
(Never) Mind your p’s and q’s:

Von Neumann versus Jordan on the

Foundations of Quantum Theory.

Anthony Duncan a, Michel Janssen b,∗

aDepartment of Physics and Astronomy, University of Pittsburgh
bProgram in the History of Science, Technology, and Medicine,

University of Minnesota

Abstract

In two papers entitled “On a new foundation [Neue Begründung] of quantum me-
chanics,” Pascual Jordan (1927b,g) presented his version of what came to be known
as the Dirac-Jordan statistical transformation theory. As an alternative that avoids
the mathematical difficulties facing the approach of Jordan and Paul A. M. Dirac
(1927), John von Neumann (1927a) developed the modern Hilbert space formalism
of quantum mechanics. In this paper, we focus on Jordan and von Neumann. Cen-
tral to the formalisms of both are expressions for conditional probabilities of finding
some value for one quantity given the value of another. Beyond that Jordan and
von Neumann had very different views about the appropriate formulation of prob-
lems in quantum mechanics. For Jordan, unable to let go of the analogy to classical
mechanics, the solution of such problems required the identification of sets of canon-
ically conjugate variables, i.e., p’s and q’s. For von Neumann, not constrained by
the analogy to classical mechanics, it required only the identification of a maximal
set of commuting operators with simultaneous eigenstates. He had no need for p’s
and q’s. Jordan and von Neumann also stated the characteristic new rules for prob-
abilities in quantum mechanics somewhat differently. Jordan (1927b) was the first
to state those rules in full generality. Von Neumann (1927a) rephrased them and,
in a subsequent paper (von Neumann, 1927b), sought to derive them from more
basic considerations. In this paper we reconstruct the central arguments of these
1927 papers by Jordan and von Neumann and of a paper on Jordan’s approach by
Hilbert, von Neumann, and Nordheim (1928). We highlight those elements in these
papers that bring out the gradual loosening of the ties between the new quantum
formalism and classical mechanics.
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1 Introduction

1.1 The Dirac-Jordan statistical transformation theory

On Christmas Eve 1926, Paul A. M. Dirac, on an extended visit to Niels Bohr’s
institute in Copenhagen, wrote to Pascual Jordan, assistant to Max Born in
Göttingen: 1

Dr. Heisenberg has shown me the work you sent him, and as far as I can see
it is equivalent to my own work in all essential points. The way of obtaining
the results may be rather different though . . . I hope you do not mind the
fact that I have obtained the same results as you, at (I believe) the same
time as you. Also, the Royal Society publishes papers more quickly than
the Zeits. f. Phys., and I think my paper will appear in their January issue.
I am expecting to go to Göttingen at the beginning of February, and I am
looking forward very much to meeting you and Prof. Born there (Dirac to
Jordan, December 24, 1916, AHQP). 2

Dirac’s paper, “The physical interpretation of the quantum dynamics” (Dirac,
1927), had been received by the Royal Society on December 2. Zeitschrift für
Physik had received Jordan’s paper, “On a new foundation [Neue Begrün-
dung] of quantum mechanics” (Jordan, 1927b), on December 18. 3 In both

? This paper was written as part of a joint project in the history of quantum physics
of the Max Planck Institut für Wissenschaftsgeschichte and the Fritz-Haber-Institut
in Berlin.
∗ Corresponding author. Address: Tate Laboratory of Physics, 116 Church St. SE,
Minneapolis, MN 55455, USA, Email: janss011@umn.edu
1 Reminiscing about the early days of quantum mechanics, Jordan (1955) painted
an idyllic picture of Göttingen during this period, both of the town itself and of its
academic life. J. Robert Oppenheimer, who spent a year there in 1926–1927, also
remembered a darker side: “[A]lthough this society was extremely rich and warm
and helpful to me, it was parked there in a very very miserable German mood which
probably in Thuringia was not as horrible as a little bit further east; Göttingen is not
in Thuringia —not as bad as in Thuringia—but it was close enough to Thuringia
to be bitter, sullen, and, I would say, discontent and angry and loaded with all
those ingredients which were later to produce a major disaster” (Interview with
Oppenheimer for the Archive for History of Quantum Physics [AHQP], session 2,
p. 5; quoted in part by Bird and Sherwin, 2005, pp. 57–58). For detailed references
to material in the AHQP, see Kuhn et al. (1967).
2 This letter is quoted almost in its entirety (cf. note 42) and with extensive com-
mentary by Mehra and Rechenberg (2000–2001, p. 72, pp. 83–87).
3 We will refer to this paper as Neue Begründung I to distinguish it from Neue
Begründung II, submitted June 3, 1927 to the same journal, a sequel in which
Jordan tried both to simplify and generalize his theory (Jordan, 1927g). A short
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cases it took a month for the paper to get published: Dirac’s appeared Jan-
uary 1, Jordan’s January 18. 4 What Dirac and Jordan, independently of one
another, had worked out and presented in these papers has come to be known
as the Dirac-Jordan (statistical) transformation theory. 5 As Jordan wrote in
a volume in honor of Dirac’s 70th birthday:

After Schrödinger’s beautiful papers [Schrödinger, 1926a], I formulated what
I like to call the statistical transformation theory of quantum mechanical
systems, answering generally the question concerning the probability of find-
ing by measurement of the observable b the eigenvalue b′, if a former mea-
surement of another observable a had given the eigenvalue a′. The same
answer in the same generality was developed in a wonderful manner by
Dirac (Jordan, 1973, p. 296; emphasis in original).

In our paper, we focus on Jordan’s version of the theory and discuss Dirac’s
version only to indicate how it differs from Jordan’s. 6

Exactly one month before Dirac’s letter to Jordan, Werner Heisenberg, Bohr’s
assistant in the years 1926–1927, had already warned Jordan that he was
about to be scooped. In reply to a letter, apparently no longer extant, in
which Jordan must have given a preview of Neue Begründung I, he wrote:

I hope that what’s in your paper isn’t exactly the same as what’s in a paper
Dirac did here. Dirac’s basic idea is that the physical meaning of Sαβ, given
in my note on fluctuations, can greatly be generalized, so much so that it
covers all physical applications of quantum mechanics there have been so
far, and, according to Dirac, all there ever will be (Heisenberg to Jordan,
November 24, 1926, AHQP). 7

The “note on fluctuations” is a short paper received by Zeitschrift für Physik
on November 6 but not published until December 20. In this note, Heisenberg
(1926b), drawing on the technical apparatus of an earlier paper on resonance

version of Neue Begründung I was presented to the Göttingen Academy by Born on
behalf of Jordan in the session of January 14, 1927 (Jordan, 1927c).
4 The extensive bibliography of Mehra and Rechenberg (2000–2001) gives the dates
papers were received and published for all the primary literature it lists.
5 The term ‘transformation theory’—and even the term ‘statistical transformation
theory’—is sometimes used more broadly (see cf. note 50).
6 For discussions of Dirac’s version, see, e.g., Jammer (1966, pp. 302–305), Kragh
(1990, pp. 39–43), Darrigol (1992, pp. 337–345), Mehra and Rechenberg (2000–2001,
72–89), and Rechenberg (2010, 543–548).
7 Mehra and Rechenberg (2000–2001, p. 72) quote more extensively from this let-
ter. They also quote and discuss (ibid., p. 78) a similar remark in a letter from
Heisenberg to Wolfgang Pauli, November 23, 1926 (Pauli, 1979, Doc. 148, p. 357).
In this letter, Heisenberg talks about Dirac’s “extraordinary grandiose [großzügige]
generalization” (quoted by Kragh, 1990, p. 39).
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phenomena (Heisenberg, 1926a), analyzed a simple system of a pair of iden-
tical two-state atoms perturbed by a small interaction to allow for the flow-
ing back and forth of the amount of energy separating the two states of the
atoms. 8 The Sαβ’s are the elements of a matrix S implementing a canonical
transformation, f ′ = S−1fS, from a quantum-mechanical quantity f for the
unperturbed atom to the corresponding quantity f ′ for the perturbed one.
The discrete two-valued indices α and β label the perturbed and unperturbed
states, respectively. Heisenberg proposed the following interpretation of these
matrix elements:

If the perturbed system is in a state α, then |Sαβ|2 gives the probability that
(because of collision processes, because the perturbation suddenly stops, etc.)
the system is found to be in state β (Heisenberg, 1926b, p. 505; emphasis in
the original).

Heisenberg (1926b, pp. 504–505) emphasized that the same analysis applies
to fluctuations of other quantities (e.g., angular momentum) and to other
quantum systems with two or more not necessarily identical components as
long as their spectra all share the same energy gap.

In the introduction of his paper on transformation theory, Dirac (1927, p. 622)
briefly described Heisenberg’s proposal, thanked him for sharing it before pub-
lication, and announced that it is “capable of wide extensions.” Dirac, in fact,
extended Heisenberg’s interpretation of Sαβ to any matrix implementing a
transformation of some quantum-mechanical quantity g from one matrix rep-
resentation, written as g(α′α′′), to another, written as g(ξ′ξ′′). The primes on
the indices labeling rows and columns distinguish the numerical values of the
quantities α and ξ from those quantities themselves (ibid., p. 625). Depending
on the spectrum of the associated quantities, these indices thus take on purely
discrete values, purely continuous ones, or a mix of both. Dirac wrote all equa-
tions in his paper as if the indices only take on continuous values (ibid.). He
introduced the compact notation (ξ′/α′) for the transformation matrix from
the α-basis to the ξ-basis (ibid., p. 630). In the spirit of Heisenberg’s proposal,
|(ξ′/α′)|2dξ′ is interpreted as the probability that ξ has a value between ξ′ and
ξ′ + dξ′ given that α has the value α′. Although the notation is Dirac’s, this

8 As Heisenberg (1926b, p. 501) explained in the introduction of his paper, fluctu-
ations were of interest because, as Albert Einstein (1905, 1909a,b) had shown, they
provide a tell-tale sign of quantum discontinuities. For discussion of Heisenberg’s
(1926c) note on fluctuations in the context of the debate over Jordan’s deriva-
tion of Einstein’s (1909a,b) formula for fluctuations in black-body radiation in the
Dreimännerarbeit of Born, Heisenberg, and Jordan (1926), see Duncan and Janssen
(2008, pp. 643–645). For further discussion of Heisenberg’s (1926c) note, see Rechen-
berg (2010, pp. 541–543).
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formulation of the interpretation is Jordan’s (1927b, p. 813). 9

It is easy to understand why Heisenberg would have been excited about what
he saw as Dirac’s generalization of his own work. He felt strongly that the
interpretation of the quantum formalism should naturally emerge from ma-
trix mechanics without any appeal to wave mechanics. For this reason, he
initially disliked Born’s statistical interpretation of the wave function as well
as Bohr’s concept of complementarity, with its emphasis on wave-particle du-
ality. 10 Transformation theory reconciled him with both ideas. It showed that
wave-particle duality was just one example of a much broader plurality of
equivalent forms in which quantum mechanics can be expressed. 11 And it
showed that the Schrödinger energy eigenfunctions can be seen as elements of
the transformation matrix diagonalizing the Hamiltonian. As Dirac put it:

The eigenfunctions of Schrödinger’s wave equation are just the transfor-
mation functions . . . that enable one to transform from the (q) scheme of
matrix representation to a scheme in which the Hamiltonian is a diagonal
matrix (Dirac, 1927, p. 635; emphasis in the original). 12

9 For careful discussion of Dirac’s (1927, secs. 6–7, pp. 637–641) own formulation,
see Darrigol (1992, pp. 342–343).
10 Heisenberg explicitly said so when interviewed by Kuhn for the AHQP project.
Talking about Born’s statistical interpretation of the wave function and his own
proposal in his note on fluctuations, he said: “I definitely wanted to keep always
on the quantum mechanical side and not make any concession to the Schrödinger
side” (session 10, p. 6). Talking about complementarity, he likewise said: “I didn’t
want to go too much into the Schrödinger line of thought. I just wanted to stick
to the matrix line” (session 11, p. 11). He made a similar statement in his autobi-
ography: “Bohr was trying to allow for the simultaneous existence of both particle
and wave concepts . . . I disliked this approach. I wanted to start from the fact
that quantum mechanics as we then knew it [i.e., matrix mechanics] already im-
posed a unique physical interpretation . . . For that reason I was—certainly quite
wrongly—rather unhappy about a brilliant piece of work Max Born had done . . . I
fully agreed with Born’s thesis as such, but disliked the fact that it looked as if we
still had some freedom of interpretation” (Heisenberg, 1971, p. 76). The following
remark in the conclusion of one of the two papers in which Born first introduced his
statistical interpretation makes it easy to understand Heisenberg’s initial animosity.
Born (1926b, p. 826) wrote: “Schrödinger’s form [of quantum mechanics] appears
to account for the facts in by far the easiest way; moreover, it makes it possible to
retain the usual conception of space and time in which events take place in perfectly
familiar fashion.”
11 Heisenberg made this contrast between the dualism of complementarity and the
pluralism of transformation theory in one of the passages from the AHQP interview
referred to in the preceding note (session 11, p. 11).
12 This passage is quoted in most discussions of Dirac’s paper. See, e.g., Jammer
(1966, p. 403), Kragh (1990, p. 40), and Rechenberg (2010, p. 547).
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Jordan (1927b, p. 810, p. 822) clearly recognized this too. The probability in-
terpretation could thus either be given in terms of Schrödinger wave functions
or in terms of transformation matrices. 13

Heisenberg explicitly made the connection between wave functions and trans-
formation matrices in the letter to Jordan from which we quoted above:

S is the solution of a transformation to principal axes and also of a differen-
tial equation à la Schrödinger, though by no means always in q-space. One
can introduce matrices of a very general kind, e.g., S with indices S(q, E).
The S(q, E) that solves Born’s transformation to principal axes in Qu.M. II
(Ch. 3, Eq. (13)) is Schrödinger’s S(q, E) = ψE(q) (Heisenberg to Jordan,
November 24, 1926, AHQP). 14

Eq. (13) in Ch. 3 of “Qu.M. II,” the famous Dreimännerarbeit, is H(pq) =
SH(p0q0)S−1 = W (Born, Heisenberg, and Jordan, 1926, p. 351). This equa-
tion summarizes how one solves problems in matrix mechanics: one has to
find the matrix S for a “transformation to principal axes,” i.e., a canon-
ical transformation from initial coordinates (p0q0) to new coordinates (pq)
in which the Hamiltonian H becomes the diagonal matrix W . In Ch. 3 of
the Dreimännerarbeit, i.e., prior to Schrödinger’s work, Born, who wrote the
chapter, had already come close to making the connection Heisenberg makes
here between transformation matrices S and solutions ψE(q) of the time-
independent Schrödinger equation. 15

Expanding on his comments in the letter to Jordan, Heisenberg began his
next paper—the sequel to the paper on resonance phenomena (Heisenberg,
1926a) that he had used for his note on fluctuations (Heisenberg, 1926b)—
with a three-page synopsis of the remarkable new formalism that subsumed
both wave and matrix mechanics (Heisenberg, 1927a, sec. 1, pp. 240–242). This
paper was received by Zeitschrift für Physik on December 22, 1926. The new

13 The passage from Heisenberg’s autobiography quoted in note 10 continues: “I
was firmly convinced that Born’s thesis itself was the necessary consequence of the
fixed interpretation of special magnitudes in quantum mechanics. This conviction
was strengthened further by two highly informative mathematical studies by Dirac
and Jordan” (Heisenberg, 1971, pp. 76–77).
14 Heisenberg added: “The more general cases can be seen as a simple appli-
cation of Lanczos’s “field equations” (the same might be true of your ϕ(y) =∫
K(x, y)ψ(x) dx??). I have said all along that this Lanczos is not bad” (ibid.).

Cornelius Lanczos (1926) wrote a paper on the connection between matrices and
integral kernels (such as K(x, y) in the equation above). This paper is cited by both
Dirac (1927, p. 624) and Jordan (1927b, p. 832). For discussion of Lanzcos’s (1926)
contribution, see, e.g., Mehra and Rechenberg (1987, pp. 665–668).
15 For a reconstruction in modern language of the steps Born was still missing, see
Duncan and Janssen (2009, p. 355).
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formalism was of such recent vintage at that point that Heisenberg (1927a, p.
240, note) had to list the three main sources he cited for it (Dirac, 1927; Jor-
dan, 1927b; Heisenberg, 1926b) as “forthcoming” [im Erscheinen ]. He made
much of the third item, his own note on fluctuations. Jordan, he wrote, “has
independently found results that are equivalent to those of the Dirac paper
and those of a preceding paper by the author ” (Heisenberg, 1927a, p. 240,
note; our emphasis). He referred to the latter again when he introduced the
probability interpretation of arbitrary transformation matrices (ibid., p. 242),
Dirac’s far-reaching generalization of his own proposal in his note on fluctu-
ations. Heisenberg cited Jordan’s paper in addition to his own note but not
Dirac’s paper. Moreover, he did not mention Born’s (1926a,b) statistical in-
terpretation of the wave function anywhere in this brief exposition of the new
general formulation of quantum mechanics. This undoubtedly reflects Heisen-
berg’s initial hostility toward Born’s seminal contribution (see note 10). 16

In his later reminiscences, Heisenberg did give Born and Dirac their due (cf.
note 10). Discussing the statistical interpretation of the quantum formalism
in his contribution to the Pauli memorial volume, for instance, he mentioned
Born, Dirac, and Pauli along with his own modest contribution (see the itali-
cized sentence below). On this occasion, however, he omitted Jordan, perhaps
because, for reasons we will discuss below, he much preferred Dirac’s version
of transformation theory over Jordan’s. Heisenberg wrote:

In the summer of 1926, Born developed his theory of collisions and, building
on an earlier idea of Bohr, Kramers, and Slater, correctly interpreted the
wave [function] in multi-dimensional configuration space as a probability
wave. 17 Pauli thereupon explained to me in a letter that Born’s interpreta-

16 In his paper on the uncertainty principle a few months later, Heisenberg (1927b,
p. 176, note) did cite Born (1926b), but only after Einstein (1925), Born, Heisen-
berg, and Jordan (1926), and Jordan (1926a), three papers that have nothing to do
with the statistical interpretation of wave functions or transformation matrices. In
fairness to Heisenberg, however, we should note that he now also cited an article by
Born (1927c) on quantum mechanics and statistics in Die Naturwissenschaften.
17 Heisenberg repeatedly claimed that Born’s statistical interpretation of the wave
function owed a debt to the theory of Bohr, Kramers, and Slater (1924), according to
which so-called ‘virtual radiation’ determines the probability of atomic transitions.
Born himself took exception to this claim (AHQP interview with Heisenberg, ses-
sion 4, p. 2). Yet, in his insightful discussion of Born’s contribution, Jammer (1966,
p. 286) follows Heisenberg in identifying BKS as one of its roots. In addition to the
quantum collision papers (Born, 1926a,b, 1927a), Jammer (1966, pp. 283–290) dis-
cusses two papers elaborating on the statistical interpretation of the wave function
(Born, 1926c, 1927b). In the second of these, Born (1927b, p. 356, note) emphasized
that his theory “is not equivalent to that of Bohr, Kramers, Slater.” Born (1926b, p.
804) did explicitly acknowledge one of the other roots identified by Jammer (1966,
p. 285): Einstein’s proposal to interpret the electromagnetic field as a guiding field
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tion is only a special case of a much more general interpretation prescription.
He pointed out that one could, for instance, interpret |ψ(p)|2dp as the prob-
ability that the particle has a momentum between p and p + dp. 18 This
fit well with my own considerations about fluctuation phenomena. In the
fall of 1926, Dirac developed his transformation theory, in which then in all
generality the absolute squares of matrix elements of unitary transforma-
tion matrices were interpreted as probabilities (Heisenberg, 1960, p. 44; our
emphasis).

Born’s work was undoubtedly more important for the development of the
Dirac-Jordan statistical transformation theory than Heisenberg’s. Before ac-
knowledging Heisenberg’s note on fluctuations, Dirac (1927, p. 621), in fact,
had already acknowledged both the preliminary announcement and the full
exposition of Born’s (1926a,b) theory of quantum collisions, published in July
and September of 1926, respectively. These papers contained the statistical
interpretation of the wave function for which Born was awarded part of the
1954 Nobel Prize in physics.

Concretely, Born (1926b, p. 805) suggested that, given a large number of sys-
tems in a superposition ψ(q) =

∑
n cn ψn(q) of energy eigenfunctions ψn(q), the

fraction of systems with eigenfunctions ψn(q) is given by the absolute square of
the complex expansion coefficients cn. 19 In the preliminary version of the pa-
per, Born (1926a, p. 865) introduced his probability interpretation examining
the case of inelastic scattering of an electron by an atom. He wrote the wave
function of the electron long after and far away from the point of interaction
as a superposition of wave functions for free electrons flying off in different
directions. As in the case of the expansion in terms of energy eigenstates men-
tioned above, Born interpreted the absolute square of the coefficients in this
expansion in terms of free electron wave functions as the probability that the
electron flies off in a particular direction. He famously only added in a footnote
that this probability is not given by these coefficients themselves but by their
absolute square (Born, 1926a, p. 865).

for light quanta. For another discussion of Born’s statistical interpretation of the
wave function, see Mehra and Rechenberg (2000–2001, pp. 36–55).
18 See Pauli to Heisenberg, October 19, 1926 (Pauli, 1979, Doc. 143; the relevant
passage of this 12-page letter can be found on pp. 347–348). When listing his sources
for the presentation of transformation theory mentioned above, Heisenberg (1927a,
p. 240, note) referred to that same letter: “Several of these results [of Dirac (1927),
Jordan (1927b), and Heisenberg (1926b)] had already been communicated earlier
and independently to me by Mr. W. Pauli.”
19 We will interpret ‘fraction of systems with a particular energy eigenfunction’ as
‘fraction of systems found to be in a particular energy eigenstate upon measurement
of the energy,’ even though Born did not explicitly say this. A careful distinction
between pure and mixed states also had yet to be made (see von Neumann, 1927b,
which we will discuss in Section 6).
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In Neue Begründung I, Jordan (1927b, p. 811) cited Born’s second longer pa-
per on quantum collisions and a more recent one in which he elaborated on his
statistical interpretation of the wave function (Born, 1926b,c). In the latter,
Born (1926c, p. 174) noted, although he did not use that term at this point,
that his probability interpretation typically leads to the occurrence of interfer-
ence terms (see note 37 for a simple example). 20,21 These two papers by Born
(1926b,c) are mentioned much more prominently in Neue Begründung I than
Heisenberg’s (1926b) note on fluctuations, which is cited only as providing an
example of a special case in which there are no interference terms (Jordan,
1927b, p. 812, note).

In a two-part overview of recent developments in quantum theory that ap-
peared in Die Naturwissenschaften in July and August 1927, Jordan (1927i,
Pt. 2, p. 645) accorded Heisenberg’s note a more prominent role, recognizing
it, along with one of his own papers, as an important step toward statisti-
cal transformation theory. Jordan’s (1927a) paper was submitted about three
weeks after Heisenberg’s (1926c) but was independent of it. 22 The two papers
are remarkably similar. Both are concerned with the reconciliation of two de-
scriptions of the energy exchange between two quantum systems, a continuous
description in terms of a mechanism similar to beats between two waves and
a description in terms of quantum jumps (cf. note 8). Both argued, against

20 According to Born (1926c, p. 174, note), the same result was obtained by Dirac
(1926). Born was probably referring to the phase averaging occurring in this paper
(Dirac, 1926, pp. 675–677). The connection strikes us as rather tenuous. However,
Jammer (1966, p. 290), citing Born’s acknowledgment of Dirac’s paper, claims that
the result was “incorporated into the construction of the transformation theory of
quantum mechanics.” Unfortunately, Jammer does not identify which passage in
Dirac’s paper he takes Born to be referring to.
21 Had Heisenberg not resented Born’s use of wave mechanics so strongly, he could
not have helped but notice that Born (1926c) had already proposed to interpret
elements of transformation matrices as probabilities before he himself did in his note
on fluctuations (Born’s paper appeared December 6, 1926, i.e., after submission but
before publication of Heisenberg’s note). Born wrote: “If because of a perturbation,
persisting for a finite time T , the system is taken from one state to another, then
the distribution constants, the squares of which give the states’ probabilities [i.e., the
coefficients cn in ψ(q) =

∑
n cn ψn(q)], undergo an orthogonal transformation[:] Cn =∑

m bmncm,
∑

k bmkb
∗
nk = δnm. The squares of the coefficients are the transition

probabilities[:] Φnm = |bnm|2,
∑

m Φnm = 1 (Born, 1926c, p. 176; emphasis in the
original; quoted by Mehra and Rechenberg, 2000–2001, p. 52).
22 Jordan’s paper was received by Zeitschrift für Physik on November 25, 1926,
and published January 2, 1927; Heisenberg’s, as we already noted, was received
November 6 and published December 20, 1926. In the letter from which we already
quoted several passages above, Heisenberg praised Jordan’s paper: “Your resonance
example is very pretty” (Heisenberg to Jordan, November 24, 1926, AHQP).
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Schrödinger, 23 that despite appearances to the contrary quantum jumps are
unavoidable. As Jordan (1927i, Pt. 2, pp. 645–646) concluded in his Naturwis-
senschaften article, the probabilistic nature of the laws of quantum mechanics
is key to reconciling the continuous and discontinuous descriptions. In the
letter Heisenberg mentioned above (see note 18), Pauli had drawn the same
conclusion from his analysis of an ingenious example of his own device that he
told Heisenberg was “a pure culture of your favorite resonance phenomenon”
(Pauli, 1979, p. 344). Instead of two quantum systems exchanging energy,
Pauli considered one quantum system, a particle constrained to move on a
closed ring, which periodically encounters a small obstacle. He considered the
case in which the particle is in a state in which it should alternate between ro-
tating clockwise and rotating counterclockwise. That was only possible, Pauli
explained, if we accept the conclusion of Born’s analysis of quantum collisions
that there is a definite probability that the system reverses course upon hit-
ting the obstacle, which classically would not be large enough to change the
direction of the system’s rotation. Unlike Pauli in this letter or Heisenberg
(1926b) in his note on fluctuations, Jordan (1927a) did not elaborate on ex-
actly how the statistical element in his example of a resonance phenomenon
should formally be introduced, via wave functions à la Born or via transfor-
mation matrices à la Heisenberg. In the Naturwissenschaften article, he did
not resolve this issue either. Instead, Jordan (1927i, Pt. 2, p. 646) wrote in
the paragraph immediately following his discussion of resonance phenomena
that the statistical nature of the quantum laws “manifests itself in many ways
even more impressively and intuitively” in Born’s (1926b) analysis of quan-
tum collisions. This strongly suggests that Jordan’s statistical interpretation
of quantum mechanics in Neue Begründung I owed more to Born’s statistical
interpretation of wave functions than to Heisenberg’s statistical interpretation
of transformation matrices.

Jordan was particularly taken with Pauli’s further development of Born’s ideas
even though he probably did not see the letter with Pauli’s probability inter-
pretation of |ψ(p)|2dp mentioned above (see note 18). As Rechenberg (2010,
p. 544) points out, citing a letter from Heisenberg to Pauli of October 28,
1926 (Pauli, 1979, p. 349), Pauli’s letter made the rounds in Copenhagen and

23 Like Heisenberg, Jordan profoundly disliked Schrödinger’s interpretation of the
wave function while appreciating wave mechanics as providing a reservoir of math-
ematical tools in the service of matrix mechanics. Jordan (1927f) bluntly stated
this opinion in his review of a volume collecting Schrödinger’s papers on wave me-
chanics (Schrödinger, 1927; for a long quotation from Jordan’s review, see Mehra
and Rechenberg, 2000–2001, pp. 59–60). Although Jordan did not mention Born’s
interpretation of the wave function in his review (he only criticized Schrödinger’s),
he did not share Heisenberg’s initial resistance to Born’s work. In his habilitation
lecture, for instance, Jordan (1927d, p. 107) praised the “very clear and impressive
way” in which Born had introduced this interpretation.
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Dirac, for instance, certainly read it, but Jordan was in Göttingen at the time
and would not have had access to it. Instead, Jordan (1927b, p. 811, note)
referred to a forthcoming paper by Pauli on gas degeneracy. In that paper,
Pauli (1927a, p. 83, note) only suggested that |ψ(q)|2dq (with q ≡ (q1, . . . , qf ),
where f is the number of degrees of freedom of the system) be interpreted as
the probability of finding the system at a position somewhere in the region
(q, q+dq). As Jordan emphasized in the Naturwissenschaften article discussed
above, even this suggestion is subtly different from what Born had proposed. 24

Born (1926a,b) considered probabilities such as the probability that a system
has a particular energy or the probability that an electron scatters in a partic-
ular direction (or, equivalently, has a certain momentum). Those probabilities
are given by the absolute squares of coefficients in some expansion of the wave
function (in configuration space), either as a superposition of energy eigen-
states or, in the case of collisions, as a superposition (asymptotically) of wave
functions for free particles with specified outgoing momenta. Pauli seems to
have been the first to ask about the probability that a system has a particular
position. That probability is given by the absolute square of the wave function
itself rather than by the absolute square of the coefficients in some expansion
of it. 25 The generalization in Pauli’s letter to Heisenberg from wave functions
in configuration space to wave functions in momentum space is not mentioned
in Neue Begründung I. It is certainly possible, however, that Pauli had shared
this generalization with Jordan, as the two of them regularly saw each other
during this period and even went on vacation together. 26 As a result, it is
impossible to reconstruct what exactly Jordan got from Pauli, whose name
occurs no less than seven times in the first three pages of Neue Begründung I.

Jordan wanted to use what he had learned from Pauli to provide a new uni-
fied foundation for the laws of quantum mechanics by showing that they can
be derived as “consequences of a few simple statistical assumptions” (Jordan,
1927b, pp. 810–811). The central quantities in Jordan’s formalism are what
he called “probability amplitudes.” This echoes Born’s (1926b, p. 804) term
“probability waves” for Schrödinger wave functions but is an extremely broad
generalization of Born’s concept. Moreover, Jordan (1927b, p. 811) credited
Pauli rather than Born with suggesting the term. Jordan defined a complex
probability amplitude, ϕ(a, b), for two arbitrary quantum-mechanical quanti-

24 Discussing “the statistical interpretations of the Schrödinger function given by
Born and Pauli,” Jordan (1927i, Pt. 2, p. 647) added parenthetically: “(it should
be emphasized that Born’s hypothesis and Pauli’s hypothesis, though related, are
at first independent of one another).” Unfortunately, Jordan did not explain what
he meant by the qualification “at first [zunächst ]” in this clause.
25 Although Born did not give the probability interpretation of |ψ(q)|2dq in his
papers on collision theory, he did state a completeness relation highly suggestive of
it:
∫
|ψ(q)|2dq =

∑
|cn|2 (Born, 1926b, p. 805).

26 AHQP interview with Jordan, session 3, p. 15, cited by Mehra and Rechenberg
(2000–2001, p. 66) and by Duncan and Janssen (2009, p. 359).
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ties â and b̂ with fully continuous spectra. 27 At this point, he clearly labored
under the illusion that it would be relatively straightforward to generalize his
formalism to cover quantities with wholly or partly discrete spectra as well. In
Neue Begründung II, Jordan (1927g) would discover that such a generalization
is highly problematic. Unaware of these complications and following Pauli’s
lead, Jordan interpreted |ϕ(a, b)|2da as the conditional probability Pr(a|b) for
finding a value between a and a + da for â given that the system under con-
sideration has been found to have the value b for the quantity b̂. 28

Eigenfunctions ψE(q) with eigenvalues E for some Hamiltonian of a one-
dimensional system in configuration space are examples of Jordan’s probability
amplitudes ϕ(a, b). The quantities â and b̂ in this case are the position q̂ and
the Hamiltonian Ĥ, respectively. Hence |ψE(q)|2dq = |ϕ(q, E)|2dq gives the
conditional probability Pr(q|E) that q̂ has a value between q and q+ dq given
that Ĥ has the value E. This is the special case of Jordan’s interpretation
given in Pauli’s paper on gas degeneracy (in f dimensions).

As indicated above, Jordan took an axiomatic approach in his Neue Begrün-
dung papers. Here we clearly see the influence of the mathematical tradition in
Göttingen (Lacki, 2000). In fact, Jordan had been Richard Courant’s assistant
before becoming Born’s. In his Neue Begründung papers, Jordan began with a
series of postulates about his probability amplitudes and the rules they ought
to obey (the formulation and even the number of these postulates varied) and
then developed a formalism realizing these postulates.

A clear description of the task at hand can be found in a paper by David
Hilbert, Lothar Nordheim, and the other main protagonist of our story, John
von Neumann, who had come to Göttingen in the fall of 1926 on a fellowship
of the International Education Board (Mehra and Rechenberg, 2000–2001, pp.
401–402). Born in 1903, von Neumann was a year younger than Dirac and Jor-
dan, who, in turn, were a year younger than Heisenberg and two years younger
than Pauli. The paper by Hilbert, von Neumann, and Nordheim grew out of
Hilbert’s course on quantum mechanics in 1926/1927 for which Nordheim pre-
pared most of the notes. 29 The course concluded with an exposition of Neue

27 This is the first of several instances where we will enhance Jordan’s own notation.
In Neue Begründung I, Jordan used different letters for quantities and their values.
We will almost always use the same letter for a quantity and its values and use
a hat to distinguish the former from the latter. The main exception will be the
Hamiltonian Ĥ and the energy eigenvalues E. As we noted above, Dirac (1927)
used primes to distinguish the value of a quantity from the quantity itself.
28 The notation Pr(a|b) is ours and is not used in the sources we discuss. At this
point, we suppress another wrinkle that will loom large in our paper, the so-called
‘supplementary amplitude’ (Ergänzungsamplitude; see, in particular, Section 2.4).
29 See p. 13 of the transcript of the interview with Nordheim for the Archive of the
History of Quantum Physics (AHQP) (Duncan and Janssen, 2009, p. 361).
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Begründung I (Sauer and Majer, 2009, pp. 698–706). The notes for this part
of the course formed the basis for a paper, which was submitted in April 1927
but not published, for whatever reason, until the beginning of 1928. 30 In the
introduction, the authors described the strategy for formulating the theory:

One imposes certain physical requirements on these probabilities, which are
suggested by earlier experience and developments, and the satisfaction of
which calls for certain relations between the probabilities. Then, secondly,
one searches for a simple analytical apparatus in which quantities occur
that satisfy these relations exactly (Hilbert, von Neumann, and Nordheim,
1928, p. 2–3; cf. Lacki, 2000, p. 296).

After everything that has been said so far, it will not come as a surprise that
the quantities satisfying the relations that Jordan postulated for his prob-
ability amplitudes are essentially 31 the transformation matrices central to
Dirac’s (1927) presentation of the statistical transformation theory. An exam-
ple, based on lecture notes by Dirac, 32 will give a rough illustration of how
this works.

One of the features that Jordan saw as characteristic of quantum mechanics
and that he therefore included among his postulates was that in quantum me-
chanics the simple addition and multiplication rules of ordinary probability
theory for mutually exclusive and independent outcomes, respectively, apply
to probability amplitudes rather than to the probabilities themselves. Jordan
(1927b, p. 812) used the phrase “interference of probabilities” for this feature.
He once again credited Pauli with the name for this phenomenon, even though
Born (1926b, p. 804) had already talked about the “interference of . . . “prob-
ability waves” ” in his paper on quantum collisions. As we saw above, Born
(1926c, p. 174) had discussed the feature itself in a subsequent paper, albeit
only in the special case of Schrödinger wave functions. Jordan (1927b) was the
first, at least in print, who explicitly recognized this feature in full general-
ity. It is implicit in Dirac’s (1927) version of transformation theory, but Dirac
may well have shared the skepticism about the interference of probabilities

30 Jammer (1966, pp. 310–312) talks about the “Hilbert-Neumann-Nordheim trans-
formation theory” as if it were a new version of the theory, going beyond “its
predecessors, the theories of Dirac and Jordan” (ibid., p. 312). However, what Jam-
mer sees as the new element, the identification of probability amplitudes with the
kernels of certain integral operators (ibid., p. 311), is part and parcel of Jordan’s
papers (see note 14 as well as Sections 2 and 4).
31 The qualification is related to the complication mentioned in note 28 and will be
explained at the end of this subsection.
32 AHQP, “Notes for Dirac’s first lecture course on quantum mechanics, 115 pp.
[Oct 1927 ?]” (Kuhn et al., 1967, p. 32). As Darrigol (1992, p. 344) notes, “Dirac
did try [on pp. 6–9 of these lecture notes] to lay out his competitor’s theory, but he
quickly returned to his own, which he found simpler and more elegant.”
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that Heisenberg expressed in a letter to Jordan (we will quote and discuss the
relevant passage below).

As we will see in Section 2.1, Jordan’s postulate about the addition and mul-
tiplication of probability amplitudes basically boils down to the requirement
that the amplitudes ϕ(a, c), ψ(a, b) and χ(b, c) for the quantities â, b̂, and ĉ
with purely continuous spectra satisfy the relation ϕ(a, c) =

∫
db ψ(a, b)χ(b, c).

It is easy to see intuitively, though much harder to prove rigorously (see Section
1.2), that this relation is indeed satisfied if these three amplitudes are equated
with the transformation matrices—in the notation of Dirac (1927) explained
above—(a/c), (a/b), and (b/c), respectively. These matrices relate wave func-
tions in a-, b-, and c-space to one another. From ψ(a) =

∫
db (a/b)ψ(b) and

ψ(b) =
∫
dc (b/c)ψ(c), it follows that

ψ(a) =
∫∫

db dc (a/b) (b/c)ψ(c).

Comparing this expression to ψ(a) =
∫
dc (a/c)ψ(c), we see that (a/c) =∫

db (a/b) (b/c), in accordance with Jordan’s postulates. 33

This brings us to an important difference between Jordan’s and Dirac’s ver-
sions of their statistical transformation theory. For Dirac, the transformation
element was primary, for Jordan the statistical element was. Most of Dirac’s
(1927) paper is devoted to the development of the formalism that allowed him
to represent the laws of quantum mechanics in different yet equivalent ways
(secs. 2–5, pp. 624–637). The probability interpretation of the transformation
matrices is then grafted onto this formalism in the last two sections (ibid.,
secs. 6–7, 637–641). Jordan’s (1927b) paper begins with the axioms about
probability (Pt. I, secs. 1–2, pp. 809–816). It is then shown that those can be
implemented by equating probability amplitudes with transformation matri-
ces, or, to be more precise, with integral kernels of canonical transformations
(Pt. 2, secs. 1–6, pp. 816–835).

Heisenberg strongly preferred Dirac’s version of statistical transformation the-
ory over Jordan’s. For one thing, he disliked Jordan’s axiomatic approach. As
he told Kuhn in his interview for the AHQP project:

Jordan used this transformation theory for deriving what he called the ax-
iomatics of quantum theory . . . This I disliked intensely . . . Dirac kept
within the spirit of quantum theory while Jordan, together with Born, went

33 Dirac lecture notes, p. 7 (cf. note 32). Dirac used α, β, and γ instead of a, b, and
c, and considered a purely discrete rather than a purely continuous case, thus using
sums instead of integrals. Dirac actually used the notation (.|.) in his handwritten
letters and manuscripts during this period, but apparently did not mind that this
was rendered as (./.) in print.
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into the spirit of the mathematicians (AHQP interview with Heisenberg,
session 11, pp. 7–8; quoted by Duncan and Janssen, 2009, pp. 360–361).

Presumably, the axiomatic approach in and of itself would not have presented
too much of an obstacle for Heisenberg. As Paul Ehrenfest told Jordan, who
still remembered it with amusement when interviewed decades later: “Since
you wrote the paper axiomatically, that only means that one has to read it
back to front.” 34 In that case, one would encounter probability amplitudes in
the guise of transformation matrices first, as in Dirac’s version of the theory.

Heisenberg had more serious reservations about Jordan’s version of theory,
which initially made it difficult for him even to understand Neue Begründung
I. He expressed his frustration in a letter to Pauli a few weeks after the paper
was published. After praising Jordan’s (1927d) habilitation lecture which had
just appeared in Die Naturwissenschaften, Heisenberg wrote:

I could not understand Jordan’s big paper in [Zeitschrift für Physik]. The
“postulates” are so intangible and undefined, I cannot make heads or tails
of them (Heisenberg to Pauli, February 5, 1927; Pauli, 1979, p. 374). 35

About a month later, Heisenberg wrote to Jordan himself, telling him that he
was working

on a fat paper [Heisenberg, 1927b, on the uncertainty princple] that one
might characterize as physical commentary on your paper and Dirac’s. You
should not hold it against me that I consider this necessary. The essence
from a mathematical point of view is roughly that it is possible with your
mathematics to give an exact formulation of the case in which p and q are
both given with a certain accuracy (Heisenberg to Jordan, March 7, 1927,
AHQP; emphasis in the original). 36

Heisenberg now had a clearer picture of Jordan’s approach and of how it dif-
fered from the approach of Dirac, who had meanwhile left Copenhagen and

34 AHQP interview with Jordan, session 3, p. 17; quoted by Mehra and Rechenberg
(2000–2001, p. 69) and Duncan and Janssen (2009, p. 360).
35 Even Dirac’s (1927) paper, which for modern readers is much more accessible than
Jordan’s Neue Begründung I, was difficult to understand for many of his contempo-
raries. In a letter of June 16, 1927, Ehrenfest told Dirac that he and his colleagues
in Leyden had had a hard time with several of his papers, including the one on
transformation theory (Kragh, 1990, p. 46).
36 Heisenberg’s (1927b) paper was received by Zeitschrift für Physik on March 23,
1927. Shortly before he submitted the paper, he wrote to Jordan for help with a sign
error in a derivation in Neue Begründung I that he needed for his paper (see note 71).
For discussion of Heisenberg’s reliance on transformation theory for his uncertainty
paper, see Jammer (1966, pp. 326–328), Mehra and Rechenberg (2000–2001, pp.
148–151, and pp. 159–161), and Beller (1985, 1999, pp. 91–95).
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had joined Born and Jordan in Göttingen. After registering some disagree-
ments with Dirac, Heisenberg turned to his disagreements with Jordan:

With you I don’t quite agree in that, in my opinion, the relation
∫
ϕ(x, y)

ψ(y, z) dz has nothing to do with the laws of probability. In all cases in
which one can talk about probabilities the usual addition and multiplication
of probabilities is valid, without “interference.” With Dirac I believe that
it is more accurate to say: all statistics is brought in only through our
experiments (Heisenberg to Jordan, March 7, 1927, AHQP; emphasis in the
original).

The reservation expressed in the first two sentences is largely a matter of se-
mantics. Heisenberg did not dispute that the relation given by Jordan, which
we wrote as ϕ(a, c) =

∫
db ψ(a, b)χ(b, c) above, holds in quantum mechanics

(as we will see in Section 1.2, it corresponds to the familiar completeness and
orthogonality relations). Heisenberg also did not dispute that this relation
describes interference phenomena. 37 What Heisenberg objected to was Jor-
dan’s way of looking upon this relation as a consequence of his addition and
multiplication rules for probability amplitudes. This did not materially affect
Jordan’s theory as Jordan (1927b, p. 813) only ever used those rules to derive
this particular relation. 38

The reference to Dirac for Heisenberg’s second reservation is to the concluding
sentence of Dirac’s paper on transformation theory:

The notion of probabilities does not enter into the ultimate description of
mechanical processes: only when one is given some information that involves
a probability . . . can one deduce results that involve probabilities (Dirac,
1927, p. 641). 39

37 A simple example, the familiar two-slit experiment, immediately makes that clear.
Let the quantity ĉ (value c) be the position where photons are emitted; let b̂ (values
b1 and b2) be the positions of the two slits; and let â (value a) be the position where
photons are detected. On the assumption (vindicated by modern theory) that the
relation also applies to quantities with discrete values (such as b̂ in this example),
the integral on its right-hand side reduces to a sum of two terms in this case:
ϕ(a, c) = ψ(a, b1)χ(b1, c) + ψ(a, b2)χ(b2, c). Multiplying the left- and the right-
hand side by their complex conjugates, we find that the probability Pr(a|c) is equal
to the sum of the probabilities Pr(a& b1|c) and Pr(a& b2|c) plus the interference
terms ψ(a, b1)ψ∗(a, b2)χ(b1, c)χ

∗(b2, c) and ψ(a, b2)ψ∗(a, b1)χ(b2, c)χ
∗(b1, c).

38 Heisenberg elaborated on his criticism of Jordan on this score in his uncertainty
paper (Heisenberg, 1927b, pp. 183–184, p. 196). Von Neumann (1927a, p. 46; cf. note
128) initially followed Jordan (see also Hilbert, von Neumann, and Nordheim, 1928,
p. 5; cf. note 93), but he changed his mind after reading Heisenberg’s uncertainty
paper (von Neumann, 1927b, p. 246; cf. note 133).
39 Quoted and discussed by Kragh (1990, p. 42). Dirac’s position, in turn, was
undoubtedly influenced by the exchange between Pauli and Heisenberg that led to
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Instead of elaborating on this second reservation, Heisenberg told Jordan that
he had just written a 14-page letter about these matters to Pauli and suggested
that Jordan have Pauli send him this letter for further details. In this letter,
the blueprint for his uncertainty paper, Heisenberg told Pauli:

One can, like Jordan, say that the laws of nature are statistical. But one
can also, and that to me seems considerably more profound, say with Dirac
that all statistics are brought in only through our experiments. That we
do not know at which position the electron will be the moment of our
experiment, is, in a manner of speaking, only because we do not know the
phases, if we do know the energy . . . and in this respect the classical theory
would be no different. That we cannot come to know the phases without
. . . destroying the atom is characteristic of quantum mechanics (Heisenberg
to Pauli, February 23, 1927; Pauli, 1979, Doc. 154, p. 377; emphasis in the
original; see also Heisenberg, 1927b, p. 177).

So Heisenberg—and with him Dirac—held on to the idea that nature itself is
deterministic and that all the indeterminism that quantum mechanics tells us
we will encounter is the result of unavoidable disturbances of nature in our
experiments. Jordan, by contrast, wanted at least to keep open the possibility
that nature is intrinsically indeterministic (as did Born [1926a, p. 866; 1926b,
pp. 826–827]). Jordan (1927d) made this clear in his habilitation lecture. 40

the latter’s uncertainty paper. Recall, for instance, that Dirac read the long letter
from Pauli to Heisenberg of October 19, 1926 (Pauli, 1979, quoted and discussed
by Mehra and Rechenberg, 2000–2001, pp. 145–147).
40 This lecture, published in Die Naturwissenchaften and, in a translation prepared
by Oppenheimer, in Nature, shows that Jordan’s position was more nuanced than
Heisenberg made it out to be. First, Jordan clearly recognized that the laws govern-
ing his probability amplitudes are fully deterministic (Jordan, 1927d, pp. 107–108
in the German original; pp. 567–568 in the English translation). Second, whether
nature is indeterministic remained an open question for him. As an example he
considered the time of a single quantum jump, which, he wrote, “under certain cir-
cumstances is a measurable quantity. What predictions can our theory make on this
point? The most obvious answer is that the theory only gives averages, and can tell
us, on the average, how many quantum jumps will occur in any interval of time.
Thus, we must conclude, the theory gives the probability that a jump will occur at
a given moment; and thus, so we might be led to conclude, the exact moment is
indeterminate, and all we have is a probability for the jump. But this last conclusion
does not necessarily follow from the preceding one: it is an additional hypothesis”
(ibid., p. 109 [German]; p. 569 [English]). In general, he reiterated in the conclusion
of his habilitation lecture, “[t]he circumstance that the quantum laws are laws of
averages, and can only be applied statistically to specific elementary processes, is
not a conclusive proof that the elementary laws themselves can only be put in terms
of probability . . . Probably we shall find that an incomplete determinism, a certain
element of pure chance, is intrinsic in these elementary physical laws. But, as I have
said, a trustworthy decision will only be possible after a further analysis of quantum
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In his Neue Begründung papers, Jordan did not discuss the nature of the
probabilities he introduced. He did not even properly define these probabilities.
This was done only by von Neumann (1927b) with the help of the notion of
ensembles of systems from which one randomly selects members, a notion
developed by Richard von Mises and published in book form the following
year (von Mises, 1928, see note 134).

As far as the issue of determinism versus indeterminism is concerned, Dirac
thus stayed closer to classical theory than Jordan. In other respects, however,
Jordan stayed closer. Most importantly, Jordan’s use of canonical transfor-
mations is much closer to their use in classical mechanics than Dirac’s. 41 In
the letter to Jordan from which we quoted right at the beginning of our pa-
per, Dirac clearly identified part of the difference in their use of of canonical
transformations:

In your work I believe you considered transformations from one set of dy-
namical variables to another, instead of a transformation from one scheme
of matrices representing the dynamical variables to another scheme repre-
senting the same dynamical variables, which is the point of view adopted
throughout my paper. The mathematics appears to be the same in the two
cases, however (Dirac to Jordan, December 24, 1916, AHQP). 42

Traditionally, canonical transformations had been used the way Jordan used
them, as transformations to new variables, and not the way Dirac used them,
as transformations to new representations of the same variables. Canonical
transformations had been central to the development of matrix mechanics
(Born and Jordan, 1925; Born, Heisenberg, and Jordan, 1926; see Section 2.2
below). Prior to Neue Begründung I, Jordan (1926b,c) had actually published
two important papers on the implementation of canonical transformations in
matrix mechanics (Lacki, 2004; Duncan and Janssen, 2009). Jordan’s use of
canonical transformations in his Neue Begründung papers was twofold. First,
as already mentioned above, Jordan tried to show that integral kernels in
canonical transformations have all the properties that probability amplitudes
must satisfy according to his postulates. Second, he tried to use canonical
transformations to derive differential equations for probability amplitudes for
arbitrary quantities (such as the time-independent Schrödinger equation for
ϕ(q, E) ≡ ψE(q)) from the trivial differential equations satisfied by the proba-

mechanics” (ibid., p. 110 [German]; p. 569 [English]).
41 Darrigol (1992, p. 343) also recognizes this but, pointing to Jordan’s unusual
definition of canonically conjugate quantities (see below), concludes that “Jordan
departed much more from the classical model than did Dirac.” This may be true,
as we will see, for where Jordan ended up with Neue Begründung II, but he started
out following the classical model much more closely than Dirac.
42 This is the one paragraph of this letter not quoted by Mehra and Rechenberg
(2000–2001, cf. note 2).
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bility amplitude for ρ(p, q) for some generalized coordinate q̂ and its conjugate
momentum p̂ that he started from. The ‘mind your p’s and q’s’ part of the
title of our paper refers to the crucial role of canonical transformations and
conjugate variables in Jordan’s formalism.

Both ways in which Jordan relied on canonical transformations in his Neue
Begründung papers turned out to be problematic and resulted in serious math-
ematical problems for his version of statistical transformation theory. These
problems do not affect Dirac’s version since Dirac (1927) only relied on canon-
ical transformations in very loose sense. However, as we will see once we have
introduced some modern tools to analyze the Dirac-Jordan theory in Section
1.2, the two versions of the theory do share a number of other mathematical
problems. The ‘never mind your p’s and q’s’ part of our title thus does not refer
to Dirac’s version of statistical transformation theory, but to the fundamen-
tally different Hilbert space formalism that von Neumann (1927a) introduced
as an alternative to the Dirac-Jordan theory (Section 1.3).

To conclude this subsection, we briefly indicate how Jordan ran into prob-
lems with his twofold use of canonical transformations in Neue Begründung
and explain why those problems do not plague Dirac’s version of the theory.
We return to these problems in Section 1.2, relying more heavily on modern
concepts and notation, and analyze them in greater detail in Sections 2 and
4, again helping ourselves to modern tools. As Heisenberg (1960, p. 44) wrote
in the passage from his contribution to the Pauli memorial volume quoted
above, Dirac only considered unitary transformations in his transformation
theory. Unitary transformations of Hermitian operators preserve their Her-
miticity. Unfortunately, there are many canonical transformations that are
not unitary (Duncan and Janssen, 2009, p. 356). In Neue Begründung I, Jor-
dan therefore tried to develop a formalism that would allow quantities that,
from a modern point of view, correspond to non-Hermitian operators. As long
as the quantities â and b̂ correspond to Hermitian operators, the probability
amplitude ϕ(a, b) is the integral kernel of a unitary transformation and the
conditional probability Pr(a|b) is equal to |ϕ(a, b)|2da. In such cases, the inte-
gral kernel ϕ(a, b) is simply identical to Dirac’s unitary transformation matrix
(a/b). As soon as â and/or b̂ are non-Hermitian, however, ϕ(a, b) is the integral
kernel of a non-unitary transformation and the expression for Pr(a|b) becomes
more complicated, involving both the probability amplitude itself and what
Jordan called a “supplementary amplitude” (Ergänzungsamplitude). Following
the lead of Hilbert, von Neumann, and Nordheim (1928), Jordan dropped the
Ergänzungsamplitude in Neue Begründung II. The price he paid for this was
what, from the point of view of classical mechanics, amounted to the rather
arbitrary restriction of the canonical transformations allowed in his theory to
unitary ones.
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The other main problem that Jordan ran into with his use of canonical trans-
formations is directly related to his axiomatic approach. Unlike Dirac, Jordan
wanted to derive the entire theory from his statistical postulates. This meant,
for instance, that Jordan did not include the canonical commutation rela-
tion, [p̂, q̂] ≡ p̂q̂ − q̂p̂ = h/2πi (where h is Planck’s constant), among his
postulates. Nor did he assume the usual association of the momentum p̂ con-
jugate to q̂ with the differential operator (~/i)∂/∂q (with ~ ≡ h/2π) acting
on wave functions in q-space. Dirac assumed both these elements. Instead of
the commutation relation for p̂ and q̂, Jordan (1927b, p. 814) assumed that
the probability amplitude ρ(p, q) for these two quantities had a particularly
simple form—in our notation: ρ(p, q) = e−ipq/~. This then is how Planck’s
constant enters Jordan’s formalism. Normally, the canonical commutation re-
lation [p̂, q̂] = ~/i defines what it means for p̂ and q̂ to be canonically conjugate
variables. Jordan, however, defined p̂ and q̂ to be canonically conjugate if and
only if ρ(p, q) = e−ipq/~. 43 This probability amplitude tells us that “[f]or a
given value of q̂ all possible values of p̂ are equally probable” (Jordan, 1927b,
ibid, p. 814; emphasis in the original; hats added). 44 The amplitude ρ(p, q)
trivially satisfies the equations (p+(~/i) ∂/∂q) ρ = 0 and ((~/i) ∂/∂p+q) ρ = 0
(ibid.). Subjecting these basic equations to canonical transformations, Jordan
argued for the usual association of quantum-mechanical quantities with dif-
ferential operators acting on wave functions (e.g., p̂ with (~/i)∂/∂q). Once
those associations have been made, his assumption about the form of ρ(p, q)
entails the usual commutation relation for p̂ and q̂. Performing more canonical
transformation on the basic equations for ρ(p, q), Jordan now tried to derive
differential equations for probability amplitudes involving quantities related to
the initial p̂ and q̂ via canonical transformations. In this manner, for instance,
he tried to recover the time-independent Schrödinger equation.

43 When Kuhn asked Jordan in his interview for the AHQP project why he had
chosen this definition, Jordan said: “I wanted to put the probability considerations
first and thought that the multiplication, the operators, would follow from these.
If one posits that p and q are two quantities for which there is this particular
probability [amplitude] then one can draw conclusions from that and if one defines
multiplication afterwards, then one gets the commutation rules. The goal was to
not make the commutation rules the starting point but to obtain them as the result
of something else. The basic rules of the formulation should be conceived of as
statements about probability amplitudes” (session 3, pp. 16–17).
44 Jordan’s habilitation lecture published about two months before Heisenberg’s
(1927b) paper (see note 36), contains a statement that is even more suggestive
of the uncertainty principle: “With different experimental setups one can observe
different coordinates. However, with a particular setup one can, at best, observe
particular coordinates of an atom exactly, while it will then be impossible in that
setup to observe the corresponding momenta exactly” (Jordan, 1927d, p. 108, note
1, in the German version; this note was omitted in the English translation).
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It was not until Neue Begründung II, written in Copenhagen on an Interna-
tional Education Board fellowship and received by Zeitschrift für Physik on
June 3, 1927, that Jordan realized that this strategy for deriving Schrödinger-
type differential equations for his probability amplitudes was severely limited.
He came to this realization as he was trying to extend his formalism, which
in Neue Begründung I was restricted to quantities with continuous spectra,
to cover quantities with partly or wholly discrete spectra as well. The key
problem (as we will show using modern tools at the end of Section 2.3), is
that quantities related by a canonical transformation have the same spec-
trum. It follows that Jordan’s procedure to get from the differential equations
for probability amplitudes for one pair of quantities to those for another pair
fails as soon as one pair has purely continuous spectra (such as p̂ and q̂) and
the other pair has partly or wholly discrete spectra (such as, typically, the
Hamiltonian). In response to this problem, Jordan changed the way he used
canonical transformations to the way Dirac had been using them all along,
where the transformations are no longer to new quantities but rather to new
representations of the same quantities (Jordan, 1927g, pp. 16–17; see Section
4 for a quotation of the relevant passage).

The treatment of quantities with partly or wholly discrete spectra in Neue
Begründung II necessitated further departures from the classical formalism of
canonical transformations and conjugate variables. For quantities with fully
continuous spectra, Jordan could show that his definition of conjugate vari-
ables in terms of a probability amplitude reduces to the standard definition
in terms of a commutation relation. This is not true for quantities with partly
or wholly discrete spectra. In Neue Begründung II, Jordan gave a simple
proof that such quantities can never satisfy the standard commutation re-
lation [p̂, q̂] = ~/i (see Section 4, Eqs. (103)–(108)). Jordan presented it as a
point in favor of his formalism that his alternative definition of canonically
conjugate variables works for quantities with partly or wholly discrete spectra
as well. Jordan’s definition, however, led to such counter-intuitive proposi-
tions as different components of spin qualifying as canonically conjugate to
one another. 45 All in all, the state of affairs by the end of Neue Begründung
II can fairly be characterized as follows. On the one hand, Jordan was still

45 In fact, Jordan’s initial answer to Kuhn’s question why he had adopted a new
definition of canonically conjugate variables (see note 43) was that it would be
applicable to spin as well. Only when Kuhn reminded him that this application
must have come later, did Jordan give the answer we quoted in note 43. Later in
the interview, Kuhn explicitly asked him how he felt about the idea of taking two
components of spin to be conjugate to one another. “Yes, wasn’t that neat,” Jordan
answered, “that was a success, wasn’t it, that was pretty that that worked, that one
could do it this way, a sensible generalization of p and q” (session 3, p. 22). As Kuhn
notes in defense of Jordan, the breakdown of the ordinary commutation relations
did make room for Jordan’s introduction of anti-commutation relations (ibid., p.
23; cf. Jordan, 1927h; Jordan and Wigner, 1928; and the coda to our paper)
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trying to rely on the classical formalism of canonical transformations and
conjugate variables to build up the formalism realizing the postulates for his
quantum-mechanical probability amplitudes. On the other hand, these classi-
cal concepts had to be stretched almost beyond the breaking point to arrive
at a satisfactory formulation of his quantum theory.

1.2 Mathematical challenges facing the Dirac-Jordan theory

From a modern point of view, the realization of the axioms of Neue Begründung
is supplied by the Hilbert space formalism. 46 Jordan’s probability amplitudes
ϕ(a, b) are then identified with ‘inner products’ 〈a|b〉 of ‘eigenvectors’ |a〉 and
|b〉 of operators â and b̂. 47 The reason we used scare quotes in the preceding
sentence is that for quantities with completely continuous spectra, to which
Jordan restricted himself in Neue Begründung I, the ‘eigenvectors’ of the cor-
responding operators are not elements of Hilbert space. That in modern quan-
tum mechanics they are nonetheless routinely treated as if they are vectors
in Hilbert space with inner products such as 〈a|b〉 is justified by the spectral
theorem for the relevant operators.

Of course, neither the spectral theorem nor the notions of an abstract Hilbert
space and of operators acting in it were available when Jordan and Dirac pub-
lished their respective versions of transformation theory in 1927. The Hilbert
space formalism and the spectral theorem were only introduced later that year,
by von Neumann (1927a), and two more years passed before von Neumann
(1929) published a rigorous proof of the spectral theorem. So even though
Dirac (1927) introduced the notation (a/b) for what Jordan wrote as ϕ(a, b),
Dirac, like Jordan, did not at that time conceive of these quantities as ‘inner
products’ of two more elementary quantities (see note 46). Although Dirac

46 As Darrigol (1992, p. 344) notes about Dirac’s version of transformation theory:
“There is one feature of Dirac’s original transformation theory that is likely to sur-
prise the modern quantum physicist: the notion of state vector is completely absent.
It was in fact introduced later by Weyl [1927] and von Neumann [1927a, see Section
6], and subsequently adopted by Dirac [1930] himself. In 1939 Dirac even split his
original transformation symbol (ξ′/α′) into two pieces 〈ξ′| and |α′〉, the “bra” and
the “ket” vectors. The mathematical superiority of the introduction of state vectors
is obvious, since it allows—albeit not without difficulty—an explicit construction of
mathematical entities (rigged Hilbert spaces) that justify Dirac’s manipulations.”
In a note added in a proof to his next paper (see Section 7), von Neumann (1927b,
p. 256) acknowledged that Weyl (1927) had independently introduced the notion of
a pure state.
47 We will not introduce a special notation to distinguish between a physical quantity
and the operator acting in Hilbert space representing that quantity. In most cases
it will be clear from context whether â stands for a quantity or an operator.
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later did accept the split (once again see note 46), probability amplitudes re-
mained the fundamental quantities for Jordan (Duncan and Janssen, 2009, p.
361).

Once the ‘inner-product’ structure of probability amplitudes is recognized and
justified with the help of the spectral theorem, Jordan’s basic axioms about
the addition and multiplication of probability amplitudes are seen to reduce
to statements about orthogonality and completeness familiar from elementary
quantum mechanics. For instance, as we mentioned in Section 1.1, Jordan’s
postulates demand that the probability amplitudes ϕ(a, c), ψ(a, b) and χ(b, c)
for quantities â, b̂, and ĉ with purely continuous spectra satisfy the relation
ϕ(a, c) =

∫
db ψ(a, b)χ(b, c). Once probability amplitudes are identified with

‘inner products’ of ‘eigenvectors’ (appropriately normalized, such that, e.g.,
〈a|a′〉 = δ(a − a′), where δ(x) is the Dirac delta function), the familiar com-
pleteness relation, 〈a|c〉 =

∫
db 〈a|b〉〈b|c〉 (which holds on account of the reso-

lution of unity, 1̂ =
∫
db |b〉〈b|, corresponding to the spectral decomposition of

the operator b̂), guarantees that ϕ(a, c) =
∫
db ψ(a, b)χ(b, c). In this sense, the

Hilbert space formalism thus provides a realization of Jordan’s postulates.

In the absence of the Hilbert space formalism and the spectral theorem, Jordan
relied on the formalism of canonical transformations to develop the analyti-
cal apparatus realizing his axiomatic scheme. As we saw in Section 1.1, his
starting point was the probability amplitude ρ(p, q) = e−ipq/~ for some gener-
alized coordinate q̂ and its conjugate momentum p̂. 48 This special probability
amplitude, to reiterate, trivially satisfies two simple differential equations. Jor-
dan then considered canonical transformations to other canonically conjugate
variables P̂ and Q̂ and derived differential equations for arbitrary probability
amplitudes starting from the ones for ρ(p, q). In this way, he claimed, one
could recover both the time-independent and the time-dependent Schrödinger
equations as examples of such equations.

Both claims are problematic. The recovery of the time-dependent Schrödinger
equation requires that we look upon the time t not as a parameter as we would
nowadays but as an operator to be expressed in terms of the operators p̂ and q̂.
More importantly, Jordan’s construction only gets us to the time-independent
Schrödinger equation for Hamiltonians with fully continuous spectra. In Neue
Begründung I, Jordan deliberately restricted himself to quantities with com-
pletely continuous spectra, confident at that point that his approach could
easily be generalized to quantities with wholly or partly discrete spectra. He
eventually had to accept that this generalization fails. The problem, as he him-
self recognized in Neue Begründung II, is that two quantities α̂ and p̂ related
to each other via a canonical transformation (implemented by the similarity

48 In the parlance of modern quantum information theory, this is the statement that
{|p〉} and {|q〉} are mutually unbiased bases.
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transformation α̂ = T p̂T−1) always have the same spectrum. 49 Hence, no
canonical transformation that can be implemented in this way can take us
from quantities such as p̂ and q̂ with a completely continuous spectrum to a
Hamiltonian with a wholly or partly discrete spectrum.

The quantities ϕ(a, b) in Jordan’s formalism do double duty as probability
amplitudes and as integral kernels of canonical transformations. Even if we
accept the restriction to quantities with fully continuous spectra for the mo-
ment, Jordan could not quite get his formalism to work, at least not at the level
of generality he had hoped for. In hindsight, we can see that another major
hurdle was that canonical transformations from one set of conjugate variables
to another, although they do preserve the spectra, do not always preserve the
Hermitian character of the operators associated with these variables in quan-
tum mechanics (Duncan and Janssen, 2009, secs. 5–6). Initially Jordan tried to
get around this problem through the introduction of the Ergänzungsamplitude.
Once he dropped that notion, he had to restrict the allowed canonical trans-
formations to those associated with unitary operators. In the modern Hilbert
space formalism, the integral kernels of canonical transformations in Jordan’s
formalism are replaced by unitary operators. There is no need anymore for con-
sidering canonical transformations nor, for that matter, for sorting quantities
into pairs of conjugate variables. Jordan’s reliance on canonical transforma-
tions and conjugate variables became even more strained in Neue Begründung
II, when he tried to extend his approach to quantities with partly or wholly
discrete spectra. He had a particularly hard time dealing with the purely dis-
crete spectrum of the recently introduced spin observable. Minding his p’s and
q’s, Jordan ended up putting himself in a straitjacket.

1.3 Von Neumann’s alternative to the Dirac-Jordan theory

At the end of their exposition of Jordan’s theory in Neue Begründung I,
Hilbert, von Neumann, and Nordheim (1928, p. 30) emphasized the math-
ematical difficulties with Jordan’s approach (some of which they had caught,
some of which they too had missed), announced that they might return to
these on another occasion, and made a tantalizing reference to the first of
three papers on quantum mechanics that von Neumann would publish in 1927
in the Proceedings of the Göttingen Academy (von Neumann, 1927a,b,c). This
trilogy formed the basis for his famous book (von Neumann, 1932). The first
of these papers, “Mathematical foundations (Mathematische Begründung) of
quantum mechanics,” is the one in which von Neumann (1927a) introduced
the Hilbert space formalism and the spectral theorem (he only published a

49 See Eq. (84) at the end of Section 2.3 for a simple proof of this claim in modern
language.
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rigorous proof of the latter two years later). One might therefore expect at
this juncture that von Neumann would simply make the observations that we
made in Section 1.2, namely that the Hilbert space formalism provides the
natural implementation of Jordan’s axiomatic scheme and that the spectral
theorem can be used to address the most glaring mathematical problems with
this implementation. Von Neumann, however, did nothing of the sort. 50

Von Neumann was sharply critical of the Dirac-Jordan transformation theory.
As he put it in the introduction of his 1932 book: “Dirac’s method does not
meet the demands of mathematical rigor in any way—not even when it is re-
duced in the natural and cheap way to the level that is common in theoretical
physics” (von Neumann, 1932, p. 2; our emphasis). He went on to say that “the
correct formulation is not just a matter of making Dirac’s method mathemati-
cally precise and explicit but right from the start calls for a different approach
related to Hilbert’s spectral theory of operators” (ibid., our emphasis). 51 Von

50 Von Neumann’s formulation of quantum mechanics is nonetheless often referred
to as transformation theory. In fact, von Neumann (1932, p. 1) himself, in the
introduction of his famous book, used that term to describe both his own theory and
the theory of Dirac and Jordan. And the title of the section in which Jammer (1966,
pp. 307–322) covers von Neumann’s formulation is “The statistical transformation
theory in Hilbert space.” At the beginning of the preceding section on Jordan and
Dirac, Jammer (1966, p. 293) warns his readers that “a clear-cut or universally
accepted definition of the subject matter of the transformation theory is hardly
found in the literature.” After giving a couple of examples of widely different usages,
he offers a possible definition: “the study of those transformations in quantum theory
which leave the results of empirically significant formulae invariant” (ibid., p. 294).
With this definition, there can be many different transformation theories depending
“on the kind of space with respect to which the performance of transformations is
to be considered” (ibid.). Jammer then characterizes the progression from Jordan
and Dirac to von Neumann in a way that fits well with our analysis: “while the
early phases of the development were characterized by transformations within the
configuration and momentum space, its later elaboration led to the conception of
abstract Hilbert spaces as the arena underlying the transformations. In this course
the formerly important notion of canonical transformations in quantum mechanics
gradually lost its peculiarity and importance” (ibid.).
51 As Léon van Hove (1958, pp. 95–96), noted in a concise and lucid summary of
von Neumann’s contribution to quantum mechanics for a special issue of the Bul-
letin of the American Mathematical Society dedicated to his memory: “Although
von Neumann himself attempted at first, in collaboration with Hilbert and Nord-
heim, to edify the quantum-mechanical formalism along similar lines [i.e., those
of the transformation theory of Dirac and Jordan], he soon realized that a much
more natural framework was provided by the abstract, axiomatic theory of Hilbert
spaces and their linear operators.” Unfortunately, there are many highly misleading
statements in the historical literature about the relation between the Dirac-Jordan
transformation theory and von Neumann’s Hilbert space formalism. Kragh (1990,
pp. 46–47) calls the latter “a mathematically advanced development of the Dirac-
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Neumann only referred to Dirac in this passage, but as co-author of the paper
with Hilbert and Nordheim mentioned above, he was thoroughly familiar with
Jordan’s closely related work as well. He also clearly appreciated the differ-
ence in emphasis between Dirac and Jordan. Talking about the Schrödinger
wave function in the introduction of the second paper of his 1927 trilogy, he
wrote: “Dirac interprets it as a row of a certain transformation matrix, Jor-
dan calls it a probability amplitude” (von Neumann, 1927b, p. 246). 52 In the
opening paragraph of this article, von Neumann contrasted wave mechanics
with “transformation theory” or “statistical theory,” once again reflecting the
difference in emphasis between Dirac and Jordan. Yet, despite his thorough
understanding of it, von Neumann did not care for the Dirac-Jordan approach.

Von Neumann’s best-known objection concerns the inevitable use of delta
functions in the Dirac-Jordan approach. However, von Neumann also ob-
jected to the use of probability amplitudes. Jordan’s basic amplitude, ρ(p, q) =
e−ipq/~, is not in the space L2 of square-integrable functions that forms one
instantiation of abstract Hilbert space. Moreover, probability amplitudes are
only determined up to a phase factor, which von Neumann thought particu-
larly unsatisfactory. “It is true that the probabilities appearing as end results
are invariant,” he granted in the introduction of his paper, “but it is un-
satisfactory and unclear why this detour through the unobservable and non-
invariant is necessary” (von Neumann, 1927a, p. 3). So, rather than following
the Jordan-Dirac approach and looking for ways to mend its mathematical
shortcomings, von Neumann, as indicated in the passage from his 1932 book
quoted above, adopted an entirely new approach. He generalized Hilbert’s
spectral theory of operators 53 to provide a formalism for quantum mechanics
that is very different from the one proposed by Jordan and Dirac.

The only elements that von Neumann took from transformation theory—more
specifically Jordan’s version of it—were, first, Jordan’s basic idea that quan-
tum mechanics is ultimately a set of rules for conditional probabilities Pr(a|b),
and second, the fundamental assumption that such probabilities are given by
the absolute square of the corresponding probability amplitudes, which essen-
tially boils down to the Born rule. 54 Von Neumann derived a new expression

Jordan transformation theory.” Lacki (2000, p. 301) writes that “von Neumann
appears to follow exactly the program as set out in his previous paper with Hilbert
and Nordheim.” And in our paper on the path to Neue Begründung, we wrote: “In
the process of providing sound mathematical underpinnings of Jordan’s transforma-
tion theory, von Neumann introduced the idea of representing quantum-mechanical
states by vectors or rays in Hilbert space” (Duncan and Janssen, 2009, p. 361).
52 Discussing Jordan’s approach in his first paper, von Neumann (1927a) referred
to “transformation operators (the integral kernels of which are the “probability
amplitudes”)” (p. 3).
53 See Steen (1973) for a brief history of spectral theory.
54 Interestingly, von Neumann (1927a, pp. 43–44) mentioned Pauli, Dirac, and Jor-
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for conditional probabilities in quantum mechanics that avoids probability
amplitudes altogether and instead sets them equal to the trace of products of
projection operators, as they are now called. Instead of the term ‘projection
operator’, Von Neumann used the term Einzeloperator (or E.Op. for short;
cf. note 116). The probability Pr(a|b), e.g., is given by Tr(Ê(a)F̂ (b)), where
Ê(a) and F̂ (b) are projection operators onto, in Dirac notation, the ‘eigen-
vectors’ |a〉 and |b〉 of the operators â and b̂, respectively. Unlike probability
amplitudes, these projection operators do not have any phase ambiguity. This
is easily seen in Dirac notation. The projection operator Ê(a) = |a〉〈a| does
not change if the ket |a〉 is replaced by eiϑ|a〉 and the bra 〈a| accordingly by
e−iϑ〈a|. We should emphasize, however, that, just as Jordan and Dirac with
their probability amplitudes/transformation functions 〈a|b〉, von Neumann did
not think of his projection operators as constructed out of bras and kets, thus
avoiding the problem that many of these bras and kets are not in Hilbert
space.

Toward the end of his paper, von Neumann (1927a, pp. 46–47) noted that
his trace expression for conditional probabilities is invariant under “canoni-
cal transformations.” What von Neumann called canonical transformations,
however, are not Jordan’s canonical transformations but simply, in modern
terms, unitary transformations. Such transformations automatically preserve
Hermiticity and the need for something like Jordan’s Ergänzungsamplitude
simply never arises. Von Neumann noted that his trace expression for con-
ditional probabilities does not change if the projection operators Ê and F̂
are replaced by Û ÊÛ † and Û F̂ Û †, where Û is an arbitrary unitary operator
(Û † = Û−1). In von Neumann’s approach, as becomes particularly clear in
his second paper of 1927 (see below), one also does not have to worry about
sorting variables into sets of mutually conjugate ones. This then is what the
‘never mind your p’s and q’s’ part of the title of our paper refers to. By avoiding
conjugate variables and canonical transformations, von Neumann completely
steered clear of the problem that ultimately defeated Jordan’s attempt to de-
rive all of quantum mechanics from his set of axioms, namely that canonical
transformations can never get us from p̂’s and q̂’s with fully continuous spectra
to quantities with wholly or partly discrete spectra, such as the Hamiltonian.

In Mathematische Begründung, von Neumann not only provided an alternative
to Jordan’s analysis of probabilities in quantum mechanics, he also provided
an alternative to the Dirac-Jordan transformation-theory approach to prov-
ing the equivalence of matrix mechanics and wave mechanics (von Neumann,
1927a, p. 14). This is where von Neumann put the abstract notion of Hilbert
space that he introduced in his paper to good use. He showed that matrix

dan in this context, but not Born. Unlike Heisenberg (see note 10), von Neumann
had no reason to dislike Born’s work. And he did cite Born in the second paper of
his 1927 trilogy on quantum mechanics (von Neumann, 1927b, p. 245).
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mechanics and wave mechanics correspond to two instantiations of abstract
Hilbert space, the space l2 of square-summable sequences and the space L2

of square-integrable functions, respectively (Dieudonné, 1981, p. 172). 55 As
von Neumann reminded his readers, well-known theorems due to Parseval and
Riesz and Fisher had established that l2 and L2 are isomorphic. 56

In his second 1927 paper, “Probability-theoretical construction (Wahrschein-
lichkeitstheoretischer Aufbau) of quantum mechanics,” von Neumann (1927b)
freed himself even further from relying on the Dirac-Jordan approach. In
Mathematische Begründung he had accepted the Born rule and recast it in
the form of his trace formula. In Wahrscheinlichkeitstheoretischer Aufbau he
sought to derive this trace formula, and thereby the Born rule, from more
fundamental assumptions about probability. Drawing on ideas of von Mises
(see note 134), von Neumann started by introducing probabilities in terms
of selecting members from large ensembles of systems. He then made two
very general and prima facie perfectly plausible assumptions about expecta-
tion values of quantities defined on such ensembles (von Neumann, 1927b, pp.
246–250). From those assumptions, some assumptions about the repeatability
of measurements (von Neumann, 1927b, p. 271, p. 262, cf. note 137), and key
features of his Hilbert space formalism (especially some assumptions about the
association of observables with Hermitian operators), von Neumann did indeed
manage to recover the Born rule. Admittedly, the assumptions needed for this
result are not as innocuous as they look at first sight. They are essentially the
same as those that go into von Neumann’s infamous no-hidden-variable proof
(Bell, 1966; Bacciagaluppi and Crull, 2009; Bub, 2010).

Along the way von Neumann (1927b, p. 253) introduced what we now call
a density operator to characterize the ensemble of systems he considered. He
found that the expectation value of an observable represented by some opera-
tor â in an ensemble characterized by ρ̂ is given by Tr(ρ̂ â), where we used the
modern notation ρ̂ for the density operator (von Neumann used the letter U).
This result holds both for what von Neumann (1927b) called a “pure” (rein)

55 Not usually given to hyperbole, Jammer (1966, p. 316) was moved to comment
on this feat: “In von Neumann’s formulation of quantum mechanics was found the
ultimate fulfillment—as far as the theory of quanta is concerned—of Hipparchus’s
insistence on the usefulness of investigating “why on two hypotheses so different
from one another . . . the same results appear to follow,” which, as we have seen,
had already characterized Jordan’s line of research.” The references to Hipparchus
and Jordan are to p. 307 of Jammer’s book (see also p. 293, where Dirac is mentioned
as well).
56 In 1907–1908, Erhard Schmidt, a student of Hilbert who got his Ph.D. in 1905,
fully worked out the theory of l2 and called it ‘Hilbert space’ (Steen, 1973, p. 364).
In a paper on canonical transformations, Fritz London (1926b, p. 197) used the
term ‘Hilbert space’ for L2 (Jammer, 1966, p. 298; Duncan and Janssen 2009, p.
356, note 12).
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or “uniform” (einheitlich) ensemble (p. 255), consisting of identical systems
in identical states, and for what he called a “mixture” (Gemisch) (p. 265).
So the result is more general than the Born rule, which obtains only in the
former case. Von Neumann went on to show that the density operator for a
uniform ensemble is just the projection operator onto the ray in Hilbert space
corresponding to the state of all systems in this ensemble. However, he found
it unsatisfactory to characterize the state of a physical system by specifying
a ray in Hilbert space. “Our knowledge of a system,” von Neumann (1927b,
p. 260) wrote, “is never described by the specification of a state . . . but, as
a rule, by the results of experiments performed on the system.” In this spirit,
he considered the simultaneous measurement of a maximal set of commuting
operators and constructed the density operator for an ensemble where what
is known is that the corresponding quantities have values in certain intervals.
He showed that such measurements can fully determine the state and that the
density operator in that case is once again the projection operator onto the
corresponding ray in Hilbert space.

Von Neumann thus arrived at the typical quantum-mechanical way of con-
ceiving of a physical problem nowadays, which is very different from the clas-
sical way to which Jordan was still wedded in Neue Begründung. In classical
mechanics, as well as in Jordan’s version of transformation theory, the full
description of a physical system requires the specification of a complete set of
p’s and q’s. In quantum mechanics, as was first made clear in von Neumann’s
Wahrscheinlichkeitstheoretischer Aufbau, it requires the specification of the
eigenvalues of all the operators in a maximal set of commuting operators for
the system. In other words, the ‘never mind your p’s and q’s’ part of the title
of our paper carried the day.

1.4 Outline of our paper

In the balance of this paper we cover the contributions of Jordan and von
Neumann (initially with Hilbert and Nordheim) to the developments sketched
above in greater detail. We give largely self-contained reconstructions of the
central arguments and derivations in five key papers written in Göttingen and,
in one case (Neue Begründung II), in Copenhagen over the span of just one
year, from late 1926 to late 1927 (Jordan, 1927b,g; Hilbert, von Neumann,
and Nordheim, 1928; von Neumann, 1927a,b). To make the arguments and
derivations in these papers easier to follow for a modern reader, we translate
them all into the kind of modern notation introduced in Sections 1.2 and
1.3. To make it easier for the reader to check our claims against the primary
sources, we provide detailed references to the latter, including where necessary
equation numbers and legends for the original notation. We will not cover
Dirac (cf. note 6), although we will occasionally refer to his work, both his
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original paper on transformation theory (Dirac, 1927) and the book based on
it (Dirac, 1930). We will also freely avail ourselves of his bra and ket notation.
Our focus, however, will be on Jordan and von Neumann.

We begin, in Section 2, with Neue Begründung I (Jordan, 1927b). In this paper
Jordan only dealt with quantities with completely continuous spectra, sug-
gesting that the generalization to ones with partly or wholly discrete spectra
would be straightforward (Jordan, 1927b, p. 811, p. 816). We cover Jordan’s
postulates for his probability amplitudes (Section 2.1) and his construction of
a realization of these postulates, especially his use of canonical transforma-
tions between pairs of conjugate variables to derive the differential equations
for these amplitudes (Section 2.3). In Section 2.2, drawing on an earlier paper
(Duncan and Janssen, 2009), we remind the reader of the role of canonical
transformations in matrix mechanics. In Section 2.4, we take a closer look at
Jordan’s notion of a supplementary amplitude [Ergänzungsamplitude].

In Section 3, we discuss the paper by Hilbert, von Neumann, and Nordheim
(1928), submitted in April 1927, that grew out of the exposition of Jordan’s
approach in Hilbert’s 1926/1927 course on quantum mechanics (Sauer and
Majer, 2009, pp. 698–706). Hilbert and his co-authors had the advantage of
having read the paper in which Dirac (1927) presented his version of transfor-
mation theory. Jordan only read Dirac’s paper when he was correcting the page
proofs of Neue Begründung I (Jordan, 1927b, p. 809; note added in proof).

In Section 4, we consider Neue Begründung II (Jordan, 1927g), received by
Zeitschrift für Physik in early June 1927 and written in part in response
to criticism of Neue Begründung I by Hilbert, von Neumann, and Nordheim
(1928) and by von Neumann (1927a) in Mathematische Begründung. Since von
Neumann introduced an entirely new approach, we deviate slightly from the
chronological order of these papers, and discuss Mathematische Begründung
after Neue Begründung II. In the abstract of the latter, Jordan (1927g, p. 1)
promised “a simplified and generalized presentation of the theory developed in
[Neue Begründung] I.” Drawing on Dirac (1927), Jordan simplified his notation
somewhat, although he also added some new and redundant elements to it.
Most importantly, however, the crucial generalization to quantities with partly
or wholly discrete spectra turned out to be far more problematic than he had
suggested in Neue Begründung I. Rather than covering Neue Begründung II
in detail, we highlight the problems Jordan ran into, especially in his attempt
to deal with spin in his new formalism.

In Sections 5 and 6, we turn to the first two papers of von Neumann’s trilogy
on quantum mechanics of 1927. In Section 5, on Mathematische Begründung
(von Neumann, 1927a), we focus on von Neumann’s criticism of the Dirac-
Jordan transformation theory, his proof of the equivalence of wave mechanics
and matrix mechanics based on the isomorphism between L2 and l2, and his

30



derivation of the trace formula for probabilities in quantum mechanics. We
do not cover the introduction of his Hilbert space formalism, which takes
up a large portion of his paper. This material is covered in any number of
modern books on functional analysis. 57 In Section 6, on Wahrscheinlichkeits-
theoretischer Aufbau (von Neumann, 1927c), we likewise focus on the overall
argument of the paper, covering the derivation of the trace formula from some
basic assumptions about the expectation value of observables in an ensemble of
identical systems, the introduction of density operators, and the specification
of pure states through the values of a maximal set of commuting operators.

In Section 7, we summarize the transition from Jordan’s quantum-mechanical
formalism rooted in classical mechanics (mind your p’s and q’s) to von Neu-
mann’s quantum-mechanical formalism which no longer depends on classical
mechanics for its formulation (never mind your p’s and q’s).

As a coda to our story, we draw attention to the reemergence of the canonical
formalism, its generalized coordinates and conjugate momenta, even for spin-1

2

particles, in quantum field theory.

2 Jordan’s Neue Begründung I (December 1926)

Neue Begründung I was received by Zeitschrift für Physik on December 18,
1926 and published January 18, 1927 (Jordan, 1927b). It consists of two parts.
In Part One (I. Teil ), consisting of secs. 1–2 (pp. 809–816), Jordan laid down
the postulates of his theory. In Part Two (II. Teil ), consisting of secs. 3–7
(pp. 816–838), he presented the formalism realizing these postulates. In the
abstract of the paper, Jordan announced that his new theory would unify all
earlier formulations of quantum theory:

The four forms of quantum mechanics that have been developed so far—
matrix theory, the theory of Born and Wiener, wave mechanics, and q-
number theory—are contained in a more general formal theory. Following
one of Pauli’s ideas, one can base this new theory on a few simple funda-
mental postulates (Grundpostulate) of a statistical nature (Jordan, 1927b,
p. 809).

As we mentioned in Section 1.2, Jordan claimed that he could recover both
the time-dependent and the time-independent Schrödinger equation as special
cases of the differential equations he derived for the probability amplitudes
central to his formalism. This is the basis for his claim that wave mechanics

57 See, e.g., Prugovecki (1981), or, for a more elementary treatment, which will be
more than sufficient to follow our paper, Dennery and Krzywicki (1996, Ch. 3).
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can be subsumed under his new formalism. Nowhere in the paper did he show
explicitly how matrix mechanics is to be subsumed under the new formalism.
Perhaps Jordan felt that this did not require a special argument as the new
formalism had grown naturally out of matrix mechanics and his own contri-
butions to it (Jordan, 1926a,b). However, as emphasized repeatedly already,
Jordan (1927b) restricted himself to quantities with purely continuous spectra
in Neue Begründung I, so the formalism as it stands is not applicable to ma-
trix mechanics. Like Dirac’s (1927) own version of statistical transformation
theory, Jordan’s version can be seen as a natural extension of Dirac’s (1925)
q-number theory. It is only toward the end of his paper (sec. 6) that Jordan
turned to the operator theory of Born and Wiener (1926). In our discussion
of Neue Begründung I, we omit this section along with some mathematically
intricate parts of secs. 3 and 5 that are not necessary for understanding the
paper’s overall argument. We do not cover the concluding sec. 7 of Jordan’s
paper either, which deals with quantum jumps (recall his earlier paper on this
topic [Jordan, 1927a], which we briefly discussed in Section 1.1).

Although we will not cover Jordan’s unification of the various forms of quan-
tum theory in any detail, we will cover (in Section 5) von Neumann’s criticism
of the Dirac-Jordan way of proving the equivalence of matrix mechanics and
wave mechanics as a prelude to his own proof based on the isomorphism of l2

and L2 (von Neumann, 1927a). In our discussion of Neue Begründung I in this
section, we focus on the portion of Jordan’s paper that corresponds to the last
sentence of the abstract, which promises a statistical foundation of quantum
mechanics. Laying this foundation actually takes up most of the paper (secs.
1–2, 4–5).

2.1 Jordan’s postulates for probability amplitudes

The central quantities in Neue Begründung I are generalizations of Schrödinger
energy eigenfunctions which Jordan called “probability amplitudes.” He at-
tributed both the generalization and the term to Pauli. Jordan referred to a
footnote in a forthcoming paper by Pauli (1927a, p. 83, note) proposing, in
Jordan’s terms, the following interpretation of the energy eigenfunctions ϕn(q)
(where n labels the different energy eigenvalues) of a system (in one dimen-
sion): “If ϕn(q) is normalized, then |ϕn(q)|2dq gives the probability that, if the
system is in the state n, the coordinate [q̂] has a value between q and q + dq”
(Jordan, 1927b, p. 811). A probability amplitude such as this one for position
and energy can be introduced for any two quantities.

In Neue Begründung I, Jordan focused on quantities with completely con-
tinuous spectra. He only tried to extend his approach, with severely limited
success, to partly or wholly discrete spectra in Neue Begründung II (see Section
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4). For two quantities x̂ and ŷ that can take on a continuous range of values
x and y, respectively, 58 there is a complex probability amplitude ϕ(x, y) such
that |ϕ(x, y)|2 dx gives the probability that x̂ has a value between x and x+dx
given that ŷ has the value y.

In modern Dirac notation ϕ(x, y) would be written as 〈x|y〉 (cf. our discussion
in Section 1.2). Upon translation into this modern notation, many of Jordan’s
expressions turn into instantly recognizable expressions in modern quantum
mechanics and we will frequently provide such translations to make it easier
to read Jordan’s text. We must be careful, however, not to read too much into
it. First of all, von Neumann had not yet introduced the abstract notion of
Hilbert space when Jordan and Dirac published their theories in early 1927, so
neither one thought of probability amplitudes as ‘inner products’ of ‘vectors’
in Hilbert space at the time. More importantly, for quantities x̂’s and ŷ’s
with purely continuous spectra (e.g., position or momentum of a particle in
an infinitely extended region), the ‘vectors’ |x〉 and |y〉 are not elements of
Hilbert space, although an inner product 〈x|y〉 can be defined in a generalized
sense (as a distribution) as an integral of products of continuum normalized
wave functions, as is routinely done in elementary quantum mechanics. That
continuum eigenstates can be treated as though they are indeed states in
a linear space satisfying completeness and orthogonality relations which are
continuum analogs of the discrete ones which hold rigorously in a Hilbert space
is, as we will see later, just the von Neumann spectral theorem for self-adjoint
operators with a (partly or wholly) continuous spectrum.

In the introductory section of Neue Begründung I, Jordan (1927b, p. 811)
listed two postulates, labeled I and II. Only two pages later, in sec. 2, enti-
tled “Statistical foundation of quantum mechanics,” these two postulates are
superseded by a new set of four postulates, labeled A through D. 59 In Neue
Begründung II, Jordan (1927g, p. 6) presented yet another set of postulates,
three this time, labeled I through III (see Section 4). 60 The exposition of
Jordan’s theory by Hilbert, von Neumann, and Nordheim (1928), written in

58 Recall that this is our notation (cf. note 27): Jordan used different letters for
quantities and their numerical values. For instance, he used q (with value x) and β
(with value y) for what we called x̂ and ŷ, respectively (Jordan, 1927b, p. 813)
59 In the short version of Neue Begründung I presented to the Göttingen Academy
on January 14, 1927, Jordan (1927c, p. 162) only introduced postulates I and II. In
this short version, Jordan (1927c, p. 163) referred to “a soon to appear extensive
paper in Zeitschrift für Physik” (i.e., Jordan, 1927b).
60 In his overview of recent developments in quantum mechanics in Die Naturwis-
senschaften, Jordan (1927i, Pt. 2, p. 648), after explaining the basic notion of a
probability amplitude (cf. Postulate A below), listed only two postulates, or ax-
ioms as he now called them, namely “the assumption of probability interference”
(cf. Postulate C below) and the requirement that there is a canonically conjugate
quantity p̂ for every quantum-mechanical quantity q̂ (cf. Postulate D below).
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between Neue Begründung I and II, starts from six “physical axioms” (pp.
4–5), labeled I through VI (see Section 3). We will start from Jordan’s four
postulates of Neue Begründung I, which we paraphrase and comment on below,
staying close to Jordan’s own text but using the notation introduced above to
distinguish between quantities and their numerical values.

Postulate A. For two mechanical quantities q̂ and β̂ that stand in a definite
kinematical relation to one another there are two complex-valued functions,
ϕ(q, β) and ψ(q, β), such that ϕ(q, β)ψ∗(q, β)dq gives the probability of finding
a value between q and q+ dq for q̂ given that β̂ has the value β. The function
ϕ(q, β) is called the probability amplitude, the function ψ(q, β) is called the
“supplementary amplitude” (Ergänzungsamplitude).

Comments: As becomes clear later on in the paper, “mechanical quantities
that stand in a definite kinematical relation to one another” are quantities
that can be written as functions of some set of generalized coordinates and
their conjugate momenta. In his original postulate I, Jordan (1927b, p. 162)
wrote that “ϕ(q, β) is independent of the mechanical nature (the Hamiltonian)
of the system and is determined only by the kinematical relation between q̂
and β̂” (hats added). Hilbert et al. made this into a separate postulate, their
axiom V: “A further physical requirement is that the probabilities only de-
pend on the functional nature of the quantities F1(pq) and F2(pq), i.e., on
their kinematical connection [Verknüpfung], and not for instance on additional
special properties of the mechanical system under consideration, such as, for
example, its Hamiltonian” (Hilbert, von Neumann, and Nordheim, 1928, p. 5).
With ϕ(q, β) = 〈q|β〉, the statement about the kinematical nature of proba-
bility amplitudes translates into the observation that they depend only on the
inner-product structure of Hilbert space and not on the Hamiltonian governing
the time evolution of the system under consideration. 61

It turns out that for all quantities represented, in modern terms, by Hermi-
tian operators, the amplitudes ψ(q, β) and ϕ(q, β) are equal to one another. At
this point, however, Jordan wanted to leave room for quantities represented by
non-Hermitian operators. This is directly related to the central role of canoni-
cal transformations in his formalism. As Jordan (1926a,b) had found in a pair
of papers published in 1926, canonical transformations need not be unitary
and therefore do not always preserve the Hermiticity of the conjugate vari-
ables one starts from (Duncan and Janssen, 2009). The Ergänzungsamplitude
does not appear in the presentation of Jordan’s formalism by Hilbert, von
Neumann, and Nordheim (1928). 62 In Neue Begründung II, Jordan (1927g, p.

61 In the AHQP interview with Jordan, Kuhn emphasized the importance of this
aspect of Jordan’s formalism: “The terribly important step here is throwing the
particular Hamiltonian function away and saying that the relationship is only in
the kinematics” (session 3, p. 15).
62 Both ψ and ϕ are introduced in the lectures by Hilbert on which this paper is
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3) restricted himself to Hermitian quantities and silently dropped the Ergän-
zungsamplitude. We return to the Ergänzungsamplitude in Section 2.4 below,
but until then we will simply set ψ(q, β) = ϕ(q, β) everywhere.

Postulate B. The probability amplitude ϕ̄(β, q) is the complex conjugate of the
probability amplitude ϕ(q, β). In other words, ϕ̄(β, q) = ϕ∗(q, β). This implies
a symmetry property of the probabilities themselves: the probability density
|ϕ̄(β, q)|2 for finding the value β for β̂ given the value q for q̂ is equal to the
probability density |ϕ(q, β)|2 for finding the value q for q̂ given the value β for
β̂.

Comment. This property is immediately obvious once we write ϕ(q, β) as
〈q|β〉 with the interpretation of 〈q|β〉 as an ‘inner product’ in Hilbert space
(but recall that one has to be cautious when dealing with quantities with
continuous spectra).

Postulate C. The probabilities combine through interference. In sec. 1, Jordan
(1927b, p. 812) already introduced the phrase “interference of probabilities”
to capture the striking feature in his quantum formalism that the probability
amplitudes rather than the probabilities themselves follow the usual compo-
sition rules for probabilities. 63 Let F1 and F2 be two outcomes [Tatsachen]
for which the amplitudes are ϕ1 and ϕ2. If F1 and F2 are mutually exclu-
sive, ϕ1 + ϕ2 is the amplitude for the outcome ‘F1 or F2’. If F1 and F2 are
independent, ϕ1ϕ2 is the amplitude for the outcome ‘F1 and F2’.

Consequence. Let ϕ(q, β) be the probability amplitude for the outcome F1 of
finding the value q for q̂ given the value β for β̂. Let χ(Q, q) be the probability
amplitude for the outcome F2 of finding the value Q for Q̂ given the value
q for q̂. Since F1 and F2 are independent, Jordan’s multiplication rule tells
us that the probability amplitude for ‘F1 and F2’ is given by the product
χ(Q, q)ϕ(q, β). Now let Φ(Q, β) be the probability amplitude for the outcome
F3 of finding the value Q for Q̂ given the value β for β̂. According to Jordan’s
addition rule, this amplitude is equal to the ‘sum’ of the amplitudes for ‘F1

and F2’ for all different values of q. Since q̂ has a continuous spectrum, this
‘sum’ is actually an integral. The probability amplitude for F3 is thus given
by 64

Φ(Q, β) =
∫
χ(Q, q)ϕ(q, β) dq. [NB1, sec. 2, Eq. 14] (1)

based but they are set equal to one another almost immediately and without any
further explanation (Sauer and Majer, 2009, p. 700).
63 Recall, however, Heisenberg’s criticism of this aspect of Jordan’s work in his
uncertainty paper (Heisenberg, 1927b, pp. 183–184; cf. note 38).
64 We include the numbers of the more important equations in the original papers
in square brackets. ‘NB1’ refers to Neue Begründung I (Jordan, 1927b). Since the
numbering of equations starts over a few times in this paper (see note 79), we will
often include the section number as well.
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Special case. If Q̂ = β̂, the amplitude Φ(β′, β′′) becomes the Dirac delta func-
tion. Jordan (1927b, p. 814) introduced the notation δβ′β′′ even though β′ and
β′′ are continuous rather than discrete variables [NB1, sec. 2, Eq. 16]. In a
footnote he conceded that this is mathematically dubious. In Neue Begrün-
dung II, Jordan (1927g, p. 5) used the delta function that Dirac (1927, pp.
625–627) had meanwhile introduced in his paper on transformation theory.
Here and in what follows we will give Jordan the benefit of the doubt and
assume the normal properties of the delta function. 65

Using that the amplitude χ(β′, q) is just the complex conjugate of the ampli-
tude ϕ(q, β′), we arrive at the following expression for Φ(β′, β′′):

Φ(β′, β′′) =
∫
ϕ∗(q, β′)ϕ(q, β′′) dq = δβ′β′′ . [NB1, sec. 2, Eqs. 15, 16, 17] (2)

Comment. Translating Eqs. (1)–(2) above into Dirac notation, we recognize
them as familiar completeness and orthogonality relations: 66

〈Q|β〉 =
∫
〈Q|q〉〈q|β〉 dq, 〈β′|β′′〉 =

∫
〈β′|q〉〈q|β′′〉 dq = δ(β′ − β′′). (3)

Since the eigenvectors |q〉 of the operator q̂ are not in Hilbert space, the spec-
tral theorem, first proven by von Neumann (1927a), is required for the use of
the resolution of the unit operator 1̂ =

∫
dq|q〉〈q|.

Postulate D. For every q̂ there is a conjugate momentum p̂. Before stating this
postulate, Jordan offered a new definition of what it means for p̂ to be the
conjugate momentum of q̂. If the amplitude ρ(p, q) of finding the value p for
p̂ given the value q for q̂ is given by

ρ(p, q) = e−ipq/~, [NB1, sec. 2, Eq. 18] (4)

then p̂ is the conjugate momentum of q̂.

Anticipating a special case of the uncertainty principle (cf. notes 36 and 44),
Jordan (1927b, p. 814) noted that Eq. (4) implies that “[f]or a given value of
q̂ all possible values of p̂ are equally probable.”

For p̂’s and q̂’s with completely continuous spectra, Jordan’s definition of when
p̂ is conjugate to q̂ is equivalent to the standard one that the operators p̂ and q̂
satisfy the commutation relation [p̂, q̂] ≡ p̂ q̂−q̂ p̂ = ~/i. This equivalence, how-
ever, presupposes the usual association of the differential operators (~/i) ∂/∂q

65 For a brief history of the delta function that focuses on its role in quantum
mechanics, see, e.g., Jammer (1966, pp. 301–302, pp. 313–314).
66 The notation 〈Q|β〉 for Φ(Q, β) etc. obviates the need for different letters for
different probability amplitudes that plagues Jordan’s notation.
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and ‘multiplication by q’ with the quantities p̂ and q̂, respectively. As we em-
phasized in Section 1.2, Jordan did not think of these quantities as operators
acting in an abstract Hilbert space, but he did associate them (as well as
any other quantity obtained through adding and multiplying p̂’s and q̂’s) with
the differential operators (~/i) ∂/∂q and q (and combinations of them). The
manipulations in Eqs. (19ab)–(24) of Neue Begründung I, presented under the
subheading “Consequences” (Folgerungen) immediately following postulate D,
are meant to show that this association follows from his postulates (Jordan,
1927b, pp. 814–815). Using modern notation, we reconstruct Jordan’s rather
convoluted argument. As we will see, the argument as it stands does not work,
but a slightly amended version of it does.

The probability amplitude 〈p|q〉 = e−ipq/~, Jordan’s ρ(p, q), trivially satisfies
the following pair of equations:(

p+
~
i

∂

∂q

)
〈p|q〉 = 0, [NB1, sec. 2, Eq. 19a] (5)

(
~
i

∂

∂p
+ q

)
〈p|q〉 = 0. [NB1, sec. 2, Eq. 19b] (6)

Unless we explicitly say otherwise, expressions such as 〈a|b〉 are to be inter-
preted as our notation for Jordan’s probability amplitudes ϕ(a, b) and not as
inner products of vectors |a〉 and |b〉 in Hilbert space.

Following Jordan (NB1, sec. 2, Eqs. 20–22), we define the map T , which takes
functions f of p and turns them into functions Tf of Q (the value of a new
quantity Q̂ with a fully continuous spectrum):

T : f(p) → (Tf)(Q) ≡
∫
〈Q|p〉f(p)dp. (7)

In other words, T . . . =
∫
dp 〈Q|p〉 . . . [NB1, Eq. 21]. For the special case that

f(p) = 〈p|q〉, we get:

(T 〈p|q〉) (Q) =
∫
〈Q|p〉〈p|q〉dp = 〈Q|q〉, (8)

where we used completeness, one of the consequences of Jordan’s postulate C
(cf. Eqs. (1)–(3)). In other words, T maps 〈p|q〉 onto 〈Q|q〉: 67

〈Q|q〉 = T 〈p|q〉. [NB1, sec. 2, Eq. 22] (9)

67 At this point, Jordan’s notation, ϕ(x, y) = T.ρ(x, y) [NB1, sec. 2, Eq. 22], gets
particularly confusing as the x on the left-hand side and the x on the right-hand
side refer to values of different quantities. The same is true for the equations that
follow [NB1, Eqs. 23ab, 24ab].
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Likewise, we define the inverse map T−1, which takes functions F of Q and
turns them into functions T−1F of p: 68

T−1 : F (Q) → (T−1F )(p) ≡
∫
〈p|Q〉F (Q)dQ. (10)

In other words, T−1 . . . =
∫
dQ 〈p|Q〉 . . . 69 For the special case that F (Q) =

〈Q|q〉 we get (again, by completeness):

(
T−1〈Q|q〉

)
(p) =

∫
〈p|Q〉〈Q|q〉dQ = 〈p|q〉, (11)

or, more succinctly,

〈p|q〉 = T−1〈Q|q〉. (12)

Applying T to the left-hand side of Eq. (5) [NB1, Eq. 19a], we find:

T

((
p+

~
i

∂

∂q

)
〈p|q〉

)
= Tp〈p|q〉+

~
i

∂

∂q
T 〈p|q〉 = 0, (13)

where we used that differentiation with respect to q commutes with applying
T (which only affects the functional dependence on p). Using that 〈p|q〉 =
T−1〈Q|q〉 (Eq. (12)) and T 〈p|q〉 = 〈Q|q〉 (Eq. (9)), we can rewrite Eq. (13)
as: 70 (

TpT−1 +
~
i

∂

∂q

)
〈Q|q〉 = 0. [NB1, sec. 2, Eq. 23a] (14)

Similarly, applying T to the left-hand side of Eq. (6) [NB1, Eq. 19b], we find:

T

((
~
i

∂

∂p
+ q

)
〈p|q〉

)
= T

~
i

∂

∂p
〈p|q〉+ qT 〈p|q〉 = 0, (15)

68 To verify that T−1 is indeed the inverse of T , we take F (Q) in Eq. (10) to be
(Tf)(Q) in Eq. (7). In that case we get:

(T−1Tf)(p) =

∫
〈p|Q〉

(∫
〈Q|p′〉f(p′)dp′

)
dQ

=

∫∫
〈p|Q〉〈Q|p′〉f(p′) dQdp′

=

∫
〈p|p′〉f(p′) dp′ = f(p),

where we used the resolution of unity, 1̂ =
∫
dQ |Q〉〈Q|, and 〈p|p′〉 = δ(p− p′).

69 Jordan (1927b, p. 815, note) used the Ergänzungsamplitude to represent T−1 in
this form.
70 There is a sign error in NB1, sec. 2, Eq. 23a: −TxT−1 should be TxT−1.
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where we used that multiplication by q commutes with applying T . Once again
using that 〈p|q〉 = T−1〈Q|q〉 and T 〈p|q〉 = 〈Q|q〉, we can rewrite this as: 71

(
T
~
i

∂

∂p
T−1 + q

)
〈Q|q〉 = 0. [NB1, sec. 2, Eq. 23b] (16)

Eqs. (14) and (16) [NB1, Eqs. 23ab] gave Jordan a representation of the quanti-
ties p̂ and q̂ in the Q-basis. The identification of p̂ in the Q-basis is straightfor-
ward. The quantity p in Eq. (5) [NB1, Eq. 19a] turns into the quantity TpT−1

in Eq. (14), [NB1, Eq. 23a]. This is just what Jordan had come to expect on
the basis of his earlier use of canonical transformations (see Section 2.2 below).
The identification of q̂ in the Q-basis is a little trickier. Eq. (6) [NB1, Eq. 19b]
told Jordan that the position operator in the original p-basis is −(~/i) ∂/∂p
(note the minus sign). This quantity turns into −T (~/i) ∂/∂p T−1 in Eq. (16)
[NB1, Eq. 23b]. This then should be the representation of q̂ in the new Q-basis,
as Jordan stated right below this last equation: “With respect to (in Bezug
auf ) the fixed chosen quantity [Q̂] every other quantity [q̂] corresponds to an
operator [−T (~/i) ∂/∂p T−1]” (Jordan, 1927b, p. 815). 72

With these representations of his quantum-mechanical quantities p̂ and q̂,
Jordan could now define their addition and multiplication through the corre-
sponding addition and multiplication of the differential operators representing

71 There is a sign error in NB1, sec. 2, Eq. 23b: −y should be y. The sign errors in
Eqs. (14)-(16) confused Heisenberg, who was relying on Neue Begründung I for the
mathematical part of his uncertainty paper (see note 36). He wrote to Jordan to
ask for clarification:

Today just a quick question, since I have been trying in vain, enduring persistent
fits of rage, to derive your Eq. (23a and b) from (19a and b) in your transformation
paper. According to my certainly not authoritative opinion it should be ρ = e+xy/ε

and not ρ = e−xy/ε, for out of (x + ε ∂/∂y) ρ(x, y) [NB1, Eq. 19a, our Eq. (5)]
I always get —God be darned—(+TxT−1 + ε ∂/∂y)ϕ(x, y) = 0 [NB1, Eq. 23a,
our Eq. (14)]. Now it’s possible that I am doing something nonsensical with
these constantly conjugated quantities (F̃ , F ∗, F †: read: F -blurry, F -ill, and F -
deceased), but I don’t understand anything anymore. Since, however, the quantity
ρ(x, y) forms the basis of my mathematics, I am kindly asking you for clarification
of the sign (Heisenberg to Jordan, March 17, 1927, AHQP).

Jordan’s response apparently has not been preserved but from another letter from
Heisenberg to Jordan a week later, we can infer that Jordan wrote back that the
expression for ρ(x, y) in Neue Begründung I is correct but that there are sign errors in
Eqs. (23ab). In the meantime Heisenberg had submitted his uncertainty paper and
replied: “I now fully agree with your calculations and will change my calculations
accordingly in the proofs” (Heisenberg to Jordan, March 24, 1927, AHQP).
72 Because of the sign error in Eq. (16) [NB1, Eq. 23b], Jordan set q̂ in the Q-basis
equal to T ((~/i) ∂/∂p)T−1.
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these quantities.

Jordan next step was to work out what the differential operators TpT−1 and
−T (~/i) ∂/∂pT−1, representing p̂ and q̂ in the Q-basis, are in the special case
that Q̂ = q̂. In that case, Eqs. (14) and (16) [NB1, Eqs. 23ab] turn into:(

TpT−1 +
~
i

∂

∂q

)
〈q′|q〉 = 0, (17)

(
T
~
i

∂

∂p
T−1 + q

)
〈q′|q〉 = 0. (18)

On the other hand, 〈q′|q〉 = δ(q′ − q). So 〈q′|q〉 trivially satisfies:(
~
i

∂

∂q′
+

~
i

∂

∂q

)
〈q′|q〉 = 0, [NB1, sec. 2,Eq. 24a] (19)

(−q′ + q) 〈q′|q〉 = 0. [NB1, sec. 2,Eq. 24b] (20)

Comparing Eqs. (19)–(20) with Eqs. (17)–(18), we arrive at

TpT−1〈q′|q〉 =
~
i

∂

∂q′
〈q′|q〉, (21)

−T ~
i

∂

∂p
T−1〈q′|q〉 = q′〈q′|q〉. (22)

Eq. (21) suggests that TpT−1, the momentum p̂ in the q-basis acting on the q′

variable, is just (~/i) ∂/∂q′. Likewise, Eq. (22) suggests that−T (~/i) ∂/∂p T−1,
the position q̂ in the q-basis acting on the q′ variable, is just multiplication by
q′. As Jordan put it in a passage that is hard to follow because of his confusing
notation:

Therefore, as a consequence of (24) [our Eqs. (19)–(20)], the operator x
[multiplying by q′ in our notation] is assigned (zugeordnet) to the quantity
[Grösse] Q itself [q̂ in our notation]. One sees furthermore that the operator
ε ∂/∂x [(~/i) ∂/∂q′ in our notation] corresponds to the momentum P [p̂]
belonging to Q [q̂] (Jordan, 1927b, p. 815). 73

It is by this circuitous route that Jordan arrived at the usual functional
interpretation of coordinate and momentum operators in the Schrödinger
formalism. Jordan (1927b, pp. 815–816) emphasized that the association of
(~/i) ∂/∂q and q with p̂ and q̂ can easily be generalized. Any quantity (Grösse)
obtained through multiplication and addition of q̂ and p̂ is associated with the
corresponding combination of differential operators q and (~/i) ∂/∂q.

73 We remind the reader that Jordan used the term ‘operator’ [Operator] not for
an operator acting in an abstract Hilbert space but for the differential operators
(~/i) ∂/∂x and (multiplying by) x and for combinations of them.
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Jordan’s argument as it stands fails. We cannot conclude that two operations
are identical from noting that they give the same result when applied to one
special case, here the delta function 〈q′|q〉 = δ(q′ − q) (cf. Eqs. (21)–(22)).
We need to show that they give identical results when applied to an arbitrary
function. We can easily remedy this flaw in Jordan’s argument, using only
the kind of manipulations he himself used at this point (though we will do
so in modern notation). We contrast this proof in the spirit of Jordan with
a modern proof showing that Eqs. (14) and (16) imply that p̂ and q̂, now
understood in the spirit of von Neumann as operators acting in an abstract
Hilbert space, are represented by (~/i) ∂/∂q and q, respectively, in the q-basis.
The input for the proof à la Jordan are his postulates and the identification of
the differential operators representing momentum and position in the Q-basis
as TpT−1 and −T (~/i) ∂/∂p T−1, respectively (cf. our comments following
Eq. (16)). The input for the proof à la von Neumann are the inner-product
structure of Hilbert space and the spectral decomposition of the operator p̂. Of
course, von Neumann (1927a) only introduced these elements after Jordan’s
Neue Begründung I.

Closely following Jordan’s approach, we can show that Eqs. (14) and (16)
[NB1, Eqs. 23ab] imply that, for arbitrary functions F (Q), if Q is set equal to
q,

(TpT−1F )(q) =
~
i

∂

∂q
F (q), (23)

(
−T ~

i

∂

∂p
T−1F

)
(q) = qF (q). (24)

Since F is an arbitrary function, the problem we noted with Eqs. (21)–(22)
is solved. Jordan’s identification of the differential operators representing mo-
mentum and position in the q-basis does follow from Eqs. (23)–(24).

To derive Eq. (23), we apply T , defined in Eq. (7), to p (T−1F )(p). We then
use the definition of T−1 in Eq. (10) to write (TpT−1F )(Q) as:

(TpT−1F )(Q) =
∫
〈Q|p〉 p (T−1F )(p) dp

=
∫
〈Q|p〉 p

[∫
〈p|Q′〉F (Q′)dQ′

]
dp

=
∫∫
〈Q|p〉 p 〈p|Q′〉F (Q′) dp dQ′. (25)

We now set Q̂ = q̂, use Eq. (5) to substitute −(~/i) ∂/∂q′ 〈p|q′〉 for p〈p|q′〉,
and perform a partial integration:
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(TpT−1F )(q) =
∫∫
〈q|p〉 p 〈p|q′〉F (q′) dp dq′

=
∫∫
〈q|p〉

(
−~
i

∂

∂q′
〈p|q′〉

)
F (q′) dp dq′

=
∫∫
〈q|p〉〈p|q′〉~

i

dF (q′)

dq′
dp dq′. (26)

On account of completeness and orthogonality (see Eq. (3) [NB1, Eqs. 14–
17]), the right-hand side reduces to (~/i)F ′(q). This concludes the proof of
Eq. (23).

To derive Eq. (24), we similarly apply T to −(~/i) ∂/∂p (T−1F )(p):

(
−T ~

i

∂

∂p
T−1F

)
(Q) =−

∫
〈Q|p〉 ~

i

∂

∂p
(T−1F )(p) dp

=−
∫
〈Q|p〉 ~

i

∂

∂p

[∫
〈p|Q′〉F (Q′)dQ′

]
dp

=−
∫∫
〈Q|p〉 ~

i

∂

∂p
〈p|Q′〉F (Q′) dp dQ′. (27)

We now set Q̂ = q̂ and use Eq. (6) to substitute q′〈p|q′〉 for −(~/i) ∂/∂p 〈p|q′〉:(
−T ~

i

∂

∂p
T−1F

)
(q) =

∫∫
〈q|p〉 q′ 〈p|q′〉F (q′) dp dq′ = q F (q), (28)

where in the last step we once again used completeness and orthogonality.
This concludes the proof of Eq. (24).

We now turn to the modern proofs. It is trivial to show that the representation
of the position operator q̂ in the q-basis is simply multiplication by the eigen-
values q. Consider an arbitrary eigenstate |q〉 of position with eigenvalue q,
i.e., q̂ |q〉 = q |q〉. It follows that 〈Q| q̂ |q〉 = q〈Q|q〉, where |Q〉 is an arbitrary
eigenvector of an arbitrary Hermitian operator Q̂ = Q̂† with eigenvalue Q.
The complex conjugate of this last relation,

〈q| q̂ |Q〉 = q 〈q|Q〉, (29)

is just the result we wanted prove.

It takes a little more work to show that Eq. (14) [NB1, Eq. 23a] implies that
the representation of the momentum operator p̂ in the q-basis is (~/i) ∂/∂q.
Consider Eq. (25) for the special case F (Q) = 〈Q|q〉:

TpT−1〈Q|q〉 =
∫∫
〈Q|p〉 p 〈p|Q′〉〈Q′|q〉 dp dQ′. (30)
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Recognizing the spectral decomposition
∫
dp p |p〉〈p| of p̂ in this equation, we

can rewrite it as:

TpT−1〈Q|q〉 =
∫
〈Q| p̂ |Q′〉〈Q′|q〉 dQ′ = 〈Q| p̂ |q〉, (31)

where in the last step we used the resolution of unity, 1̂ =
∫
dQ′ |Q′〉〈Q′|. Eq.

(14) tells us that

TpT−1〈Q|q〉 = −~
i

∂

∂q
〈Q|q〉. (32)

Setting the complex conjugates of the right-hand sides of these last two equa-
tions equal to one another, we arrive at:

〈q| p̂ |Q〉 =
~
i

∂

∂q
〈q|Q〉, (33)

which is the result we wanted to prove. Once again, the operator Q̂ with
eigenvectors |Q〉 is arbitrary. If Q̂ is the Hamiltonian and q̂ is a Cartesian
coordinate, 〈q|Q〉 is just a Schrödinger energy eigenfunction.

With these identifications of p̂ and q̂ in the q-basis we can finally show that
Jordan’s new definition of conjugate variables in Eq. (4) [NB1, Eq. 18] re-
duces to the standard definition, [p̂, q̂] = ~/i, at least for quantities with com-
pletely continuous spectra. Letting [(~/i) ∂/∂q, q] act on an arbitrary function
f(q), one readily verifies that the result is (~/i) f(q). Given the association of
(~/i) ∂/∂q and q with the quantities p̂ and q̂ that has meanwhile been estab-
lished, it follows that these quantities indeed satisfy the usual commutation
relation

[p̂, q̂] = p̂ q̂ − q̂ p̂ =
~
i
. [NB1,Eq. 25] (34)

This concludes Part I (consisting of secs. 1–2) of Neue Begründung I. Jordan
wrote:

This is the content of the new theory. The rest of the paper will be devoted,
through a mathematical discussion of these differential equations [NB1, Eqs.
23ab, our Eqs. (14)–(16), and similar equations for other quantities], on the
one hand, to proving that our postulates are mathematically consistent
[widerspruchsfrei ] and, on the other hand, to showing that the earlier forms
[Darstellungen] of quantum mechanics are contained in our theory (Jordan,
1927b, p. 816).

In this paper we focus on the first of these tasks, which amounts to providing
a realization of the postulates discussed in this secton.
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2.2 Canonical transformations in classical mechanics, the old quantum the-
ory and matrix mechanics

Given the central role of canonical transformations in Neue Begründung, we
insert a brief subsection to review the use of canonical transformations in
the developments leading up to it. 74 Canonical transformations in classical
physics are transformations of the position and conjugate momentum variables
(q, p) that preserve the form of Hamilton’s equations,

q̇ =
∂H(p, q)

∂p
, ṗ = −∂H(p, q)

∂q
. (35)

Following Jordan (1927b, p. 810) in Neue Begründung I, we assume that the
system is one-dimensional. For convenience, we assume that the Hamiltonian
H(p, q) does not explicitly depend on time. The canonical transformation to
new coordinates and momenta (Q,P ) is given through a generating function,
which is a function of one of the old and one of the new variables. For a
generating function of the form F (q, P ), for instance, 75 we find the equations
for the canonical transformation (q, p)→ (Q,P ) by solving the equations

p =
∂F (q, P )

∂q
, Q =

∂F (q, P )

∂P
(36)

for Q(q, p) and P (q, p). This transformation preserves the form of Hamilton’s
equations: 76

Q̇ =
∂H(P,Q)

∂P
, Ṗ = −∂H(P,Q)

∂Q
, (37)

where the Hamiltonians H(p, q) and H(P,Q) are numerically equal to one
another but given by different functions of their respective arguments. One
way to solve the equations of motion is to find a canonical transformation
such that, in terms of the new variables, the Hamiltonian depends only on
momentum, H(P,Q) = H(P ). Such variables are called action-angle variables
and the standard notation for them is (J, w). The basic quantization condition
of the old quantum theory of Bohr and Sommerfeld restricts the value of a
set of action variables for the system under consideration to integral multiples
of Planck’s constant, J = nh (n = 0, 1, 2, . . .). Canonical transformations to
action-angle variables thus played a central role in the old quantum theory.
With the help of them, the energy spectrum of the system under consideration
could be found.

74 This subsection is based on Duncan and Janssen (2009, sec. 2).
75 In the classification of Goldstein et al. (2002, p. 373, table 9.1), this corresponds to
a generating function of type 2, F2(q, P ). The other types depend on (q,Q), (p,Q),
or (p, P ). Which type one chooses is purely a matter of convenience and does not
affect the physical content.
76 For elementary discussion, see, e.g., Duncan and Janssen (2007, Pt. 2, sec. 5.1).
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In classical mechanics, canonical transformations preserve the so-called Pois-
son bracket, {p, q} = 1. For any two phase-space functions G(p, q), H(p, q) of
the pair of canonical variables (p, q), the Poisson bracket is defined as

{G(p, q), H(p, q)} ≡ ∂G(p, q)

∂p

∂H(p, q)

∂q
− ∂H(p, q)

∂p

∂G(p, q)

∂q
. (38)

For G(p, q) = p and H(p, q) = q, this reduces to {p, q} = 1. We now compute
the Poisson bracket {P,Q} of a new pair of canonical variables related to (p, q)
by the generating function F (q, P ) as in Eq. (36):

{P (p, q), Q(p, q)} =
∂P (p, q)

∂p

∂Q(p, q)

∂q
− ∂Q(p, q)

∂p

∂P (p, q)

∂q
. (39)

By the usual chain rules of partial differentiation, we have

∂Q

∂p

∣∣∣∣∣
q

=
∂2F

∂P 2

∣∣∣∣∣
q

∂P

∂p

∣∣∣∣∣
q

, (40)

∂Q

∂q

∣∣∣∣∣
p

=
∂2F

∂q∂P
+
∂2F

∂P 2

∣∣∣∣∣
q

∂P

∂q

∣∣∣∣∣
p

. (41)

Substituting these two expressions into Eq. (39), we find

{P (p, q), Q(p, q)}=
∂P

∂p

∣∣∣∣∣
q

 ∂2F

∂q∂P
+
∂2F

∂P 2

∣∣∣∣∣
q

∂P

∂q

∣∣∣∣∣
p


−

 ∂2F

∂P 2

∣∣∣∣∣
q

∂P

∂p

∣∣∣∣∣
q

 ∂P

∂q

∣∣∣∣∣
p

=
∂2F

∂q∂P

∂P

∂p

∣∣∣∣∣
q

. (42)

The final line is identically equal to 1, as

∂2F

∂q∂P
=

∂p

∂P

∣∣∣∣∣
q

=

 ∂P
∂p

∣∣∣∣∣
q

−1

. (43)

This shows that the Poisson bracket {p, q} = 1 is indeed invariant under
canonical transformations.

In matrix mechanics a canonical transformation is a transformation of the
matrices (q, p) to new matrices (Q,P ) preserving the canonical commutation
relations

[p, q] ≡ pq − qp =
~
i

(44)
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that replace the Poisson bracket {p, q} = 1 in quantum mechanics. Such trans-
formations are of the form

P = TpT−1, Q = TqT−1, H = THT−1, (45)

where H is obtained by substituting TpT−1 for p and TqT−1 for q in the
operator H given as a function p and q. One easily recognizes that this trans-
formation does indeed preserve the form of the commutation relations (44):
[P,Q] = ~/i. Solving the equations of motion in matrix mechanics boils down
to finding a transformation matrix T such that the new Hamiltonian H is
diagonal. The diagonal elements, Hmm, then give the (discrete) energy spec-
trum.

In two papers before Neue Begründung, Jordan (1926a,b) investigated the
relation between the matrices T implementing canonical transformations in
matrix mechanics and generating functions in classical mechanics. He showed
that the matrix T corresponding to a generating function of the form 77

F (p,Q) =
∑
n

fn(p)gn(Q), (46)

is given by

T (q, p) = exp
i

~

{
(p, q)−

∑
n

(fn(p), gn(q))

}
, (47)

where the notation (. , .) in the exponential signals an ordering such that, when
the exponential is expanded, all p’s are put to the left of all q’s in every term
of the expansion. 78

When he wrote Neue Begründung I in late 1926, Jordan was thus steeped in
the use of canonical transformations, both in classical and in quantum physics.
When Kuhn asked Jordan about his two papers on the topic (Jordan, 1926a,b)
in an interview for the AHQP project, Jordan told him:

Canonical transformations in the sense of Hamilton-Jacobi were . . . our
daily bread in the preceding years, so to tie in the new results with those as
closely as possible—that was something very natural for us to try (AHQP
interview with Jordan, session 4, p. 11).

77 In the classification of Goldstein et al. (cf. note 75), this corresponds to a gener-
ating function of type 3, F3(p,Q).
78 See Duncan and Janssen (2009, pp. 355–356) for a reconstruction of Jordan’s
proof of this result.

46



2.3 The realization of Jordan’s postulates: probability amplitudes and canon-
ical transformations

At the beginning of sec. 4 of Neue Begründung I, “General comments on the
differential equations for the amplitudes,” Jordan announced:

To prove that our postulates are mathematically consistent, we want to give
a new foundation of the theory—independently from the considerations in
sec. 2—based on the differential equations which appeared as end results
there (Jordan, 1927b, p. 821).

He began by introducing the canonically conjugate variables α̂ and β̂, satisfy-
ing, by definition, the commutation relation [α̂, β̂] = ~/i. They are related to
the basic variables p̂ and q̂, for which the probability amplitude, according to
Jordan’s postulates, is 〈p|q〉 = e−ipq/~ (see Eq. (4)), via

α̂ = f(p̂, q̂) = T p̂T−1, (48)

β̂ = g(p̂, q̂) = T q̂T−1. (49)

with T = T (p̂, q̂) [NB1, sec. 4, Eq. 1]. 79 Note that the operator T (p̂, q̂) defined
here is different from the operator T . . . =

∫
dp 〈Q|p〉 . . . defined in sec. 2 (see

Eq. (7), Jordan’s Eq. (21)). The T (p̂, q̂) operator defined in sec. 4 is a similarity
transformation operator implementing the canonical transformation from the
pair (p̂, q̂) to the pair (α̂, β̂). We will see later that there is an important
relation between the T operators defined in secs. 2 and 4.

Jordan now posited the fundamental differential equations for the probability
amplitude 〈q|β〉 in his theory: 80

{
f

(
~
i

∂

∂q
, q

)
+

~
i

∂

∂β

}
〈q|β〉 = 0, [NB1, sec. 4, Eq. 2a] (50)

{
g

(
~
i

∂

∂q
, q

)
− β

}
〈q|β〉 = 0. [NB1, sec. 4, Eq. 2b] (51)

These equations have the exact same form as Eqs. (14)–(16) [NB1, sec. 2, Eqs.
23ab], with the understanding that the operator T is defined differently. As
Jordan put it in the passage quoted above, he took the equations that were
the end result in sec. 2 as his starting point in sec. 4.

79 The numbering of equations in Neue Begründung I starts over in sec. 3, the first
section of Part Two (II. Teil ), and then again in sec. 4. Secs. 6 and 7, finally, have
their own set of equation numbers.
80 He introduced separate equations for the Ergänzungsamplitude [NB1, sec. 4, Eqs.
3ab] (see Eqs. (90)–(91) below). We ignore these additional equations for the mo-
ment but will examine them for some special cases in sec. 2.4.
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Before turning to Jordan’s discussion of these equations, we show that they
are easily recovered in the modern Hilbert space formalism. The result of the
momentum operator α̂ in Eq. (48) acting on eigenvectors |β〉 of its conjugate
operator β̂ in Eq. (49) is, as we saw in Section 2.1: 81

α̂|β〉 = −~
i

∂

∂β
|β〉. (52)

Taking the inner product of these expressions with |q〉 and using that α̂ =
f(p̂, q̂), we find that

−~
i

∂

∂β
〈q|β〉 = 〈q|α̂|β〉 = 〈q|f(p̂, q̂)|β〉. (53)

Since p̂ and q̂ are represented by the differential operators (~/i) ∂/∂q and q,
respectively, in the q-basis, we can rewrite this as

〈q|f(p̂, q̂)|β〉 = f

(
~
i

∂

∂q
, q

)
〈q|β〉. (54)

Combining these last two equations, we arrive at Eq. (50). Likewise, using
that β̂|β〉 = β|β〉 and that β̂ = g(p̂, q̂), we can write the inner product 〈q|β̂|β〉
as

〈q|β̂|β〉 = β〈q|β〉 = g

(
~
i

∂

∂q
, q

)
〈q|β〉, (55)

where in the last step we used the representation of p̂ and q̂ in the q-basis.
From this equation we can read off Eq. (51).

We turn to Jordan’s discussion of Eqs. (50)–(51) [NB1, sec. 4, Eqs. 2ab]. As
he pointed out:

As is well-known, of course, one cannot in general simultaneously impose
two partial differential equations on one function of two variables. We will
prove, however, in sec. 5: the presupposition—which we already made—that
â and β̂ are connected to p̂ and q̂ via a canonical transformation (1) [our
Eqs. (48)–(49)] is the necessary and sufficient condition for (2) [our Eqs.
(50)–(51)] to be solvable (Jordan, 1927b, p. 822; hats added).

In sec. 5, “Mathematical theory of the amplitude equations,” Jordan (1927b,
pp. 824–828) made good on this promise. To prove that the “presupposition”

81 The complex conjugate of Eq. (33) can be written as

〈Q| p̂ |q〉 = −~
i

∂

∂q
〈Q|q〉 = 〈Q|

(
−~
i

∂

∂q

)
|q〉.

Since this holds for arbitrary |Q〉, it follows that p̂ |q〉 = −(~/i)(∂/∂q)|q〉. This will
be true for any pair of conjugate variables.
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is sufficient, he used canonical transformations to explicitly construct a simul-
taneous solution of the pair of differential equations (50)–(51) for probability
amplitudes (ibid., pp. 824–825, Eqs. 9–17). He did this in two steps.

(1) He showed that the sufficient condition for 〈Q|β〉 to be a solution of
the amplitude equations in the Q-basis, given that 〈q|β〉 is a solution of
these equations in the q-basis, is that (p̂, q̂) and (P̂ , Q̂) are related by a
canonical transformation.

(2) He established a starting point for generating such solutions by show-
ing that a very simple canonical transformation (basically switching p̂
and q̂) turns the amplitude equations (50)–(51) into a pair of equations
immediately seen to be satisfied by the amplitude 〈q|β〉 = eiqβ/~.

With these two steps Jordan had shown that the assumption that P̂ and Q̂
are related to p̂ and q̂ through a canonical transformation is indeed a sufficient
condition for the amplitude equations (50)–(51) [NB1, sec. 4, Eqs. 2ab] to be
simultaneously solvable. We will cover this part of Jordan’s argument in detail.

The proof that this assumption is necessary as well as sufficient is much more
complicated (Jordan, 1927b, pp. 825–828, Eqs. 18–34). The mathematical pre-
liminaries presented in sec. 3 of Neue Begründung I (ibid., pp. 816–821) are
needed only for this part of the proof in sec. 5. We will cover neither this part
of sec. 5 nor sec. 3.

However, we do need to explain an important result that Jordan derived in
sec. 5 as a consequence of this part of his proof (ibid., p. 828, Eqs. 35–40):
Canonical transformations T (p̂, q̂) as defined above (see Eqs. (48)–(49) [NB1,
sec. 4, Eq. 1]), which are differential operators once p̂ and q̂ have been replaced
by their representations (~/i) ∂/∂q and q in the q-basis, can be written as
integral operators T as defined in sec. 2 (see Eq. (7) [NB1, sec. 2, Eq. 21]).

This result is central to the basic structure of Jordan’s theory and to the logic
of his Neue Begründung papers. It shows that Jordan’s probability amplitudes
do double duty as integral kernels of the operators implementing canonical
transformations. As such, Jordan showed, they satisfy the completeness and
orthogonality relations required by postulate C (see Eqs. (1)–(3) [NB1, sec. 2,
Eqs. 14–17]). To paraphrase the characterization of Jordan’s project by Hilbert
et al. that we already quoted in Section 1.1, Jordan postulated certain relations
between his probability amplitudes in Part One of his paper and then, in
Part Two, presented “a simple analytical apparatus in which quantities occur
that satisfy these relations exactly” (Hilbert, von Neumann, and Nordheim,
1928, p. 2). These quantities, it turns out, are the integral kernels of canonical
transformations. Rather than following Jordan’s own proof of this key result,
which turns on properties of canonical transformations, we present a modern
proof, which turns on properties of Hilbert space and the spectral theorem.
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But first we show, closely following Jordan’s own argument in sec. 5 of Neue
Begründung I, how to construct a simultaneous solution of the differential
equations (50)–(51) [NB1, sec. 4, Eqs. 2ab] for the amplitudes. Suppose we
can exhibit just one case of a canonical transformation (p̂, q̂) → (α̂, β̂) (Eqs.
(48)–(49) [NB1, sec. 4, Eq. 1]) where the amplitude equations manifestly have
a unique simultaneous solution. According to Jordan, 82 any other canonical
pair can be arrived at from the pair (p̂, q̂) via a new transformation function
S(P̂ , Q̂), in the usual way

p̂ = SP̂S−1, q̂ = SQ̂S−1. (56)

with S = S(P̂ , Q̂) [NB1, sec. 5, Eq. 10]. The connection between the original
pair (α̂, β̂) and the new pair (P̂ , Q̂) involves the composite of two canonical
transformations [NB1, sec. 5, Eq. 11]:

α̂ = f(p̂, q̂) = f(SP̂S−1, SQ̂S−1) ≡ F (P̂ , Q̂), (57)

β̂ = g(q̂, q̂) = g(SP̂S−1, SQ̂S−1) ≡ G(P̂ , Q̂). (58)

In the new Q-basis, the differential equations (50)–(51) [NB1, sec. 4, Eqs. 2ab]
for probability amplitudes take the form{

F

(
~
i

∂

∂Q
,Q

)
+

~
i

∂

∂β

}
〈Q|β〉 = 0, [NB1, sec. 5, Eq. 12a] (59)

{
G

(
~
i

∂

∂Q
,Q

)
− β

}
〈Q|β〉 = 0. [NB1, sec. 5, Eq. 12b] (60)

Jordan now showed that

〈Q|β〉 =

{
S

(
~
i

∂

∂q
, q

)
〈q|β〉

}
q=Q

[NB1, sec. 5, Eq. 13] (61)

is a simultaneous solution of the amplitude equations (59)–(60) in the Q-basis
if 〈q|β〉 is a simultaneous solution of the amplitude equations (50)–(51) in the
q-basis. Using the operator S and its inverse S−1, we can rewrite the latter
as 83

S

{
f

(
~
i

∂

∂q
, q

)
+

~
i

∂

∂β

}
S−1S 〈q|β〉 = 0, [NB1, sec. 5, Eq. 14a] (62)

S

{
g

(
~
i

∂

∂q
, q

)
− β

}
S−1S 〈q|β〉 = 0, [NB1, sec. 5, Eq. 14b] (63)

82 We will see below that this assumption is problematic.
83 This step is formally the same as the one that got us from Eqs. (5)–(6) [NB1, sec.
2, Eqs. 19ab] to Eqs. (14)–(16) [NB1, sec. 2, Eqs. 23ab].
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both taken, as in Eq. (61), at q = Q. Written more carefully, the first term in
curly brackets in Eq. (62), sandwiched between S and S−1, is

S f

(
~
i

∂

∂q
, q

)
S−1 =

{
S

(
~
i

∂

∂q
, q

)
f

(
~
i

∂

∂q
, q

)
S−1

(
~
i

∂

∂q
, q

)}
q=Q

. (64)

With the help of Eq. (57), this can further be rewritten as

S(P,Q) f(P,Q)S(P,Q)−1|P= ~
i

∂
∂Q

= F

(
~
i

∂

∂Q
,Q

)
. (65)

The second term in curly brackets in Eq. (62), sandwiched between S and
S−1, is simply equal to

S
~
i

∂

∂β
S−1 =

~
i

∂

∂β
, (66)

as S does not involve β. Using Eqs. (61) and (64)–(66), we can rewrite Eq.
(62) [NB1, sec. 5, Eq. 14a] as{

F

(
~
i

∂

∂Q
,Q

)
+

~
i

∂

∂β

}
〈Q|β〉 = 0, (67)

which is just Eq. (59) [NB1, sec. 5, Eq. 12a]. A completely analogous argument
establishes that Eq. (63) [NB1, sec. 5, Eq. 14b] reduces to Eq. (60) [NB1, sec.
5, Eq. 12b]. This concludes the proof that 〈Q|β〉 is a solution of the amplitude
equations in the new Q-basis, if 〈q|β〉, out of which 〈Q|β〉 was constructed
with the help of the operator S implementing a canonical transformation, is
a solution of the amplitude equations in the old q-basis.

As S is completely general, we need only exhibit a single valid starting point,
i.e., a pair (f, g) and an amplitude 〈q|β〉 satisfying the amplitude equations
in the q-basis (Eqs. (50)–(51) [NB1, sec. 4, Eqs. 2ab]), to construct general
solutions of the amplitude equations in some new Q-basis (Eqs. (59)–(60)
[NB1, sec. 5, Eqs. 12ab]). The trivial example of a canonical transformation
switching the roles of coordinate and momentum does the trick (cf. Eqs. (57)–
(58) [NB1, sec. 5, Eq. 11]):

α̂ = f(p̂, q̂) = −q̂, β = g(p̂, q̂) = p̂. [NB1, sec. 5, Eq. 15] (68)

In that case, Eqs. (50)–(51) become [NB1, sec. 5, Eq. 16]{
q − ~

i

∂

∂β

}
〈q|β〉 = 0, (69)

{
~
i

∂

∂q
− β

}
〈q|β〉 = 0. (70)
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Except for the minus signs, these equations are of the same form as the trivial
equations (5)–(6) [NB1, sec. 2, Eqs. 19ab] for 〈p|q〉, satisfied by the basic
amplitude 〈p|q〉 = e−ipq/~. In the case of Eqs. (69)–(70), the solution is:

〈q|β〉 = eiβq/~. [NB1, sec. 5, Eq. 17] (71)

This establishes that the canonical nature of the transformation to the new
variables is a sufficient condition for the consistency (i.e. simultaneous solv-
ability) of the pair of differential equations (59)–(60) [NB1, sec. 5, Eq. 12ab]
for the probability amplitudes.

Jordan (1927b, pp. 825–828) went on to prove the converse, i.e., that the
canonical connection is also a necessary condition for the consistency of Eqs.
(59)–(60). This is done, as Jordan explained at the top of p. 827 of his paper,
by explicit construction of the operator S (in Eq. (61)), given the validity of
Eqs. (59)–(60). We skip this part of the proof.

Jordan (1927b, p. 828) then used some of the same techniques to prove a key
result in his theory. As mentioned above, we will appeal to the modern Hilbert
space formalism and the spectral theorem to obtain this result. Once again
consider Eq. (61):

〈Q|β〉 =

{
S

(
~
i

∂

∂q
, q

)
〈q|β〉

}
q=Q

. [NB1, sec. 5, Eq. 13] (72)

This equation tells us that the differential operator S((~/i) ∂/∂q, q) maps ar-
bitrary states 〈q|β〉 in the q-basis (recall that β̂ can be any operator) onto the
corresponding states 〈Q|β〉 in the Q-basis. The spectral theorem, which gives
us the resolution

∫
dq|q〉〈q| of the unit operator, tells us that this mapping can

also be written as

〈Q|β〉 =
∫
dq 〈Q|q〉〈q|β〉. (73)

Schematically, we can write

S

(
~
i

∂

∂q
, q

)
. . . =

∫
dq 〈Q|q〉 . . . (74)

In other words, the probability amplitude 〈Q|q〉 is the integral kernel for the in-
tegral representation of the canonical transformation operator S((~/i) ∂/∂q, q).
Using nothing but the properties of canonical transformations and his differ-
ential equations for probability amplitudes (Eqs. (50)–(51) [NB1, sec. 4, Eqs.
2ab]), Jordan (1927b, p. 828) derived an equation of exactly the same form as
Eq. (74), which we give here in its original notation:

T

(
ε
∂

∂x
, x

)
=
∫
dx.ϕ(y, x). . . . [NB1, sec. 5, Eq. 40] (75)
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Jordan claimed that Eqs. (50)–(51) [NB1, sec. 4, Eqs. 2ab] contain both the
time-independent and the time-dependent Schrödinger equations as special
cases. 84 The time-independent Schrödinger equation is a special case of Eq.
(51):

If in (2b) we take β to be the energy W , and g to be the Hamiltonian
function H(p, q) of the system, we obtain the Schrödinger wave equation,
which corresponds to the classical Hamilton-Jacobi equation. With (2b)
comes (2a) as a second equation. In this equation we need to consider f to
be the time t (as a function of p and q) (Jordan, 1927b, p. 822).

Actually, the variable conjugate to Ĥ would have to be minus t̂. For α̂ =
f(p̂, q̂) = −t̂ and β̂ = g(p̂, q̂) = Ĥ (with eigenvalues E), Eqs. (50)–(51) be-
come: {

t̂− ~
i

∂

∂E

}
〈q|E〉 = 0, (76){

Ĥ − E
}
〈q|E〉 = 0. (77)

If 〈q|E〉 is set equal to ψE(q), Eq. (77) is indeed just the time-independent
Schrödinger equation.

Jordan likewise claimed that the time-dependent Schrödinger equation is a
special case of Eq. (50)

if for β we choose the time t [this, once again, should be −t], for g [minus] the
time t(p, q) as function of p, q, and, correspondingly, for f the Hamiltonian
function H(p, q) (Jordan, 1927b, p. 823).

This claim is more problematic. For α̂ = f(p̂, q̂) = Ĥ (eigenvalues E) and
β̂ = g(p̂, q̂) = −t̂, Eqs. (50)–(51) [NB1, sec. 4, Eqs. 2ab] become:{

Ĥ − ~
i

∂

∂t

}
〈q|t〉 = 0, (78)

{
t̂− t

}
〈q|t〉 = 0. (79)

If 〈q|t〉 is set equal to ψ(q, t), Eq. (78) turns into the time-dependent Schrö-
dinger equation. However, time is a parameter in quantum mechanics and not
an operator t̂ with eigenvalues t and eigenstates |t〉. 85

This also makes Eqs. (76) and (79) problematic. Consider the former. For a
free particle, the Hamiltonian is Ĥ = p̂2/2m, represented by ((~/i)∂/∂q)2/2m

84 Cf. Hilbert, von Neumann, and Nordheim (1928, sec. 10, pp. 27–29, “The
Schrödinger differential equations”), discussed briefly by Jammer (1966, p. 311).
85 There is an extensive literature on this subject. For an introduction to this issue,
see, e.g., Hilgevoord (2002) and the references therein.
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in the q-basis. The solution of Eq. (77),

〈q|E〉 = ei
√

2mEq/~, (80)

is also a solution of Eq. (76) as long as we define t̂ ≡ mq̂p̂−1, as suggested by
the relation q = (p/m)t, Note, however, that we rather arbitrarily decided on
this particular ordering of the non-commuting operators p̂ and q̂. Using that

~
i

∂

∂q
ei
√

2mEq/~ =
√

2mE ei
√

2mEq/~, (81)

we find that t̂ 〈q|E〉 = mq̂p̂−1〈q|E〉 is given by:

mq̂

(
~
i

∂

∂q

)−1

ei
√

2mEq/~ =
mq√
2mE

ei
√

2mEq/~. (82)

This is indeed equal to (~/i)∂/∂E 〈q|E〉 as required by Eq. (76):

~
i

∂

∂E
ei
√

2mEq/~ =
mq√
2mE

ei
√

2mEq/~. (83)

So with t̂ ≡ mq̂p̂−1, both Eq. (50) and Eq. (51) [NB1, sec. 4, Eqs. 2ab] hold in
the special case of a free particle. It is not at all clear, however, whether this
will be true in general.

It is probably no coincidence that we can get Jordan’s formalism to work,
albeit with difficulty, for a free particle where the energy spectrum is fully
continuous. Recall that, in Neue Begründung I, Jordan restricted himself to
quantities with completely continuous spectra. As he discovered when he tried
to generalize his formalism to quantities with partly or wholly discrete spectra
in Neue Begründung II, this restriction is not nearly as innocuous as he made
it sound in Neue Begründung I.

Consider the canonical transformation α̂ = T p̂T−1 (Eq. (48) [NB1, sec. 4,
Eq. 1]) that plays a key role in Jordan’s construction of the model realizing
his postulates. Consider (in modern terms) an arbitrary eigenstate |p〉 of the
operator p̂ with eigenvalue p, i.e., p̂|p〉 = p|p〉. It only takes one line to show
that then T |p〉 is an eigenstate of α̂ with the same eigenvalue p:

α̂ T |p〉 = T p̂T−1T |p〉 = T p̂|p〉 = p T |p〉. (84)

In other words, the operators α̂ and p̂ connected by the canonical transforma-
tion α̂ = T p̂T−1 have the same spectrum. This simple observation, more than
anything else, reveals the limitations of Jordan’s formalism. It is true, as Eq.
(77) demonstrates, that his differential equations Eqs. (50)–(51) [NB1, sec. 4,
Eqs. 2ab] for probability amplitudes contain the time-independent Schrödinger
equation as a special case. However, since the energy spectrum is bounded
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from below and, in many interesting cases, at least partially discrete, it is
impossible to arrive at the time-independent Schrödinger equation starting
from the trivial equations (69)–(70) [NB1, sec. 5, Eq. 16] for the probability
amplitude eiqβ/~ between q̂ and β̂—recall that β̂ = p̂ in this case (see Eq.
(68))—and performing some canonical transformation. As Eq. (84) shows, a
canonical transformation cannot get us from p̂’s and q̂’s with completely con-
tinuous spectra to α̂’s and β̂’s with partly discrete spectra. This, in turn,
means that, in many interesting cases (i.e., for Hamiltonians with at least
partly discrete spectra), the time-independent Schrödinger equation does not
follow from Jordan’s postulates. In Jordan’s defense one could note at this
point that this criticism is unfair as he explicitly restricted himself to quanti-
ties with fully continuous spectra in Neue Begründung I. However, as we will
see when we turn to Neue Begründung II in Section 4, Jordan had to accept
in this second paper that the extension of his general formalism to quantities
with wholly or partly discrete spectra only served to drive home the problem
and did nothing to alleviate it.

2.4 The confusing matter of the Ergänzungsamplitude

In this subsection, we examine the “supplementary amplitude” (Ergänzungs-
amplitude) ψ(x, y) that Jordan introduced in Neue Begründung I in addition
to the probability amplitude ϕ(x, y). 86 Jordan’s (1927b, p. 813) postulate I
sets the conditional probability Pr(x|y) that x̂ has a value between x and
x+ dx given that ŷ has the value y equal to:

ϕ(x, y)ψ∗(x, y)dx. [NB1, sec. 2, Eq. 10] (85)

Jordan allowed the eigenvalues x and y to be complex. He stipulated that
the “star” in ψ∗(x, y) is to be interpreted in such a way that, when taking
the complex conjugate of ψ(x, y), one should retain x and y and not replace
them, as the “star” would naturally suggest, by their complex conjugates. The
rationale for this peculiar rule will become clear below.

For general complex amplitudes, Eq. (85) only makes sense as a positive real
probability if the phases of ϕ(x, y) and ψ∗(x, y) exactly compensate, leaving
only their positive absolute magnitudes (times the interval dx, as we are deal-
ing with continuous quantities). Jordan certainly realized that in cases where
the mechanical quantities considered were represented by self-adjoint oper-
ators, this duplication was unnecessary. 87 He seems to have felt the need,

86 This subsection falls somewhat outside the main line of argument of our paper
and can be skipped by the reader without loss of continuity.
87 For instance, if x̂ is a Cartesian coordinate and ŷ is the Hamiltonian, the ampli-
tudes ϕ(x, y) = ψ(x, y) are just the Schrödinger energy eigenfunctions of the system
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however, to advance a more general formalism, capable of dealing with the
not uncommon circumstance that a canonical transformation of perfectly real
(read “self-adjoint” in the quantum-mechanical case) mechanical quantities
actually leads to a new canonically conjugate, but complex (read “non-self-
adjoint”) pair of quantities. An early example of this can be found in London’s
(1926b) solution of the quantum harmonic oscillator by canonical transforma-
tion from the initial (q̂, p̂) coordinate-momentum pair to raising and lowering
operators, which are obviously not self-adjoint (Duncan and Janssen, 2009,
sec. 6.2, pp. 357–358).

Jordan could hardly have been aware at this stage of the complete absence
of “nice” spectral properties in the general case of a non-self-adjoint opera-
tor, with the exception of a very special subclass to be discussed shortly. In
contrast to the self-adjoint case, such operators may lack a complete set of
eigenfunctions spanning the Hilbert space, or there may be an overabundance
of eigenfunctions which form an “over-complete” set, in the sense that proper
subsets of eigenfunctions may suffice to construct an arbitrary state. To the
extent that eigenfunctions exist, the associated eigenvalues are in general com-
plex, occupying some domain—of possibly very complicated structure—in the
complex plane. In the case of the lowering operator in the simple harmonic
oscillator, the spectrum occupies the entire complex plane! Instead, Jordan
(1927b, p. 812) seems to have thought of the eigenvalue spectrum as lying on
a curve even in the general case of arbitrary non-self-adjoint quantities.

There is one subclass of non-self-adjoint operators for which Jordan’s attempt
to deal with complex mechanical quantities can be given at least a limited
validity. The spectral theorem usually associated with self-adjoint and uni-
tary operators (existence and completeness of eigenfunctions) actually extends
with full force to the larger class of normal operators N̂ , defined as satisfying
the commutation relation [N̂ , N̂ †] = 0, which obviously holds for self-adjoint
(N̂ = N̂ †) and unitary (N̂ † = N̂−1) operators. 88 The reason that the spectral
theorem holds for such operators is very simple: given a normal operator N̂ ,
we may easily construct a pair of commuting self-adjoint operators:

Â ≡ 1

2
(N̂ + N̂ †), B̂ ≡ 1

2i
(N̂ − N̂ †). (86)

It follows that Â = Â†, B̂ = B̂†, and that [Â, B̂] = (i/2) [N,N †] = 0. A well-
known theorem assures us that a complete set of simultaneous eigenstates |λ〉
of Â and B̂ exist, where the parameter λ is chosen to label uniquely the state

in coordinate space.
88 For discussion of the special case of finite Hermitian matrices, see Dennery and
Krzywicki (1996, sec. 24.3, pp. 177–178). For a more general and more rigorous
discussion, see von Neumann (1932, Ch. II, sec. 10).
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(we ignore the possibility of degeneracies here), with

Â |λ〉 = α(λ) |λ〉, B̂ |λ〉 = β(λ) |λ〉, N̂ |λ〉 = ζ(λ) |λ〉, (87)

where ζ(λ) ≡ α(λ) + iβ(λ) are the eigenvalues of N̂ = Â + iB̂. Of course,
there is no guarantee that α(λ) and β(λ) are continuously connected (once we
eliminate the parameter λ), so the spectrum of N̂ (the set of points ζ(λ) in the
complex plane) may have a very complicated structure. For a normal operator,
there at least exists the possibility though that the spectrum indeed lies on a
simple curve, as assumed by Jordan. In fact, it is quite easy to construct an
example along these lines, and to show that Jordan’s two amplitudes, ϕ(x, y)
and ψ(x, y), do exactly the right job in producing the correct probability
density in the (self-adjoint) x̂ variable for a given complex value of the quantity
ŷ, in this case associated with a normal operator with a complex spectrum.

Our example is a simple generalization of one that Jordan (1927b, sec. 5, pp.
830–831) himself gave (in the self-adjoint case). For linear canonical trans-
formations, the differential equations specifying the amplitudes ϕ(x, y) and
ψ(x, y) [NB1, sec. 4, Eqs. 2ab and 3ab] are readily solved analytically. Thus,
suppose that the canonical transformation from a self-adjoint conjugate pair
(p̂, q̂) to a new conjugate pair (α̂, β̂) is given by

α̂ = a p̂+ b q̂, β̂ = c p̂+ d q̂, (88)

where the coefficients a, b, c, d must satisfy ad− bc = 1 for the transformation
to be canonical, but may otherwise be complex numbers [cf. NB1, sec. 5, Eqs.
56–57]. The requirement that α̂ be a normal operator (i.e., [α̂, α̂†] = 0) is
easily seen to imply a/a∗ = b/b∗. Thus, a and b have the same complex phase
(which we may call eiϑ). Likewise, normality of β̂ implies that c and d have
equal phase (say, eiχ). Moreover, the canonical condition ad− bc = 1 implies
that the phases eiϕ and eiχ must cancel, so we henceforth set χ = −ϑ, and
rewrite the basic canonical transformation as

α̂ = ζ(a p̂+ b q̂), β̂ = ζ∗(c p̂+ d q̂), (89)

where ζ ≡ eiϑ, and a, b, c, d are now real and satisfy ad − bc = 1. We see
that the spectrum of β̂ lies along the straight line in the complex plane with
phase −ϑ (as the operator c p̂+d q̂ is self-adjoint and therefore has purely real
eigenvalues): the allowed values for β̂ are such that ζβ is real.

It is now a simple matter to solve the differential equations for the amplitude
ϕ(q, β) and the supplementary amplitude ψ(q, β) in this case. The general
equations are (Jordan, 1927b, sec. 4, p. 821): 89

89 Jordan (1927b, p. 817) introduced the notation F † for the adjoint of F in sec. 3
of his paper.
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, q
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i

∂

∂β

}
ϕ(q, β) = 0, [NB1, sec. 4, Eq. 2a] (90){

g

(
~
i

∂

∂q
, q

)
− β

}
ϕ(q, β) = 0, [NB1, sec. 4, Eq. 2b] (91){

f †
(
~
i

∂

∂q
, q

)
+

~
i

∂

∂β

}
ψ(q, β) = 0, [NB1, sec. 4, Eq. 3a] (92){

g†
(
~
i

∂

∂q
, q

)
− β

}
ψ(q, β) = 0. [NB1, sec. 4, Eq. 3b] (93)

The differential operators in this case are (recall that α̂ = f(p̂, q̂) and β̂ =
g(p̂, q̂) (see Eqs. (48)–(49) [NB1, sec. 4, Eq. 1]):

f = ζ

(
a
~
i

∂

∂q
+ b q

)
, f † = ζ∗

(
a
~
i

∂

∂q
+ b q

)
,

(94)

g = ζ∗
(
c
~
i

∂

∂q
+ d q

)
, g† = ζ

(
c
~
i

∂

∂q
+ d q

)
,

and for ϕ(q, β) and ψ(q, β) we find (up to an overall constant factor):

ϕ(q, β) = exp

{
− i
~

(
d

2c
q2 − 1

c
ζβq +

a

2c
(ζβ)2

)}
,

(95)

ψ(q, β) = exp

{
− i
~

(
d

2c
q2 − 1

c
ζ∗βq +

a

2c
(ζ∗β)2

)}
.

We note that the basic amplitude ϕ(q, β) is a pure oscillatory exponential, as
the combinations ζβ and the constants a, c, and d appearing in the exponent
are all real, so the exponent is overall purely imaginary, and the amplitude has
unit absolute magnitude. This is not the case for ψ(q, β), due to the appearance
of ζ∗, but at this point we recall that, according to Jordan’s postulate A,
the correct probability density is obtained by multiplying ϕ(x, y) by ψ∗(x, y),
where the star symbol includes the instruction that the eigenvalue y of ŷ is
not to be conjugated (cf. our comment following Eq. (85)). This rather strange
prescription is essential if we are to maintain consistency of the orthogonality
property ∫

ϕ(x, y′′)ψ∗(x, y′)dx = δy′y′′ (96)

with the differential equations (91) and (93) for the amplitudes [NB1, sec. 4,
Eqs. 2b and 3b]. With this proviso, we find (recalling again that ζβ is real):

ψ∗(q, β) = exp

{
i

~

(
d

2c
q2 − 1

c
ζβq +

a

2c
(ζβ)2

)}
= ϕ̄(q, β), (97)
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where the bar now denotes conventional complex conjugation, and we see that
the product ϕ(q, β)ψ∗(q, β) = ϕ(q, β)ϕ̄(q, β) is indeed real, and in fact, equal
to unity, as we might expect in the case of a purely oscillatory wave function.

That Jordan’s prescription for the construction of conditional probabilities
cannot generally be valid in the presence of classical complex (or quantum-
mechanically non-self-adjoint) quantities is easily verified by relaxing the con-
dition of normal operators in the preceding example. In particular, we consider
the example of the raising and lowering operators for the simple harmonic os-
cillator, obtained again by a complex linear canonical transformation of the
(q̂, p̂) canonical pair. 90 Now, as a special case of Eq. (88), we take

α̂ =
1√
2

(p̂+ iq̂) = f(p̂, q̂), β̂ =
1√
2

(ip̂+ q̂) = g(p̂, q̂), (98)

which, though canonical, clearly does not correspond to normal operators, as
the coefficients a, b (and likewise c, d) are now 90 degrees out of phase. Solving
the differential equations for the amplitudes, Eqs. (90)–(93) [NB1, sec. 4, Eqs.
2ab, 3ab], we now find (up to an overall constant factor [cf. Eq. (95)]):

ϕ(q, β) = exp
{
− 1

2~
(
q2 − 2

√
2βq + β2

)}
,

(99)

ψ(q, β) = exp
{

1

2~
(
q2 − 2

√
2βq + β2

)}
= ψ∗(q, β) =

1

ϕ(q, β)
,

where β is an arbitrary complex number. In fact, the wave function ϕ(q, β) is
a square-integrable eigenfunction of β̂ for an arbitrary complex value of β: it
corresponds to the well-known “coherent eigenstates” of the harmonic oscil-
lator, with the envelope (absolute magnitude) of the wave function executing
simple harmonic motion about the center of the potential well with frequency
ω (given the Hamiltonian Ĥ = 1

2
(p̂2 + ω2q̂2)). The probability density in q

of such a state for fixed β is surely given by the conventional prescription
|ϕ(q, β)|2. On the other hand, for complex β, the Jordan prescription requires
us to form the combination (with the peculiar interpretation of the “star” in
ψ∗(q, β), in which β is not conjugated):

ϕ(q, β)ψ∗(q, β) = 1, (100)

which clearly makes no physical sense in this case, as the state in question is a
localized, square-integrable one. If Jordan’s notion of an Ergänzungsamplitude
is to have any nontrivial content, it would seem to require, at the very least,

90 As mentioned above, London (1926b) had looked at this example of a canonical
transformation (Duncan and Janssen, 2009, sec. 6.2, p. 358).
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that the complex quantities considered fall into the very special category of
normal operators after quantization.

In fact, as we will see shortly, in the paper by Hilbert, von Neumann, and
Nordheim (1928) on Jordan’s version of statistical transformation theory, the
requirement of self-adjointness already acquires the status of a sine qua non for
physical observables in quantum theory, and the concept of an Ergänzungsam-
plitude disappears even from Jordan’s own treatment of his theory after Neue
Begründung I.

3 Hilbert, von Neumann, and Nordheim’s Grundlagen (April 1927)

In the winter semester of 1926/27, Hilbert gave a course entitled “Mathemat-
ical methods of quantum theory.” The course consisted of two parts. The first
part, “The older quantum theory,” was essentially a repeat of the course that
Hilbert had given under the same title in 1922/23. The second part, “The new
quantum theory,” covered the developments since 1925. As he had in 1922/23,
Nordheim prepared the notes for this course, which have recently been pub-
lished (Sauer and Majer, 2009, pp. 504–707; the second part takes up pp.
609–707). At the very end (ibid., pp. 700–706), we find a concise exposition
of the main line of reasoning of Jordan’s Neue Begründung I.

This presentation served as the basis for a paper by Hilbert, von Neumann, and
Nordheim (1928). As the authors explained in the introduction (ibid., pp. 1–2),
“important parts of the mathematical elaboration” were due to von Neumann,
while Nordheim was responsible for the final text (Duncan and Janssen, 2009,
p. 361). The paper was submitted to the Mathematische Annalen April 6,
1927, but, for reasons not clear to us, was only published at the beginning
of the volume for 1928. It thus appeared after the trilogy by von Neumann
(1927a,b,c) that rendered much of it obsolete. In this section we go over the
main points of this three-man paper. 91

In the lecture notes for Hilbert’s course, Dirac is not mentioned at all, and even
though in the paper it is acknowledged that Dirac (1927) had independently
arrived at and published similar results, the focus continues to be on Jordan.
There are only a handful of references to Dirac, most importantly in connection
with the delta function and in the discussion of the Schrödinger equation for
a Hamiltonian with a partly discrete spectrum (Hilbert, von Neumann, and
Nordheim, 1928, p. 8 and p. 30, respectively). Both the lecture notes and the

91 For other discussions of Hilbert, von Neumann, and Nordheim (1928), see Jammer
(1966, pp. 309–312; cf. note 30), Mehra and Rechenberg (2000–2001, pp. 404–411),
and Lacki (2000, pp. 295–300, focusing mainly on the paper’s axiomatic structure).
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paper stay close to the relevant sections of Neue Begründung I, but Hilbert and
his collaborators did change Jordan’s notation. Their notation is undoubtedly
an improvement over his—not a high bar to clear—but the modern reader
trying to follow the argument in these texts may still want to translate it
into the kind of modern notation we introduced in Section 2. We will adopt
the notation of Hilbert and his co-authors in this section, except that we
will continue to use hats to distinguish (operators representing) mechanical
quantities from their numerical values.

As we mentioned in Section 2.1, when we discussed postulates A through D
of Neue Begründung I, Hilbert, von Neumann, and Nordheim (1928, pp. 4–5)
based their exposition of Jordan’s theory on six “physical axioms.” 92 Axiom
I introduces the basic idea of a probability amplitude. The amplitude for the
probability that a mechanical quantity F̂1(p̂ q̂) (some function of momentum
p̂ and coordinate q̂) has the value x given that another such quantity F̂2(p̂ q̂)
has the value y is written as ϕ(x y; F̂1 F̂2).

Jordan’s Ergänzungsamplitude still made a brief appearance in the notes for
Hilbert’s course (Sauer and Majer, 2009, p. 700) but is silently dropped in
the paper. As we saw in Section 2, amplitude and supplementary amplitude
are identical as long as we only consider quantities represented, in modern
terms, by Hermitian operators. In that case, the probability w(x y; F̂1 F̂2) of
finding the value x for F̂1 given the value y for F̂2 is given by the product
of ϕ(x y; F̂1 F̂2) and its complex conjugate, which, of course, will always be a
real number. Although they did not explicitly point out that this eliminates
the need for the Ergänzungsamplitude, Hilbert, von Neumann, and Nordheim
(1928, p. 17–25) put great emphasis on the restriction to Hermitian operators.
Secs. 6–8 of their paper (“The reality conditions,” “Properties of Hermitian
operators,” and “The physical meaning of the reality conditions”) are devoted
to this issue.

Axiom II corresponds to Jordan’s postulate B and says that the amplitude
for finding a value for F̂2 given the value of F̂1 is the complex conjugate of
the amplitude of finding a value for F̂1 given the value of F̂2. This symmetry
property entails that these two outcomes have the same probability. Axiom
III is not among Jordan’s postulates. It basically states the obvious demand
that when F̂1 = F̂2, the probability w(x y; F̂1 F̂2) be either 0 (if x 6= y) or 1 (if
x = y). Axiom IV corresponds to Jordan’s postulate C and states that the am-
plitudes rather than the probabilities themselves follow the usual composition
rules for probabilities (cf. Eqs. (1) and (3) in Section 2.1):

ϕ(x z; F̂1 F̂3) =
∫
ϕ(x y; F̂1 F̂2)ϕ(y z; F̂2 F̂3) dy. (101)

92 In the lecture notes we find four axioms that are essentially the same as Jordan’s
four postulates (Sauer and Majer, 2009, pp. 700–701).
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Though they did not use Jordan’s phrase “interference of probabilities,” the
authors emphasized the central importance of this particular axiom: 93

This requirement [Eq. (101)] is obviously analogous to the addition and mul-
tiplication theorems of ordinary probability calculus, except that in this case
they hold for the amplitudes rather than for the probabilities themselves.

The characteristic difference to ordinary probability calculus lies herein
that initially, instead of the probabilities themselves, amplitudes occur,
which in general will be complex quantities and only give ordinary probabili-
ties if their absolute value is taken and then squared (Hilbert, von Neumann,
and Nordheim, 1928, p. 5)

Axiom V, as we already mentioned in Section 2.1, makes part of Jordan’s
postulate A into a separate axiom. It demands that probability amplitudes
for quantities F̂1 and F̂2 depend only on the functional dependence of these
quantities on q̂ and p̂ and not on “special properties of the system under
consideration, such as, for example, its Hamiltonian” (ibid., p. 5). Axiom VI,
finally, adds another obvious requirement to the ones recognized by Jordan:
that probabilities be independent of the choice of coordinate systems.

Before they introduced the axioms, Hilbert, von Neumann, and Nordheim
(1928, p. 2) had already explained, in a passage that we quoted in Section
1.1, that the task at hand was to find “a simple analytical apparatus in which
quantities occur that satisfy” axioms I–VI. As we know from Neue Begründung
I, the quantities that fit the bill are the integral kernels of certain canonical
transformations, implemented as T p̂T−1 and T q̂T−1 (cf. Eqs. (48)–(49)). After
introducing this “simple analytical apparatus” in secs. 3–4 (“Basic formulae
of the operator calculus,” “Canonical operators and transformations”), the
authors concluded in sec. 5 (“The physical interpretation of the operator cal-
culus”):

The probability amplitude ϕ(x y; q̂ F̂ ) between the coordinate q̂ and an ar-
bitrary mechanical quantity F̂ (q̂ p̂)—i.e., for the situation that for a given
value y of F̂ , the coordinate lies between x and x+ dx—is given by the ker-
nel of the integral operator that canonically transforms the operator q̂ into
the operator corresponding to the mechanical quantity F̂ (q̂ p̂) (Hilbert, von
Neumann, and Nordheim, 1928, p. 14; emphasis in the original, hats added).

They immediately generalized this definition to cover the probability ampli-
tude between two arbitrary quantities F̂1 and F̂2. In sec. 3, the authors already
derived differential equations for integral kernels ϕ(x y) (ibid., pp. 10–11, Eqs.
(19ab) and (21ab)). Given the identification of these integral kernels with
probability amplitudes in sec. 5, these equation are just Jordan’s fundamental

93 Recall, however, Heisenberg’s criticism of this aspect of Jordan’s work in the
uncertainty paper (Heisenberg, 1927b, pp. 183–184; cf. note 38).
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differential equations for the latter (NB1, sec. 4, Eqs. (2ab); our Eqs. (50)–(51)
in Section 2.3).

In sec. 4, they also stated the key assumption that any quantity of inter-
est can be obtained through a canonical transformation starting from some
canonically conjugate pair of quantities p̂ and q̂:

We will assume that every operator F̂ can be generated out of the basic
operator q̂ by a canonical transformation. This statement can also be ex-
pressed in the following way, namely that, given F̂ , the operator equation
T q̂T−1 has to be solvable.

The conditions that F̂ has to satisfy for this to be possible will not be
investigated here (Hilbert, von Neumann, and Nordheim, 1928, p. 12; hats
added).

What this passage suggests is that the authors, although they recognized the
importance of this assumption, did not quite appreciate that, as we showed
at the end of Section 2.3, it puts severe limits on the applicability of Jordan’s
formalism. In the simple examples of canonical transformations (F̂ = f(q̂) and
F̂ = p̂) that they considered in sec. 9 (“Application of the theory to special
cases”), the assumption is obviously satisfied and the formalism works just
fine (ibid., pp. 25–26). In sec. 10 (“The Schrödinger differential equations”),
however, they set F̂ equal to the Hamiltonian Ĥ and claimed that one of the
differential equations for the probability amplitude ϕ(xW ; q̂ Ĥ) (where W is
an energy eigenvalue) is the time-independent Schrödinger equation. As soon
as the Hamiltonian has a wholly or partly discrete spectrum, however, there
simply is no operator T such that Ĥ = T q̂T−1.

In secs. 6–8, which we already briefly mentioned above, Hilbert, von Neumann,
and Nordheim (1928, pp. 17–25) showed that the necessary and sufficient
condition for the probability w(x y; F̂1 F̂2) to be real is that F̂1 and F̂2 are
both represented by Hermitian operators. As we pointed out earlier, they
implicitly rejected Jordan’s attempt to accommodate F̂ ’s represented by non-
Hermitian operators through the introduction of the Ergänzungsamplitude.
They also showed that the operator representing the canonical conjugate Ĝ of
a quantity F̂ represented by a Hermitian operator is itself Hermitian.

The authors ended their paper on a cautionary note emphasizing its lack
of mathematical rigor. They referred to von Neumann’s (1927a) forthcoming
paper, Mathematische Begründung, for a more satisfactory treatment of the
Schrödinger equation for Hamiltonians with a partly discrete spectrum. In the
concluding paragraph, they warned the reader more generally:

In our presentation the general theory receives such a perspicuous and for-
mally simple form that we have carried it through in a mathematically
still imperfect form, especially since a fully rigorous presentation might well

63



be considerably more tedious and circuitous (Hilbert, von Neumann, and
Nordheim, 1928, p. 30).

4 Jordan’s Neue Begründung II (June 1927)

In April and May 1927, while at Bohr’s institute in Copenhagen on an Inter-
national Education Board fellowship, Jordan (1927g) wrote Neue Begründung
II, which was received by Zeitschrift für Physik June 3, 1927. 94 In the abstract
he announced a “simplified and generalized” version of the theory presented
in Neue Begründung I. 95

One simplification was that Jordan, like Hilbert, von Neumann, and Nordheim
(1928), dropped the Ergänzungsamplitude and restricted himself accordingly
to physical quantities represented by Hermitian operators and to canonical
transformations preserving Hermiticity. Another simplification was that he
adopted Dirac’s (1927) convention of consistently using the same letter for a
mechanical quantity and its possible values, using primes to distinguish the
latter from the former. When, for instance, the letter β is used for some quan-
tity, its values are denoted as β′, β′′, etc. We will continue to use the notation
β̂ for the quantity (and the operator representing that quantity) and the no-
tation β, β′, . . . for its values. While this new notation for quantities and their
values was undoubtedly an improvement, the new notation for probability
amplitudes and for transformation operators with those amplitudes as their
integral kernels is actually more cumbersome than in Neue Begründung I.

In the end, however, these new notational complications only affect the cos-
metics of the paper. What is more troublesome is that the generalization of

94 Not long after leaving for Copenhagen, Jordan wrote a long letter to Dirac, who
was still in Göttingen, touching on some of the issues addressed in Neue Begründung
II. Jordan wrote: “Following our conversation a few days ago I want to write you
a little more. It’s about a few things connected to those we discussed. Most of
these considerations originate in the fall of last year. Back then, however, I didn’t
succeed in achieving a complete clarification of the question that interested me, and
later I haven’t really had the courage to take up the issue again. It would certainly
please me if you could make some progress on these questions” (Jordan to Dirac,
April 14, 1927, AHQP). Unfortunately, we do not have Dirac’s reply. In between
Neue Begründung I and II, Jordan (1927e) published a short paper showing that his
theory has the desirable feature that the conditional probability of finding a certain
value for some quantity is independent of the scale used to measure that quantity.
95 When Kuhn complained about the “dreadful notation” of Neue Begründung I
in his interview with Jordan for the AHQP project, Jordan said that in Neue
Begründung II he just wanted to give a “prettier and clearer” exposition of the
same material (session 3, p. 17, quoted by Duncan and Janssen, 2009, p. 360).
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the formalism promised in the abstract to handle cases with wholly or partly
discrete spectra is much more problematic than Jordan suggested and, we
argue, ultimately untenable. By the end of Neue Begründung II, Jordan is
counting quantities nobody would think of as canonically conjugate (e.g., dif-
ferent components of spin) as pairs of conjugate variables and has abandoned
the notion, central to the formalism of Neue Begründung I, that any quantity
of interest (e.g, the Hamiltonian) is a member of a pair of conjugate variables
connected to some initial pair of p̂’s and q̂’s by a canonical transformation.
It is fair to say that, although Jordan was still clinging to his p’s and q’s in
Neue Begründung II, they effectively ceased to play any significant role in his
formalism.

As we showed at the end of Section 2.3, the canonical transformation

α̂ = T p̂T−1, β̂ = T q̂T−1 (102)

(cf. Eqs. (48)–(49)) can never get us from a quantity with a completely con-
tinuous spectrum (such as position or momentum) to a quantity with a wholly
or partly discrete spectrum (such as the Hamiltonian). In Neue Begründung
II, Jordan (1927g, pp. 16–17) evidently recognized this problem even though
it is not clear that he realized the extent to which this undercuts his entire
approach.

The central problem is brought out somewhat indirectly in the paper. As Jor-
dan (1927g, pp. 1–2) already mentioned in the abstract and then demonstrated
in the introduction, the commutation relation, [p̂, q̂] = ~/i, for two canonically
conjugate quantities p̂ and q̂ cannot hold as soon as the spectrum of one of
them is partly discrete. Specifically, this means that action-angle variables Ĵ
and ŵ, where the eigenvalues of the action variable Ĵ are restricted to inte-
gral multiples of Planck’s constant, cannot satisfy the canonical commutation
relation.

The proof of this claim is very simple. Jordan (1927g, p. 2) considered a pair
of conjugate quantities α̂ and β̂ where β̂ is assumed to have a purely discrete
spectrum. We will see that one runs into the same problem as soon as one α̂
or β̂ has a single discrete eigenvalue. Suppose α̂ and β̂ satisfy the standard
commutation relation:

[α̂, β̂] =
~
i
. (103)

As Jordan pointed out, it then follows that an operator that is some function
F of β̂ satisfies 96

[α̂, F (β̂)] =
~
i
F ′(β̂). (104)

96 If the function F (β) is assumed to be a polynomial,
∑

n cn β
n, which is all we

need for what we want to prove, although Jordan (1927g, p. 2) considered a “fully
transcendent function,” Jordan’s claim is a standard result in elementary quantum
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Jordan now chose a function such that F (β) = 0 for all eigenvalues β1, β2, . . .
of β̂, while F ′(β) 6= 0 at those same points. In that case, the left-hand side of
Eq. (104) vanishes at all these points, whereas the right-hand side does not.
Hence, Eq. (104) and, by modus tollens, Eq. (103) cannot hold.

Since Eq. (104) is an operator equation, we should, strictly speaking, compare
the results of the left-hand side and the right-hand side acting on some state.
To show that Eq. (104)—and thereby Eq. (103)—cannot hold, it suffices to
show that it does not hold for one specific function F and one specific state
|ψ〉. Consider the simple function F1(β) = β − β1, for which F1(β1) = 0 and
F ′1(β1) = 1, and the discrete (and thus normalizable) eigenstate |β1〉 of the
operator corresponding to the quantity β̂. Clearly,

〈β1|[α̂, F1(β̂)]|β1〉 = 〈β1|[α̂, β̂ − β1]|β1〉 = 0, (105)

as β̂|β1〉 = β1|β1〉, while

〈β1|(~/i)F ′1(β̂)]|β1〉 =
~
i
〈β1|β1〉 =

~
i
, (106)

as F ′1(β̂)|β1〉 = F ′1(β1)|β1〉 = |β1〉. This shows that the relation,

〈ψ|[α̂, F (β̂)]|ψ〉 = 〈ψ|~
i
F ′(β̂)|ψ〉, (107)

and hence Eqs. (103)–(104), cannot hold. The specific example F1(β) = β−β1

that we used above immediately makes it clear that the commutation relation
[α̂, β̂] = ~/i cannot hold as soon as either one of the two operators has a single
discrete eigenvalue.

Much later in the paper, in sec. 4 (“Canonical transformations”), Jordan
(1927g, p. 16) acknowledged that it follows directly from this result that no
canonical transformation can ever get us from a pair of conjugate variables
p̂’s and q̂’s with completely continuous spectra to α̂’s and β̂’s with partly
discrete spectra. It is, after all, an essential property of canonical transforma-
tions that they preserve canonical commutation relations. From Eq. (102) and
[p̂, q̂] = ~/i it follows that

[α̂, β̂] = [T p̂T−1, T q̂T−1] = T [p̂, q̂]T−1 = ~/i. (108)

mechanics:

[α̂, F (β̂)] = [α̂,
∑
n

cn β̂
n] =

∑
n

cn n
~
i
β̂n−1 =

~
i

d

dβ̂

(∑
n

cn β̂
n

)
=

~
i
F ′(β̂),

where in the second step we repeatedly used that [α̂, β̂] = ~/i and that [Â, B̂Ĉ] =
[Â, B̂]Ĉ + B̂[Â, Ĉ] for any three operators Â, B̂, and Ĉ.
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Since, as we just saw, only quantities with purely continuous spectra can
satisfy this commutation relation, Eq. (108) cannot hold for α̂’s and β̂’s with
partly discrete spectra and such α̂’s and β̂’s cannot possibly be obtained from
p̂ and q̂ through a canonical transformation of the form (102).

We will discuss below how this obstruction affects Jordan’s general formalism.
When Jordan, in the introduction of Neue Begründung II, showed that no
quantity with a partly discrete spectrum can satisfy a canonical commutation
relation, he presented it not as a serious problem for his formalism but as an
argument for the superiority of his alternative definition of conjugate variables
in Neue Begründung I (Jordan, 1927b, p. 814, cf. Eq. (4)). In that definition p̂
and q̂ are considered canonically conjugate if the probability amplitude ϕ(p, q)
has the simple form e−ipq/~, which means that as soon as the value of one of
the quantities p̂ and q̂ is known, all possible values of the other quantity are
equiprobable. As we saw in Section 2.1, Jordan showed that for p̂’s and q̂’s
with purely continuous spectra this implies that they satisfy [p̂, q̂] = ~/i (cf.
Eq. (34)), which is the standard definition of what it means for p̂ and q̂ to
be conjugate variables. In Neue Begründung II, Jordan (1927g, p. 6, Eq. (C))
extended his alternative definition to quantities with wholly or partly discrete
spectra, in which case the new definition, of course, no longer reduces to the
standard one.

As Jordan (1927g) wrote in the opening paragraph, his new paper only as-
sumes a rough familiarity with the considerations of Neue Begründung I. He
thus had to redevelop much of the formalism of his earlier paper, while trying
to both simplify and generalize it at the same time. In sec. 2 (“Basic proper-
ties of quantities and probability amplitudes”), Jordan began by restating the
postulates to be satisfied by his probability amplitudes.

He introduced a new notation for these amplitudes. Instead of ϕ(β, q) (cf. note
58) he now wrote Φαp(β

′, q′). The primes, as we explained above, distinguish
values of quantities from those quantities themselves. The subscripts α and p
denote which quantities are canonically conjugate to the quantities β̂ and q̂ for
which the probability amplitude is being evaluated. As we will see below, one
has a certain freedom in picking the α̂ and p̂ conjugate to β̂ and q̂, respectively,
and settling on a specific pair of α̂ and p̂ is equivalent to fixing the phase
ambiguity of the amplitude ϕ(β, q) up to some constant factor. So for a given
choice of α̂ and p̂, the amplitude Φαp(β

′, q′) is essentially unique. In this way,
Jordan (1927g, p. 20) could answer, at least formally, von Neumann’s (1927a,
p. 3) objection that probability amplitudes are not uniquely determined even
though the resulting probabilities are. It is only made clear toward the end of
the paper that this is the rationale behind these additional subscripts. Their
only other role is to remind the reader that Φαp(β

′, q′) is determined not by
one Schrödinger-type equation in Jordan’s formalism but by a pair of such
equations involving both canonically conjugate pairs of variables, (p̂, q̂) and
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(α̂, β̂) (Jordan, 1927g, p. 20). As none of this is essential to the formalism, we
will simply continue to use the notation 〈β|q〉 for the probability amplitude
between the quantities β̂ and q̂.

Jordan also removed the restriction to systems of one degree of freedom that
he had adopted for convenience in Neue Begründung I (Jordan, 1927b, p. 810).
So q̂, in general, now stands for (q̂1, . . . q̂f ), where f is the number of degrees of
freedom of the system under consideration. The same is true for other quanti-
ties. Jordan (1927g, pp. 4–5) spent a few paragraphs examining the different
possible structures of the space of eigenvalues for such f -dimensional quanti-
ties depending on the nature of the spectrum of its various components—fully
continuous, fully discrete, or combinations of both. He also introduced the
notation δ(β′−β′′) for a combination of the Dirac delta function and the Kro-
necker delta (or, as Jordan called the latter, the “Weierstrassian symbol”).

In Neue Begründung II (Jordan, 1927g, p. 6), the four postulates of Neue
Begründung I (see our discussion in Section 2.1) are replaced by three pos-
tulates or “axioms,” as Jordan now also called them, numbered with Roman
numerals. This may have been in deference to Hilbert, von Neumann, and
Nordheim (1928), although they listed six such axioms (as we saw in Section
3). Jordan’s new postulates or axioms do not include the key portion of postu-
late A of Neue Begründung I stating the probability interpretation of the am-
plitudes. That is relegated to sec. 5, “The physical meaning of the amplitudes”
(Jordan, 1927g, p. 19). Right before listing the postulates, however, Jordan
(1927g, p. 5) did mention that he will only consider “real (Hermitian) quanti-
ties,” thereby obviating the need for the Ergänzungsamplitude and simplifying
the relation between amplitudes and probabilities. There is no discussion of
the Ergänzungsamplitude amplitude in the paper. Instead, following the lead
of Hilbert, von Neumann, and Nordheim (1928), Jordan silently dropped it. It
is possible that this was not even a matter of principle for Jordan but only one
of convenience. Right after listing the postulates, he wrote that the restriction
to real quantities is made only “on account of simplicity” (der Einfachkeit
halber, ibid., p. 6).

Other than the probability-interpretation part of postulate A, all four pos-
tulates of Neue Begründung I return, generalized from one to f degrees of
freedom and from quantities with completely continuous spectra to quanti-
ties with wholly or partly discrete spectra. Axiom I corresponds to the old
postulate D. It says that for every generalized coordinate there is a conju-
gate momentum. Axiom II consists of three parts, labeled (A), (B), and (C).
Part (A) corresponds to the old postulate B, asserting the symmetry property,
which, in the new notation, becomes:

Φαp(β
′, q′) = Φ∗pα(q′, β′). (109)

Part (B) corresponds to the old postulate C, which gives the basic rule for the
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composition of probability amplitudes,∑
q′

Φαp(β
′, q′)ΦpP (q′, Q′) = ΦαP (β′, Q′), (110)

where the notation
∑
q indicates that, in general, we need a combination of

integrals over the continuous parts of the spectrum of a quantity and sums
over its discrete parts. In Eq. (110),

∑
q refers to an ordinary integral as the

coordinate q̂ has a purely continuous spectrum. Adopting this
∑

notation, we
can rewrite the composition rule (110) in the modern language introduced in
Section 2 and immediately recognize it as a completeness relation (cf. Eqs. (1)
and (3)): ∑

q

〈 β|q〉〈q|Q〉 = 〈β|Q〉. (111)

We can likewise formulate orthogonality relations, as Jordan (1927g, p. 7, Eq.
(5)) did at the beginning of sec. 2 (“Consequences”):∑

q

〈 β|q〉〈q|β′〉 = δ(β − β′),
∑
β

〈 q|β〉〈β|q′〉 = δ(q − q′). (112)

Recall that δ(β − β′) can be either the Dirac delta function or the Kronecker
delta, as β̂ can have either a fully continuous or a partly or wholly discrete
spectrum. The relations in Eq. (112) can, of course, also be read as complete-
ness relations, i.e., as giving two different resolutions,∑

q

|q〉〈q|,
∑
β

|β〉〈β|, (113)

of the unit operator. Part (C) of axiom II is the generalization of the definition
of conjugate variables familiar from Neue Begründung I to f degrees of freedom
and to quantities with wholly or partly discrete spectra. Two quantities α̂ =
(α̂1, . . . , α̂f ) and β̂ = (β̂1, . . . , β̂f ) are canonically conjugate to one another if

Φα,−β(β, α) = C e
i

(∑f

k=1
βkαk

)
/~
, (114)

where C is a normalization constant. 97 Axiom III, finally, is essentially axiom
III of Hilbert, von Neumann, and Nordheim (1928, p. 4), which was not part of
Neue Begründung I and which says, in our notation, that 〈β|β′〉 = δ(β − β′),
where, once again, δ(β − β′) can be either the Dirac delta function or the
Kronecker delta.

We need to explain one more aspect of Jordan’s notation in Neue Begründung
II. As we have seen in Sections 2 and 3, probability amplitudes do double

97 Contrary to what Jordan (1927g, p. 7) suggested, the sign of the exponent in Eq.
(114) agrees with the sign of the exponent in the corresponding formula in Neue
Begründung I (Jordan, 1927b, p. 814, Eq. 18; our Eq. (4)).
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duty as integral kernels of canonical transformations. Jordan (1927g, p. 6, Eqs.
(A′)-(B′)) introduced the special notation Φβq

αp to indicate that the amplitude
Φαp(β

′, q′) serves as such an integral kernel, thinking of Φβq
αp as ‘matrices’ with

β and q as ‘indices’ that, in general, will take on both discrete and continuous
values. We will continue to use the modern notation 〈β|q〉 both when we want
to think of this quantity as a probability amplitude and when we want to
think of it as a transformation ‘matrix’. The notation of Neue Begründung II,
like the modern notation, clearly brings out the double role of this quantity.
In Neue Begründung I, we frequently encountered canonical transformations
such as α̂ = T p̂T−1, β̂ = T p̂T−1 (cf. Eqs. (48)–(49)). In Neue Begründung
II, such transformations are written with Φβq

αp’s instead of T ’s. As we will
explain in detail below, this conceals an important shift in Jordan’s usage of
such equations. This shift is only made explicit in sec. 4, which, as its title
announces, deals specifically with “Canonical transformations.” Up to that
point, and especially in sec. 3, “The functional equations of the amplitudes,”
Jordan appears to be vacillating between two different interpretations of these
canonical transformation equations, the one of Neue Begründung I in which α̂
and β̂ are new conjugate variables different from the p̂ and q̂ we started from,
and one, inspired by Dirac (1927), as Jordan (1927g, pp. 16–17) acknowledged
in sec. 4, in which α̂ and β̂ are still the same p̂ and q̂ but expressed with respect
to a new basis. 98

Before he got into any of this, Jordan (1927g, sec. 2, pp. 8–10) examined five
examples, labeled (a) through (e), of what he considered to be pairs of conju-
gate quantities and convinced himself that they indeed qualify as such under
his new definition (114). More specifically, he checked in these five cases that
these purportedly conjugate pairs of quantities satisfy the completeness or
orthogonality relations (112). The examples include familiar pairs of canon-
ically conjugate variables, such as action-angle variables (Jordan’s example
(c)), but also quantities that we normally would not think of as conjugate
variables, such as different components of spin (a special case of example (e)).
We take a closer look at these two specific examples.

In example (c), the allegedly conjugate variables are the angle variable ŵ with
a purely continuous spectrum and eigenvalues w ∈ [0, 1] (which means that
the eigenvalues of a true angle variable ϑ̂ ≡ 2πw are ϑ ∈ [0, 2π]) and the action
variable Ĵ with a purely discrete spectrum and eigenvalues J = C+nh, where
C is an arbitrary (real) constant and n is a positive integer. For convenience we
set C = −1, so that J = mh with m = 0, 1, 2, . . . The probability amplitude
〈w|J〉 has the form required by Jordan’s definition (114) of conjugate variables,
with α̂ = Ĵ , β̂ = ŵ, and f = 1:

〈w|J〉 = eiwJ/~. (115)

98 Cf. the letter from Dirac to Jordan quoted in Section 1.1 (cf. note 42).
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We now need to check whether 〈w|J〉 satisfies the two relations in Eq. (112):

∫ 1

0
dw 〈Jn1|w〉〈w|Jn2〉 = δn1n2 ,

∞∑
n=0

〈w|Jn〉〈Jn|w′〉 = δ(w − w′). (116)

Using Eq. (115), we can write the integral in the first of these equations as:∫ 1

0
dw 〈w|Jn2〉〈w|Jn1〉∗ =

∫ 1

0
dw e2πi(n2−n1)w = δn1n2 . (117)

Hence the first relation indeed holds. We can similarly write the sum in the
second relation as

∞∑
n=0

〈w|Jn〉〈w′|Jn〉∗ =
∞∑
n=0

e2πin(w−w′). (118)

Jordan set this equal to δ(w − w′). However, for this to be true the sum over
n should have been from minus to plus infinity. 99 If the action-angle variables
are (L̂z, ϕ̂), the z-component of angular momentum and the azimuthal angle,
the eigenvalues of Ĵ are, in fact, ±m~ with m = 0, 1, 2, . . ., but if the action
variable is proportional to the energy, as it is in many applications in the old
quantum theory (Duncan and Janssen, 2007, Pt. 2, pp. 628–629), the spectrum
is bounded below. So even under Jordan’s alternative definition of canonically
conjugate quantities, action-angle variables do not always qualify. However,
since action-angle variables do not play a central role in the Neue Begründung
papers, this is a relatively minor problem.

We turn to Jordan’s example (e), the other example of supposedly conjugate
quantities that we want to examine. Consider a quantity β̂ with a purely dis-
crete spectrum with N eigenvalues 0, 1, 2, . . . , N − 1. Jordan showed that, if
the completeness or orthogonality relations (112) are to be satisfied, the quan-
tity α̂ conjugate to β̂ must also have a discrete spectrum with N eigenvalues
hk/N where k = 0, 1, 2, . . . , N − 1. We will check this for the special case that

99 A quick way to see this is to consider the Fourier expansion of some periodic
function f(w):

f(w) =

∞∑
n=−∞

cn e
2πinw, with Fourier coefficients cn ≡

∫ 1

0
dw′ e−2πinw′

f(w′).

Substituting the expression for cn back into the Fourier expansion of f(w), we find

f(w) =

∫ 1

0
dw′

( ∞∑
n=−∞

e2πin(w−w′)

)
f(w′),

which means that the expression in parentheses must be equal to δ(w − w′). Note
that the summation index does not run from 0 to ∞, as in Eq. (118), but from −∞
to +∞.
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N = 2. As Jordan (1927g, pp. 9–10) noted, this corresponds to the case of
electron spin. In sec. 6, “On the theory of the magnetic electron,” he returned
to the topic of spin, acknowledging a paper by Pauli (1927b) on the “mag-
netic electron,” which he had read in manuscript (Jordan, 1927g, p. 21, note
2). Pauli’s discussion of spin had, in fact, been an important factor prompting
Jordan to write Neue Begründung II:

But the magnetic electron truly provides a case where the older canonical
commutation relations completely fail; the desire to fully understand the
relations encountered in this case was an important reason for carrying out
this investigation (Jordan, 1927g, p. 22).

The two conditions on the amplitudes 〈β|α〉 = Ceiβα/~ (Eq. (114) for f = 1)
that need to be verified in this case are (cf. Eq. (112)):

2∑
k=1

〈αm|βk〉〈βk|αn〉 = δnm,
2∑

k=1

〈βm|αk〉〈αk|βn〉 = δnm. (119)

Inserting the expression for the amplitudes, we can write the first of these
relations as

2∑
k=1

〈βk|αn〉〈βk|αm〉∗ =
2∑

k=1

C2 eiβk(αn−αm)/~ = C2
(
1 + ei(αn−αm)/~

)
, (120)

where in the last step we used that β1 = 0 and β2 = 1. The eigenvalues of α̂ in
this case are α1 = 0 and α2 = h/2. For m = n, the right-hand side of Eq. (120)
is equal to 2C2. For m 6= n, ei(αn−αm)/~ = e±iπ = −1 and the right-hand side
of Eq. (120) vanishes. Setting C = 1/

√
2, we thus establish the first relation

in Eq. (119). A completely analogous argument establishes the second.

This example is directly applicable to the treatment of two arbitrary compo-
nents of the electron spin, σ̂ = (σ̂x, σ̂y, σ̂z), say the x- and the z-components,
even though the eigenvalues of both σ̂x and σ̂z are (1

2
,−1

2
) rather than (0, h/2)

for α̂ and (0, 1) for β̂ as in Jordan’s example (e) for N = 2. We can easily
replace the pair of spin components (σ̂x, σ̂z) by a pair of quantities (α̂, β̂) that
do have the exact same eigenvalues as in Jordan’s example:

α̂ ≡ h

2

(
σ̂x +

1

2

)
, β̂ ≡ σ̂z +

1

2
. (121)

The amplitudes 〈β|α〉 = (1/
√

2) eiβα/~ now express that if the spin in one direc-
tion is known, the two possible values of the spin in the directions orthogonal
to that direction are equiprobable. Moreover, as we just saw, amplitudes 〈β|α〉
satisfy the completeness or orthogonality relations (112). It follows that any
two orthogonal components of spin are canonically conjugate to one another
on Jordan’s new definition! One can thus legitimately wonder whether this
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definition is not getting much too permissive. However, as we will now show,
the main problem with Jordan’s formalism is not that it is asking too little of
its conjugate variables, but rather that it is asking too much of its canonical
transformations!

Canonical transformations enter into the formalism in sec. 3, where Jordan
(1927g, pp. 13–16) introduced a simplified yet at the same time generalized
version of equations (2ab) of Neue Begründung I for probability amplitudes
(Jordan, 1927b, p. 821). They are simplified in that there are no longer ad-
ditional equations for the Ergänzungsamplitude (ibid., Eqs. (3ab)). They are
generalized in that they are no longer restricted to systems with only one
degree of freedom and, much more importantly, in that they are no longer re-
stricted to cases where all quantities involved have purely continuous spectra.
Quantities with partly or wholly discrete spectra are now also allowed.

Recall how Jordan built up his theory in Neue Begründung I (cf. our discussion
in Section 2.3). He posited a number of axioms to be satisfied by his probability
amplitudes. He then constructed a model for these postulates. To this end he
identified probability amplitudes with the integral kernels for certain canonical
transformations. Starting with differential equations trivially satisfied by the
amplitude 〈p|q〉 = e−ipq/~ for some initial pair of conjugate variables p̂ and q̂,
Jordan derived differential equations for amplitudes involving other quantities
related to the initial ones through canonical transformations. As we already
saw above, this approach breaks down as soon as we ask about the probability
amplitudes for quantities with partly discrete spectra, such as, typically, the
Hamiltonian.

Although Jordan (1927g, p. 14) emphasized that one has to choose initial p̂’s
and q̂’s with “fitting spectra” (passende Spektren) and that the equations for
the amplitudes are solvable only “if it is possible to find” such spectra, he
did not state explicitly in sec. 3 that the construction of Neue Begründung
I fails for quantities with discrete spectra. 100 That admission is postponed
until the discussion of canonical transformations in sec. 4. At the beginning of
sec. 3, the general equations for probability amplitudes are given in the form
(Jordan, 1927g, p. 14, Eqs. (2ab)):

Φβq
αpB̂k − β̂kΦβq

αp = 0, (122)

Φβq
αpÂk − α̂kΦβq

αp = 0, (123)

100In his Mathematische Begründung, von Neumann (1927a) had already put his
finger on this problem: “A special difficulty with [the approach of] Jordan is that
one has to calculate not just the transforming operators (the integral kernels of
which are the “probability amplitudes”), but also the value-range onto which one
is transforming (i.e., the spectrum of eigenvalues)” (p. 3).
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where Âk and B̂k are defined as [NB2, sec. 3, Eq. (1)]:

B̂k =
(
Φβq
αp

)−1
β̂k Φβq

αp, Âk =
(
Φβq
αp

)−1
α̂k Φβq

αp (124)

Jordan (1927g, pp. 14–15) then showed that the differential equations of Neue
Begründung I are included in these new equations as a special case. Since there
is only one degree of freedom in that case, we do not need the index k. We can
also suppress all indices of Φβq

αp as this is the only amplitude/transformation-

matrix involved in the argument. So we have Â = Φ−1α̂Φ and B̂ = Φ−1β̂ Φ.
These transformations, however, are used very differently in the two install-
ments of Neue Begründung. Although Jordan only discussed this change in
sec. 4, he already alerted the reader to it in sec. 3, noting that “B̂, Â are the
operators for β̂, α̂ with respect to q̂, p̂” (Jordan, 1927g, p. 15)

Suppressing all subscripts and superscripts, we can rewrite Eqs. (122)–(123)
as:

(Φ B̂ Φ−1 − β̂) Φ = 0, (125)

(Φ ÂΦ−1 − α̂) Φ = 0. (126)

Using that

Φ ÂΦ−1 = α̂ = f(p̂, q̂), Φ B̂ Φ−1 = β̂ = g(p̂, q̂) (127)

(Jordan, 1927g, p. 15, Eq. 8); that p̂ and q̂ in the q-basis are represented by
(~/i)∂/∂q and multiplication by q, respectively; and that α̂ and β̂ in Eqs.
(125)–(126) are represented by −(~/i)∂/∂β and multiplication by β, respec-
tively, we see that in this special case Eqs. (122)–(123) (or, equivalently, Eqs.
(125)–(126)) reduce to [NB2, p. 15, Eqs. (9ab)](

g

(
~
i

∂

∂q
, q

)
− β

)
Φ = 0, (128)

(
f

(
~
i

∂

∂q
, q

)
+

~
i

∂

∂β

)
Φ = 0, (129)

which are just Eqs. (2a) of Neue Begründung I (Jordan, 1927b, p. 821; cf.
Eqs. (50)–(51) with 〈q|β〉 written as Φ). This is the basis for Jordan’s renewed
claim that his general equations for probability amplitudes contain both the
time-dependent and the time-independent Schrödinger equations as a special
case (cf. our discussion at the end of Section 2.3). It is certainly true that,
if the quantity B̂ in Eq. (124) is chosen to be the Hamiltonian, Eq. (128)
turns into the time-independent Schrödinger equation. However, there is no
canonical transformation that connects this equation for ψn(q) = 〈q|E〉 to the
equations trivially satisfied by 〈p|q〉 that formed the starting point for Jordan’s
construction of his formalism in Neue Begründung I. 101

101This problem does not affect Dirac’s version of the theory (see our discussion
toward the end of Section 1.1).
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Jordan (1927g, pp. 16–17) finally conceded this point in sec. 4 of Neue Begrün-
dung II. Following Dirac (1927), Jordan switched to a new conception of canon-
ical transformations. Whereas before, he saw canonical transformations such
as α̂ = T p̂T−1, β̂ = T q̂T−1, as taking us from one pair of conjugate vari-
ables (p̂, q̂) to a different pair (α̂, β̂), he now saw them as taking us from one
particular representation of a pair of conjugate variables to a different repre-
sentation of those same variables. 102 The canonical transformation used in
sec. 3, Â = Φ−1α̂Φ, B̂ = Φ−1β̂ Φ, is already an example of a canonical trans-
formation in the new Dirac sense. By giving up on canonical transformations
in the older sense, Jordan effectively abandoned the basic architecture of the
formalism of Neue Begründung I.

This is how Jordan explained the problem at the beginning of sec. 4 of Neue
Begründung II:

Canonical transformations, the theory of which, as in classical mechanics,
gives the natural generalization and the fundamental solution of the problem
of the integration of the equations of motion, were originally [footnote citing
Born, Heisenberg, and Jordan (1926)] conceived of as follows: the canonical
quantities q̂, p̂ should be represented as functions of certain other canonical
quantities β̂, α̂:

q̂k = Gk(β̂, α̂), p̂k = Fk(β̂, α̂). (1)

On the assumption that canonical systems can be defined through the usual
canonical commutation relations, a formal proof could be given [footnote
referring to Jordan (1926a)] that for canonical q̂, p̂ and β̂, α̂ equations (1),
as was already suspected originally, can always be cast in the form

q̂k = T β̂k T
−1, p̂k = T α̂k T

−1. (2)

However, since, as we saw, the old canonical commutation relations are not
valid [cf. Eqs. (103)–(107)], this proof too loses its meaning; in general, one
can not bring equations (1) in the form (2).

Now a modified conception of canonical transformation was developed
by Dirac [footnote citing Dirac (1927) and Lanczos (1926)]. According to
Dirac, [canonical transformations] are not about representing certain canon-
ical quantities as functions of other canonical quantities, but rather about
switching, without a transformation of the quantities themselves, to a dif-
ferent matrix representation (Jordan, 1927g, pp. 16–17; emphasis in the
original, hats added).

In modern terms, canonical transformations in the new Dirac sense transform
the matrix elements of an operator in one basis to matrix elements of that

102Cf. the passage from the letter from Dirac to Jordan of December 24, 1916, that
we quoted toward the end of Section 1.1 (cf. note 42).
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same operator in another. This works whether or not the operator under con-
sideration is part of a pair of operators corresponding to canonically conjugate
quantities. The notation Φβq

αp = 〈β|q〉 introduced in Neue Begründung II that
replaces the notation T in Neue Begründung I for the operators implementing
a canonical transformation nicely prepared us for this new way of interpreting
such transformations. Consider the matrix elements of the position operator
q̂ (with a purely continuous spectrum) in the q-basis:

〈q′|q̂|q′′〉 = q′δ(q′ − q′′). (130)

Now let β̂ be an arbitrary self-adjoint operator. In general, β̂ will have a
spectrum with both continuous and discrete parts. Von Neumann’s spectral
theorem tells us that

β̂ =
∑
n

βn |βn〉〈βn|+
∫
β |β〉〈β| dβ, (131)

where sums and integrals extend over the discrete and continuous parts of the
spectrum of β̂, respectively. In Jordan’s notation, the spectral decomposition
of β̂ can be written more compactly as: β̂ =

∑
β |β〉〈β|. We now want to find

the relation between the matrix elements of q̂ in the β-basis and its matrix
elements in the q-basis. Using the spectral decomposition

∫
q |q〉〈q| dq of q̂, we

can write:

〈β′|q̂|β′′〉=
∫
dq′〈β′|q′〉q′〈q′|β′′〉

=
∫
dq′dq′′ 〈β′|q′′〉q′′δ(q′ − q′′)〈q′′|β′′〉 (132)

=
∫
dq′dq′′ 〈β′|q′′〉〈q′′|q̂|q′〉〈q′′|β′′〉

In the notation of Neue Begründung II, the last line would be the ‘matrix mul-

tiplication’,
(
Φqβ
qα

)−1
q̂Φqβ

qα. This translation into modern notation shows that
Jordan’s formalism, even with a greatly reduced role for canonical transforma-
tions, implicitly relies on the spectral theorem, which von Neumann (1927a)
published in Mathematische Begründung, submitted just one month before
Neue Begründung II. We also note, however, that an explicit choice of quan-
tities p̂ and α̂ conjugate to q̂ and β̂, respectively, is completely irrelevant for
the application of the spectral theorem.

This gets us to the last aspect of Neue Begründung II that we want to discuss
in this section, namely Jordan’s response to von Neumann’s criticism of the
Dirac-Jordan transformation theory. A point of criticism we already mentioned
is that the probability amplitude ϕ(β, q) = 〈β|q〉 is determined only up to a
phase factor.

As we mentioned in Section 1.3, the projection operator |a〉〈a| does not change
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if the ket |a〉 is replaced by eiϑ|a〉 and the bra 〈a| accordingly by e−iϑ〈a|, where
ϑ can be an arbitrary real function of a. Hence, the spectral decomposition of
β̂ in Eq. (131) does not change if |β〉 is replaced by e−iρ(β)/~|β〉, where we have
written the phase factor, in which ρ is an arbitrary real function of β, in a way
that corresponds to Jordan’s notation for the resulting phase ambiguity in the
amplitude ϕ(β, q) = 〈β|q〉. Similarly, the spectral decomposition of q̂ does not
change if we replace |q〉 by eiσ(q)/~|q〉, where σ is an arbitrary real function
of q. However, with the changes |β〉 → e−iρ(β)/~|β〉 and |q〉 → eiσ(q)/~|q〉, the
amplitude ϕ(β, q) = 〈β|q〉 changes (Jordan, 1927g, p. 20):

〈β|q〉 −→ ei(ρ(β)+σ(q))/~〈β|q〉. (133)

Unlike projection operators, as von Neumann pointed out, probability ampli-
tudes, are determined only up to such phase factors.

As we noted above, Jordan responded to this criticism by adding a dependence
on quantities α̂ and p̂ conjugate to β̂ and q̂, respectively, to the probability am-
plitude 〈β|q〉, thus arriving at the amplitudes Φαp(β

′, q′) of Neue Begründung
II. It turns out that the phase ambiguity of 〈β|q〉 is equivalent to a certain
freedom we have in the definition of the quantities α̂ and p̂ conjugate to β̂
and q̂, respectively. The phase ambiguity, as we saw, can be characterized by
the arbitrary functions ρ(β) and σ(q). Following Jordan, we will show that
our freedom in the definition of α̂ and p̂ is determined by the derivatives ρ′(β)
and σ′(q) of those same functions. By considering amplitudes Φαp(β

′, q′) with
uniquely determined α̂ and p̂, Jordan could thus eliminate the phase ambiguity
that von Neumann found so objectionable.

Following Jordan (1927g, p. 20), we establish the relation between these two
elements of arbitrariness for the special case that all quantities involved have
fully continuous spectra. In sec. 6 on spin, Jordan (1927g, pp. 21–25) tried
to extend his argument to some special cases of discrete spectra. We will not
discuss those efforts.

Consider two complete sets of eigenstates of q̂, {|q〉1} and {|q〉2}, related to
one another via

|q〉1 = eiσ(q)/~ |q〉2. (134)

This translates into two different amplitudes, ϕ1(β, q) ≡ 〈β|q〉1 and ϕ2(β, q) ≡
〈β|q〉2, that differ by that same phase factor: ϕ1(β, q) = eiσ(q)/~ ϕ2(β, q). 103

Suppose p̂1 is conjugate to q̂ if we use the |q〉1 set of eigenstates of q̂. Since we
restrict ourselves to quantities with fully continuous spectra, this means that

103An argument completely analogous to one we give for the relation between the
phase factor eiσ(q)/~ and the definition of p̂ can be be given for the relation between
the phase factor eiρ(β)/~ and the definition of α̂.
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[p̂1, q̂] = ~/i. It also means, as we saw in Section 2.1, that

p̂1|q〉1 = −~
i

∂

∂q
|q〉1. (135)

Eigenstates |p〉1 of p̂1 can be written as a Fourier series in terms of the |q〉1
states: 104

|p〉1 =
∫
dq eipq/~ |q〉1. (136)

We can likewise construct a p̂2 conjugate to q̂ if we use the |q〉2 set of eigenstates
of q̂. Instead of Eqs. (135)–(136), we then have

p̂2|q〉2 = −~
i

∂

∂q
|q〉2, |p〉2 =

∫
dq eipq/~ |q〉2. (137)

The relation between these two different conjugate momenta, it turns out, is

p̂2 = p̂1 + σ′(q̂). (138)

Note that the commutator [p̂1, q̂] does not change if we add an arbitrary func-
tion of q̂ to p̂1. To prove that Eq. (138) indeed gives the relation between p̂1

and p̂2, we show that |p〉2 in Eq. (137) is an eigenstate of p̂2 as defined in Eq.
(138), using relation (134) between |q〉1 and |q〉2:

p̂2|p〉2 =
∫
dq eipq/~ p̂2 |q〉2

=
∫
dq eipq/~ (p̂1 + σ′(q̂)) e−iσ(q)/~ |q〉1

=
∫
dq ei(pq−σ(q))/~

(
−~
i

∂

∂q
+ σ′(q)

)
|q〉1 (139)

=
∫
dq (p− σ′(q) + σ′(q)) ei(pq−σ(q))/~|q〉1

= p
∫
dq eipq/~ |q〉2 = p |p〉2,

where in the fourth step we performed a partial integration. This proves that
the ambiguity (138) in the p̂ conjugate to q̂ corresponds directly to the phase

104One easily verifies that |p〉1 is indeed an eigenstate of p̂1. The action of p̂1 on |p〉1
can be written as:

p̂1|p〉1 =

∫
dq eipq/~p̂1|q〉1 = −

∫
dq eipq/~

~
i

∂

∂q
|q〉1.

Partial integration gives:

p̂1|p〉1 =

∫
dq

~
i

∂

∂q

(
eipq/~

)
|q〉1 = p

∫
dq eipq/~|q〉1 = p|p〉1,

which is what we wanted to prove.
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ambiguity (134) in the amplitude 〈β|q〉. Similarly, the ambiguity in the α̂
conjugate to β̂, which is determined only up to a term ρ′(β̂), corresponds
directly to the phase ambiguity eiρ(β)/~ in the amplitude 〈β|q〉. Hence, for
specific conjugate variables p̂ and α̂ conjugate to q̂ and β̂, the amplitude
Φαp(β

′, q′) of Neue Begründung II is unique up to a constant phase factor (i.e.,
one that is not a function of q or β).

In addition to responding to von Neumann’s criticism of his approach, Jor-
dan (1927g, p. 20) also offered some criticism of von Neumann’s approach.
In particular, he complained that von Neumann showed no interest in either
canonical transformations or conjugate variables. As we will see when we cover
von Neumann’s Mathematische Begründung in the next section, this is sim-
ply because von Neuman did not need either for his formulation of quantum
mechanics. That formulation clearly did not convince Jordan. In fact, von
Neumann’s paper only seems to have increased Jordan’s confidence in his own
approach. After his brief discussion of Mathematische Begründung, he con-
cluded: “It thus appears that the amplitudes themselves are to be considered
the fundamental concept of quantum mechanics” (Jordan, 1927g, pp. 20–21).

It is unclear whether Jordan ever came to appreciate the advantages of von
Neumann’s approach over his own. In the preface of his texbook on quantum
mechanics, Anschauliche Quantentheorie, Jordan (1936) described the statis-
tical transformation theory of Dirac and himself as “the pinnacle of the devel-
opment of quantum mechanics” (p. VI) and as the “most comprehensive and
profound version of the quantum laws” (ibid., p. 171; quoted by Duncan and
Janssen, 2009, p. 361). He did not discuss any of von Neumann’s contributions
in this book. However, in the textbook he co-authored with Born, Elementare
Quantenmechanik, we do find elaborate expositions (Born and Jordan, 1930,
Ch. 6, pp. 288–364) of the two papers by von Neumann (1927a,b) that will
occupy us in the next two sections.

5 Von Neumann’s Mathematische Begründung (May 1927)

In the next two sections we turn our attention to the first two papers of the
trilogy that von Neumann (1927a,b,c) published the same year as and partly
in response to the papers by Dirac (1927) and Jordan (1927b) on transforma-
tion theory. This trilogy provided the backbone of his famous book published
five years later (von Neumann, 1932). The first paper in the trilogy, Mathema-
tische Begründung, was presented in the meeting of the Göttingen Academy of
May 20, 1927. In this paper, von Neumann first introduced the Hilbert space
formalism and the spectral theorem, at least for bounded operators, two con-
tributions that have since become staples of graduate texts in quantum physics
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and functional analysis. 105 In part because of this greater familiarity but also
because of its intrinsic clarity, von Neumann’s Mathematische Begründung is
much easier to follow for modern readers than Jordan’s Neue Begründung.
There is no need for us to cover it in as much detail as we did with Jordan’s
papers in Sections 2 and 4. 106

Mathematische Begründung is divided into nine parts, comprising 15 sections
and two appendices:

(1) “Introduction,” sec. I, pp. 1–4;
(2) “The Hilbert space,” secs. II–VI, pp. 4–22;
(3) “Operator calculus,” secs. VII–VIII, pp. 22–29;
(4) “The eigenvalue problem,” sec. IX–X, pp. 29–37;
(5) “The absolute value of an operator,” sec.“IX” (a typo: this should be

XI), pp. 37–41;
(6) “The statistical assumption [Ansatz] of quantum mechanics,” secs. XII–

XIII, pp. 42–47;
(7) “Applications,” sec. XIV, pp. 47–50;
(8) “Summary,” sec. XV, pp. 50–51;
(9) “Appendices,” pp. 51–57.

Abstract Hilbert space is introduced in secs. V–VI, the spectral theorem in
secs. IX–X. After going over the introduction of the paper, we focus on parts
of sec. IV and secs. IX–XIII.

In Sec. IV, von Neumann criticized the way in which wave mechanics and ma-
trix mechanics are unified in the approach of Dirac and Jordan and presented
his superior alternative approach to this unification, based on the isomorphism
of two concrete instantiations of abstract Hilbert space H, the space of square-
summable sequences H0 and the space of square-integrable functions H (von
Neumann, 1927a, the designations H, H0, and H are introduced on pp. 14–15).
In modern notation, this is the isomorphism between l2 and L2.

Secs. IX–XIII contain von Neumann’s criticism of Jordan’s use of probability
amplitudes and his derivation of an alternative formula for conditional prob-
abilities in quantum mechanics in terms of projection operators. Unlike von
Neumann, we present this derivation in Dirac notation.

In the introduction of Mathematische Begründung, von Neumann (1927a, pp.
1–3) gave a list of seven points, labeled α through ϑ (there is no point η), in
which he took stock of the current state of affairs in the new quantum theory

105In the latter category we already mentioned Prugovecki (1981) and Dennery and
Krzywicki (1996, Ch. 3) (see note 57).
106This paper is also discussed by Mehra and Rechenberg (2000–2001, Ch. III, sec.
2(d), pp. 411–417).
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and identified areas where it ran into mathematical difficulties. We paraphrase
these points. (α) Quantum theory describes the behavior of atomic systems
in terms of certain eigenvalue problems. (β) This allows for a unified treat-
ment of continuous and discontinuous elements in the atomic world. (γ) The
theory suggests that the laws of nature are stochastic. 107 (δ) Returning to
the formulation of the theory in terms of eigenvalue problems, von Neumann
briefly characterized the different but equivalent ways in which such prob-
lems are posed in matrix mechanics and in wave mechanics. Both approaches
have their difficulties. (ε) The application of matrix mechanics appears to be
restricted to situations with purely discrete spectra. To deal with wholly or
partly continuous spectra, one ends up using, side by side, matrices with in-
dices taking on discrete values and “continuous matrices,” i.e., the integral
kernels of the Dirac-Jordan transformation theory, with ‘indices’ taking on
continuous values. It is “very hard,” von Neumann (1927a, p. 2) warned, to
do this in a mathematically rigorous way. (ζ) These same problems start to
plague wave mechanics as soon as wave functions are interpreted as probability
amplitudes. Von Neumann credited Born, Pauli, and Jordan with transferring
the probability concepts of matrix mechanics to wave mechanics and Jordan
with developing these ideas into a “closed system” (ibid.). 108 This system,
however, faces serious mathematical objections because of the unavoidable
use of improper eigenfunctions, such as the Dirac delta function, the proper-
ties of which von Neumann thought were simply “absurd” (ibid., p. 3). His
final objection seems mild by comparison but weighed heavily for von Neu-
mann: (ϑ) eigenfunctions in wave mechanics and probability amplitudes in
transformation theory are determined only up to an arbitrary phase factor.
The probabilities one ultimately is after in quantum theory do not depend
on these phase factors and von Neumann therefore wanted to avoid them
altogether. 109

107Parenthetically, von Neumann (1927a, p. 1) added an important qualification, “(at
least the quantum laws known to us),” leaving open the possibility that, at a deeper
level, the laws would be deterministic again. Von Neumann’s position at this point
was thus basically the same as Jordan’s (see note 40). By the time of the second
paper of his trilogy, von Neumann had read Heisenberg’s (1927b) uncertainty paper
and endorsed Heisenberg’s position that the indeterminism of quantum mechanics
is the result of the inevitable disturbance of quantum systems in our measurements
(von Neumann, 1927b, p. 273; cf. note 137).
108In this context von Neumann (1927a, p. 2) referred to his forthcoming paper with
Hilbert and Nordheim (1928). Oddly, von Neumann did not mention Dirac at this
point, although Dirac is mentioned (alongside Pauli and Jordan) in sec. XII (von
Neumann, 1927a, p. 43) as well as in the second paper of the trilogy (von Neumann,
1927b, p. 245; see Section 6).
109In Neue Begründung II, as we saw in Section 5, Jordan (1927g, p. 8) responded to
this criticism by adding subscripts to the probability amplitudes for two quantities
β̂ and q̂ indicating a specific choice of the canonically-conjugate quantities α̂ and p̂
(see Eqs. (133)–(139)).
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In sec. II, von Neumann set the different guises in which the eigenvalue prob-
lems appear in matrix and in wave mechanics side by side. In matrix me-
chanics, the problem is to find square-summable infinite sequences of complex
numbers v = (v1, v2, . . .) such that

Hv = Ev, (140)

where H is the matrix representing the Hamiltonian of the system in matrix
mechanics and E is an energy eigenvalue. In wave mechanics, the problem is
to find square-integrable complex-valued functions f(x) such that

Ĥf(x) = Ef(x), (141)

where Ĥ is the differential operator, involving multiplication by x and differ-
entiation with respect to x, that represents the Hamiltonian of the system in
wave mechanics.

One way to unify these two approaches, von Neumann (1927a, pp. 10–11)
pointed out at the beginning of sec. IV, is to look upon the discrete set of
values 1, 2, 3 . . . of the index i of the sequences {vi}∞i=1 in matrix mechanics
and the continuous (generally multi-dimensional) domain Ω of the functions
f(x) in wave mechanics as two particular realizations of some more general
space, which von Neumann called R. Following the notation of his book (von
Neumann, 1932, sec. 4, pp. 15–16), we call the ‘space’ of index values Z. Eq.
(140) can then be written as: 110

∑
j∈Z

Hijvj = Evi. (142)

‘Summation over Z’ can be seen as one instantiation of ‘integration over R;’
‘integration over Ω’ as another. In this way Eq. (141) can, at least formally,
be subsumed under matrix mechanics. One could represent the operator Ĥ in
Eq. (141) by the integral kernel H(x, y) and write∫

Ω
dy H(x, y)f(y) = Ef(x). (143)

Both the matrix Hij and the integral kernel H(x, y) can be seen as ‘matrices’
Hxy with indices x, y ∈ R. For Hij, R = Z; for H(x, y), R = Ω. Von Neumann
identified this way of trying to unify matrix and wave mechanics as Dirac’s
way (and, one may add, although he is not mentioned by name at this point:
Jordan’s way). Von Neumann rejected this approach. He dismissed the analogy
between Z and Ω sketched above as “very superficial, as long as one sticks to

110We replaced von Neumann’s (1927a, p. 10) xi’s by vi’s to avoid confusion with
the argument(s) of the functions f(x).
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the usual measure of mathematical rigor” (von Neumann, 1927a, p. 11). 111

He pointed out that even the simplest linear operator, the identity operator,
does not have a proper integral-kernel representation. Its integral kernel is the
improper Dirac delta function:

∫
dy δ(x− y)f(y) = f(x).

The appropiate analogy, von Neumann (1927a, pp. 11–14) argued, is not be-
tween Z and Ω, but between the space of square-summable sequences over Z
and the space of square-integrable functions over Ω. In his book, von Neumann
(1932, p. 16) used the notation FZ and FΩ for these two spaces. 112 In 1927, as
mentioned above, he used H0 and H, instead. Today they are called l2 and L2,
respectively. 113 Von Neumann (1927a, pp. 12–13) reminded his readers of the
“Parseval formula,” which maps sequences in l2 onto functions in L2, and a
“theorem of Fischer and F. Riesz,” which maps functions in L2 onto sequences
in l2. 114 The combination of these two results establishes that l2 and L2 are
isomorphic. As von Neumann (1927a, p. 12) emphasized, these “mathemati-
cal facts that had long been known” could be used to unify matrix mechanics
and wave mechanics in a mathematically impeccable manner. With a stroke
of the pen, von Neumann thus definitively settled the issue of the equivalence
of wave mechanics and matrix mechanics. Anything that can be done in wave
mechanics, i.e., in L2, has a precise equivalent in matrix mechanics, i.e., in
l2. This is true regardless of whether we are dealing with discrete spectra,
continuous spectra, or a combination of the two.

In sec. V, von Neumann (1927a, pp. 14–18) introduced abstract Hilbert space,
for which he used the notation H, carefully defining it in terms of five axioms
labeled A through E. 115 In sec. VI, he added a few more definitions and
then stated and proved six theorems about Hilbert space, labeled 1 through 6
(ibid., pp. 18–22). In sec. VII, he turned to the discussion of operators acting

111In Section 1.3, we already quoted some passages from the introduction of von
Neumann’s 1932 book in which he complained about the lack of mathematical rigor
in Dirac’s approach. After characterizing the approach in terms of the analogy
between Z and Ω, he wrote: “It is no wonder that this cannot succeed without
some violence to formalism and mathematics: the spaces Z and Ω are really very
different and every attempt to establish a relation between them must run into great
difficulties” (von Neumann, 1932, p. 15).
112Jammer (1966, pp. 314–315) also used this 1932 notation in his discussion of von
Neumann (1927a).
113Earlier in his paper, von Neumann (1927a, p. 7) remarked that what we now
call l2 was usually called “(complex) Hilbert space.” Recall, however, that London
(1926b, p. 197) used the term “Hilbert space” for L2 (note 56).
114The paper cited by von Neumann (1927a, p. 13, note 15) is Riess (1907a). In
his discussion of von Neumann’s paper, Jammer (1966, pp. 314–315) cited Riess
(1907a,b) and Fischer (1907).
115In his book, von Neumann (1932) adopted the notation ‘H. R.’ (shorthand for
Hilbertscher Raum) for H.
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in Hilbert space (ibid., pp. 25). This will be familiar terrain for the modern
reader and need not be surveyed in any more detail.

The same goes for sec. VIII, in which von Neumann introduced a special
class of Hermitian operators. Their defining property is that they are idem-
potent: Ê2 = Ê. Von Neumann called an operator like this an Einzeloperator
or E.Op. for short (von Neumann, 1927a, p. 25). 116 They are now known as
projection operators. In a series of theorems, numbered 1 through 9, von Neu-
mann (1927a, pp. 26–29) proved some properties of such operators. For our
purposes, it suffices to know that they are Hermitian and idempotent.

We do need to take a closer look at sec. IX. In this section, von Neumann
(1927a, pp. 29–33) used projection operators to formulate the spectral theo-
rem. Following von Neumann (1927a, p. 31), we start by considering a finite
Hermitian operator Â with a non-degenerate discrete spectrum. Order its real
eigenvalues: a1 < a2 < a3 . . . Let |ai〉 be the associated normalized eigenvec-
tors (〈ai|aj〉 = δij). Now introduce the operator Ê(l): 117

Ê(l) ≡
∑

(i|ai≤l)
|ai〉〈ai|, (144)

where, unlike von Neumann, we used modern Dirac notation. As we already
noted in Section 1.3, there is no phase ambiguity in Ê(l). The operator stays
the same if we replace |ai〉 by |ai〉′ = eiϕi |ai〉:

|ai〉′〈ai|′ = eiϕi |ai〉〈ai|e−iϕi = |ai〉〈ai|. (145)

Of course, von Neumann did not think of an E.Op. as constructed out of bras
and kets, just as Jordan did not think of a probability amplitude 〈a|b〉 as an
inner product of |a〉 and |b〉.

The operator Ê(l) has the property:

Ê(ai)− Ê(ai−1) = |ai〉〈ai|. (146)

It follows that:

Â =
∑
i

ai(Ê(ai)− Ê(ai−1)) =
∑
i

ai|ai〉〈ai| (147)

116As he explains in a footnote, the term Einzeloperator is based on Hilbert’s term
Einzelform (von Neumann, 1927a, p. 25, note 23). For historical discussion, see
Jammer (1966, pp. 317–318).
117Von Neumann initially defined this operator in terms of its matrix elements
〈v|Ê(l)|w〉 for two arbitrary sequences {vi}κi=1 and {wi}κi=1 (where we replaced
von Neumann’s x and y by v and w; cf. note 110). He defined (in our notation):
E(l;x|y) =

∑
(i|ai≤l)〈v|ai〉〈ai|w〉 (von Neumann, 1927a, p. 31).
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Ê(l) is piece-wise constant with jumps where l equals an eigenvalue. Hence
we can write Â as a so-called Stieltjes integral, which von Neumann discussed
and illustrated with some figures in appendix 3 of his paper (von Neumann,
1927a, pp. 55–57):

Â =
∫
l dÊ(l). (148)

As von Neumann (1927a, p. 32) noted, these results (Eqs. (144)–(148)) can
easily be generalized from finite Hermitian matrices and finite sequences to
bounded Hermitian operators and the space H0 or l2 of infinite square-summable
sequences. Since H0 is just a particular instantiation of the abstract Hilbert
space H, it is clear that the same results hold for bounded Hermitian opera-
tors T̂ in H. After listing the key properties of Ê(l) for T̂ , 118 he concluded
sec. IX writing: “We call Ê(l) the resolution of unity [Zerlegung der Einheit]
belonging to T̂” (von Neumann, 1927a, p. 33).

In sec. X, von Neumann (1927a, pp. 33–37) further discussed the spectral
theorem. Most importantly, he conceded that he had not yet been able to
prove that it also holds for unbounded operators. 119 He only published the
proof of this generalization in a paper in Mathematische Annalen submitted on
December 15, 1928 (von Neumann, 1929). 120 The key to the extension of the
spectral theorem from bounded to unbounded operators is a so-called Cayley
transformation (von Neumann, 1929, p. 80). Given an unbounded Hermitian

118As before (see note 117), he first defined the matrix elements 〈f |Ê(l)|g〉 for two
arbitrary elements f and g of Hilbert space. So he started from the relation

〈f |T̂ |g〉 =

∫ ∞
−∞

l d〈f |Ê(l)|g〉,

and inferred from that, first, that T̂ |g〉 =
∫∞
−∞ l d{Ê(l)|g〉}, and, finally, that T̂ =∫∞

−∞ l dÊ(l) (cf. Eq. (148)). Instead of the notation 〈f |g〉, von Neumann (1927a, p.
12) used the notation Q(f, g) for the inner product of f and g (on p. 32, he also
used Q(f |g)). So, in von Neumann’s own notation, the relation he started from is
written as Q(f, Tg) =

∫∞
−∞ l dQ(f,E(l)g) (von Neumann, 1927a, p. 33).

119We remind the reader that a linear operator Â in Hilbert space is bounded if
there exists a positive real constant C such that |Âf | < C|f | for arbitrary vectors
f in the space (where |...| indicates the norm of a vector, as induced from the
defining inner-product in the space). If this is not the case, then there exist vectors
in the Hilbert space on which the operator Â is not well-defined, basically because
the resultant vector has infinite norm. Instead, such unbounded operators are only
defined (i.e., yield finite-norm vectors) on a proper subset of the Hilbert space,
called the domain D(Â) of the operator Â. The set of vectors obtained by applying
Â to all elements of its domain is called the range R(Â) of Â. Multiplication of two
unbounded operators evidently becomes a delicate matter insofar as the domains
and ranges of the respective operators may not coincide.
120For brief discussions, see Jammer (1966, p. 320) and Mehra and Rechenberg
(2000–2001, p. 415).
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operator R̂, introduce the operator Û and its adjoint

Û =
R̂ + i1̂

R̂− i1̂
, Û † =

R̂− i1̂
R̂ + i1̂

, (149)

where 1̂ is the unit operator. Since R̂ is Hermitian, it only has real eigenvalues,
so (R̂− i1̂)|ϕ〉 6= 0 for any |ϕ〉 ∈ H. Since Û is unitary (Û Û † = 1̂), the absolute
value of all its eigenvalues equals 1. Û is thus a bounded operator for which
the spectral theorem holds. If it holds for Û , however, it must also hold for the
original unbounded operator R̂. The spectral decomposition of R̂ is essentially
the same as that of Û . In his book, von Neumann (1932, p. 80) gave Eq. (149),
but he referred to his 1929 paper for a mathematically rigorous treatment of
the spectral theorem for unbounded operators (von Neumann, 1932, p. 75, p.
246, note 95, and p. 244, note 78)

Sec. XI concludes the purely mathematical part of the paper. In this section,
von Neumann (1927a, pp. 37-41) introduced the “absolute value” of an opera-
tor, an important ingredient, as we will see, in his derivation of his formula for
conditional probabilities in quantum mechanics (see Eqs. (157)–(161) below).

In sec. XII, von Neumann (1927a, pp. 42–45) finally turned to the statistical
interpretation of quantum mechanics. At the end of sec. I, he had already
warned the reader that secs. II–XI would have a “preparatory character” and
that he would only get to the real subject matter of the paper in secs. XII–XIV.
At the beginning of sec. XII, the first section of the sixth part of the paper
(see our table of contents above), on the statistical interpretation of quantum
mechanics, he wrote: “We are now in a position to take up our real task, the
mathematically unobjectionable unification of statistical quantum mechanics”
(von Neumann, 1927a, p. 42). He then proceeded to use the spectral theorem
and the projection operators Ê(l) of sec. IX to construct an alternative to
Jordan’s formula for conditional probabilities in quantum mechanics, which
does not involve probability amplitudes. Recall von Neumann’s objections to
probability amplitudes (see Sections 1 and 4). First, Jordan’s basic amplitudes,
ρ(p, q) = e−ipq/~ (see Eq. (4)), which from the perspective of Schrödinger wave
mechanics are eigenfunctions of momentum, are not square-integrable and
hence not in Hilbert space (von Neumann, 1927a, p. 35). Second, they are only
determined up to a phase factor (von Neumann, 1927a, p. 3, point ϑ). Von
Neumann avoided these two problems by deriving an alternative formula which
expresses the conditional probability Pr(a|b) in terms of projection operators
associated with the spectral decomposition of the operators for the observables
â and b̂.

Von Neumann took over Jordan’s basic statistical Ansatz. Consider a one-
particle system in one dimension with coordinate q. Von Neumann (1927a, p.
43) considered the more general case with coordinates q ≡ (q1, . . . , qk). The

86



probability of finding a particle in some region K if we know that its energy
is En (i.e., if we know the particle is in the pure state ψn(x) belonging to that
eigenvalue), is given by (ibid.): 121

Pr(q in K|En) =
∫
K
|ψn(q)|2dq. (150)

Next, he considered the probability of finding the particle in some region K if
we know that its energy is in some interval I that includes various eigenvalues
of its energy, i.e., if the particle is in some mixed state where we only know
that, with equal probability, its state is one of the pure states ψn(x) associated
with the eigenvalues within the interval I: 122

Pr(q in K|En in I) =
∑

(n|En in I)

∫
K
|ψn(q)|2dq. (151)

The distinction between pure states (in Eq. (150)) and mixed states (in Eq.
(151)) slipped in here was only made explicit in the second paper in the trilogy
(von Neumann, 1927b). These conditional probabilities can be written in terms
of the projection operators,

Ê(I) ≡
∑

(n|En in I)

|ψn〉〈ψn|, F̂ (K) ≡
∫
K
|q〉〈q| dq, (152)

that project arbitrary state vectors onto the subspaces of H spanned by ‘eigen-
vectors’ of the Hamiltonian Ĥ and of the position operator q̂ with eigenvalues
in the ranges I and K, respectively. The right-hand side of Eq. (151) can be
rewritten as: ∑

(n|En in I)

∫
K
〈ψn|q〉〈q|ψn〉 dq. (153)

We now choose an arbitrary orthonormal discrete basis {|α〉}∞α=1 of the Hilbert
space H. Inserting the corresponding resolution of unity, 1̂ =

∑
α |α〉〈α|, into

Eq. (153), we find

∑
α

∑
(n|En in I)

∫
K
〈ψn|α〉〈α|q〉〈q|ψn〉 dq. (154)

This can be rewritten as:

∑
α

〈α|

∫
K
|q〉〈q| dq ·

∑
(n|En in I)

|ψn〉〈ψn|

 |α〉. (155)

121The left-hand side is short-hand for: Pr(q̂ has value q in K|Ĥ has value En). We
remind the reader that the notation Pr(. | .) is ours and is not used in any of our
sources.
122The left-hand side is short-hand for: Pr(q̂ has value q in K|Ĥ has value En in I).
On the right-hand side,

∑
(n|En in I) is the sum over all n such that En lies in the

interval I.
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This is nothing but the trace of the product of the projection operators F̂ (K)
and Ê(I) defined in Eq. (152). The conditional probability in Eq. (151) can
thus be written as:

Pr(x in K|En in I) =
∑
α

〈α|F̂ (K)Ê(I)|α〉 = Tr(F̂ (K)Ê(I)). (156)

This is our notation for what von Neumann (1927a, p. 45) wrote as 123

[F̂ (K), Ê(I)]. (157)

He defined the quantity [Â, B̂]—not to be confused with a commutator—as
(ibid., p. 40):

[Â, B̂] ≡ [Â†B̂]. (158)

For any operator Ô, he defined the quantity [Ô], which he called the “absolute
value” of Ô, as (ibid., pp. 37–38): 124

[Ô] ≡
∑
µ,ν

|〈ϕµ|Ô|ψν〉|2, (159)

where {|ϕµ〉}∞µ=1 and {|ψν〉}∞ν=1 are two arbitrary orthonormal bases of H. Eq.
(159) can also be written as:

[Ô] ≡
∑
µ,ν

〈ϕµ|Ô|ψν〉〈ψν |Ô†|ϕµ〉 =
∑
µ

〈ϕµ|ÔÔ†|ϕµ〉 = Tr(ÔÔ†), (160)

where we used the resolution of unity, 1̂ =
∑
ν |ψν〉〈ψν |, and the fact that

Tr(Ô) =
∑
α〈α|Ô|α〉 for any orthonormal basis {|α〉}∞α=1 of H. 125 Using the

definitions of [Â, B̂] and [Ô] in Eqs. (158) and (160), with Â = F̂ (K), B̂ =
Ê(I), and Ô = F̂ (K)†Ê(I), we can rewrite Eq. (157) as

[F̂ , Ê] = [F̂ †Ê] = Tr((F̂ †Ê)(F̂ †Ê)†) = Tr(F̂ †ÊÊ†F̂ ), (161)

123Since von Neumann (ibid., p. 43) chose K to be k-dimensional, he actually wrote:
[F̂1(J1) · . . . · F̂k(Jk), Ê(I)] (ibid., p. 45; hats added). For the one-dimensional case
we are considering, von Neumann’s expression reduces to Eq. (157). For other dis-
cussions of von Neumann’s derivation of this key formula, see Jammer (1966, pp.
320–321) and Mehra and Rechenberg (2000–2001, p. 414).
124Using the notation Q(. , .) for the inner product (see note 118) and using A in-
stead of O, von Neumann (1927a, p. 37) wrote the right-hand side of Eq. (159) as∑∞

µ,ν=1 |Q(ϕµ, Aψν)|2.
125Eq. (160) shows that [Ô] is independent of the choice of the bases {|ϕµ〉}∞µ=1

and {|ψν〉}∞ν=1. Von Neumann (1927a, p. 37) initially introduced the quantity
[Ô;ϕµ;ψν ] ≡

∑
µ,ν |〈ϕµ|Ô|ψν〉|2. He then showed that this quantity does not ac-

tually depend on ϕµ and ψν , renamed it [Ô] (see Eq. (159) and note 124), and
called it the “absolute value of the operator” Ô (ibid., p. 38).
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where, to make the equation easier to read, we temporarily suppressed the
value ranges K and I of F̂ (K) and Ê(I). Using the cyclic property of the
trace, we can rewrite the final expression in Eq. (161) as Tr(F̂ F̂ †ÊÊ†). Since
projection operators P̂ are both Hermitian and idempotent, we have F̂ F̂ † =
F̂ 2 = F̂ and ÊÊ† = Ê2 = Ê. Combining these observations and restoring the
arguments of F̂ and Ê, we can rewrite Eq. (161) as:

[F̂ (K), Ê(I)] = Tr(F̂ (K)Ê(I)), (162)

which is just Eq. (156) for Pr(x in K|En in I) found above.

From Tr(F̂ Ê) = Tr(ÊF̂ ), it follows that

Pr(x in K|En in I) = Pr(En in I|x in K), (163)

which is just the symmetry property imposed on Jordan’s probability ampli-
tudes in postulate B of Neue Begründung I (Jordan, 1927b, p. 813; see Section
2.1) and postulate II in Neue Begründung II (Jordan, 1927g, p. 6; see Section
4).

Von Neumann generalized Eq. (156) for a pair of quantities to a similar for-
mula for a pair of sets of quantities such that the operators for all quan-
tities in each set commute with those for all other quantities in that same
set but not necessarily with those for quantities in the other set (von Neu-
mann, 1927a, p. 45). 126 Let {R̂i}ni=1 and {Ŝj}mj=1 be two such sets of com-

muting operators: [R̂i1 , R̂i2 ] = 0 for all 1 ≤ i1, i2 ≤ n; [Ŝj1 , Ŝj2 ] = 0 for all

1 ≤ j1, j2 ≤ m. 127 Let Êi(Ii) (i = 1, . . . , n) be the projection operators onto
the space spanned by eigenstates of R̂i with eigenvalues in the interval Ii and
let F̂j(Jj) (j = 1, . . . ,m) likewise be the projection operators onto the space

spanned by eigenstates of Ŝj with eigenvalues in the interval Jj (cf. Eq. (152)).
A straightforward generalization of von Neumann’s trace formula (156) gives
the probability that the Ŝj’s have values in the intervals Jj given that the R̂i’s
have values in the intervals Ii:

Pr(Ŝj
′s in Jj

′s|R̂i
′s in Ii

′s) = Tr(Ê1(I1) . . . Ên(In)F̂1(J1) . . . F̂m(Jm)). (164)

The outcomes ‘R̂i in Ii’ are called the “assertions” (Behauptungen) and the
outcomes ‘Ŝj in Jj’ are called the “conditions” (Voraussetzungen) (von Neu-
mann, 1927a, p. 45). Because of the cyclic property of the trace, which we

126Von Neumann distinguished between the commuting of R̂i and R̂j and the com-
muting of the corresponding projection operators Êi(Ii) and Êj(Ij). For bounded
operators, these two properties are equivalent. If both R̂i and R̂j are unbounded, von
Neumann (1927a, p. 45) cautioned, “certain difficulties of a formal nature occur,
which we do not want to go into here” (cf. note 119).
127Unlike von Neumann (see Eqs. (157)–(158)), we continue to use the notation [., .]
for commutators.
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already invoked in Eq. (163), Eq. (164) is invariant under swapping all asser-
tions with all conditions. Since all Êi(Ii)’s commute with each other and all
F̂j(Jj)’s commute with each other, Eq. (164) is also invariant under changing
the order of the assertions and changing the order of the conditions. These
two properties are given in the first two entries of a list of five properties,
labeled α through θ (there are no points ζ and η), of the basic rule (164) for
probabilities in quantum mechanics (von Neumann, 1927a, pp. 45–47).

Under point γ, von Neumann noted that projection operators F̂ (J) and Ê(I)
for “empty” (nichtssagende) assertions and conditions, i.e., those for which
the intervals J and I are (−∞,+∞), can be added to or removed from Eq.
(164) without affecting the result.

Under point δ, von Neumann, following Jordan, noted that the standard mul-
tiplication law of probabilities does not hold in quantum mechanics. Paren-
thetically, he added, “(what does hold is a weaker law corresponding to the
“superposition [Zusammensetzung] of probability amplitudes” in [the formal-
ism of] Jordan, which we will not go into here)” (von Neumann, 1927a, p.
46). Note that von Neumann did not use Jordan’s (1927b, p. 812) phrase
“interference of probabilities.” 128

Under point ε, von Neumann (1927a) wrote: “The addition rule of probabili-
ties is valid” (p. 46). In general, as Jordan (1927b, p. 18) made clear in Neue
Begründung I (see Eq. (1) in Section 1), the addition rule does not hold in
quantum mechanics. In general, in other words, Pr(A or B) 6= Pr(A) + Pr(B),
even if the outcomes A and B are mutually exclusive. Instead, Jordan pointed
out, the addition rule, like the multiplication rule, holds for the corresponding
probability amplitudes. Von Neumann, however, considered only a rather spe-
cial case, for which the addition rule does hold for the probability themselves.
Consider Eq. (156) for the conditional probability that we find a particle in
some region K given that its energy E has a value in some interval I. Let the
region K consist of two disjoint subregions, K ′ and K ′′, such that K = K ′∪K ′′
and K ′∩K ′′ = ∅. Given that the energy E lies in the interval I, the probability
that the particle is either in K ′ or in K ′′, is obviously equal to the probability
that it is in K. Von Neumann now noted that

Pr(x in K|E in I) = Pr(x in K ′|E in I) + Pr(x in K ′′|E in I). (165)

In terms of the trace formula (156), Eq. (165) becomes:

Tr(F̂ (K)Ê(I)) = Tr(F̂ (K ′)Ê(I)) + Tr(F̂ (K ′′)Ê(I)). (166)

128After reading Heisenberg’s criticism of this aspect of Jordan’s theory in the un-
certainty paper (Heisenberg, 1927b, pp. 183–184, p. 196; cf. note 38), von Neumann
changed his mind (von Neumann, 1927b, p. 246; cf. note 133).
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Similar instances of the addition rule obtain for the more general version of
the trace formula in Eq. (164).

Under point ϑ, finally, we find the one and only reference to “canonical trans-
formations” in Mathematische Begründung. Von Neumann (1927a, pp. 46–
47) defined a canonical transformation as the process of subjecting all opera-
tors Â to the transformation ÛÂÛ †, where Û is some unitary operator. The
absolute value squared [Â] is invariant under such transformations. Recall
[Â] = Tr(ÂÂ†) (see Eq. (160)). Now consider [ÛÂÛ †]:

[ÛÂÛ †] = Tr(ÛÂÛ †(ÛÂÛ †)†) = Tr(ÛÂÛ †ÛÂ†Û †) = Tr(ÂÂ†) = [Â]. (167)

Traces of products of operators are similarly invariant. This definition of
canonical transformations makes no reference in any way to sorting quantities
into sets of conjugate variables.

6 Von Neumann’s Wahrscheinlichkeitstheoretischer Aufbau (November
1927)

On November 11, 1927, about half a year after the first installment, Mathe-
matische Begründung (von Neumann, 1927a), the second and the third in-
stallments of von Neumann’s 1927 trilogy were presented to the Göttingen
Academy (von Neumann, 1927b,c). 129 The second, Wahrscheinlichkeitstheo-
retischer Aufbau, is important for our purposes; the third, Thermodynamik
quantenmechanischer Gesamtheiten, is not. 130 In Mathematische Begründung,
as we saw in Section 5, von Neumann had simply taken over the basic rule for
probabilities in quantum mechanics as stated by Jordan, namely that prob-
abilities are given by the absolute square of the corresponding probability
amplitudes, the prescription now known as the Born rule. In Wahrschein-
lichkeitstheoretischer Aufbau, he sought to derive this rule from more basic
considerations.

In the introduction of the paper, von Neumann (1927b, p. 245) replaced the
old opposition between “wave mechanics” and “matrix mechanics” by a new
distinction between “wave mechanics” on the one hand and what he called
“transformation theory” or “statistical theory,” on the other. By this time,

129These three papers take up 57, 28, and 19 pages. The first installment is thus
longer than the other two combined. Note that in between the first and the two
later installments, Neue Begründung II appeared (see Section 4), in which Jordan
(1927g) responded to von Neumann’s criticism in Mathematische Begründung. Von
Neumann made no comment on this response in these two later papers.
130For discussion of this third paper, see Mehra and Rechenberg (2000–2001, pp.
439–445). See pp. 431–436 for their discussion of the second paper.

91



matrix mechanics and Dirac’s q-number theory had morphed into the Dirac-
Jordan statistical transformation theory. The two names von Neumann used
for this theory reflect the difference in emphasis between Dirac (transformation
theory) and Jordan (statistical theory). 131 Von Neumann mentioned Born,
Pauli, and London as the ones who had paved the way for the statistical theory
and Dirac and Jordan as the ones responsible for bringing this development
to a conclusion (ibid., p. 245; cf. note 108). 132

Von Neumann was dissatisfied with the way in which probabilities were in-
troduced in the Dirac-Jordan theory. He listed two objections. First, he felt
that the relation between quantum probability concepts and ordinary proba-
bility theory needed to be clarified. Second, he felt that the Born rule was not
well-motivated:

The method hitherto used in statistical quantum mechanics was essentially
deductive: the square of the norm of certain expansion coefficients of the
wave function or of the wave function itself was fairly dogmatically set equal
to a probability, and agreement with experience was verified afterwards. A
systematic derivation of quantum mechanics from empirical facts or fun-
damental probability-theoretic assumptions, i.e., an inductive justification,
was not given. Moreover, the relation to the ordinary probability calculus
was not sufficiently clarified: the validity of its basic rules (addition and
multiplication law of the probability calculus) was not sufficiently stressed
(von Neumann, 1927b, p. 246; our emphasis). 133

131In Section 1.3, we already quoted his observation about the Schrödinger wave
function, 〈q|E〉 in our notation: “Dirac interprets it as a row of a certain transfor-
mation matrix, Jordan calls it a probability amplitude” (von Neumann, 1927b, p.
246, note 3).
132He cited the relevant work by Dirac (1927) and Jordan (1927b,g). He did not
give references for the other three authors but presumably was thinking of Born
(1926a,b,c), Pauli (1927a), and London (1926b). The reference to London is some-
what puzzling. While it is true that London anticipated important aspects of the
Dirac-Jordan transformation theory (see Lacki, 2004; Duncan and Janssen, 2009),
the statistical interpretation of the formalism is not among those. Our best guess
is that von Neumann took note of Jordan’s repeated acknowledgment of London’s
paper (most prominently perhaps in footnote 1 of Neue Begründung I). In his book,
von Neumann (1932, p. 2, note 2; the note itself is on p. 238) cited papers by Dirac
(1927), Jordan (1927b), and London (1926b) in addition to the book by Dirac
(1930) for the development of transformation theory. In that context, the reference
to London is entirely appropriate.
133The last sentence is in response to Heisenberg’s criticism in his uncertainty paper
(Heisenberg, 1927b, pp. 183–184; cf. note 38) of Jordan’s concept of “interference
of probabilities” defined in Neue Begründung I as “the circumstance that not the
probabilities themselves but their amplitudes obey the usual composition law of the
probability calculus” (Jordan, 1927b, p. 812). Earlier von Neumann had endorsed
this concept: Hilbert, von Neumann, and Nordheim (1928, p. 5; cf. note 93) and
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To address these concerns, von Neumann started by introducing probabilities
in terms of selecting members from a large ensemble of systems. 134 He then
presented his “inductive” derivation of his trace formula for probabilities (see
Eq. (156)), which contains the Born rule as a special case, from two very
general, deceptively innocuous, but certainly non-trivial assumptions about
expectation values of properties of the systems in such ensembles. From those
two assumptions, some key elements of the Hilbert space formalism introduced
in Mathematische Begründung, and two assumptions about the repeatability
of measurements not explicitly identified until the summary at the end of the
paper (ibid., p. 271), Von Neumann indeed managed to recover Eq. (156) for
probabilities. He downplayed his reliance on the formalism of Mathematische
Begründung by characterizing the assumptions taken from it as “not very far
going formal and material assumptions” (ibid., p. 246). He referred to sec. IX,
the summary of the paper, for these assumptions at this point, but most of
them are already stated, more explicitly in fact, in sec. II, “basic assumptions”
(ibid., pp. 249–252).

Consider an ensemble {S1,S2,S3, . . .} of copies of a system S. Von Neumann
wanted to find an expression for the expectation value E(a) in that ensemble of
some property a of the system (we use E to distinguish the expectation value
from the projection operator Ê). He made the following basic assumptions
about E (von Neumann, 1927b, pp. 249–250):

A. Linearity: E(α a+ β b+ γ c+ . . .) = α E(a) + β E(b) + γ E(c) + . . . (where α,
β, and γ are real numbers). 135

von Neumann (1927a, p. 46; cf. note 128).
134In his book, von Neumann (1932, p. 158, p. 255, note 156) referred to a book by
Richard von Mises (1928) for this notion of an ensemble (Gesamtheit or Kollektiv)
(Lacki, 2000, p. 308). Von Neumann may have picked up this notion from von Mises
in the period leading up to his Habilitation in mathematics in Berlin in December
1927. Von Mises was one of his examiners (Mehra and Rechenberg, 2000–2001, p.
402). As von Mises (1928) explained in its preface, his book elaborates on ideas he
had been presenting for “about fifteen years” in various talks, courses, and articles.
Von Mises defined a collective (Kollektiv) as an ensemble (Gesamtheit) whose mem-
bers are distinguished by some observable marker (beobachtbares merkmal). One of
his examples is a group of plants of the same species grown from a given collec-
tion of seeds, where the individual plants differ from one another in the color of
their flowers (ibid., pp. 12–13). In their discussion of von Neumann’s Wahrschein-
lichkeitstheoretischer Aufbau, Born and Jordan (1930, p. 306) also cited von Mises
(1928)
135Here von Neumann appended a footnote in which he looked at the example of a
harmonic oscillator in three dimensions. The same point can be made with a one-
dimensional harmonic oscillator with position and momentum operators q̂ and p̂,
Hamiltonian Ĥ, mass m, and characteristic angular frequency ω: “The three quan-
tities [p̂/2m,mω2q̂2/2, Ĥ = p̂/2m + mω2q̂2/2] have very different spectra: the first
two both have a continuous spectrum, the third has a discrete spectrum. Moreover,
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B. Positive-definiteness. If the quantity a never takes on negative values, then
E(a) ≥ 0.

To this he added two formal assumptions (ibid., p. 252):

C. Linearity of the assignment of operators to quantities. If the operators Ŝ,
T̂ , . . . represent the quantities a, b, . . . , then αŜ + βT̂ + . . . represents the
quantity α a+ β b+ . . . 136

D. If the operator Ŝ represents the quantity a, then f(Ŝ) represents the quan-
tity f(a).

In sec. IX, the summary of his paper, von Neumann once again listed the
assumptions that go into his derivation of the expression for E(a). He wrote:

The goal of the present paper was to show that quantum mechanics is not
only compatible with the usual probability calculus, but that, if it [i.e.,
ordinary probability theory]—along with a few plausible factual [sachlich]
assumptions—is taken as given, it [i.e., quantum mechanics] is actually the
only possible solution. The assumptions made were the following:

1. Every measurement changes the measured object, and two measurements
therefore always disturb each other—except when they can be replaced
by a single measurement.

2. However, the change caused by a measurement is such that the measure-
ment itself retains its validity, i.e., if one repeats it immediately after-
wards, one finds the same result.

In addition, a formal assumption:

3. Physical quantities are to be described by functional operators in a man-
ner subject to a few simple formal rules.

These principles already inevitably entail quantum mechanics and its statis-
tics (von Neumann, 1927b, p. 271).

Assumptions A and B of sec. II are not on this new list in sec. IX. Presum-
ably, this is because they are part of ordinary probability theory. Conversely,
assumptions 1 and 2 of sec. IX are not among the assumptions A–D of sec. II.
These two properties of measurements, as we will see below, are guaranteed
in von Neumann’s formalism by the idempotency of the projection operators
associated with those measurements. 137 Finally, the “simple formal rules”

no two of them can be measured simultaneously. Nevertheless, the sum of the ex-
pectation values of the first two equals the expectation value of the third” (ibid., p.
249). While it may be reasonable to impose condition (A) on directly measurable
quantities, it is questionable whether this is also reasonable for hidden variables (see
note 140).
136In von Neumann’s own notation, the operator Ŝ and the matrix S representing
that operator are both written simply as S.
137Assumption 2 is first introduced in footnote 30 on p. 262 of von Neumann’s
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referred to in assumption 3 are spelled out in assumptions C–D.

We go over the main steps of von Neumann’s derivation of his trace formula
from these assumptions. Instead of the general Hilbert space H̄, von Neumann
considered H0, i.e., l2 (von Neumann, 1927b, p. 253; cf. von Neumann, 1927a,
pp. 14–15 [see Section 5]). Consider some infinite-dimensional Hermitian ma-
trix S, with matrix elements sµν = s∗νµ, representing an Hermitian operator Ŝ.
This operator, in turn, represents some measurable quantity a. The matrix S
can be written as a linear combination of three types of infinite-dimensional
matrices labeled A, B, and C. To show what these matrices look like, we write
down their finite-dimensional counterparts:

Aµ ≡



0 · · · · · · · · · 0
... 1

...
...

. . .
...

... 0
...

0 · · · · · · · · · 0


, Bµν ≡



0 · · · · · · · · · 0
... 0 1

...
...

. . .
...

... 1 0
...

0 · · · · · · · · · 0


, Cµν ≡



0 · · · · · · · · · 0
... 0 i

...
...

. . .
...

... −i 0
...

0 · · · · · · · · · 0


.

The Aµ’s have 1 in the µth row and the µth column and 0’s everywhere else.
The Bµν ’s (µ < ν) have 1 in the µth row and the νth column and in the νth

row and the µth column and 0’s everywhere else. The Cµν ’s (µ < ν) have i in
the µth row and the νth column and −i in the νth row and the µth column and
0’s everywhere else.

The Aµ’s have eigenvectors (eigenvalue 1) with 1 in the µth row and 0’s ev-
erywhere else; and infinitely many eigenvectors with eigenvalue 0. The Bµν ’s
have eigenvectors (eigenvalue 1) with 1’s in the µth and the νth row and 0’s
everywhere else; eigenvectors (eigenvalue −1) with 1 in the µth row, −1 in
the νth row, and 0’s everywhere else; and infinitely many eigenvectors with
eigenvalue 0. The Cµν ’s have eigenvectors (eigenvalue 1) with i− 1 in the µth

(1927b) paper: “Although a measurement is fundamentally an intervention (Ein-
griff), i.e., it changes the system under investigation (this is what the “acausal”
character of quantum mechanics is based on, cf. [Heisenberg, 1927b, on the un-
certainty principle]), it can be assumed that the change occurs for the sake of the
experiment, i.e., that as soon as the experiment has been carried out the system is in
a state in which the same measurement can be carried out without further change
to the system. Or: that if the same measurement is performed twice (and noth-
ing happens in between), the result is the same.” Von Neumann (1927c) reiterated
assumptions 1 and 2 in the introduction of Thermodynamik quantenmechanischer
Gesamtheiten and commented (once again citing Heisenberg’s uncertainty paper):
“1. corresponds to the explanation given by Heisenberg for the a-causal behavior of
quantum physics; 2. expresses that the theory nonetheless gives the appearance of
a kind of causality” (p. 273, note 2).
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row, i+1 in the νth row, and 0’s everywhere else; eigenvectors (eigenvalue −1)
with −1− i in the µth row, 1− i in the νth row, and 0’s everywhere else; and
infinitely many eigenvectors with eigenvalue 0.

For the counterpart of Bµν in a simple finite case (with µ, ν = 1, 2, 3), we have:
0 0 1

0 0 0

1 0 0




1

0

1

 =


1

0

1

 ,


0 0 1

0 0 0

1 0 0




1

0

−1

 = −


1

0

−1

 .

For the counterpart of Cµν we similarly have:
0 0 i

0 0 0

−i 0 0




i− 1

0

i+ 1

 =


i− 1

0

i+ 1

 ,


0 0 i

0 0 0

−i 0 0




−1− i

0

1− i

 = −


−1− i

0

1− i

 .

The matrix S can be written as a linear combination of A, B, and C:

S =
∑
µ

sµµ · Aµ +
∑
µ<ν

Re sµν ·Bµν +
∑
µ<ν

Im sµν · Cµν , (168)

where Re sµν and Im sµν and the real and imaginary parts of sµν , respectively.

Using von Neumann’s linearity assumption (A), we can write the expectation
value of S in the ensemble {S1,S2,S3, . . .} as:

E(S) =
∑
µ

sµµ · E(Aµ) +
∑
µ<ν

Re sµν · E(Bµν) +
∑
µ<ν

Im sµν · E(Cµν). (169)

Since the eigenvalues of Aµ, Bµν , and Cµν are all real, the expectation values
E(Aµ), E(Bµν), and E(Cµν) are also real. Now define the matrix U (asso-

ciated with some operator Û) with diagonal components uµµ ≡ E(Aµ) and
off-diagonal components (µ < ν):

uµν ≡
1

2
(E(Bµν) + i E(Cµν)) , uνµ ≡

1

2
(E(Bµν)− i E(Cµν)) . (170)

Note that this matrix is Hermitian: u∗µν = uνµ. With the help of this matrix U ,
the expectation value of S can be written as (von Neumann, 1927b, p. 253):

E(S) =
∑
µν

sµν uνµ. (171)

To verify this, we consider the sums over µ = ν and µ 6= ν separately. For the
former we find ∑

µ

sµµ uµµ =
∑
µ

sµµ · E(Aµ). (172)
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For the latter, we have∑
µ6=ν

sµν uνµ =
∑
µ<ν

sµν uνµ +
∑
µ>ν

sµν uνµ. (173)

The second term can be written as
∑
ν>µ sνµ uµν =

∑
µ<ν s

∗
µν u

∗
νµ, which means

that ∑
µ 6=ν

sµν uνµ =
∑
µ<ν

2 Re (sµν uνµ). (174)

Now write sµν as the sum of its real and imaginary parts and use Eq. (170)
for uνµ:

∑
µ 6=ν

sµν uνµ =
∑
µ<ν

Re {(Re sµν + i Im sµν) · (E(Bµν)− iE(Cµν))}

=
∑
µ<ν

Re sµν · E(Bµν) +
∑
µ<ν

Im sµν · E(Cµν). (175)

Adding Eq. (172) and Eq. (175), we arrive at∑
µν

sµν uνµ =
∑
µ

sµµ · E(Aµ) +
∑
µ<ν

Re sµν · E(Bµν) +
∑
µ<ν

Im sµν · E(Cµν). (176)

Eq. (169) tells us that the right-hand side of this equation is just E(S). This
concludes the proof of Eq. (171), in which one readily recognizes the trace of
the product of S and U : 138

E(S) =
∑
µν

sµν uνµ =
∑
µ

(SU)µµ = Tr(US). (177)

In other words, U is what is now called a density matrix, usually denoted by
the Greek letter ρ. It corresponds to a density operator Û or ρ̂.

The matrix U characterizes the ensemble {S1,S2,S3, . . .}. Von Neumann
(1927b, sec. IV, p. 255) now focused on “pure” (rein) or “uniform” (ein-
heitlich) ensembles, in which every copy Si of the system is in the exact same
state. Von Neumann characterized such ensembles as follows: one cannot ob-
tain a uniform ensemble “by mixing (vermischen) two ensembles unless it
is the case that both of these correspond to that same ensemble” (ibid., p.
256). Let the density operators Û , Û∗, and Û∗∗ correspond to the ensembles
{Si}, {S∗j}, {S∗∗k }, respectively. Suppose {Si} consists of η× 100% {S∗j} and

138Von Neumann (1927b, p. 255) only wrote down the first step of Eq. (177). It
was only in the third installment of his trilogy, that von Neumann (1927c, p. 274)
finally introduced the notation trace (Spur), which we used here and in Eq. (156)
in Section 5. For another discussion of the derivation of the key formula (177), see
Mehra and Rechenberg (2000–2001, pp. 433–434).
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ϑ× 100% {S∗∗k }. The expectation value of an arbitrary property represented
by the operator Ŝ in {Si} is then given by (ibid.):

E(Ŝ) = η E∗(Ŝ) + ϑ E∗∗(Ŝ), (178)

where E∗ and E∗∗ refer to ensemble averages over {S∗j} and {S∗∗k }, respectively.
Using Eq. (177), we can write this as:

Tr(Û Ŝ) = ηTr(Û∗Ŝ) + ϑTr(Û∗∗Ŝ). (179)

Since Ŝ is arbitrary, it follows that Û , Û∗, and Û∗∗ satisfy (ibid.):

Û = η Û∗ + ϑ Û∗∗. (180)

Von Neumann now proved a theorem pertaining to uniform ensembles (ibid.,
pp. 257–258). That Û is the density operator for a uniform ensemble can
be expressed by the following conditional statement: If (Û = Û∗ + Û∗∗) then
(Û∗ ∝ Û∗∗ ∝ Û). Von Neumann showed that this is equivalent to the statement
that there is a unit vector |ϕ〉 such that Û is the projection operator onto that
vector, i.e., Û = P̂ϕ = |ϕ〉〈ϕ|. 139 Written more compactly, the theorem says:

{ (Û = Û∗ + Û∗∗)⇒ (Û∗ ∝ Û∗∗ ∝ Û) } ⇔ {∃ |ϕ〉, Û = P̂ϕ = |ϕ〉〈ϕ| }. (181)

The crucial input for the proof of the theorem is the inner-product structure
of Hilbert space. The theorem implies two important results, which, given the
generality of the assumptions going into its proof, have the unmistakable flavor
of a free lunch. First, pure dispersion-free states (or ensembles) correspond to
unit vectors in Hilbert space. 140 Second, the expectation value of a quantity
a represented by the operator Ŝ in a uniform ensemble {Si} characterized by
the density operator Û = |ϕ〉〈ϕ| is given by the trace of the product of the
corresponding matrices:

E(Ŝ) = Tr(Û Ŝ) = Tr(|ϕ〉〈ϕ|Ŝ) = 〈ϕ|Ŝ|ϕ〉, (182)

which is equivalent to the Born rule.

139The notation P̂ϕ (except for the hat) is von Neumann’s own (ibid., p. 257).
140This is the essence of von Neumann’s later no-hidden variables proof (von Neu-
mann, 1932, Ch. 4, p. 171), which was criticized by John Bell (1966, pp. 1–5), who
questioned the linearity assumption (A), E(α a+β b) = α E(a)+β E(b) (see note 135).
Bell argued, with the aid of explicit examples, that the linearity of expectation val-
ues was too strong a requirement to impose on hypothetical dispersion-free states
(dispersion-free via specification of additional “hidden” variables). In particular, the
dependence of spin expectation values on the (single) hidden variable in the explicit
example provided by Bell is manifestly nonlinear, although the model reproduces
exactly the standard quantum-mechanical results when one averages (uniformly)
over the hidden variable. For recent discussion, see Bacciagaluppi and Crull (2009)
and Bub (2010).
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Von Neumann was still not satisfied. In sec. V, “Measurements and states,”
he noted that

our knowledge of a system S′, i.e., of the structure of a statistical ensemble
{S′1,S′2, . . .}, is never described by the specification of a state—or even
by the corresponding ϕ [i.e., the vector |ϕ〉]; but usually by the result of
measurements performed on the system (von Neumann, 1927b, p. 260).

He considered the simultaneous measurement of a complete set of commuting
operators and constructed a density operator for (the ensemble represent-
ing) the system on the basis of outcomes of these measurements showing the
measured quantities to have values in certain intervals. He showed that these
measurements can fully determine the state and that the density operator in
that case is the projection operator onto that state.

Let {Ŝµ} (µ = 1, . . . ,m) be a complete set of commuting operators with
common eigenvectors, {|σn〉}, with eigenvalues λµ(n):

Ŝµ |σn〉 = λµ(n) |σn〉. (183)

Now construct an operator Ŝ with those same eigenvectors and completely
non-degenerate eigenvalues λn:

Ŝ|σn〉 = λn|σn〉, (184)

with λn 6= λn′ if n 6= n′. Define the functions fµ(λn) = λµ(n). Consider the

action of fµ(Ŝ) on |σn〉:

fµ(Ŝ) |σn〉 = fµ(λn) |σn〉 = λµ(n) |σn〉 = Ŝµ |σn〉. (185)

Hence, Ŝµ = fµ(Ŝ). It follows from Eq. (185) that a measurement of Ŝ uniquely
determines the state of the system. As von Neumann (1927b) put it: “In this
way measurements have been identified that uniquely determine the state of
[the system represented by the ensemble] S′” (p. 264).

As a concrete example, consider the bound states of a hydrogen atom. These
states are uniquely determined by the values of four quantum numbers: the
principal quantum number n, the orbital quantum number l, the magnetic
quantum number ml, and the spin quantum number ms. These four quan-
tum numbers specify the eigenvalues of four operators, which we may make
dimensionless by suitable choices of units: the Hamiltonian in Rydberg units
(Ĥ/Ry), the angular momentum squared (L̂2/~2), the z-component of the
angular momentum (L̂z/~), and the z-component of the spin (σ̂z/~). In this
case, in other words,

{Ŝµ}4
µ=1 = (Ĥ/Ry, L̂2/~2, L̂z/~, σ̂z/~). (186)
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The task now is to construct an operator Ŝ that is a function of the Ŝµ’s
(which have rational numbers as eigenvalues) and that has a completely non-
degenerate spectrum. One measurement of Ŝ then uniquely determines the
(bound) state of the hydrogen atom. For example, choose α, β, γ, and δ to be
four real numbers, incommensurable over the rationals (i.e., no linear combi-
nation of α, β, γ, δ with rational coefficients vanishes), and define

Ŝ = αŜ1 + βŜ2 + γŜ3 + δŜ4. (187)

One sees immediately that the specification of the eigenvalue of Ŝ suffices to
uniquely identify the eigenvalues of Ĥ, L̂2, L̂z and σ̂z.

Von Neumann thus arrived at the typical statement of a problem in modern
quantum mechanics. There is no need anymore for q̂’s and p̂’s, where the p̂’s do
not commute with the q̂’s. Instead one identifies a complete set of commuting
operators. Since all members of the set commute with one another, they can
all be viewed as q̂’s. The canonically conjugate p̂’s do not make an appearance.

To conclude this section, we want to draw attention to one more passage
in Wahrscheinlichkeitstheoretischer Aufbau. Both Jordan and von Neumann
considered conditional probabilities of the form

Pr(â has the value a | b̂ has the value b),

or, more generally,

Pr(â has a value in interval I | b̂ has a value in interval J).

To test the quantum-mechanical predictions for these probabilities one needs
to prepare a system in a pure state in which b̂ has the value b or in a mixed
state in which b̂ has a value in the interval I, and then measure â. What
happens after that measurement? Elaborating on Heisenberg’s (1927b) ideas
in the uncertainty paper (cf. note 137), von Neumann addressed this question
in the concluding section of Wahrscheinlichkeitstheoretischer Aufbau:

A system left to itself (not disturbed by any measurements) has a com-
pletely causal time evolution [governed by the Schrödinger equation]. In
the confrontation with experiments, however, the statistical character is
unavoidable: for every experiment there is a state adapted [angepaßt] to
it in which the result is uniquely determined (the experiment in fact pro-
duces such states if they were not there before); however, for every state
there are “non-adapted” measurements, the execution of which demolishes
[zertrümmert] that state and produces adapted states according to stochas-
tic laws (von Neumann, 1927b, pp. 271–272).

As far as we know, this is the first time the infamous collapse of the state
vector in quantum mechanics was mentioned in print.
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7 Conclusion: Never mind your p’s and q’s

The postulates of Jordan’s Neue Begründung papers amount to a concise for-
mulation of the fundamental tenets of the probabilistic interpretation of quan-
tum mechanics. Building on insights of Born and Pauli, Jordan (1927b) was
the first to state in full generality that probabilities in quantum mechanics are
given by the absolute square of what he called probability amplitudes. He was
also the first to recognize in full generality the peculiar rules for combining
probability amplitudes. 141 However, after laying down these rules in a set of
postulates, he did not fully succeed in constructing a satisfactory formalism
realizing those postulates.

As we argued in this paper, Jordan was lacking the requisite mathematical
tools to do so, namely abstract Hilbert space and the spectral theorem for
operators acting in Hilbert space. Instead, Jordan drew on the canonical for-
malism of classical mechanics. Jordan was steeped in this formalism, which
had played a central role in the transition from the old quantum theory to
matrix mechanics (Duncan and Janssen, 2007) as well as in the further devel-
opment of the new theory, to which Jordan had made a number of significant
contributions (Duncan and Janssen, 2008, 2009). Most importantly in view of
the project Jordan pursued in Neue Begründung, he had published two papers
the year before (Jordan, 1926a,b), in which he had investigated the implemen-
tation of canonical transformations in matrix mechanics (Lacki, 2004; Duncan
and Janssen, 2009). As he put it in his AHQP interview (see Section 2.2 for the
full quotation), canonically conjugate variables and canonical transformations
had thus been his “daily bread” in the years leading up to Neue Begründung.

Unfortunately, as we saw in Sections 2 and 4, this formalism—the p’s and
q’s of the title of our paper—proved ill-suited to the task at hand. As a re-
sult, Jordan ran into a number of serious problems. First, it turns out to be
crucially important for the probability interpretation of the formalism that
only Hermitian operators be allowed. Unfortunately, canonical transforma-
tions can turn p̂’s and q̂’s corresponding to Hermitian operators into new P̂ ’s
and Q̂’s corresponding to non-Hermitian ones. Initially, Jordan hoped to make
room in his formalism for quantities corresponding to non-Hermitian operators
by introducing the so-called Ergänzungsamplitude (see Section 2.4). Eventu-
ally, following the lead of Hilbert, von Neumann, and Nordheim (1928), he
dropped the Ergänzungsamplitude, which forced him to restrict the class of
allowed canonical transformations (rather arbitrarily from the point of view
of classical mechanics) to those preserving Hermiticity. The difficulties facing
Jordan’s approach became particularly severe when, in Neue Begründung II,

141In his uncertainty paper, however, Heisenberg (1927b, pp. 183–184, p. 196) criti-
cized Jordan’s notion of the “interference of probabilities” (see note 38).
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Jordan (1927g) tried to extend his formalism, originally formulated only for
quantities with purely continuous spectra, to quantities with wholly or partly
discrete spectra. One problem with this extension was that, whereas canonical
transformations do not necessarily preserve Hermiticity, they do preserve the
spectra of the p̂’s and q̂’s to which they are applied. Hence, there is no canon-
ical transformation that connects the generalized coordinate q̂, which has a
continuous spectrum, to, for instance, the Hamiltonian Ĥ, which, in general,
will have at least a partly discrete spectrum. As Jordan’s construction of a
realization of his postulates hinged on the existence of a canonical transfor-
mation connecting q̂ and Ĥ, this presented an insurmountable obstacle. The
newly introduced spin variables further exposed the limitations of Jordan’s
canonical formalism. To subsume these variables under his general approach,
Jordan had to weaken his definition of canonically conjugate quantities to such
an extent that the concept lost much of its meaning. Under Jordan’s definition
in Neue Begründung II, any two of the three components σ̂x, σ̂y, and σ̂z of
spin angular momentum are canonically conjugate to each other.

All these problems can be avoided if the canonical formalism of classical me-
chanics is replaced by the Hilbert space formalism, even though other math-
ematical challenges remain. When Jordan’s probability amplitudes ϕ(a, b) for
the quantities â and b̂ are equated with ‘inner products’ 〈a|b〉 of normalized
‘eigenvectors’ of the corresponding operators â and b̂, the rules for such am-
plitudes, as laid down in the postulates of Jordan’s Neue Begründung, are
automatically satisfied. Probabilities are given by the absolute square of these
inner products, and Jordan’s addition and multiplication rules for probability
amplitudes essentially reduce to the familiar completeness and orthogonality
relations in Hilbert space (see Section 2.1, Eq. (3)). Once the Hilbert space
formalism is adopted, the need to sort quantities into p̂’s and q̂’s disappears.
Canonical transformations, at least in the classical sense as understood by
Jordan, similarly cease to be important. Instead of canonical transformations
(p̂, q̂)→ (T p̂T−1, T q̂T−1) of pairs of canonically conjugate quantities, one now
considers unitary transformations Â → UÂU−1 of individual Hermitian op-
erators. Such transformations get us from one orthonormal basis of Hilbert
space to another, preserving inner products as required by the probability
interpretation of quantum theory.

The Hilbert space formalism was introduced by von Neumann (1927a) in
Mathematische Begründung. However, von Neumann did not use this formal-
ism to provide a realization of Jordan’s postulates along the lines sketched in
the preceding paragraph. As we saw in Section 5, Von Neumann had some
fundamental objections to the approach of Jordan (and Dirac). The basic
probability amplitude for p̂ and q̂ in Jordan’s formalism, 〈p|q〉 = e−ipq/~ (see
Eq. (4)), is not a square-integrable function and is thus not an element of the
space L2 instantiating abstract Hilbert space. The delta function, unavoidable
in the Dirac-Jordan formalism, is no function at all. Moreover, von Neumann
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objected to the phase-ambiguity of the probability amplitudes.

Jordan’s response to this last objection illustrates the extent to which he was
still trapped in thinking solely in terms of p’s and q’s. In Neue Begründung II,
he eliminated the phase-ambiguity of the probability amplitude for any two
quantities by adding two indices indicating a specific choice of the quantities
canonically conjugate to those two quantities (see Section 4, Eqs. (133)–(139)).
Von Neumann’s response to this same problem was very different and under-
scores that he was not wedded at all to the canonical formalism of classical
mechanics. Von Neumann decided to avoid probability amplitudes altogether.
Instead he turned to projection operators in Hilbert space, which he used
both to formulate the spectral theorem and to construct a new formula for
conditional probabilities in quantum mechanics (see Eq. (156) and Eq. (164)).

Although von Neumann took Jordan’s formula for conditional probabilities
as his starting point and rewrote it in terms of projection operators, his final
formula is more general than Jordan’s in that it pertains both to pure and
to mixed states. However, it was not until the next installment of his 1927
trilogy, Wahrscheinlichkeitstheoretischer Aufbau, that von Neumann (1927b)
carefully defined the difference between pure and mixed states. In this paper,
von Neumann freed his approach from reliance on Jordan’s even further (see
Section 6). He now derived his formula for conditional probabilities in terms
of the trace of products of projection operators from the Hilbert space formal-
ism, using a few seemingly innocuous assumptions about expectation values
of observables of systems in an ensemble of copies of those systems charac-
terized by a density operator. He then showed that the density operator for a
uniform ensemble is just the projection operator onto the corresponding pure
dispersion-free state. Such pure states can be characterized completely by the
eigenvalues of a complete set of commuting operators. This led von Neumann
to a new way of formulating a typical problem in quantum mechanics. Rather
than identifying p̂’s and q̂’s for the system under consideration, he realized
that it suffices to specify the values of a maximal set of commuting operators
for the system. All operators in such sets can be thought of as q̂’s. There is
no need to find the p̂’s canonically conjugate to these q̂’s.

Coda: Return of the p’s and q’s in Quantum Field Theory

In this paper, we emphasized the difficulties engendered by Jordan’s insis-
tence on the primacy of canonical (p̂, q̂) variables in expressing the dynam-
ics of general quantum-mechanical systems (see especially Section 4 on Neue
Begründung II). These difficulties became particularly acute in the case of sys-
tems with observables with purely or partially discrete spectra, of which the
most extreme case is perhaps the treatment of electron spin (see Eqs. (119)–
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(121)). Here, the arbitrary choice of two out of the three spin components
to serve as a non-commuting canonically conjugate pair clearly reveals the
artificiality of this program.

In a sense, however, Jordan was perfectly right to insist on the importance of
a canonical approach, even for particles with spin. In hindsight, his error was
simply to attempt to impose this structure at the level of non-relativistic
quantum theory, where electron spin appears as an essentially mysterious
internal attribute that must be grafted onto the nonrelativistic kinematics
(which does have a perfectly sensible canonical interpretation). Once electron
spin was shown to emerge naturally at the relativistic level, and all aspects of
the electron’s dynamics were subsumed in the behavior of a local relativistic
field, canonical ‘p & q’ thinking could be reinstated in a perfectly natural way.
This was first done explicitly by Heisenberg and Pauli (1929) in their semi-
nal paper on Lagrangian field theory. In modern notation, they introduced a
relativistically invariant action for a spin-1

2
field, as a spacetime integral of a

Lagrangian:

S =
∫
L d4x =

∫
ψ(x)(iγµ∂µ −m)ψ(x)d4x. (188)

Here the field ψ(x) is a four-component field, with the γµ (µ = 0, 1, 2, 3) the
4 × 4 Dirac matrices. A conjugate momentum field πψ(x) ≡ ∂L/∂ψ̇ is then
defined in the standard fashion, with canonical equal-time anti-commutation
relations imposed—as indicated by earlier work by Jordan (1927h) and Jordan
and Wigner (1928)—in order to insert the desired fermionic statistics of the
particles described by the field,

{πψm(~x, t), ψn(~y, t)} = i~δmnδ3(~x− ~y). (189)

The transition from a Lagrangian to a Hamiltonian (density) is then carried
out in the usual way

H = πψψ̇ − L = ψ̄(i~γ · ~∇+m)ψ(x). (190)

The spatial integral of this Hamiltonian energy density would within a few
years be shown to describe exactly the free Hamiltonian for arbitrary multi-
particle states of non-interacting electrons and positrons, degenerate in mass
and each displaying the usual panoply of spin-1

2
behavior which had finally

been deciphered, in the non-relativistic context, by the atomic spectroscopy
of the mid to late 1920s. The essential point is that the relevant p’s and
q’s appearing in the theory are not associated with the first-quantized wave-
functions or state vectors appropriate for a non-relativistic treatment, but
rather with the fields that must replace them once a fully relativistic theory
takes center stage.
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London, Fritz (1926a). Über die Jacobischen Transformationen der Quanten-
mechanik. Zeitschrift für Physik 37: 915–925.

London, Fritz (1926b). Winkelvariable und kanonische Transformationen in
der Undulationsmechanik. Zeitschrift für Physik 40: 193–210.

Mehra, Jagdish, and Rechenberg, Helmut (1987). The historical development
of quantum theory. Vol. 5. Erwin Schrödinger and the rise of wave mechan-
ics. 2 Pts. New York, Berlin: Springer.

Mehra, Jagdish, and Rechenberg, Helmut (2000–2001). The historical devel-
opment of quantum theory. Vol. 6. The completion of quantum mechanics
1926–1941. 2 Pts. New York, Berlin: Springer.
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