genius. But as
soon as we release this constraint and concede the possibility that Boltzmann
attained the H-function through statistical arguments, new possibilities become
available. I will put forward here a conjecture on the genesis of the H-function
that draws upon Boltzmann’s wholesale use of probabilistic arguments before
1877. Admittedly, it has no direct support, but it borrows plausibility from my
general argument. The conjecture runs as follows.

We have seen that Boltzmann had the solution to the uniqueness of the
Maxwell distribution as early as 1868. He knew that such uniqueness followed
from the fact that the Maxwell distribution is the most probable one, to wit com-
patible with the largest number of microscopic configurations. If we look at the
way in which Boltzmann entwined mechanical and probabilistic arguments, it be-
comes reasonable that he had elaborated the H-function already around 1870.
Looking for a solution to the problem of uniqueness, Boltzmann might have re-
sorted again to combinatorial arguments as a heuristic tool. In particular, he
might have asked for a function of the distribution which becomes an extreme (a
maximum or a minimum) for the Maxwell distribution only. This problem is very
difficult in the kinetic approach, but rather accessible in the combinatorial one:
Boltzmann could have solved this problem by a procedure very similar to that
used in 1877, that is by calculating the state probability and by maximizing it. He
could have realized very soon that the state probability can be written:

W =
N!
∏

n!
(9)

where N is the total number of molecules and n is the number of molecules in
the -th energy cell. If we now pass to the logarithm, it turns out that logW =
logN! −
∑

logn!. Using the Stirling approximation that transforms n! into nn , it
is immediate to conclude that logW is a maximum when the function

∑

n logn
is a minimum (the term N logN is a constant). But this function is precisely the
H-function.

It is important to notice that this procedure does not require conceptual
resources unknown to Boltzmann in early 1870s. Moreover, this argument is
not essentially different from the one put forward in 1868, which also relied on
counting the number of microscopic configurations compatible with some state.59

If we admit, contrary to the mechanistic slumber narrative, that Boltzmann took
seriously the combinatorial procedure as a heuristic tool, then the conjecture
sketched above becomes plausible. Furthermore, we do not need to assume that
Boltzmann had a full-fledged version of the 1877 theory already at his disposal
before 1872, but only the fundamental idea. If this is the case, Boltzmann might
have realized, via combinatorial reasoning, that the minimum of the function H =
∫

dvƒ (v, t) log ƒ (v, t) corresponds to the maximum of probability and therefore to
the Maxwell distribution.

59Indeed, in an interesting paper published in 1910 Wilhelm Lenz showed the amazingly close
connection between the combinatorial arguments of 1868 and 1877 (Lenz (1910)). For a recent
comparison see (Badino, 2009, 85-87).
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This conjecture allows us to dispose of some puzzles. First, as already re-
minded, there is no account for the genesis of the H-theorem apart from those
based on the stroke of genius or trial-and-error. Secondly, in the 1877 paper
Boltzmann used equation (9) to define the probability of state, but, amazingly,
there is no comment whatever on the identity between the denominator of the
state probability and the H-function. It is rather baffling that Boltzmann did not
comment on the formal similarity, even more so if he had discovered it for the
first time in 1877 through a combinatorial way. Instead, according to my conjec-
ture he had no reason to comment because the H-function had originally been
derived along the same line.

Finally, another support for this conjecture comes from the historical anal-
ysis of Boltzmann’s work in 1871 and his pluralistic strategy. In the foregoing
sections we have seen that time and again Boltzmann fell back to the combina-
torial procedure to improve the kinetic approach. Combinatorially, the proof of
uniqueness was rather straightforward, it is therefore reasonable that Boltzmann
looked at a combinatorial path to solve the problem and successively tried to
integrate this path in the kinetic approach. This conjecture has thus the advan-
tage of making the genesis of the H-function consistent with Boltzmann’s overall
strategy.

5 Of drawing and counting

According to the mechanistic slumber narrative Boltzmann changed radically his
views after Loschmidt’s 1876 reversibility argument. To be sure, 1876 was not
likely the first time Boltzmann heard of the reversibility argument, though. For it
had made its appearance already in an interesting paper that William Thomson
published in Nature on April 9, 1874.60 In this paper Thomson discussed minutely
the argument of Maxwell’s demon and its meaning for the second law.61 At a
certain point he even presented an early version of the reversibility argument:62

Suppose now the temperature to have become thus very approxi-
mately equalized at a certain time from the beginning, and let the mo-
tion of every particle become instantaneously reversed. Each molecule
will retrace its former path, and at the end of a second interval of time,
equal to the former, every molecule will be in the same position, and
moving with the same velocity, as at the beginning; so that the given
initial unequal distribution of temperature will again be found, with only
the difference that each particle is moving in the direction reverse to
that of its initial motion. This difference will not prevent an instanta-
neous subsequent commencement of equalization, which, with entirely
different paths for the individual molecules, will go on in the average
according to the same law as that which took place immediately after
the system was first left to itself.

60Thomson (1874).
61He hypothesized an ‘army’ of demons to select suitable molecules and to change artificially

the distribution of temperature in a system.
62(Thomson, 1874, 442).
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This passage hints at many intriguing points. First, Thomson alludes to the
fact that, after having reached the initial state, the system will go on to a new
uniform distribution of temperature albeit through a different path. This means
that reversibility undermines equilibrium only locally. Boltzmann would claim the
same some years later.63 Second, Thomson somewhat parallels the reversibility
argument with the demon argument in considering both as external interventions
and ‘very special’ cases. The behavior of the system ‘left to itself’ is entirely
different and Thomson claimed that if the number of molecules approaches in-
finity, the physical plausibility of the argument become negligible: ‘the greater
the number of molecules, the shorter will be the time during which the dise-
qualizing will continue; and it is only when we regard the number of molecules
as practically infinite that we can regard spontaneous disequalization as prac-
tically impossible.’ Thus Thomson admitted that the demon argument and the
reversibility argument indeed prove the theoretical possibility of violation of the
second law. To be sure, he even evaluated — qualitatively and quantitatively in a
very particular case — the probability of such violation. In general, however, he
relied on the asymptotic conditions to discard these conclusions from the realm
of the physical possibilities. When molecules grow to infinity, such a coherent
behavior becomes implausible.

Before moving on to Loschmidt’s use of the reversibility argument, I would
like to discuss more thoroughly the objection I mentioned in section 1.3. One
might concede that Boltzmann was aware of a certain statistical meaning of
the second law and that his deterministic language in 1872 only referred to the
inferential structure of the theory, but these concessions notwithstanding, the
reversibility argument raises genuine problems for the H-theorem. In fact, it
provides a powerful algorithm to construct counterexamples to the H-theorem
even when the two fundamental assumptions of isotropy and homogeneity (and
the asymptotic conditions as well) hold true. So, an inferential reading of the
H-theorem would not save Boltzmann from facing the limitations of his theory.
More importantly, the reversibility argument forces us to reconsider the applica-
tion of the SZA, the assumption at the root of the Boltzmann equation. Brown,
Myrvold, and Uffink have efficaciously summarized the challenges implicit in the
reversibility argument:64

What the Loschdmidt objection does is to demonstrate that Boltz-
mann’s use of the H-theorem is seriously incomplete. First, there is no
reason given as to why the SZA holds for pre-collision velocities rather
than post-collisions ones. But secondly, and more to the point, so far
there is no categorical reason to think that it could not be a contingent
fact (unexplained for sure) that the SZA in its standard form holds at all
times.

Thus, there may be a bottom line of truth in the mechanistic slumber, after
all. Loschmidt’s argument convinced Boltzmann that his interpretation of the H-
theorem was insufficient and that the statistical illness affected the SZA as well.
The objection keeps alive the claim that in 1877 Boltzmann’s interpretation of the

63(Boltzmann, 1898, sect. 6).
64(Brown et al., 2009, 181).
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H-theorem underwent a drastic conceptual modification because of Loschmidt’s
criticism, although it fine-tunes the extent of such modification.

However I do not think that this revised version of the mechanistic slumber
narrative is tenable either. It hinges on a relation between the reversibility argu-
ment and the H-theorem that is largely an outcome of later discussions. On the
contrary, Loschmidt’s original use of the reversibility argument is not directed
against the H-theorem and, unsurprisingly, Boltzmann’s response to it does not
concern the theorem either. To understand this point we must look carefully into
Loschmidt’s papers.

The main target of the series of four papers65 published between 1876 and
1877 is a prime consequence of the Maxwell distribution: the equipartition theo-
rem. Loschmidt found extremely difficult to believe that, in real physical systems,
the average energy of each degree of freedom is the same. In particular, he did
not accept the barometric law, the statement that the average energy ascribed
to each vertical level is a constant when the system, for instance a column of gas,
is subject to a gravitational field. Kinetic theory and the machinery of the distri-
bution function, Loschmidt thought, work well for properly idealized systems, but
the introduction of external forces changes everything. In his opinion, the effect
of external forces cannot possibly be described by the simple distribution law,
but must affect the selection of microscopic states.

In the first paper Loschmidt conceived counterexamples to the barometric
law based on peculiar vertical arrangements that are possible for solids but, he
conceded, extremely improbable in the case of freely moving molecules. There-
fore he translated the same idea into another argument. Let us imagine a vessel
in which one single atom is placed at the top and the others are at rest at the
bottom. The atom falls and hits the remaining so that, after a while, its potential
energy is turned into kinetic energy and distributed among all atoms of the gas.

Let us now suppose to divide the total volume into horizontal layers piled
one on the other. The barometric law states that the mean energy of each layer —
the total energy of the layer divided by the number of atoms in the layer — must
be the same. However, Loschmidt argued, no atom can be at the top of the vessel
because such a condition is compatible only with the state in which one atom is
at the top and all remaining are at rest at the bottom. Interestingly, Loschmidt
wrote that ‘it is very probable that, insofar [the number of atoms] is considerably
larger than one, an atom will never come at the top.’66 Thus, Loschmidt shared
the contention that if the number of atoms is large the probability of this peculiar
arrangement is very low. But he wanted to explore the limits of this contention.

It is here that the argument of reversibility comes to the fore.67 Given the
equilibrium described by the Maxwell distribution, Loschmidt argued that it is
possible to conceive a new microscopical state which is still described by the
same distribution, but gives rise to a completely different course of events:68

If, after a sufficient time τ is elapsed from the establishment of the

65Loschmidt (1876).
66(Loschmidt, 1876, 138-139).
67Note that the reversibility argument, that now we regard as the essence of Loschmidt’s work

in 1876, only occupies half a page: it is mentioned in the first paper only.
68(Loschmidt, 1876, 139).

23



stationary state, we suddenly turn the velocities of all atoms in the op-
posite directions, then we will find ourselves at the beginning of a state
to which the character of stationarity can apparently be ascribed. This
would last for a certain time, but then the stationary state would start
gradually to deteriorate and after a time τ we would arrive unavoidably
again to our initial state.

The gist of the argument is that the distribution function is compatible with
microscopical states that lead to completely different evolutions. This means
that the ‘character of stationarity’ embodied by the distribution is insufficient.
The argument hits the heart of the equipartition theorem and the barometric law
because it undermines the reliability of the distribution function as a description
of thermodynamic phenomena and, as a consequence, entails that the baromet-
ric law is a pure artifact. Note, however, that this use of the reversibility argument
does not concern the H-theorem.69 Instead, Loschmidt’s emphasis is on the fact
that the distribution function, so common in kinetic theory, misses important bits
of information, therefore it comes as no surprise that it produces outcomes as
strange as the barometric law.

Having clarified the real point made by Loschmidt helps us to understand
Boltzmann’s reply. In fact, Boltzmann’s 1877 combinatorial theory70 is a very
disappointing answer to the reversibility argument as we now understand it. For
us, the essence of the problem is that, given a distribution describing the equi-
librium state, half of the microstates covered by that distribution are the final
states of a H-decreasing process and half of them are the starting states of a H-
increasing process, therefore some modification in the SZA is required to warrant
an asymmetry in the time evolution of H. However, Boltzmann’s 1877 argu-
ment only shows that there are overwhelmingly more microstates corresponding
to the equilibrium distribution than to any other distribution.71 It is immediate
to realize that this argument can not possibly offer a satisfactory answer to the
modern reading of the reversibility challenge: the fact that a randomly selected
microstate most probably corresponds to the equilibrium distribution does not
exclude the possibility of reversing the evolution of the system. It merely tells
us one part of the story, without explaining why the underlying dynamics should
be sensitive to probability differences. But if we set aside our modern perspec-
tive and bring Loschmidt’s original point into play, the situation becomes less
puzzling. Boltzmann was responding directly to Loschmidt’s statement on the
reliability of the distribution function: analogously to Loschmidt’s original argu-
ment, Boltzmann’s 1877 paper does not concern the H-theorem at all.

Initially, Boltzmann replied with a paper which was only partially devoted
to the issue.72 There the reversibility argument is labelled as a ‘sophism’ based
on a ‘fallacy’, which, however, leads to ‘the correct understanding of the sec-

69To be sure, it barely concerns the second law. In the fourth paper, for instance, Loschmidt
pointed out that he was arguing against the odd consequences of the formalism of kinetic theory,
not against the second law itself (Loschmidt, 1876, 213).

70(Boltzmann, 1877b, 1909, II, 164-223).
71A detailed description of the argument can be found in (Klein, 1973, 77-82) and (Uffink, 2007,

975-976). Basically, it boils down to using equation (9) above to calculate the probability of a state
in terms of the number of microscopic configurations (‘complexions’) corresponding to it and to
maximizing this probability by the method of the Lagrange multipliers.

72(Boltzmann, 1877a, 1909, II, 112-148).
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ond law.’73 Thus it contains a truth disguised as a paradox. The truth is that
the distribution function leaves out bits of information about the system. The
paradox, Boltzmann argued, consists in drawing the conclusion that the distri-
bution function is therefore an unreliable tool. To unmask the sophistical nature
of Loschmidt’s conclusion it is necessary to calculate the numerical relation be-
tween distribution function and microstates. Through this precise numerical re-
lation it is easy to show that the distribution function is indeed an effective tool
and its manipulation tells us something on the evolution of the system: it tells us
that the equilibrium state is the most probable one, a conclusion Boltzmann had
already arrived at in 1868.

It is hard for our modern eye to see Loschmidt’s real point. We automatically
consider the reversibility argument as an objection against the H-theorem. But
taking into account the real object of the dispute the H-theorem disappears from
the scene. Michel Janssen has first suggested that the 1877 paper should not be
regarded as a new formulation of the H-theorem, but rather as a rephrasing of
the second law in terms already, though confusingly, present in 1872.74

My reading goes along a similar direction. Commentators have been im-
pressed by Boltzmann’s statement that the reversibility argument provides the
correct understanding of the second law and by the fact that the 1877 approach
looks very different from the 1872 theory. These circumstances have contributed
to the mechanistic slumber narrative. According to my reading, the 1877 theory
emerged in the context of the debate with Loschmidt about the significance of the
distribution function. Neither the H-theorem, nor the reinterpretation in a com-
binatorial key of the H-function are mentioned or commented in 1877. Instead,
the theory illustrates an alternative approach to the equilibrium, that combina-
torial approach Boltzmann had already developed in the Allgemeine Lösung and
that was the background of the 1872 theory. There is no intention to break with
the previous work: there is, instead, the attempt at clarifying and reformulating
elements that Boltzmann had been investigating for almost ten years then.

A second argument in support of the thesis that Boltzmann did not per-
ceived Loschmidt’s 1876 paper as a threat against the H-theorem is that, as I
mentioned in section 1.2, he kept relying on the 1872 theory even after 1877. An
example of Boltzmann’s own consideration of the 1872 theory is a letter to Lord
Rayleigh on December 11, 1892.75 In the attempt at getting Rayleigh interested
in his work, Boltzmann sent to him a copy of the 1872 paper that, in his own
words, concerned ‘a partial differential equation for the variation of the law of
distribution.’ As late as 1892, thus, Boltzmann viewed that theory as the apex
of his contribution. Why did not Boltzmann use more extensively the combina-
torial theory? An explanation is that Boltzmann probably saw in the ‘reversed’
microstates the same character of artificiality he had denounced in the patho-
logical micro-arrangements as early as 1868. For example, on 14 December
1876 Boltzmann presented a paper that replied to all Loschmidt’s weird special
cases, which supposedly proved that probability theory is not applicable in pres-
ence of external forces. He conceded that arrangements can be figured out in
which the state probability depends on the initial states and he referred to ‘a sim-

73(Boltzmann, 1909, II, 119).
74Janssen (2002).
75(Höflechner, 1994, II, 187).
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ilar example I have introduced at the conclusion of my paper Studies über das
Gleichgewicht der lebendigen Kraft zwischen bewegten materiellen Punkten’,76

namely the case of molecules lined on a straight line. In short, Boltzmann knew
that, using demons, exotic devices or simply our imagination we can force the
system as a whole to behave weirdly. Even though these issues suggested cau-
tion in the conclusions of kinetic theory, Boltzmann could not help deeming these
purpose-made cases as somewhat different from the ‘typical’ behavior.

This attitude was very persistent. As late as 1895 in his first reply to E. P.
Culverwell, who was rising doubts on the H-theorem, Boltzmann wrote:77

It can never be proved from the equations of motion alone, that the
minimum function H must always decrease. It can only be deduced
from the laws of probability, that if the initial state is not specially ar-
ranged for a certain purpose, but haphazard governs freely, the proba-
bility that H decreases is always greater than it decreases.

What Boltzmann realized only gradually after 1877 is that his intuitive dis-
missal of the pathological arrangements, largely based on the use of asymptotic
conditions, at some point became a sidestepping of the question. A clarification
of the way in which ‘haphazard’ elements enter the laws of dynamical systems
was required and this progressively convinced him that the basic mechanical as-
sumptions, particularly the SZA, must have been reinterpreted. Thus I do not
dispute that Boltzmann’s position in the 1890s differs from his position in 1872.
However, I claim, contra the mechanistic slumber narrative, that this evolution
was much more complex and took much more time than it is usually pictured.

6 Conclusion

The historiography on Boltzmann has been often afflicted by the temptation of
using the modern understanding of the subtle problems of statistical mechanics
as a key to read Boltzmann’s original theory. This tendency is only natural and,
to a certain degree, even recommendable, but it camouflages the pitfall of a
‘creative misreading’ as Janssen (2002) has emphasized. A second dangerous
leaning that can be found in the literature is to look at the 1872 theory as popping
fully armed out of Boltzmann’s head like Athena out of Zeus’s. In this paper I have
tried to avoid these drawbacks. Instead of trusting the useful but debatable guide
of Ehrenfests’s retrospective outlook, I have focused upon the crucial years that
preceded irreversibility theory to unfold the conceptual elements whereby the
Boltzmann equation and the H-theorem were constructed.

What kind of picture comes out of this analysis? From a broader perspec-
tive, we should always remember that investigations on complex systems in the
second half of nineteenth century made use of asymptotic conditions. In most
cases, these conditions were the justification for introducing and manipulating
averages and distributions. Under these ideal circumstances many problems
related to exceptions became immediately dismissible. Moreover, there were

76(Boltzmann, 1876, 1909, II, 55-102), quotation on page 71.
77(Boltzmann, 1895, 1909, III, 535-544), quotation on page 540, italic added.
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very good reasons to adopt this attitude. First, statistical mechanics was a rela-
tively young discipline in need to establish its own scientific status. In this phase
foundational problems are usually swept under the rug. Secondly, no adequate
conceptual tools for dealing with exceptions were at disposal. Set-theoretical or
measure-theoretical approaches emerged only at the turn of the century.

These points must be born in mind to justly place Boltzmann’s interpreta-
tion of his own mathematical results. He worked with averages and knew very
well that averages experience fluctuations and their evolution calls for some mi-
croscopic disorder. So much so, that he used probabilistic arguments to handle
them. Far from falling into a mechanistic slumber, from the very beginning Boltz-
mann lived in a state of ‘statistical insomnia’: he could not avoid statistical ar-
guments and probability with the consequence that they are always present at
different levels of his theory.

The specific method adopted by Boltzmann constitutes another important
part of the picture. From 1868 on he developed a pluralistic strategy in which
kinetic and combinatorial procedure were treated on the same footing. On the
one hand the kinetic approach was better established in the community, on the
other hand the combinatorial approach was more general. More importantly, in
the combinatorial approach the issue of the uniqueness of the Maxwell distribu-
tion could be immediately solved. Therefore, Boltzmann exploited considerations
drawn from the combinatorial procedure and from the general theorem to im-
prove the kinetic technique. At the same time, he was aware of the presence of
limitations and exceptions (pathological arrangements, fluctuations) in the com-
binatorial procedure. Thus, he was aware of analogous limitations in the kinetic
approach, but he considered them as the artificial constructions of a playful de-
mon or of a fervent imagination.
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