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Abstract

The “gauge argument” is often used to ‘deduce’ interactions from a symmetry
requirement. A transition—whose justification can take some effort—from global
to local transformations is typically made at the beginning of the argument. But
one can spare the trouble by starting with local transformations, as global ones do
not exist in general. The resulting economy seems noteworthy.

1 The gauge argument
One begins with a free field, of Dirac four-spinors ψ ∈ C4 for instance. The Dirac
Lagrangian L = ψ̄(i/∂ −m)ψ is invariant under the global transformation

(1) ψ 7→ eiκψ

(whose existence is assumed for the time being), where “global” means that κ is a con-
stant. It is then argued1 that L should also be invariant under the local transformation

(2) ψ 7→ ψζ = eiζψ,

where ζ : M → R is a smooth function on the base manifold M .

Most immediately what are we to make of the initial, central demand of
local gauge invariance? The demand is anything but self-evident and pre-
sumably, in the context of the gauge argument, must be argued for on some

1Göckeler & Schücker (1987) p. 48: “In physical terms we may interpret the requirement of local gauge
invariance (independence of the fields at different spacetime points) as expressing the absence of (instanta-
neous) action at a distance.” Ryder (1996) p. 93: “So when we perform a rotation in the internal space of
ϕ at one point, through an angle Λ, we must perform the same rotation at all other points at the same time.
If we take this physical interpretation seriously, we see that it is impossible to fulfil, since it contradicts the
letter and spirit of relativity, according to which there must be a minimum time delay equal to the time of
light travel. To get round this problem we simply abandon the requirement that Λ is a constant, and write it
as an arbitrary function of space-time, Λ(xµ). This is called a ‘local’ gauge transformation, since it clearly
differs from point to point.” Teller (2000) p. S469: “why should we expect invariance under a local phase
transformation to begin with? The plausibility of such invariance probably arises with a misleading analogy
with global phase transformations which can be imposed on individual state functions with no change of
description.” See also Sakurai (1967, p. 16), Aitchison & Hey (1982, p. 176), Mandl & Shaw (1984, p. 263),
Ramond (1990, pp. 183-91), O’Raifeartaigh (1997, p. 118). One is reminded of Weyl’s rejection (1929a,
p. 331; 1929b, p. 286) of distant parallelism.
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basis. Unlike the global invariance, the demand for the corresponding lo-
cal invariance does not have an immediate physical counterpart. Is it to
be taken as a direct implementation of some sort of unassailable first prin-
ciple? If so, is the demand (or principle) something with which we are
already familiar only in a different form?

A common justification for the demand of local gauge invariance in
presenting the gauge argument is to present it as some sort of “locality”
requirement. In outline, the “gauge locality argument” is that global gauge
invariance is somehow at odds with the idea of a local field theory, and
that to remedy this we must instead require local gauge invariance. This
rather brief argument is just how Yang and Mills motivated the demand
in their seminal 1954 paper,2 very much setting the tone for subsequent
treatments. Just what to make of this argument is not clear, however, there
are many interrelated senses of locality that might be at issue. (Martin,
2002, p. S225)

One gathers at any rate that considerable and varied efforts have been devoted to the
transition from (1) to (2).

As things stand the Lagrangian is not invariant, because of the derivative in the first
term of Lζ = iψ̄ζ /∂ψζ −mψ̄ψ. Writing

ψ̄ζ /∂ψζ = ψ̄e−iζγµ∂µe
iζψ = ψ̄γµ(∂µ + i∂µζ)ψ

we see that Lζ = ψ̄[iγµ(∂µ + i∂µζ) −m]ψ has the derivative ∂µ + i∂µζ instead of
∂µ. To offset (2) we therefore have to subtract the term i∂µζ that alters L , yielding
the covariant differential D = d − idζ with components Dµ = ∂µ − i∂µζ. Writing
/D = γµDµ, the balanced Lagrangian L ′ = ψ̄ζ(i /D − m)ψζ will be equal to L for
all ζ. Another way of seeing that differentiation has to be balanced by dζ to offset (2):
The momentum operator P becomes −id in the position representation; applied to ψζ
it gives −idψζ = eiζ(−id + dζ)ψζ , in other words UPU†Uψ = Pζψζ , the position
representation of the rotated momentum operator Pζ being −id+ dζ.3

It is then argued that an interaction F = dA = d2ζ is thereby deduced,4 whose
potential A is dζ. But since d2 vanishes the interaction does too, as has often been

2Yang & Mills (1954) p. 192: “It seems that this [(1) but with SU(2) instead of U(1)] is not consistent
with the localized field concept that underlies the usual physical theories.”

3My analysis owes much to Lyre (2001, 2002, 2004a,b). But

〈ϕ|P |ϕ〉 = 〈ϕU |UPU†|Uϕ〉 6= 〈ϕU |P |Uϕ〉

seems relevant to his claim (2004b, pp. 649-51) that local phase transformations are not observable. I would
say they are—unless one compensates to restore invariance. P. 651 he writes that: “local phase transforma-
tions are already unmasked as not observable. From this insight, however, the whole logic of the received
view breaks down. Since the introduction of an interaction field as intended by the received view seemingly
changes physics (those fields are even directly observable themselves), it is necesary from this view to con-
sider local gauge transformations as changing physics as well in order to tell the story about compensation.
Since, however, local gauge transformations can be shown as not observable, the received view proves it-
self untenable.” It is untenable because the added term dζ is exact. But even if dζ is electromagnetically
unobservable, it is quantum-mechanically observable: 〈ϕ|P |ϕ〉 6= 〈ϕ|Pζ |ϕ〉.

4Ryder (1996) p. 95: “the electromagnetic field arises naturally by demanding invariance of the action
[ . . . ] under local (x-dependent) rotations [ . . . ].”
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pointed out.5

The gauge argument is fertile enough to produce another two Lagrangians,6

LA = j ∧A = jµAµ = ψ̄γµAµψ and LF = F ∧ ∗F = −1

4
FµνF

µν ,

where the current density three-form

j =
1

3!
εµνστ j

µdxν ∧ dxσ ∧ dxτ

corresponds to the vector with components jµ = ψ̄γµψ. One can either leave A = dζ
in L ′ to offset (2), or balance Lζ with LA in the sum L ′ = Lζ + LA. Again,
a Lagrangian LF derived from the gauge argument will vanish. But once the gauge
argument has produced the exact potential A = dζ and vanishing interaction F =
dA = d2ζ one can perhaps claim that A is no longer exact.7 The exact term dζ would
then be subtracted from one that isn’t8 in the gauge transformation

(3) A 7→ A′ = A− dζ.

The total Lagrangian L ′ + LF is indifferent to (2) and (3).

2 Global and local gauge transformations
Let us return to the global transformation (1), which adds the same angle κ everywhere
on M . To do so one has to know where to start, there has to be an identity 1 = ei0 ∈
U(1) everywhere, a global identity I , of the gauge group G . The structure group
G = U(1) is there to act on the typical fiber, which here is C4; at a point x ∈ M ,
the identity 1 is the element that leaves any ψx ∈ C4

x unaltered; the global identity
I ∈ G would leave a global section unaltered. But to leave a global section unaltered
there has to be one in the first place. Since global sections do not exist in general,9 the
global gauge transformation (1) doesn’t either, so the gauge argument can start with
(2): “for the Lagrangian to remain invariant, the transformation (2) has to be balanced

5Auyang (1995, p. 58), Brown (1999, pp. 50-3), Teller (2000, pp. S468-9), Lyre (2001, 2002, 2004a,b),
Healey (2001, p. 438), Martin (2002, p. S229), Martin (2003, p. 45), Catren (2008, pp. 512, 520). But
the general structure of the covariant derivative is about right; Lyre (2002, p. 84): “Denn wenngleich das
Eichprinzip [ . . . ] nicht zwingend auf nichtflache Konnektionen führt, so ist ja doch die in der kovarianten
Ableitung vorgegebene Struktur des Wechselwirkungterms auch für den empirisch bedeutsamen Fall nicht-
verschwindender Feldstärken korrekt beschrieben. Diese Wechselwirkungsstruktur is also tatsächlich aus der
lokalen Eichsymmetrie-Forderung hergeleitet.”

6Cf. Weyl (1929b, p. 283).
7Weyl (ibid., p. 283) simply provides the inexact electromagnetic potential ϕ. He does not use an argu-

ment to produce an exact potential, which then becomes inexact. What he does on p. 291 (and on p. 348 of
1929a) is less clear; I would say that his argument only really justifies the exact term dλ, and that he adds
the electromagnetic potential ϕ (f in 1929a) by hand.

8One can wonder what the gauge argument is for if the inexact potential A was already there to begin
with. The exact term subtracted in (3) has more to do with the invariance of F = dA = dA′ than with the
gauge argument.

9See Göckeler & Schücker (1987, §9.7) for instance. The matter is of course topological—a simply-
connected base manifold M admits global sections.
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by the exact term dζ yielding the vanishing interaction d2ζ” and so on. The argument
remains contrived and unconvincing,10 but at least the exertions needed to reach (2)
from (1) are spared. The local transformation (2) may (or may not) require justification
in itself, regardless of context—but much less at any rate than if it is preceded by (1),
which appears to represent a ‘harmless’ transformation from which effort is needed
to reach and justify the ‘troublesome’ transformation (2). If (1) doesn’t exist, (2) is
neither troublesome nor harmless but all there is.

Of course (1) would—if available—be the natural place to start, as it corresponds
to the only normal operator N such that L (ψ) = L (Nψ) without tinkering. The
next most harmless normal operator is the unitary operator, whose action11 is given by
(2); the progression from (1) to (2) would therefore be entirely natural. But now that
we’re no longer starting with (1), (2) is no longer the natural successor of an equally
natural initial transformation, so why start with (2)? Because the only alternative is the
transformation ψ 7→ zψ (z ∈ C) corresponding to the most general normal operator—
from which it is too hard to salvage the Lagrangian

iz̄ψ̄γµ(z∂µ + ∂µz)ψ +m|z|2ψ̄ψ.
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