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The first portion of this book amounts to a formal introduction to differential
geometry and the general theory of relativity (complete with problem sets and
solutions). The second amounts to an investigation of special topics pursued
by Malament over the last four decades or so. In what follows, I intend to
summarize the material. Along the way, I hope to offer some comments on the
significance of the work.

Before I begin the survey of chapters, it might be helpful to say something
about what the book is not. Although there is quite a bit of overlap between the
first portion of the book and a standard graduate level physics text, the two do
not fully intersect (more below). In addition, the book does not consider many
common topics in the philosophy of spacetime physics. For example, there is
no discussion of whether space and time are absolute or relational in character
(cf. Sklar 1976; Friedman 1983). Finally, one does not find any precisely for-
mulated conjectures of physical or philosophical interest which gesture toward
future work (cf. Wald 1984; Earman 1995). It is simply not a book of that
kind. Nonetheless, a number a topics developed by Malament in later chapters
have generated a significant number of interesting results. (Indeed, I think the
previous sentence is wildly understated.) Because Malament does not always do
so, I hope to draw attention to some of these lines of inquiry below (a portion
of which are still presently active). Now, enough about what the book is not; I
am ready to consider what the book is.

Chapter one provides an introduction to differential geometry. This pre-
sentation is self-contained; only some basic familiarity with point set topology
and multi-variable calculus is assumed. The material here follows a somewhat
standard arrangement. One begins with the concept of a manifold and then
considers various geometric structures defined on it: vector fields, tensor fields,
derivative operators, metrics, and so on. Although the content of the chapter
is not unusual, I do believe that the presentation here (and in what follows) is
given with considerable care. An example might help to illustrate the point.

It is often useful to have at one’s disposal a characterization of what it means
to say that a smooth map Ψ : S → M is a (structure preserving) imbedding of
one manifold S into another manifold M . When they are at all precise, the
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usual definitions include the condition that Ψ be injective. This requirement
essentially prohibits the image of S from “intersecting itself”. Another standard
condition is that the inverse map Ψ−1 : Ψ[S]→ S be continuous with respect to
the relative topology on Ψ[S]. This requirement essentially prohibits the image
of S from “almost intersecting itself”. Malament provides a third condition
that the linear map (Ψp)∗ : Sp →MΨ(p) be injective for all points p in S. (This
linear map is used to transfer arbitrary tensors at the point p to tensors at the
point Ψ(p).) This last requirement essentially prohibits the image of the tangent
space at p from “intersecting itself”.

One might wonder about the need for all three of the conditions. After all,
each seems to rule out self-intersection of one kind or another and, in addition,
some texts do not even explicitly require the third. Is it possible that one or
more of the conditions are redundant? No. Malament (p. 94-95) methodically
proceeds to show that any two of the three conditions are not sufficient to imply
the other. (In each case, simple counterexamples are given to help the reader
along.) I know of no other source which provides a comparable level of clarity
on this particular matter. And the book is replete with this kind of attention
to detail.

Chapter two presents the general theory of relativity. As mentioned above,
many of the topics one finds in a graduate level physics text are considered
here. One begins with the notion of a (relativistic) spacetime: a pair consisting
of a manifold M and a metric gab of Lorentz signature (1,−1, ...,−1) defined
on M . One then moves on to the causal structure of spacetime, the energy-
momentum field, Einstein’s equation, the initial value formulation, and so on.
(There are eleven such subsections.) But there are still a number of standard
topics which are not examined. In particular, the singularity theorems are not
presented. Nor is the cosmic censorship hypothesis. And aside from the Fried-
mann models, there is no discussion of exact solutions to Einstein’s equation.
Readers interested in these subjects will want to consult Hawking and Ellis
(1973), Wald (1984), and Joshi (1993).

But, because Malament does not undertake a systematic survey of the field,
there is room in the chapter to present other (non-standard) material. In fact,
we get two glimpses of Malament’s own contributions – one from the earliest
stages of his career and another from the latest. That these contributions can be
naturally presented in a chapter devoted solely to the most basic mathematical
and physical structure of the theory is, in my opinion, significant. Let me say a
bit more about each of them.

First, amid a discussion of the energy-momentum field Tab, one finds an
illuminating presentation of the various senses in which the geodesic principle
– the statement that free massive point particles traverse timelike geodesics –
does and does not follow from general relativity. The upshot (proposition 2.5.3)
is taken from some of Malament’s most recent work and shows that certain
conditions on Tab, which limit the distribution and flow of matter, turn out to
be necessary for the principle to hold. The proposition has relevance to current
debates regarding the status of the principle (Brown 2005; Weatherall 2011a;
Tamir 2012).
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Second, Malament presents (without proof) a highly non-trivial early result
(proposition 2.2.4) which shows one sense in which the topological structure of
spacetime can be recovered from the causal structure. Because one is able to
state (a portion of) the proposition without too much technical machinery, I will
do so here. My hope is that, by formulating at least one theorem precisely, I
will be able to give an accurate representation of Malament’s somewhat unusual
approach to philosophy. (Results in chapters three and four will be stated more
informally.)

Consider a (temporally oriented) spacetime (M, gab). We define a two-place
relation � on the points in M : we write p� q iff there exists a future-directed
timelike curve γ : [a, b] → M such that γ(a) = p and γ(b) = q. The idea is to
have p� q hold iff it is possible for a massive point particle to travel from p to
q. Now, let I−(p) and I+(p) be the sets {q ∈M : q � p} and {q ∈M : p� q}
respectively. We say that a spacetime (M, gab) is distinguishing if, for all p, q
in M , the statements I−(p) = I−(q) and I+(p) = I+(q) each separately imply
the statement p = q. Distinguishing spacetimes are causally “well-behaved” in
a somewhat weak sense; the condition essentially prohibits any timelike curves
from “almost intersecting themselves”.

We may now formulate the proposition: If (M, gab) and (M ′, g′ab) are distin-
guishing spacetimes, then if ϕ : M →M ′ is a bijection such that, for all p, q in
M , p � q iff ϕ(p) � ϕ(q), then M and M ′ have the same topology. In other
words, assuming the causal structure of spacetime is sufficiently well-behaved,
then information concerning which points are causally related to which others
is sufficient to recover the shape of the underlying manifold. In recent years, the
proposition has served as the foundation for the causal set approach to quantum
gravity (Sorkin 2005; Dowker 2005).

Stepping back a bit, one can appreciate some of the general features of a
proposition of this kind. For one thing, it is proved entirely within the context of
a well-confirmed scientific theory (in this case, general relativity). For another,
the proposition amounts to a statement of some philosophical interest (in this
case, one concerning reductionism, causation, and so on). The point I wish to
emphasize is that, for these reasons, we have here a philosophical statement
which is grounded firmly in some of our best science. Many of the results in
chapters three and four (and in Malament’s work more generally) are of the
same character.

Chapter three considers a few special topics in general relativity and can
be divided into two parts. In the first, we find a thorough presentation of
the spacetime of Gödel (1949) – a rather unusual exact solution of Einstein’s
equation. As Malament notes, the spacetime is of interest because it helps us
to understand the possibilities permitted by general relativity. Indeed, it seems
that Gödel spacetime is a counterexample to almost every reasonable statement
concerning the general class of spacetimes (cf. Misner 1967).

Malament demonstrates a number of basic properties of Gödel spacetime
(M, gab). Here, I will limit myself to reviewing four. First, the spacetime is in a
state of constant, uniform rotation; at every point p in M , the rotation vector ωa

associated with the worldlines of the major mass points is such that ωa 6= 0 and
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∇bω
a = 0. This property will be of some use later on in the chapter. Second,

Gödel spacetime is globally homogeneous; for any two points p, q in M , there is
an isometry (a metric preserving smooth map) ψ : M →M such that ψ(p) = q.
Thus, any two points in the spacetime are effectively indistinguishable from one
another. Third, for any two points p, q in M we have p � q. So, any point is
causally accessible to any other; in particular, any point is causally accessible
to itself. Thus, there are closed (self-intersecting) timelike curves through every
point allowing for “time travel” of a certain type. It is this property (along
with Gödel’s own considerations on the subject) which has received a great deal
of attention in the philosophical literature (Stein 1970: Smeenk and Wüthrich
2011). Fourth, in Gödel spacetime there are no closed timelike curves which are
also geodesics; any “time travel” must be carried out along an accelerated curve.
In fact, there is a lower bound on the total acceleration needed to complete such
a journey (Malament 1985). Accordingly, one recent area of study concerns
optimal time travel in the spacetime (Manchak 2011, Natário 2012).

One final remark on this subsection. Malament exhibits the first and third
properties mentioned above in an instructive diagram (figure 3.1.1). It is notable
because it improves upon an influential representation of the same kind due to
Hawking and Ellis (1973); in that reference, the vertical lines (which represent
the worldlines of the major mass points) are erroneously depicted as spacelike. A
second diagram (figure 3.1.2) also proves helpful in understanding the character
of the timelike geodesics mentioned in the fourth property above.

In the second part of chapter three, Malament considers the concept of
rotation. In relativity theory, there is a clear (and absolute) sense in which a
congruence of timelike curves with tangent field ξa can be said to be rotating
at given point p; it is rotating at p iff ωa 6= 0 at p where ωa is the rotation
vector field associated with ξa. But it is not at all clear what it means to say,
for example, that a one dimensional ring is rotating around a given (centered)
axis.

Here, Malament sheds some light on the situation. He considers two possible
criteria for non-rotation. One deals with the compass of inertia on the ring;
gyroscopes might be employed to test for the presence of rotation. The other
deals with the angular momentum of the ring; a light source might be employed
to test for the Sagnac effect and thereby the presence of rotation. It turns
out that these two criteria agree in some simple models such as Minkowski
spacetime. But Malament shows (proposition 3.2.4) that in Gödel spacetime,
the two criteria do not agree in general. It is possible that, according to one
criterion, a given ring counts as rotating while in another, it doesn’t.

One can find an analogous (albeit more simple) situation concerning what it
means to say that an ideal clock has “speeded up”. I believe a few remarks by
Geroch (1978, p. 133) on that particular situation can help place Malament’s
proposition in proper context:

“The Eskimos, so I understand, have over twenty-five different
words for snow, words which distinguish the various subtle differ-
ences between various types of “snow.” We have just one word. If
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light moved much more slowly in everyday terms then, I can guar-
antee, we would have something like twenty-five different words for
speeded up. Similar remarks would apply to many other terms, in-
cluding “speed of travel,” “at rest,” “simultaneous,” “elapsed time,”
“spatial distance,” “same position,” “length,” “straight,” and so on.
For these and many other everyday terms, one must take extreme
care, in relativity, not to use them thoughtlessly.”

Malament’s work on the topic (described so far) amounts to the addition
of the word “rotation” to the above list. To be sure, this is an interesting
contribution. But one might wonder about the existence some third (as yet
unimagined) criterion which more adequately answers to our classical intuitions.
Is is possible that there is such a criterion? Under certain (seemingly weak)
assumptions, no.

Malament considers three constraints one would like to see satisfied by any
criterion under consideration. One constraint requires the criterion to agree “in
the limit” with the clear notion of rotation at a point mentioned above. The
second constraint requires the criterion to be non-vacuous (it cannot count all
rings as rotating). Finally, the third constraint concerns the relative rotation
of two arbitrary rings R1 and R2. It requires that if R1 is counted as non-
rotating and, in addition, R2 is counted as non-rotating relative to R1, then R2

is also counted as non-rotating. Malament then shows (proposition 3.3.4) that
no criterion exists which satisfies all three constraints in all spacetimes. It is a
remarkable result and clarifies matters greatly.

Chapter four presents a version of Newtonian gravitation: Newton-Cartan
theory (Cartan 1923, 1924; Friedrichs 1927). It is expressed in the formalism
of differential geometry and therefore echos the structure of general relativity
rather closely. A (classical) spacetime is a quadruple (M, tab, h

ab,∇a). Here, M
is manifold; tab is a temporal metric of signature (1, 0, 0, 0) on M ; hab is spatial
metric of signature (0, 1, 1, 1) on M ; ∇a is a derivative operator on M ; and the
following orthogonality and compatibility conditions are satisfied: habtab = 0,
∇atbc = 0, and ∇ah

bc = 0.
Newton-Cartan theory has been investigated by philosophers for some time

now (Stein 1967; Glymour 1977; Earman 1989). Part of the interest concerns the
fact that the theory has just enough structure to allow one to speak meaningfully
of absolute acceleration but not enough to do the same for absolute velocity.
Other interest concerns the fact that the derivative operator ∇a need not be
“flat”. (Formally, the Riemann curvature tensor Ra

bcd associated with ∇a need
not vanish at every point in M .) So, there is a sense in which classical spacetime
is permitted to be curved just as it is in general relativity. For much of the
chapter, Malament reviews various relationships between spacetimes with flat
derivative operators and those with curved ones. Let me collect a few conditions
together and say a bit more.

Consider a classical spacetime (M, tab, h
ab,∇a) with flat derivative operator.

Let φ : M → R be the gravitational potential. Let ρ : M → R be the mass-
density field. We assume that Poisson’s equation is satisfied: ∇a∇aφ = 4πρ.
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Next, consider a point particle with mass m and tangent vector ξa. It has
an acceleration vector ξb∇bξ

a. The gravitational force vector acting on the
particle comes out as −m∇aφ. And if gravity is the only force present, the
equation of motion −∇aφ = ξb∇bξ

a must then be satisfied. Now one wonders
if it is possible, to “geometrize” away the force of gravity. Trautman (1965)
has shown that it is in the following sense (proposition 4.2.1): One can find a
curved derivative operator ∇a on M , it too compatible with tab and hab, such
that a timelike curve will satisfy the above equation of motion iff it is a geodesic
according to ∇a. Moreover, ∇a is unique. Malament (p. 269) interprets the
state of affairs:

“In the geometrized formulation of the theory, gravitation is no
longer conceived of as a fundamental “force” in the world but rather
as a manifestation of spacetime curvature, just as in relativity theory.
Rather than thinking of point particles as being deflected from their
natural straight trajectories in flat spacetime, one thinks of them as
traversing geodesics in curved spacetime.”

It turns out that one can also work in the other direction. There are two ways
of doing so considered by Malament. Here, I will limit myself to Trautman’s
approach (proposition 4.2.5). Let (M, tab, h

ab,∇a) be a classical spacetime with
curved derivative operator. To get off the ground, one needs the Riemann curva-
ture tensor Ra

bcd associated with ∇a to satisfy three conditions. Essentially, one
ensures that Poisson’s equation can eventually be satisfied while the other two
serve as necessary integrability conditions. (More on these conditions below.)
One can then find a flat derivative operator ∇a on M , it too compatible with
tab and hab, and a gravitational potential φ : M → R such that a timelike curve
will satisfy the equation of motion −∇aφ = ξb∇bξ

a iff it is a geodesic according
to ∇a. But, unlike the geometrization case, the flat derivative operator ∇a and
gravitational potential φ which one finds will not be a unique pair. It is this
fact that captures a clear sense in which the Newtonian gravitational potential
is a “gauge” quantity.

Malament devotes a significant portion of the chapter to the three con-
ditions on Ra

bcd mentioned above. In one subsection, they are interpreted
geometrically. Elsewhere, there is an investigation as to when one might ex-
pect the conditions to be satisfied. Roughly, one of the integrability conditions
(4.2.20) will be satisfied if (M, tab, h

ab,∇a) is homogeneous and isotropic or if
it is asymptotically flat. The two other conditions (4.2.18, 4.2.19) will be satis-
fied if (M, tab, h

ab,∇a) is, in a precise sense, the result of a limiting procedure
applied to a one-parameter family of general relativistic spacetimes. The proce-
dure essentially lets the speed of light go to infinity (Künzle 1976; Ehlers 1981;
Malament 1986).

In the later portion of the chapter, Malament considers an old “paradox”
concerning Newtonian cosmology. It amounts to the following: If one were to use
a standard (high school level) formulation of Newtonian mechanics, one would
seem to be led to logical inconsistencies concerning the gravitational field in a
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homogeneous universe (Norton 1993). But Malament shows (proposition 4.4.3)
that the paradox is nothing more than a relic of the formulation and dissolves
completely in the Newton-Cartan theory.

Let me conclude my remarks on this chapter by saying a word or two about
the literature associated with Newton-Cartan theory. Unlike general relativity,
there simply has not been a contemporary, systematic treatment of the subject
available anywhere. Malament has done a great service to the community by
providing one. The exposition is lucid and thorough. Earlier versions of this
presentation have already been used to clarify a number of topics in general
philosophy of science such as empirical indistinguishability (Bain 2004) and
explanation (Weatherall 2011b). I suspect that work done in this chapter will
open the way for even more researchers to consider the rich set of ideas examined
here.
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ophy of Science 37: 589-601.

[28] Tamir, M. (2012), “Proving the Principle: Taking Geodesic Dynamics Too
Seriously in Einstein’s Theory”, forthcoming in Studies in the History and
Philosophy of Modern Physics.

[29] Trautman, A (1965), “Foundations and Current Problem of General Rel-
ativity”, in S. Deser and K. Ford (eds.), Lectures on General Relativity. En-
glewood: Prentice-Hall.

[30] Wald, R. (1984), General Relativity. Chicago: University of Chicago Press.

[31] Weatherall, J. (2011a), “On the Status of the Geodesic Principle in Newto-
nian and Relativistic Physics”, Studies in History and Philosophy of Modern
Physics, 42: 276-281.

[32] Weatherall, J. (2011b), “On (Some) Explanations in Physics”, Philosophy
of Science, 78: 421-447.

9


