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Abstract

For the past two decades, Einstein’s Hole Argument (which deals with
the apparent indeterminateness of general relativity due to the general
covariance of the field equations) and its resolution in terms of Leibniz

equivalence (the statement that Riemannian geometries related by ac-
tive diffeomorphisms represent the same physical solution) have been the
starting point for a lively philosophical debate on the objectivity of the
point-events of space-time. It seems that Leibniz equivalence makes it
impossible to consider the points of the space-time manifold as physically

individuated without recourse to dynamical individuating fields. Various
authors have posited that the metric field itself can be used in this way,
but nobody so far has considered the problem of explicitly distilling the
metrical fingerprint of point-events from the gauge-dependent components
of the metric field. Working in the Hamiltonian formulation of general rel-
ativity, and building on the results of Lusanna and Pauri (2002), we show
how Bergmann and Komar’s intrinsic pseudo-coordinates (based on the
value of curvature invariants) can be used to provide a physical individ-
uation of point-events in terms of the true degrees of freedom (the Dirac

observables) of the gravitational field, and we suggest how this conceptual
individuation could in principle be implemented with a well-defined em-
pirical procedure. We argue from these results that point-events retain a
significant kind of physical objectivity.

∗This Essay is dedicated with warm affection to Roberto Torretti on the occasion of his
70th Birthday. Most of the technical developments that underlay this work were introduced
by Lusanna and Pauri (2002). Some of this material was also discussed at the international
workshop General covariance and the quantum: where do we stand?, held at the University
of Parma on June 21–23, 2001. We are deeply indebted to Luca Lusanna for a long series
of enlightening discussions about the canonical reduction of general relativity and about the
Bergmann–Komar intrinsic coordinates.
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1 Introduction: Einstein, the Hole Argument,
and the physical individuation of point-events

General relativity owes much of its mathematical beauty to its formulation in
terms of the theory of pseudo–Riemannian manifolds. This beauty, however,
carries a curse: at the mathematical level, even a naked manifold has well-
defined points distinguishable in terms of coordinates, but in physics it is a
widely held assumption that points can be distinguished only by the values
of physical fields or as the positions of physical objects, including measuring
devices. Any attempt to take the bare points seriously leads to well-known
puzzles and quandaries.

Possibly the first puzzle of this kind (the Hole Argument, or Lochbetrach-
tung) crossed Albert Einstein’s path repeatedly between 1913 and 1915. These
were years of alternating joy and distress for Einstein, as he set out to cre-
ate a theory of gravitation based on the guiding principle of general covari-
ance, failed to do so, used the Hole Argument to convince himself that gen-
eral covariance was physically inconsistent, formulated the short-lived Einstein–
Grossmann (Entwurf ) theory, and finally returned to his original conviction,
having come, through the Hole Argument, to his explanation of the physical
meaning of general covariance. Roberto Torretti wrote a beautiful account of
Einstein’s woes and triumphs in his masterly treatise Relativity and Geometry
(Torretti, 1987), and more about this story can be found in John Norton’s con-
tribution to this very volume, as well as in many other papers by Norton (1984;
1987; 1988; 1989; 1992; 1993; 2001; see also Howard and Norton, 1993) and by
John Stachel (1980; 1986a; 1986b; 1993; 1999).

Einstein’s “triumph” [to use Norton’s wording (2002)] over the Hole Argu-
ment and “over the space-time coordinate systems” came only after he adopted
a very idealized model of physical measurement where all possible observations
reduce to the intersections of the worldlines of observers, measuring instruments,
and measured physical objects (point-coincidence argument). In Einstein’s own
words (1916):

That the requirement of general covariance, which takes away from
space and time the last remnant of physical objectivity, is a natural
one, will be seen from the following reflexion. All our space-time
verifications invariably amount to a determination of space-time co-
incidences. If, for example, events consisted merely in the motion
of material points, then ultimately nothing would be observable but
the meetings of two or more of these points. Moreover, the results of
our measurings are nothing but verifications of such meetings of the
material points of our measuring instruments with other material
points, coincidences between the hands of a clock and points on the
clock dial, and observed point-events happening at the same place
at the same time. The introduction of a system of reference serves
no other purpose than to facilitate the description of the totality of
such coincidences.
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The Hole Argument received new life with John Stachel’s seminal paper (1980),
which raised a rich philosophical debate1 that is still alive today. Soon it became
widely recognized that the Hole Argument was intimately tied with our concep-
tions of space and time, at least as they are represented by the mathematical
models of general of relativity.

Of course, it is to philosophical preferences that we must defer the judgment
on the ontological status of the notions that are introduced in physical theories to
describe Nature; and this is especially true for the conditions that decide in favor
of a literal or nonliteral interpretation of theoretical structures. So we shall not
be concerned here with the metaphysical issue of the reality or nature of space-
time, let alone of the Raum of our experience. We agree with Michael Friedman
when he argues that the Hole Argument leaves an unsolved problem about the
characterization of intrinsic space-time structure, rather than an ontological
question about the existence of space-time [“avoiding quantification over ‘bare’
points . . . appears to be a non-trivial mathematical problem” (Friedman, 1984)].

In this paper we offer our contribution to the clarification of this non-trivial
problem. More precisely, we investigate the relation between the physical mean-
ing of spatio-temporal localization and the unavoidable use of arbitrary coordi-
nate systems in the practice of general relativity. Thus, we explore the limits
on the objectivity of space-time that are imposed by the mathematical repre-
sentation of spatio-temporal structure, in conjunction with the requirements of
the empirical foundation of general relativity.

1.1 The Hole Argument

In its modern version, the Hole Argument runs as follows. Consider a general-
relativistic space-time, as specified by a four-dimensional mathematical mani-
fold M4 and by a metrical tensor field g, which represents at the same time
the chrono-geometrical structure of space-time and the potential for the grav-
itational field. The metric g is a solution of the generally-covariant Einstein
equations. If any nongravitational physical fields are present, they are repre-
sented by tensor fields that are also dynamical fields, and that appear as sources
in the Einstein equations.

Now assume that M4 contains a hole H: that is, an open region where
all the nongravitational fields are null. On M4 we can prescribe an active2

diffeomorphism DA (Norton, 1987; Stachel, 1993; Wald, 1984) that remaps the

1See Bartels (1994); Belot (1995, 1996); Brighouse (1994); Butterfield (1984, 1987, 1988,
1989); Chuang (1996a,b); Disalle (1994); Earman and Norton (1987); Fine (1984); Hofer (1996,
1998); Hofer and Cartwright (1993); Leeds (1995); Maudlin (1988, 1990); Norton (1984, 1987,
1988, 1989, 1992, 1993, 2001, 2002); Rynasiewicz (1992, 1994, 1996a); Saunders (2001); Stein
(1977); Teller (1991); Wilson (1993). In this paper we shall make no attempt to analyze or
survey this discussion, not least because we believe that some debaters occasionally overstep
the philosophical latitude allowed by the very structure of general relativity. Instead, we shall
recall only the major points that can be seen as a premise to our discussion.

2As originally formulated by Einstein (1914), the Hole Argument does not rely on the
effects of active diffeomorphisms in the modern geometrical sense, but rather on the following
procedure. After taking a coordinate transformation ξ̂µ = fµ(ξν), we obtain the transformed

metric ĝσρ(ξ̂µ), and then we consider the object ĝσρ(ξµ) defined by transferring the func-
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points inside H, but blends smoothly into the identity map outside H and on
the boundary. Because the Einstein equations are generally covariant, if g is one
of their solutions, so is the drag-along field g′ = DAg. By construction, for any
point x ∈ H we have (geometrically) g′(DAx) = g(x), but of course g′(x)6 = g(x)
(also geometrically).

What is the correct interpretation of the new field g′? Clearly, the trans-
formation entails an active redistribution of the metric over the points of the
manifold, so the crucial question is whether, to what extent, and how the points
of the manifold are primarily individuated.3 In the mathematical literature
about topological spaces, it is always implicitly assumed that the entities of the
set can be distinguished and considered separately (provided the Hausdorff con-
ditions are satisfied), otherwise one could not even talk about point mappings or
homeomorphisms. It is well known, however, that the points of a homogeneous
space cannot have any intrinsic individuality. As Hermann Weyl (1946) put it:

There is no distinguishing objective property by which one could
tell apart one point from all others in a homogeneous space: at this
level, fixation of a point is possible only by a demonstrative act as
indicated by terms like “this” and “there.”

Quite aside from the phenomenological stance implicit in Weyl’s words,4 there
is only one way to individuate points at the mathematical level that we are
considering: namely by coordinatization, which transfers the individuality of
n-tuples of real numbers to the elements of the topological set. Therefore, all
the relevant transformations (including active diffeomorphisms) operated on the
manifold M4, even if viewed in purely geometrical terms, must be constructible
in terms of coordinate transformations (see for instance note 2). So we have
necessarily crossed from the domain of geometry to algebra, and we can justify
our use of the symbol x to denote a point of the manifold, as mathematically
individuated by the chosen coordinates.

Let us go back to the effect of this primary individuation of manifold points.
If we now think of the points of H as already independently individuated spatio-
temporal physical events even before the metric is defined, then g and g′ must
be regarded as physically distinct solutions of the Einstein equations (after all,
g′(x)6 = g(x) at the same point x). This is a devastating conclusion for the
causality, or better, determinateness5 of the theory, because it implies that,

tional dependence of ĝσρ(ξ̂µ) to the old coordinates xµ. This is akin to obtaining an active
diffeomorphism as the dual of a passive transformation.

3Consistently with our program, we shall not get involved in the deep philosophical issue
of the individuation of entities in general. Throughout this essay, our notion of individuation
will be deliberately restricted to the meaning that it can have at the mathematical level and,
above all, within the conceptual context of a physical theory.

4One could contemplate stripping the argument from its phenomenological flavor by as-
serting that, after all, the demonstrative act also establishes an empirical coincidence. This
view is taken, for instance, by Moritz Schlick (1917), who writes: “In order to fix a point
in space, one must somehow directly or indirectly, point to it . . . that is, one establishes a
spatio-temporal coincidence of two otherwise [already] separate elements.”

5We prefer to avoid the term determinism, because we believe that its metaphysical fla-
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even after we completely specify a physical solution for the gravitational and
nongravitational fields outside the hole (for example, on a Cauchy surface for
the initial value problem), we are still unable to predict uniquely the physical
solution within the hole. Clearly, if general relativity has to make any sense
as a physical theory, there must be a way out of this foundational quandary,
independently of any philosophical consideration.

In the modern understanding, the most widely embraced escape from the
strictures of the Hole Argument (which is essentially an update to current
mathematical terms of the naive solution adopted by Einstein), is to deny
that diffeomorphically related mathematical solutions represent physically dis-
tinct solutions. With this assumption, an entire equivalence class of diffeomor-
phically related mathematical solutions represents only one physical solution.6

This statement has come to be called [after Earman and Norton (1987)] Leibniz
equivalence.

It should be clear from the beginning that this is an allusion to a new Leibniz
adapted to the modern context of general relativity. Apart from the structural
analogy, modern Leibnizian arguments proceed without any reference to the
metaphysical premises of Leibniz’s historical arguments.7 The same should
be said of the Newtonian arguments that underlie the modern version of sub-
stantivalism (see more below). Rynasiewicz (1996b) has properly remarked
that, as it is often portrayed in twentieth-century philosophical literature, even
the opposition between substantivalism and relationism amounts to a historical
misrepresentation of the classical Newton–Leibniz controversy [see also Dorato
(2000)]. This is not irrelevant to the present considerations, for we find it rather
arbitrary to transcribe Newtonian absolutism (or at least part of it) into the
so-called manifold substantivalism, no less than to assert that general relativity
is a relational theory in an allegedly Leibnizian sense. As emphasized by Ry-
nasiewicz, the crucial point is that the historical debate presupposed a clear-cut
distinction between matter and space, or between content and container ; but
by now these distinctions have been blurred by the emergence of the so-called
electromagnetic view of nature in the late nineteenth century [for a detailed
model-theoretical discussion of this point see also Friedman (1983)].

Still, although some might argue [as do Earman and Norton (1987)] that the
metric tensor, qua physical field, cannot be regarded as the container of other
physical fields, we argue that the metric field has ontological priority over all

vor tends to overstate the issue at hand. This is especially true if determinism is taken in
opposition to indeterminism, which is not mere absence of determinism.

6Of course, taken at face value this statement could be misinterpreted as the naive (and
physically vacuous) assertion that metric tensors that have different descriptions in different
coordinate systems are geometrically the same tensor (invariance with respect to passive

diffeomorphisms DiffP M4). To formulate the Hole Argument, however, we have used active

diffeomorphisms: although, as said before, these are generated by the drag-along of coordinate
systems, they have the effect that the metric tensors g and DAg become geometrically different

at each point x ∈ H.
7More aptly, Friedman calls this Leibniz, stripped of his metaphysical assumptions, the

Leibniz of the positivists (Friedman, 1983, p. 219; see also Friedman, 2001). A penetrating
analysis of the old Leibniz versus the new one can be found in Earman (1979).
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other fields. This preeminence has various reasons (Pauri, 1996), but the most
important is that the metric field tells all other fields how to move causally. We
also agree with Friedman (1983) that, in agreement with the general-relativistic
practice of not counting the gravitational energy induced by the metric as a
component of the total energy, we should regard the manifold, endowed with its
metric, as space-time; and leave the task of representing matter to the stress-
energy tensor. Because of this priority, beside the fact that the Hole is pure
gravitational field, we maintain, unlike other authors [see for example Rovelli
(1991, 1997, 1999)], that the issue of the individuation of points of the manifold
as physical point-events8 should be discussed primarily in the context of the
vacuum gravitational field, without any recourse to nongravitational entities,
except perhaps at the operational level. In this paper we shall indeed adopt
this choice.

Stachel (1980; 1986a; 1986b; 1993; 1999) has given a very enlightening anal-
ysis of the meaning of general covariance and of its relations with the Hole
Argument, expounding the conceptual consequences of Einstein’s acceptance of
modern Leibniz equivalence through the point-coincidence argument. Stachel
stresses that asserting that g and DAg represent one and the same gravitational
field is to imply that the mathematical individuation of the points of the dif-
ferentiable manifold by their coordinates has no physical content until a metric
tensor is specified. In particular, coordinates lose any physical significance what-
soever (Norton, 2002). Furthermore, as Stachel emphasizes, if g and DAg must
represent the same gravitational field, they cannot be physically distinguishable
in any way. So when we act on g with DA to create the drag-along field DAg,
no element of physical significance can be left behind: in particular, nothing
that could identify a point x of the manifold as the same point of space-time
for both g and DAg. Instead, when x is mapped onto x′ = DAx, it brings over
its identity, as specified by g′(x′) = g(x).

This conclusion leads Stachel to the conviction that space-time points must
be physically individuated before space-time itself acquires a physical bearing,
and that the metric plays in fact the role of individuating field. What is more,
in practice even the topology of the underlying manifold cannot be introduced
independently of the specific form of the metric tensor, a circumstance that
makes it even more implausible to interpret the mere topological manifold as
substantival space-time (manifold substantivalism).

Finally, it is essential to note, once again with Stachel, that simply because a
theory has generally covariant equations, it does not follow that the points of the
underlying manifold must lack any kind of physical individuation. Indeed, what
really matters is that there can be no nondynamical individuating field that is
specified independently of the dynamical fields, and in particular independently
of the metric. If this was the case, a relative drag-along of the metric with
respect to the (supposedly) individuating field would be physically significant

8There is an unfortunate ambiguity in the usage of the term space-time points in the
literature: sometimes it refers to element of the mathematical structure that is the first layer
of the space-time model, sometimes to the points interpreted as physical events: we will adopt
the term point-event in the latter sense and simply point in the former.
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and would generate an inescapable Hole problem. Thus, the absence of any
nondynamical individuating field, as well as of any dynamical individuating
field independent of the metric, is the crucial feature of the purely gravitational
solutions of general relativity.

After a brief detour into the main themes of the philosophical debate on the
Hole, we shall come back to Leibniz equivalence and argue that it bears little
relation to the determinateness of general relativity, and that instead it amounts
to the recognition that the mathematical representation of space-time contains
superfluous structure, which must be isolated.

1.2 The philosophical debate on the Hole

The modern substantivalist position9 is a statement of spatio-temporal realism:
its adherents claim that the individual points of the manifold, for a given solution
of the Einstein equations, represent directly the physical points of space-time,
as they would occur in the actual or in some possible world.

Of course, as we have already emphasized, if we do assume that the points
possess an individual existence of their own, then the rearrangement of the
metric field against their background, as envisaged in the Hole Argument, would
produce a true change in the physical state of space-time. For this reason,
according to Earman and Norton (1987), substantivalism can be accused of
turning general relativity into an indeterministic theory: if diffeomorphically
related metric fields represent different physical states, then any prescription of
initial data (outside the hole) would fail to determine a corresponding solution
of the Einstein equations (inside the hole), because many are equally possible.
Earman and Norton’s intention is to confront the substantivalists with a dire
dilemma: accept indeterminism, or abandon substantivalism.

There have been various attempts in the substantivalist camp to counter this
threat of indeterminism. For example, Butterfield (1984; 1987; 1988; 1989) por-
trays diffeomorphic models as different possible worlds and invokes counterpart
theory to argue that at most one can represent an actual space-time. Maudlin
(1988; 1990) claims that a space-time can be properly represented by at most
one of two diffeomorphically related solutions of Einstein’s equations, because
each space-time point carries metrical properties essentially, so these properties
are names in the Kripkean sense of rigid designators : within a class of diffeo-
morphic models, only one specimen can represent a possible world, because a
world in which a point bears metrical properties other than the ones it actually
bears would be an impossible world.

Bartels (1994) objects to Maudlin that “with respect to the concrete spots of
the metrical field in our world one can reasonably say that their metrical prop-
erties could not be otherwise than they actually are . . . But to say the same
with respect to manifold points in a model is highly problematic, because diffeo-
morphisms obviously generate permissible models in which the same manifold

9See Bartels (1994); Butterfield (1984, 1987, 1988, 1989); Disalle (1994); Fine (1984); Hofer
(1996, 1998); Hofer and Cartwright (1993); Maudlin (1988, 1990); Stein (1977); Teller (1991).
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points bear different metrical properties.” Bartels then proposes to take a whole
equivalence class of diffeomorphic image points of a point p as the representation
of one and the same possible space-time point, because all the diffeomorphic im-
age points of a certain point p in a model bear the same individuating metrical
fingerprint. Yet, independently of any philosophical preference, this suggestion
is technically not viable; for, lacking any specific definition of such equivalence
classes, it could even happen that an equivalence class, which is supposed to
represent a real point, actually covers all points of the manifold. It seems there-
fore that the essentialist recourse to metrical fingerprints as an escape from
the Hole Argument is doomed to fail, unless it is possible to give a consistent
mathematical definition of metrical fingerprint. Even then, we still believe that
it is necessary to accept Leibniz equivalence, at least as a starting point. At the
end of our analysis, it should be apparent that the specific structure of the in-
dividuating metrical fingerprint leaves no room to sidestep the Hole Argument
with any essentialist interpretation of point-events.

Let us now have a look at Roberto Torretti’s reaction to some of these posi-
tions, and to the Hole Argument in general. In his recent book The Philosophy
of Physics (Torretti, 1999), Torretti argues that “the [Hole] argument forgets
the fact, so clearly set forth by Newton, that points in a structured manifold
have no individuality apart from their structural relations.” He then quotes
Newton’s De Gravitatione (Hall and Hall, 1962):

Perhaps now it is maybe expected that I should define extension
as substance or accident or else nothing at all. But by no means,
for it has its own manner of existence which fits neither substance
nor accidents [. . . ] Moreover the immobility of space will be best
exemplified by duration. For just as the parts of duration derive
their individuality from their order, so that (for example) if yester-
day could change places with today and become the latter of the
two, it would lose its individuality and would no longer be yester-
day, but today; so the parts of space derive their character from
their positions, so that if any two could change their positions, they
would change their character at the same time and each would be
converted numerically into the other qua individuals. The parts of
duration and space are only understood to be the same as they re-
ally are because of their mutual order and positions (propter solum
ordinem et positiones inter se); nor do they have any other principle
of individuation besides this order and position which consequently
cannot be altered.

Earlier (Torretti, 1987), Torretti had downplayed the issue of the physical indi-
viduation of space-time points, noticing that

[. . . ] the idea that space-time points are what they are only by
virtue of the metric structure to which they belong agrees well with
the thesis, common to Leibniz and Newton, that “it is only by their
mutual order and position that the parts of time and space are un-
derstood to be the very same which in truth they are,” for “they do
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not possess any principle of individuation apart from this order and
these positions.”

Torretti goes on to point out that making this assumption entails very important
consequences: for instance, “it is obviously meaningless to speak in General
Relativity of a space-time point at which the metric is not defined,” it becomes
impossible to hold that “the metric of a relativistic space-time is not a matter of
fact, but of mere convention” (geometric conventionalism), and serious problems
arise for the “fashionable semantic theory [Kripke’s] that conceives of proper
names as ‘rigid designators,’ denoting the same individual in many alternative
diversely structured ‘possible worlds.’ Proper names cannot function in this
way if the very individuals which are their referents owe their identity to the
structure in which they are enmeshed.”

In conclusion, Torretti proposes a more equitable “way of dealing with Ein-
stein’s [Hole Argument], which does not assume that space-time points can only
be physically distinguished by means of their metric properties and relations.”
To reject the Hole Argument, he argues, it is enough to note that two physical
objects can be distinguished either empirically (basically, because our direct ex-
perience suggest they differ) or rationally (“if they are equated to or represented
by structurally unequal conceptual systems”). The two physical situations envis-
aged in the Hole Argument are both observationally indistinguishable (in short,
because of the point-coincidence argument) and conceptually indistinguishable
(because structurally isomorphic): they are

[. . . ] as far as our assumptions go, perfectly indiscernible, and there-
fore must be regarded as identical. In the view I have just put for-
ward, the onus of individuating the points of space-time does not
rest with the metric, which is a structural feature of the world. The
role of structure is not to individuate, but to specify; and of course
it cannot perform this role beyond what its own specific identity will
permit, that is, “up to isomorphism.” It is only on nonconceptual
grounds that two isomorphic structures can be held to represent two
really different things.

In essence, in 1983 Torretti was satisfied with a structuralist view à la Newton,
conjoined with the modern understanding of Leibniz equivalence.

However, as Friedman has remarked (1984, p. 663), if we stick to simple
Leibniz equivalence, “how do we describe this physical situation intrinsically?”
What is the meaning of point-events as the local elements of space-time? We be-
lieve that the task of describing the physical situation intrinsically is worth pur-
suing. To this end, we can take advantage of the fact that the points of general-
relativistic space-times, quite unlike the points of the homogeneous Newtonian
space, are endowed with a remarkably rich non–point-like texture10 provided by
the metric field. This texture can be exploited for the purpose of the physical

10More important, as we shall see, the physical individuation of points as point-events is
necessarily nonlocal in terms of the manifold points.
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individuation of points, for it is now the dynamical metric field that character-
izes their “mutual order and positions.” Furthermore, as we shall see, the need
to connect the formal structure of the theory to the empirical requirements of
measurements leads necessarily to a refinement of Leibniz equivalence.

Following this line of thought, we shall argue that there is a specific techni-
cal sense in which a procedure of point individuation follows directly from the
Hamiltonian formulation of general relativity as a gauge theory. In particular,
we will show that the individuation of points originates directly from the effec-
tive degrees of freedom of the gravitational field, which come to play the role of
basic metrical fingerprints.

1.3 What is the metrical fingerprint of point-events?

Now, how is it that the metric field can realize concretely its would-be role of
physical individuator? After all, we know very well that only a subset of the
ten components of the metric is physically significant. It seems then plausible
that only this part of the metric might serve as individuating field, while the
remaining components would carry physically spurious information.

We move from the analysis given by Bergmann and Komar,11 who suggest
that (in the absence of matter fields) the value of four invariant scalar fields built
from contractions of the Weyl tensor can be used as intrinsic pseudo-coordinates
that are invariant under diffeomorphic transformations. Stachel (1993) reprises
this suggestion, but he does not pursue it further.12

Our considerations are based on the technical premises laid down by Lusanna
and Pauri (2002) with the purpose of extending and clarifying the Bergmann–
Komar–Stachel program within the Hamiltonian formulation of general relativ-
ity as a gauge theory. Three circumstances make the recourse to the Hamiltonian
formalism especially propitious.

1. It is evident that the Hole Argument is inextricably entangled with the
initial-value problem of general relativity, but, strangely enough, the Hole
Argument has never been explicitly discussed in that context in a system-
atic way. Possibly the reason is that most authors have implicitly adopted
the Lagrangian approach (the manifold way), where the initial-value prob-
lem is intractable because of the nonhyperbolic nature of Einstein’s equa-
tions.13

11See Bergmann (1960, 1962, 1971, 1977); Bergmann and Komar (1960, 1972); Komar (1955,
1958).

12 To our knowledge, Bergmann and Komar did not follow up on their suggestion, ei-
ther. The last organic presentation of the issue seems to be Bergmann’s Handbuch article
(Bergmann, 1962, p. 252–255).

13Actually, David Hilbert was the first person to discuss the Cauchy problem for the Ein-
stein equations and to realize its connection to the Hole phenomenology (Hilbert, 1917). He
discussed the issue in the context of a general-relativistic generalization of Mie’s special-
relativistic nonlinear electrodynamics, and pointed out the necessity of fixing a specific geo-
metrically adapted (Gaussian in his terms, or geodesic normal as known today) coordinate
system to assure the causality of the theory. In this connection see Howard and Norton
(1993). However, as noted by Stachel (1992), Hilbert’s analysis was incomplete and neglected
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2. Only in the Hamiltonian approach can we isolate the gauge variables,
which carry the descriptive arbitrariness of the theory, from the (Dirac)
observables, which are the right candidates to become the dynamical in-
dividuating fields.

3. Finally, in the context of the Hamiltonian formalism, we can resort to
Bergmann and Komar’s theory of general coordinate-group symmetries
(Bergmann and Komar, 1972) to clarify the significance of active diffeo-
morphisms as on-shell dynamical symmetries of the Einstein equations.
This step is crucial: to understand fully the role played by active diffeo-
morphisms in the Hole Argument, it is necessary to interpret them as the
manifold-way counterparts of suitable Hamiltonian gauge transformations,
which are passive14 by definition.

2 Mathematical development: general relativity
as a gauge theory and the physical individua-

tion of point-events

This section provides the technical foundations for our analysis of the physical
individuation of point-events in general relativity. We start off with a brief,
qualitative outline of general relativity as a constrained Hamiltonian theory
(especially for the benefit of the philosophers of science who have not had the
chance of studying it in detail): Sec. 2.1 introduces constrained Hamiltonian
theories in general, while Sec. 2.2 specializes to the case of gravity. Sec. 2.3
discusses the relation between the gauge transformations of the Hamiltonian
formalism and the dynamical symmetries of the Einstein equations. Finally, in
Sec. 2.4 we present the theory of the Bergmann–Komar intrinsic coordinates,
and we explore their link with gauge freedom in general relativity and their
significance for the physical individuation of space-time points.

2.1 The constrained Hamiltonian formalism

As most other fundamental theories in modern physics, general relativity falls
under the chapter of gauge theories. To use the very general definition given by
Henneaux and Teitelboim (1992):

These are theories in which the physical system being dealt with is
described by more variables than there are physically independent
degrees of freedom. The physically meaningful degrees of freedom

important related problems.
14This passive view of active diffeomorphisms is not equivalent to their dual representation

by the corresponding passive coordinate transformations [as shown, for instance, by Wald
(1984); see also footnote 2]. By rights, the active diffeomorphisms should be considered as
passive transformations on the function space of metric fields, rather than on the space-time
manifold.
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then reemerge as being those invariant under a transformation con-
necting the variables (gauge transformation). Thus, one introduces
extra variables to make the description more transparent, and brings
in at the same time a gauge symmetry to extract the physically rel-
evant content.

The mathematical development of gauge theories starts when we realize that
the Lagrangian action principle, δ

∫

L(q, q̇) dt = 0, yields Euler–Lagrange equa-
tions that are not hyperbolic, because they cannot be solved for all the accel-
erations. Technically, the same condition that makes it so (the singularity of
the Hessian matrix15 ∂2L/∂q̇k∂q̇h) means also that, when we move from the
Lagrangian to the Hamiltonian formulation, the momenta are not all function-
ally independent, but satisfy some conditions known as (primary) constraints.
Secondary constraints arise when we require that the primary constraints be
preserved through evolution.16 There is no strong distinction between primary
and secondary constraints in the role that they come to play in the unfolding of
constrained dynamics.

The existence of constraints implies that not all the points of phase space
represent physically meaningful states: rather, we are restricted to the con-
straint surface where all the constraints are satisfied. The dimensionality of the
constraint surface is given by the number of the original canonical variables,
minus the number of functionally independent constraints.

Generally, the constraints are given as functions of the canonical variables
which vanish on the constraint surface; technically, these functions are said
to be weakly zero17 (≈ 0). Note that weakly vanishing functions may have
nonvanishing derivatives in directions normal to the constraint surface, so their
Poisson brackets with some of the canonical variables may well be nonzero. If
instead all the derivatives vanish, the functions are said to be strongly zero, and
they can be freely inserted in any Poisson bracket without changing the result.

When used as generators of canonical transformations, some constraints,
known as first class,18 will map points on the constraint surface to points on
the same surface; these transformations are known as gauge transformations.
Second class constraints, on the contrary, will generate transformations that
map allowed physical states (points on the constraint surface) onto disallowed
states (points off the constraint surface). Since second-class constraints do not
show up in the Hamiltonian formulation of general relativity, we will disregard
them in the rest of this exposition.

15Throughout this section we shall outline the constrained Hamiltonian theory in the simpler
case of a finite number of degrees of freedom. For field theories (such as general relativity)
there are, as always, additional subtleties.

16Tertiary constraints follow from the conservation of secondary constraints, and so on. In
physically interesting theories this chain ends before we run out of all the original degrees of
freedom.

17Conversely, any weakly vanishing function is a linear combination of the weakly vanishing
functions that define the constraint surface.

18A function of the canonical variables is defined to be first class if its Poisson brackets with
all the constraints are strongly or weakly zero. It is defined to be second class if its Poisson
bracket with at least one constraint is not zero.
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To obtain the correct dynamics for the constrained system, we need to mod-
ify the Hamiltonian variational principle to enforce the constraints; we do this
by adding the constraint functions to the Hamiltonian, after multiplying them
by arbitrary functions of time (the Lagrange–Dirac multipliers). Because the
first-class constraints generate gauge transformations on the constraint surface,
different choices of the Lagrange–Dirac multipliers will generate evolutions of
the canonical variables that differ by gauge transformations. If, with Dirac, we
make the reasonable demand that the evolution of all physical variables should
be unique,19 then the points of the constraint surface that sit on the same gauge
orbit (that is, that are linked by gauge transformations) must describe the same
physical state. Conversely, only the functions in phase space that are invariant
with respect to gauge transformations can describe physical quantities.20

To eliminate this ambiguity and create a one-to-one mapping between points
in phase space and physical states, we can impose further constraints, known as
gauge conditions. The gauge conditions can be defined by arbitrary functions of
the variables of the constraint surface, except that they must define a reduced
phase space that intersects each gauge orbit exactly once. In other words, given a
point on the constraint surface, there must be a gauge transformation that takes
it into the reduced phase space; conversely, if we apply a gauge transformation
to a point in the reduced phase space, we take it out of the gauge. Abstractly,
reduced phase space is the quotient of the constraint surface by the group of
gauge transformations and it represents the space of variation of the true degrees
of freedom of the theory.

The number of independent gauge conditions must be equal to the number of
independent first-class constraints. Because of their role, the gauge conditions
cannot commute (have vanishing Poisson bracket) with the original first-class
constraints; so the set of the first-class constraints, with the addition of the
gauge conditions, becomes a set of second-class constraints. After this canoni-
cal reduction is performed, the theory is completely determined: each physical
state corresponds to one and only one set of canonical variables that satisfy the
constraints and the gauge conditions. Then we are also able to determine the
Lagrange–Dirac multipliers, so no arbitrary functions of time appear anymore
in the Hamiltonian.

At this stage, we can invoke the Shanmugadhasan transformation (Shan-
mugadhasan, 1973) to put the gauge conditions into an especially meaningful
functional form. The Shanmugadhasan transformation has the effect of reshuf-
fling all the first-class constraints into a set of Abelian canonical momenta. The
surface where these momenta are zero is just the original constraint surface, and
the conjugate canonical variables are the gauge functions, whose gauge fixing
determines the reduced phase space. The so-called Dirac observables are just a

19Otherwise we would have to envisage real physical variables that are indeterminate and
therefore not observable, and ultimately not measurable.

20Of course, in many cases (such as electromagnetism) we know the observable quantities
from the beginning, because we have gauge-independent dynamical equations for the fields
(e. g., the Maxwell equations). Then the distinction between observables and gauge variables
that follows from the first-class constraints must reproduce this situation.
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Darboux basis for the reduced phase space.21 Note that the entire procedure
of canonical reduction is performed off shell, that is, without reference to the
actual solution of the Hamilton equations.

Thus, after reducing twice the dimension of the initial phase space by the
number of independent constraints (once to go to the constraint surface, once
again when the gauge conditions are enforced to obtain the reduced phase space),
we are at the end of our long trip. Under the action of the Hamiltonian, the
Dirac observables evolve deterministically within the reduced phase space, and
the indeterminateness of the nonhyperbolic Euler–Lagrange equations has been
converted into the physically harmless arbitrariness of the gauge fixing.

2.2 General relativity as a constrained Hamiltonian the-
ory

The standard progression of general-relativity textbooks takes us through a
dense barrage of differential geometry until we have gathered enough founda-
tions to lay down the vacuum Einstein equations,

Rµν − 1

2
Rgµν = 0; (1)

on this mountaintop we can draw a breath of relief, and contemplate the beauty
of general relativity. These equations can be derived as Euler–Lagrange equa-
tions from the Lagrangian variation of the Einstein–Hilbert action

S =

∫

d4x
√
−gR, (2)

where the independent components of the metric field gµν serve as configuration
variables. However, the Eqs. (1) cannot be solved as they are written, because
they are not hyperbolic: only two equations out of ten are evolution equations for
the “accelerations” of the metric. The reason is that the action is invariant un-
der general coordinate transformations (the passive diffeomorphisms DiffP M4),
so the Hessian matrix has vanishing determinant (Sundermayer, 1982). From
the Lagrangian point of view, to solve the Eqs. (1) we need to remove the
diffeomorphism invariance by fixing the coordinate system completely.22

21While the Poisson brackets of the Dirac observables with the original constraints vanished
only weakly, the reduced phase space is equipped with a new Poisson–Dirac algebra given by
the so-called Dirac brackets (denoted by {·, ·}∗), and the Dirac brackets of the observables
with the Abelianized constraints and their conjugate variables vanish strongly. This is precisely
the purpose of the Shanmugadhasan transformation, which creates a true projection from the
original constraint surface to the reduced phase space.

22In the Lagrangian formalism (manifold way), the counting of degrees of freedom goes
as follows: the ten Einstein equations can be rearranged as four Lagrangian constraints (re-
strictions on the initial Cauchy data), four Bianchi identities (which vanish identically), and
two dynamical second-order equations. Therefore, of the ten independent components of
the metric tensor, two are deterministic dynamical degrees of freedom, four are bound by
the Lagrangian constraints, and the remaining four are completely indeterminate until the
coordinates are fixed.
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Let us now turn to the Hamiltonian formalism, where the gauge symmetry
of the system is fully manifest. Although several variations are possible, we will
outline the standard ADM formalism [named after Arnowitt, Deser and Misner
(1962)]. Before we attempt to solve the Cauchy problem for the Einstein equa-
tions, we need to perform a 3+1 split of space-time: that is, we need to assume
that the space-time (M4,

4g) is globally hyperbolic, and that it can be foliated
by a family of spacelike Cauchy surfaces Στ , indexed by the parameter time
τ . This means essentially that we view the global space-time as representing
the (parameter) time development of a three-dimensional Riemannian metric
3g on a fixed tridimensional manifold Στ . The three-metric is a classical field
which depends on the three spatial coordinates23 σa on Στ , and evolves with
the parameter time τ .

To complete the 3+1 split, we need to specify the packing of the surfaces Στ

in proper (physical) time, and the physical correspondence between the points on
each surface (loosely, we need to keep track of which point is which as we progress
through time). These choices are achieved by specifying the lapse function N
and the shift vector Na. Only now the four-metric can be reconstructed from
the τ dependence of the three-metric, the lapse, and the shift.

The (3 + 1)-split Einstein equations are obtained from the Lagrangian vari-
ation of the ADM action,

SADM =

∫

dτ N

∫

Στ

dσa
√−g [R + KabK

ab − K2] + surface terms24, (3)

where R is the scalar curvature of the three-metric gab, where the extrinsic
curvature Kab is essentially the τ derivative of gab, and where K = Ka

a. The
ten configuration variables are N , Na, and the six independent components of
gab. The Legendre transformation yields the momenta

πab = −√−g[Kab − Kgab] (conjugated to gab), (4)

π0 = 0, πa = 0 (conjugated to N, Na). (5)

Phase space is indexed by the 20 variables (N, π0), (Na, πa), (gab, π
ab), but the

conditions (5) on the momenta conjugated to lapse and shift must be understood
as the primary constraints of the theory, and therefore should be written as
πA ≈ 0. By requesting that the primary constraints be preserved through
dynamical evolution, we obtain the secondary constraints,

H0 ≡ 1√−g

[

πabπab −
1

2
(πa

a)2
]

−√−g R ≈ 0 (superhamiltonian constraint),

(6)
Ha ≡ −2πa

b
|b ≈ 0 (supermomentum constraints), (7)

23From now on, it will be our convention to drop all the “3” indices which denote tensors
on the spatial manifold; furthermore, we will use lowercase Latin indices to enumerate the
spatial coordinates, and uppercase Latin indices to enumerate parameter time plus the spatial
coordinates.

24Within the rest of this paper, we shall always neglect these terms.
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where the bar denotes covariant differentiation on Στ . Altogether, the pri-
mary and secondary constraints restrict the allowable physical states to a 12-
dimensional constraint surface Γ12 in phase space. The πA and the HA are
all first-class constraints, and generate gauge transformations on the constraint
surface: the effect of the πA is to change the lapse and shift, while H0 and the
Ha respectively induce normal deformations of the surfaces Στ , and generate
transitions from a three-coordinate system to another. There are no second-class
constraints.

The Dirac Hamiltonian (which rules the constrained dynamics) can be writ-
ten purely in terms of the constraints:25

HD =

∫

dσa[NAHA + λAπA], (8)

where the λA are Lagrange–Dirac multipliers. At this stage we have already
restored the hyperbolicity of the (Hamilton) equations of motion, but at the
price of introducing the four arbitrary functions of time26 λA:

ṄA ≈ λA, ġab ≈ fab[g, π|λ], (9)

π̇A ≈ 0, π̇ab ≈ hab[g, π|λ]. (10)

To remove this arbitrariness, we must fix the gauge as follows. The first step is
the gauge fixing to the secondary constraints: we choose four functions χA of the
g and π (but not of NA!) that satisfy the orbit conditions,27 det |{χA,HB}| 6=
0, and we impose χA ≈ 0 on the constraint surface. It turns out that the
requirement of time constancy for the gauge fixings χA fixes the gauge with
respect to the primary constraints. Finally, the requirement of time constancy
for these latter gauge fixings determines the multipliers λA. So the choice of the
four constraints χA is sufficient to remove all the gauge arbitrariness.

Under the Shanmugadhasan transformation proposed by Lusanna (2000;
2001), the superhamiltonian constraint corresponds28 to a new canonical pair:
the unknown variable in which the constraint must be solved is the conformal
factor of g (proportional to det g), while the gauge parameter is the conformal-
factor momentum πφ (which determines the normal deformations of Στ ). The
corresponding gauge fixing, χ0 ≈ 0, has the effect of selecting the shape of Στ .

25Even before adding the constraints, the canonical Hamiltonian can be written as HC =
∫

dσaNAHA, so we could formally absorb the Lagrange–Dirac multipliers relative to the HA

into the definition of the NA. Still, lapse and shift are not arbitrary functions, but dynamical
variables! The fact that the Hamiltonian vanishes on the constraint surface is a general feature
of generally covariant theories. See for instance Henneaux and Teitelboim (1992).

26The λA are also arbitrary functions of the spatial coordinates σa, although in a slightly
different sense: loosely speaking, there are four arbitrary multipliers at each spatial location,
so the spatial coordinates, together with “A”, play the role of generalized degree-of-freedom
indexes.

27These conditions implement the Lorentz signature of the reconstructed four-metric, by
inheriting the signature already implicit in the superhamiltonian and supermomentum.

28In practice, this transformation requires the solution of the superhamiltonian constraint,
but so far this result has proved elusive.
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The supermomentum constraints correspond to three canonical pairs, namely
the three longitudinal components of πab, and three gauge parameters, namely
the three-coordinates on Στ . The corresponding gauge fixings, χa ≈ 0, have
the effect of selecting the coordinate system on Στ . After the gauge parame-
ters have been fixed, the second-order time-constancy requirement (mentioned
above) has the effect of providing partial differential equations for the lapse and
shift, in a manner compatible with the shape of Στ and with the choice of the
three-coordinates.

At the end of the canonical reduction procedure, the 12 degrees of free-
dom of the constraint surface are reduced to four, the Dirac observables qr, ps

(r, s = 1, 2) that index the reduced phase space Ψ4, and that represent the
two true dynamical degrees of freedom of the gravitational field. Each gauge
fixing creates a realization of Ψ4, with a canonical structure implemented by
the Dirac brackets associated to that gauge. The Dirac observables satisfy the
final Hamilton equations,

q̇r = {qr, EADM}∗, ṗs = {ps, EADM}∗, (11)

where EADM is intended as the restriction of the ADM Energy to Ψ4 and where
the {·, ·}∗ are the Dirac Brackets. In general, qr(τ, σa) and ps(τ, σ

a) are highly
nonlocal29; a priori they are neither tensors nor invariants under space-time
diffeomorphisms, because their functional form depends on the gauge fixing. As
we shall see, on shell (when the dynamical variables are restricted to the values
that they can have as solutions of the Hamilton–Dirac equations) the gauge
fixing is equivalent to the choice of a set of four-dimensional coordinates.

According to Lusanna and Pauri (2002), the Shanmugadhasan transforma-
tion proposed by Lusanna (2000; 2001) allows the (loose) interpretation of the
Dirac observables as representing the tidal effects of the gravitational field. Ob-
viously, in general relativity there are no gravitational forces in the common
sense. Yet, we can introduce the general-relativistic analogs of inertial forces
with respect to the worldlines of nongeodesic observers (Abramowicz, 1993;
Abramowicz, Nurowski and Wex, 1993). The physical meaning of the eight
gauge transformations is just to modify the inertial (reference-frame–induced)
effects; however, the presentation of both the tidal effects and the inertial forces
depends on the gauge fixings, just as the functional form of the Dirac observables
does.

2.3 Gauge groups and dynamical symmetries in the gen-
eral theory of relativity

Not all the transformations generated by the first-class constraints (the off-shell
Hamiltonian gauge group G8) are true, harmless gauge transformations in the
sense introduced by Dirac, because some of them will join points of the con-
straint surface that represent different four-geometries,30 and therefore different

29Because in general relativity the Shanmugadhasan transformation is highly nonlocal.
30The quotient of the constraint surface with respect to the off-shell Hamiltonian gauge

transformations is the so-called reduced off-shell conformal superspace Γ4 = Γ12/G8. Each
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physical states. This property follows from the fact that, in the Dirac Hamilto-
nian, among the eight multipliers only four are arbitrary Lagrange–Dirac mul-
tipliers (the other four are the dynamical variables lapse and shift), and that
the correct gauge-fixing procedure starts by giving only the four gauge fixings
for the secondary constraints. Going on shell (that is, restricting our considera-
tion to the solutions of the Hamilton–Dirac equations) we introduce a functional
dependence among the group descriptors of G8, creating a four-dimensional sub-
group Gdyn

4 (the on-shell Hamiltonian gauge group) whose transformations are
also dynamical symmetries of the Hamilton–Dirac equations (dynamical sym-
metries are defined as the transformations that map solutions of the equations
of motion onto other solutions; as such, they are an on-shell concept).

In the context of the Lagrangian formalism, the (passive) dynamical symme-
tries of the Einstein equations were studied by Bergmann and Komar (1972),
who showed that the largest group of such transformations is not DiffP M4

[ξ′
µ

= fµ(ξν)] but rather the group Q of transformations of the form ξ′
µ

=
fµ(ξν , gαβ). These transformations map points on points, but associate with a
given point x an image point x′ that depends also on the metric field g. Hence
the elements of Q should be considered as mappings from the functional space
of metric fields onto itself.

Bergmann and Komar showed that the passive diffeomorphisms, DiffP M4,
are a nonnormal subgroup of Q. We have just met another nonnormal subgroup
of Q: it is the on-shell Hamiltonian gauge group Gdyn

4 , or rather its Legendre
pullback to configuration space, which Bergmann and Komar call Qcan. The
subgroups DiffP M4 and Qcan have a nonempty intersection, which consists of
all the passive coordinate transformations that respect the 3+1 splitting of the
ADM construction.

Looking in the other direction (from configuration space to phase space),
Qcan represents the part of Q that is projectable into phase-space transforma-
tions. It follows that the subgroup Qcan is defined by a particular choice of the
four functionally independent descriptors that are the manifold counterparts of
the four independent descriptors of Gdyn

4 .
All these groups are just different representations of the descriptive arbitrari-

ness of general relativity, so we expect that they should all generate the same
partition of the space RiemM4 of solutions of the Einstein–ADM equations into
equivalence classes. Indeed, Bergmann and Komar showed that

GeomM4 =
RiemM4

DiffP M4
=

RiemM4

Qcan
=

RiemM4

Q
, (12)

which is mathematically possible because both DiffP M4 and Qcan are nonnor-
mal subgroups of Q.

Only one detail is missing: what is the status of the active diffeomorphisms
DiffA M4 within this representation? Intuitively, it seems that active and pas-

point of Γ4 (a Hamiltonian off-shell or kinematical gravitational field) is an equivalence class
known as off-shell conformal three-geometry for the space-like hypersurfaces Στ . It is not a
four-geometry, because it contains all the off-shell three-geometries connected by Hamiltonian
gauge transformations.
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sive diffeomorphisms make up all the operations that can be defined on the
space-time manifold; however, nobody so far has studied in detail the math-
ematical structure of the group Q. It is however easy to show (Lusanna and
Pauri, 2002) that at least the infinitesimal active diffeomorphisms belong to Q,
because they can be interpreted as passive transformations with the following
procedure.

Consider an infinitesimal (passive) transformation of the type ξ′
µ

= ξµ +
Xµ(ξ, g). This will induce the usual formal local variation of the metric tensor,

δ̄gµν = −
(

Xµ;ν(ξ, g) + Xν;µ(ξ, g)
)

. (13)

Therefore, if δ̄gµν is the variation of the metric tensor associated with the in-
finitesimal active diffeomorphism, the solution Xµ(ξ, g) of these Killing-type
equations identifies a corresponding passive Bergmann–Komar dynamical sym-
metry of Q. This should imply that all the active diffeomorphisms connected
with the identity in DiffA M4 can be reinterpreted as elements of a nonnormal
subgroup of the generalized passive transformations of Q. Clearly this subgroup
is disjoint from the subgroup DiffP M4: note that this is possible because dif-
feomorphism groups do not possess a canonical identity. Given this, we could
naturally guess that Qcan is a mix of passive and active diffeomorphisms, be-
cause the active and passive diffeomorphisms, being nonnormal subgroups of Q,
should, as it were, fill Q densely in a suitable topology.

Finally, we complete Eq. (12): because obviously we have

GeomM4 =
RiemM4

DiffP M4
=

RiemM4

DiffA M4
, (14)

we obtain the final definition of the equivalence classes of on-shell or dynamical
gravitational fields,

GeomM4 =
RiemM4

DiffP M4
=

RiemM4

DiffA M4
=

RiemM4

Qcan
=

RiemM4

Q
. (15)

In other words, any of the groups DiffP M4, DiffA M4, Qcan, and Q can be
used to implement Leibniz equivalence on shell.

2.4 The Bergmann–Komar invariants: metrical structure
and the physical individuation of points in the (un)real
world

Let us now take a quick detour back to four-dimensional (so to speak) general
relativity. We note with Bergmann and Komar31 that for a vacuum solution of
the Einstein equations, in the hypothesis that space-time admits no symmetries,
there are exactly four functionally independent scalars that can be written using

31See Bergmann (1960, 1962, 1971, 1977); Bergmann and Komar (1960).
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the lowest possible derivatives of the metric.32 These are the four Weyl scalars
(the eigenvalues of the Weyl tensor), here written in Petrov compressed notation,

w1 = Tr (gWgW ), (16)

w2 = Tr (gWεW ), (17)

w3 = Tr (gWgWgW ), (18)

w4 = Tr (gWgWεW ), (19)

where g is the four -metric, W is the Weyl tensor, and ε is the Levi–Civita totally
antisymmetric tensor.

Bergmann and Komar then propose that we build a set of intrinsic coordi-
nates for the point-events of space-time as four functions of the wT ,

Î [A] = Î [A]
[

wT [g(x), ∂g(x)]
]

. (20)

Indeed, under the hypothesis of no space-time symmetries,33 the Î [A] can be
used to label the point-events of space-time, at least locally.34 What is more, the
value of the intrinsic coordinates at a point-event can be extracted (in principle)
by an actual experiment designed to measure the wT (see Sec. 3). Because they
are functionals of scalars, the Î [A] are invariant under passive diffeomorphisms
(therefore they do not define a coordinate chart in the usual sense), and by
construction they are also constant under the drag-along of tensor fields induced
by active diffeomorphisms.35

The metric can be rewritten with respect to the intrinsic coordinates:

ĝ[AB] =
δÎ [A]

δxµ

δÎ [B]

δxν
gµν . (21)

32The fact that there are just four independent invariants is crucial for the purpose of point
individuation, and it should not be regarded as a coincidence. After all, recall that in general
space-times with matter there are 14 invariants of this kind! (Géhénieau and Debever, 1956)

33Our attempt to use intrinsic coordinates to provide a physical individuation of point-
events would prima facie fail in the presence of symmetries, when the Î [A] become degenerate.
This objection was originally raised by Norton (1988) as a critique to manifold-plus-further-
structure (MPFS) substantivalism [according to which the points of the manifold, conjoined
with additional local structure such as the metric field, can be considered physically real; see
for instance Maudlin (1988)]. Several responses are possible. First, although to this day all
the known exact solutions of the Einstein equations admit one or more symmetries, these
mathematical models are very idealized and simplified; in a realistic situation (for instance,
even with two masses) space-time is filled with the excitations of the gravitational degrees of
freedom, and admits no symmetries at all. Second, the parameters of the symmetry trans-
formations can be used as supplementary individuating fields, since, as noticed by Stachel
(1993), they also depend on metric field, through its isometries. Third, and most important,
in our analysis of the physical individuation of points we are arguing a question of principle,
and therefore we must consider generic solutions of the Einstein equations rather than the
null-measure set of solutions with symmetries.

34Problems might arise if we try to extend the labels to the entire space-time: for instance,
the coordinates might turn out to be multivalued.

35Already at this stage, we see that this is just the right method to realize the equivalence
class of points to which Bartels was alluding (Bartels, 1994).
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The ĝ[AB] represent the ten invariant scalar components of the metric; of course
they are not all independent, but they should satisfy six functional restrictions
that follow from the Einstein equations. However, Eq. (21) is deceiving, because
the ĝ[AB] are functionals of the metric and of its partial derivatives (through
the Î [A]). It should be noted that, in a sense, the freedom to express the metric
using any set of coordinates is still present in the choice of the four functions Î [A]

of the Weyl scalars. What is more, given any coordinatization of a space-time
without symmetries, it is possible to reproduce the tensorial components of the
metric using a suitable set of Î [A].

Decomposing the wT with the 3 + 1 splitting outlined in Sec. 2.2, we realize
[again with Bergmann and Komar (1960)] that the four Weyl scalars wT do
not depend on lapse and shift. This circumstance is crucial, because it means
that we can use suitable functions of the wT as gauge fixings to the secondary
constraints36 (Lusanna and Pauri, 2002). To do so, we first write the Bergmann–
Komar intrinsic coordinates as functionals of the ADM variables,

Î [A][wT (g, ∂g)] ≡ Ẑ [A][wT (g, π)]; (22)

we then select a completely arbitrary coordinate system σA ≡ [τ, σa] adapted to
the Στ surfaces; finally, we apply the gauge fixing Γ defined by

χA ≡ σA − Ẑ [A]
[

wT [(g(σB), π(σC)]
]

≈ 0; (23)

of course the functions Ẑ [A] must be chosen to satisfy the orbit conditions
{Ẑ [A],HB} 6= 0, which ensure the independence of the χA and carry informa-
tion about the Lorentz signature. The effect is that the evolution of the Dirac
observables, whose dependence on space (and on parameter time) is indexed by
the chosen coordinates σA, reproduces the σA as the Bergmann–Komar intrinsic
coordinates:

σA = Ẑ [A][wT (qr(σB), ps(σ
C)|Γ)], (24)

where the notation wT (q, p|Γ) represents the functional form that the Weyl
scalars wT and the Dirac observables qr, ps assume in the chosen gauge. Eq.
(24) is just an identity with respect to the σA. The price that we have paid for
this achievement is of course that we have broken general covariance!

At first this result may sound surprising: diffeomorphism-invariant quanti-
ties, such as the intrinsic coordinates, are known as Bergmann observables, and
are often identified with the only locally measurable variables of the pure grav-
itational field (because being diffeomorphism invariants they can be obtained
using the coordinate system corresponding to any experimental arrangement).
From the Hamiltonian viewpoint, however, they are gauge-dependent37 quanti-
ties that (in a sense) can be arranged to assume any functional dependence on
Στ .

36Please refer back to Sec. 2.2, just after Eq. (10).
37Canonical reduction (which creates the distinction between gauge-dependent quantities

and Dirac observables) is made off shell, that is, before solving the equations of motion. It
is not known so far whether suitable diffeomorphism-invariant intrinsic coordinates can also
become Dirac observables on shell, that is, on the space of solutions to the equations of
motion. See however Sec. 4.
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The crucial point to remember here is that the gauge transformations of G8

can actually link different four-geometries; correspondingly, a complete gauge
fixing can modify the value of diffeomorphism-invariant quantities.38 So we can
take any four-geometry, find its Cauchy data on Στ , and then move along its G8

gauge orbit to create any arbitrary structure for the Weyl scalars; but the final
point on the constraint surface will represent a different four-geometry. On the
other hand, the on-shell Hamiltonian gauge group Gdyn

4 contains only transfor-
mations that are counterparts of active or passive projectable diffeomorphisms
(the ones that are compatible with the 3 + 1 split).

After canonical reduction and only for the solutions of the equations of
motion, Eq. (24) becomes a strong relation, and it amounts to a definition of the
four coordinates σA, providing a physical individuation of any point-event, in
the gauge-fixed coordinate system, in terms of the true dynamical gravitational
degrees of freedom.

The virtue of this elaborate setup is not that it selects a set of physically
preferred coordinates, because by modifying the functions I [A] we have the pos-
sibility of implementing any coordinate transformation. So diffeomorphism in-
variance reappears under a different semblance: we find exactly the same func-
tional freedom whether we choose a set of coordinates on M4, the functions
Z [A], or the gauge fixing. Thus, it turns out that, on shell, at the Hamiltonian
level as well as the Lagrangian level, gauge fixing is clearly synonymous with the
selection of manifold coordinates. Instead, we are now able to claim that any
coordinatization of the manifold can be seen as embodying the physical indi-
viduation of points, because it can be implemented39 as the Komar–Bergmann
intrinsic coordinates after we choose the correct Z [A] and we select the correct
gauge. The byproduct of the gauge fixing is the identification of the form of the
physical degrees of freedom as nonlocal functionals of the metric and curvature.

Summarizing, each of the point-events of space-time is endowed with its
own physical individuation (the right metrical fingerprint!) as the value, as it
were, of the four canonical coordinates (just four!), or Dirac observables which
describe the dynamical degrees of freedom of the gravitational field. However,
these degrees of freedom are unresolveably entangled with the structure of the
metric manifold in a way that is strongly gauge dependent.

As a final consideration, let us point out that Eq. (24) is a numerical identity
that has an inbuilt noncommutative structure, deriving from the Dirac–Poisson
structure on its right-hand side. The meaning of this structure is not clear at
the classical level, but we believe that it could be relevant to the quantization
of general relativity.

38Each three-metric in the conformal gauge orbit has a different three-Riemann tensor,
and different three-curvature scalars. Since four-tensors and four-curvature scalars depend on
lapse, shift, their gradients, and on the conformal-factor momentum, most of these objects
are in general gauge variables from the Hamiltonian point of view.

39Again, at least locally.
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3 The individuation of points in the real world

The philosophical analysis of the general-relativistic notion of space-time is de-
veloped most often (and this paper is no exception) on the geometrodynamical
formulation of general relativity, which pictures matter following the straightest
lines, so to speak, in a curved space-time arena deformed by gravitation. There
are many reasons for this preference: the geometric theory is indeed very beauti-
ful, and it appears to complete and extend more fully the critique of space-time
structure begun with special relativity. Within this paradigm, the prototype
solution is a strongly curved vacuum space-time with no symmetries. For such
a space-time, coordinate system are freely interchangeable, and of course they
are almost completely irrelevant to the physical individuation of points. For
such a space-time, the philosophical arguments about the Hole Argument and
about general covariance carry their full weight.

However, our universe is not a strongly curved space-time, and it is not a
vacuum solution: rather, it resembles most closely the flat space-time of special
relativity, and it contains much matter, organized in structures at many scales.
Although we know, in theory, that all coordinate frames are equally acceptable,
in this real physical world we manage to keep the time, keep our orientation,
navigate the solar system, and make sense of the universe with a handful of very
special coordinate systems. These systems are precisely the ones that recognize
that gravity is weak (so it can be treated as a correction to flat space-time) and
that matter with structure is available to provide useful points of reference (in
a relational sense).

Indeed, Soffel (1989) defines the purpose of astrometry (the theory of con-
structing reference frames) as “the materialization of a global, nonrotating,
quasi-inertial reference frame, in the form of a fundamental catalogue of stel-
lar positions and proper motions.” On a smaller scale, the preferred reference
frames are those that provide a simple, understandable form for the dynami-
cal equations that rule the motions of celestial bodies. In the case of the solar
system, a suitable reference frame is the barycentric post–Newtonian frame,
where the metric deviates from the Minkowski metric by simple corrections,
and where the equations of motion are slightly modified Newtonian equations
(Soffel, 1989).

Are these coordinate systems methodologically preferred because of their
convenience? If so, can they confer identity to the point-events of space-time?
Both questions deserve some investigation; however, we should note that they
do not refer directly to the philosophical analysis of general relativity in the
generic case, but rather in the case of a specific solution (our universe). So
we should be cautious when we discuss the connection between the physical
individuation of points (as we have outlined it) and the theory of measurement in
general relativity, with its many real-world applications (such as time transport,
geographic positioning and solar-system navigation). The practice (but not the
theory) of general-relativistic measurements is necessarily a consequence of the
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particular solution of the Einstein equations that we happen to inhabit.40

Still, we wish to draw a scenario of how the physical individuation of points
could be implemented (in principle) as an experimental setup and protocol for
positioning and orientation. This construction, which could also be discussed
more abstractly as a system of axioms41 for the empirical foundation of general
relativity, closes the coordinative circuit that joins the mathematical formulation
of general relativity (and in particular of the Hamiltonian initial-value problem)
to the practice of general-relativistic measurement, and to the physical individ-
uation of space-time points. Three steps are necessary.

1. We define a radar-gauge system of coordinates in a finite four-dimensional
volume, by means of a network of artificial satellites similar to the Global
Positioning System (Ashby and Spilker, 1995). The GPS is a constellation
of 24 satellites on quasicircular 20-km-high orbits around the Earth; each
GPS satellite carries an atomic clock accurate to the nanosecond, and
continuously broadcasts its own position and time,42 as computed within
an accurate model of its motion in the gravitational field of the Earth. By
comparing the signals received from four satellites at a given instant of
time (pseudo-ranging), the GPS receivers on the surface of the Earth are
able to determine their radar distance from the satellites, and therefore
to compute their own latitude, longitude, and altitude with a precision of
a few tens of meters, and to track the international standard time with a
maximum error of a few nanoseconds.

The GPS receivers are able to determine their actual position (that is,
the set of their four post–Newtonian, geocentric coordinates, with the
time coordinate rescaled to the international standard time), because the
entire GPS system is predicated on the advance knowledge of the gravita-
tional field of the Earth and of the trajectories of the satellites, which in
turn allows the coordinate synchronization of the satellite clocks to post–

40On the contrary, the physical individuation of points events by the analysis of the local
metric fingerprint would be very relevant to orientation and navigation in a hypothetical world
that is devoid of matter, and where gravity is very strong and unpredictable.

41We owe the classical paper on the axiomatics of general relativity to Ehlers, Pirani and
Schild (1972), who start out by defining basic objects such as light rays, freely falling test
particles, standard clocks, and so on. In their scheme, light-ranging measurements are then
used to reveal the conformal structure of space-time, while the free fall of test bodies is used
to map out the projective structure. Under an axiom of compatibility [well corroborated by
experiment; see Perlick (1994)] these two classes of observations determine completely the
structure of space-time.

We note here that both the Ehlers–Pirani–Schild axiomatics (based on idealized primitive
physical objects and operations) and our discussion of coordinate systems and metric field
measurements in terms of technological instruments (GPS satellites) imply that the coor-

dination of the mathematical theory of general relativity to the physical quantities defined
operationally cannot be excised from the wider context of a comprehensive theory of physical
reality, where the idealized primitive objects and operations of Ehlers, Pirani and Schild are,
in essence, implemented by our technological instruments.

42More precisely, the clocks on the satellites are biased to yield the international standard
time; that is, the proper time elapsed on the geoid, the surface of constant effective gravita-
tional potential that sits very close to the surface of the Earth (at sea level).
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Newtonian time. If, as in our case, the geometry of space-time and the
motion of the satellites are not known in advance, it would be still possible
for the receivers to obtain four, as it were, conventional coordinates by
operating a full-ranging protocol (involving bidirectional communication)
to four super-GPS satellites that broadcast the time of their standard,
unsynchronized clocks. The problem of patching the coordinates obtained
from different four-tuples of satellites is analog to deriving the coordinate
transformations between overlapping patches within an atlas of a differ-
ential manifold, and it should be tractable by maintaining full-ranging
communication between the satellites themselves.

Summarizing, our super-GPS constellation provides a radar-gauge system
of coordinates (without any direct metrical significance) for all the point-
events within a finite region of space-time43:

σA
R ≡ (τR, σa

R); τR = 0 defines ΣτR
. (25)

2. By means of repeated measurements of the motion of four test particles44

(see Ciufolini and Wheeler 1995, pp. 34–36; see also Rovelli 2001) and
gyroscopes (to measure NA!), with technologies similar to the Gravity
Probe B space mission (GPB), suitable spacecraft could then measure the
components of the four-metric with respect to the radar-gauge coordinates,

4gR(A,B)(τR, σa
R), (26)

and by measuring the spatial and temporal variation of 4g, we could then
compute (in principle) the components of the Weyl tensor, and the Weyl
invariant scalars.45

3. By steps 1 and 2, we have obtained a slicing of space-time into surfaces
ΣτR

, and a set of coordinates σa on the surfaces, both defined opera-
tionally; furthermore, we have determined the components of the metric
and the local value of the Weyl scalars with respect to the σA. We can then
solve (in principle) for the functions Ẑ [A] that reproduce the radar-gauge
coordinates as radar-gauge intrinsic coordinates,

σA
R = Ẑ [A]

[

wT [g(σB
R ), π(σC

R )]
]

. (27)

Finally, we can impose the gauge fixing that enforces this particular system
of intrinsic coordinates,

χA ≡ σA − Ẑ [A]
[

wT [g(σB), π(σC )]
]

≈ 0; (28)

at the end of the canonical reduction procedure, we obtain the structure
of the Dirac observables qr, ps as nonlocal functionals of g and π, and we

43Within the Ehlers–Pirani–Schild axiomatics, this corresponds to determining the confor-

mal structure of space-time.
44For vacuum gravitational fields. Six test particles are needed in general space-times.
45Within the Ehlers–Pirani–Schild axiomatics, this corresponds to determining the projec-

tive structure of space-time.
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reconstruct the intrinsic coordinates as functions of the Dirac observables
in each point-event of space-time:

σA
R = Ẑ [A]

[

wT [qr(σB
R ), ps(σ

C
R)]

]

. (29)

Thus, the radar-gauge coordinates are legitimized as intrinsic coordinates
that, because of their well-defined dependence on the Dirac observables,
can endow the point-events of space-time with physical individuality. Of
course, the particular form of this dependence, and the particular presen-
tation of the true degrees of freedom of the gravitational field is gauge
dependent.

This procedure closes the coordinative circuit of general relativity, linking indi-
viduation to experimentation.

4 Conclusion: finding the last remnant of phys-

ical objectivity

From the point of view of the constrained Hamiltonian formalism, general rela-
tivity is a gauge theory like any other; however, it is radically different from the
physical point of view. In addition to creating the distinction between what is
observable46 and what is not, the gauge freedom of general relativity is unavoid-
ably entangled with the definition–constitution of the very stage, space-time,
where the play of physics is enacted. In other words, the gauge mechanism has
the double role of making the dynamics unique (as in all gauge theories), and
of fixing the spatio-temporal reference background at the mathematical level.

In gauge theories such as electromagnetism, we can rely from the begin-
ning on empirically validated, gauge-invariant dynamical equations for the local
fields. This is not the case for general relativity: in order to get dynamical
equations for the basic field in a local form, we must pay the price of general
covariance, which weakens the objectivity that the spatio-temporal description
could have had a priori. Recalling the definition of gauge theory given by Hen-
neaux and Teitelboim (see the beginning of Sec. 2.1), we could say that the
introduction of extra variables does make the mathematical description of gen-
eral relativity more transparent, but it also makes its physical interpretation
more obscure and intriguing, at least at first sight.

By now, it should be clear that the Hole Argument has nothing to do with
the alleged indeterminism of general relativity as a dynamical theory. In our
discussion of the initial-value problem within the Hamiltonian framework we
have shown that, on shell, a complete gauge-fixing (which could in theory con-
cern the whole space-time) is equivalent to the choice of an atlas of coordinate
charts on the space-time manifold, and in particular within the Hole. At the
same time, we have seen that the active diffeomorphisms of the manifold can be
interpreted as passive Hamiltonian gauge transformations. Because the gauge

46In the Dirac or Bergmann sense.
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must be fixed before the initial-value problem can be solved to obtain a solution
(outside and inside the Hole), it makes little sense to apply active diffeomor-
phisms to an already generated solution to obtain an allegedly “different” space-
time. Conversely, it should be possible to generate these “different” solutions
by appropriate choices of the initial gauge fixing.

In addition, we have established that within the Hamiltonian framework
we can use a gauge-fixing procedure based on the Bergmann–Komar intrinsic
coordinates to turn the primary mathematical individuation of manifold points
into a physical individuation of point-events that is directly associated with the
value of the gravitational degrees of freedom (Dirac observables). The price to
pay is the breaking of general covariance. General covariance thus represents a
horizon of a priori possibilities for the physical constitution of the space-time,
possibilities that must be actualized within any given solution of the dynamical
equations. What here we called physical constitution embodies at the same
time the chrono-geometrical, the gravitational, and the causal properties of the
space-time stage.

We have shown that this conceptual physical individuation can be imple-
mented (at least in principle) with a well-defined empirical procedure that closes
the coordinative circuit. We believe that these results cast some light over the
intrinsic structure of the general relativistic space-time that had disappeared
within Leibniz equivalence and that was the object of Michael Friedman’s non-
trivial question.

In 1972, Bergmann and Komar wrote (Bergmann and Komar, 1972):

[...] in general relativity the identity of a world point is not preserved
under the theory’s widest invariance group. This assertion forms
the basis for the conjecture that some physical theory of the future
may teach us how to dispense with world points as the ultimate
constituents of space-time altogether.

Indeed, would it be possible to build a fundamental theory that is grounded in
the reduced phase space parametrized by the Dirac observables? This would
be an abstract and highly nonlocal theory of gravitation that would admit an
infinity of gauge-related, spatio-temporally local realizations. From the mathe-
matical point of view, however, this theory would be just an especially perspic-
uous instantiation of the relation between canonical structure and locality that
pervades contemporary theoretical physics nearly everywhere.

On the other hand, beyond the mathematical transparency and the latitude
of choices guaranteed by general covariance, we need to remember that local
spatio-temporal realizations of the abstract theory would still be needed for im-
plementation of measurements in practice; conversely, any real-world experimen-
tal setting entails the choice of a definite local realization, with a corresponding
gauge fixing that breaks general covariance.

Can this basic freedom in the choice of the local realizations be equated
with a “taking away from space and time the last remnant of physical objectiv-
ity,” as Einstein suggested? We believe that if we strip the physical situation
from Einstein’s “spatial obsession” about realism as locality (and separability), a
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significant kind of spatio-temporal objectivity survives. It is true that the func-
tional dependence of the Dirac observables upon the spatio-temporal coordinates
depends on the particular choice of the latter (or equivalently, of the gauge); yet,
there is no a priori physical individuation of the points independently of the
metric field, so we cannot say that the physical-individuation procedures cor-
responding to different gauges individuate physical point-events that are really
different. Given the conventional nature of the primary mathematical individu-
ation of manifold points through n-tuples of real numbers, we could say instead
that the real point-events are constituted by the nonlocal values of gravitational
degrees of freedom, while the underlying point structure of the mathematical
manifold may be changed at will.

In conclusion, we have presented evidence that the non–point-like texture
encoded in the Dirac observables allows a conception of space-time that is a new
kind of structuralism, in the tradition of Newton’s De Gravitatione, only much
richer. This is even more evident in the case of general relativity with matter,
where we have Dirac observables both for the gravitational field and for the
matter fields, and where the former are modified in their functional form by the
presence of matter. Since the gravitational Dirac observables will still provide
the individuating fields for point-events (according to the conceptual structure
discussed in this paper), matter will come to influence the very individuation of
points. Thus, our structuralist view is richer also in a deeper sense, because it
includes elements in the tradition of both absolutism (space has an autonomous
existence independently of other bodies or matter fields) and relationism (the
nature of space depends on the relations between bodies, or space has no reality
independently of the fields it contains).

A future direction of investigation is the following: looking at the Bergmann–
Komar intrinsic components of the metric [see Eq. (21)], and calculating the
Dirac brackets of the Weyl scalars, it might be possible to define four diffeo-
morphically invariant and canonically conjugated variables that are also Dirac
observables on shell. This achievement would unify the general-covariant and
the Dirac–Bergmann–Komar notion of observable, and would provide explicit
evidence for the objectivity of point-event individuation. Finally, the procedure
of individuation that we have outlined transfers, as it were, the noncommu-
tative Poisson–Dirac structure of the Dirac observables onto the individuated
point-events; the physical implications of this circumstance might deserve some
attention in view of the quantization of general relativity.
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Géhéniau, J. and Debever, R. (1956), “Les quatorze invariants de courbure de
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